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INTRODUCTION.

The Singularity Expansion Method (SEM) has been recently intro-
duced by C.E. Baum [1,2] in transient electromagnetics for perfect con-
ductors. It is‘based on the use of the continuation of the generalized
impedance matrix for complex values of the frequency. Theoretical con-
siderations [3,hl as well as practical results [5] show that the singu~
larities of this matrix give a good description of the time-response of
the scatterer. The choice of the impedance matrix seems natural for
bodies of infinite conductivity, but looks artificial when there is no
surface current.

We propose here a new rigorous differential formulastion to study
the diffraction by arbitrary shaped cylinders made with dielectric or
conducting materials which is based on the use of the scattering ope-
rator (F-operator). It is surprising to see in the litterature that,
except a few exceptions as [6], this operator is only used in theoreti-
cal considerations whereas it can be a powerful tool in numerical calcu~
lation. :

Our computer program perform & direct computation of the scatte-
ring matrix, searches poles and zeros of this latter, and gives also
the diffraction patterns (total cross-sections and bistatic cross-—
sections) for varicus incidences.

Because the translational invariances, we use a exp(iyz - iwt)
vectors field dependence. We examine successively the singularities in
the frequency (w) domain end in the propagation constant (y) domain.
Such complex propagation constant had been used previou;ly in our lab
to compute the coupling efficiency of grating couplers LT] or surface
waves on gratings [8,9] and tc exhibit a curious phenomenon of total
absorption of energy. A singulsrity expansion, proposed in a previous
paper [10], can be used to reconstruct the harmonic diffracted field.




The problem we deal with is summarized below : . »
~ c¢ylindrical coordinates : r , 8 , z ,

~ cylinder : . axis Oz ,
. arbitrary shape (can be inho-

. mogeneous )
. infinite length, .

- material : dielectric or metal (not perfect
conductor),

Y. - electromagnetic constants :
g . e(r,8) real or complex, inde-
pendent of 2z and t© ,
E = gy for r > R2 R
. M= g in all space? .
Notations :
> . -
X is the wave vector (|k| =k = 211 3 X = wavelength),
y is its grojection on Oz 3 k,on xCy,
¢ = (Oz,k) .
I — THE SCATTERING OPERATOR. i ‘l’

When the distance r to axis 0z of the cylinder tends to
infinity, it is possible to separate the electromagnetic field in two
parts : the incoming waves @ and the outgoing ones Y. When the scatte-
ring obstacle is removed, we note the outgoing wave wE. The linearity
of Maxwell equations implies there exists a linear opersator such as :

(1 v = S g

It is worthnoting that psual definition of the scattering operator [111
uses Y instead of Yg. Our definition is chosen because it gives a
unity operator when the obstacle is removed. It is not the case for the
usual one because of the phase change of a convergent cylindrical wave
when passing through a focus.

It is very interesting in view of numerical applications, to use
a representation of the S  operator which is as much as possible inde-
pendent of the incident field structure. '

We assume here that our diffraction problem is invariant with
respect to arbitrary translations of the time coordinate t and of the
spatial coordinate z . It is easy to show f12] that these properties
implie the comservation of the frequency w/2rn and of the projection
y of the wave vector k on Oz axis. Thus we use complex amplitudes
for the field, assuming an exp[i(Yz - wt)] dependence. .
el

Tt This restriction is only for convenience ; it could he removed imme-—
diately at the price of a little more computation time.
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The electromagnétic field may be expressed in terms of its trans—
verse and axial components

'E(r,e,z,t) Re {(Eé(r,e) + Ez(r,e)gz) exp [i(YZ - wt)]} .,

(2).

> -> >

H(r,0,z,t) Re HH(r6)+I{h'Me)<ﬂp[ﬂY - wt)]}

and it is well known [13] that the transverse components (ET . H ) can
be derived from the axial ones (E, , H, ).

The latters are solutions of propagatlon equations established in annex A,
and must be considered as generalized functions or distributions.

When r >R, , e =¢, and u =, ; then we can write the field
in terms of Hankel functions. Iet us define :

0

kg2 = wlequg - Y2

= 120 = |22

Zog = T = €0 s

NE - . Ty SE x }

Hn(kor) = exp [}1(n + 2>£J Hn(kor) where H_ are the Hankel
functions corresponding to n order. We get :

Ez(r,e) z (e kor) + e ¥ (kor)) exp(ind) ,
(3) - ot .

Zg Hz(r,e) = g (hn Hn(kor) + hn Hn(kor)) exp(ind)

nE

When r +ends to infinity, the functions H_ (kor) are equivalent to

exp(+1k0r)/vk r . Thus the angular dependence of the outgoing field is
characterized by the functions : .

+ + .
E (8) = IZI e exp(ind)

()
Zy B(8) = [ exp(ind)
n

which are periodic with period 2m , square-integrable over one period,
and so belong to the Hilbert space L2(2ﬂ) .

Since the electromagnetic field is completely determined by its
exial components E,(r,6) and H_(r,0) , the diffraction operator works
on the Hilbert space L, (2m) (:)L %QH (where(:)is the direct sum)
whose elements are column vectors of the form :

(5) v = E(e) :
Zo H (e)

Using the Dirac notation, we write [n t> for [%XP(lne)] and |(n 2> for

0
O. . T™he matrix elements are :
exp(in®) ‘

‘ +
n,n & Z
Sngq = <n ql S [m P> { ’

m,P p,a € {1,2}° /

T

7 is the set of relative integers (positive, negative, or equal to
zero integers).
5



If the obstacle is removed, the outgoing field coefficients in expansion

(3) can be derived in a straightforyard manner from the coefficients

e, » h;) of the incoming field. Thus, our S-—matrix also gives the out-

going field coefficients (e} , ht) from the incoming ones (ef , hg) - .
The property is used for the computation of the S-matrix (fAnnex C) .

IT ~ PROPERTIES OF THE S-MATRIX.

L)

General properties of the diffracted field give some simple rela-—

- tions between the elements of the S—matrix.

II.1. Relations derived from the reciprocity theorem.

This property does not require a lossless scatterer. Annex B
describes how the de Hocpe's demonstration [11,1&], for a Tinite-size
diffracting structure, can be transposed to an infinite length cylinder.
It is also shown that the corresponding relations between the matrix
- elements are :

n,q —m,p
g = g
(1) m,p —n,q

II.2. Relations from the energy conservation.

Of course this only holds for lossless dielectrics or perfect
conductors. Using the time-dependence in  exp(-iwt) we note

- >+ . . . .
% and H the complex vectors assoclated with the outgoing field.

Lemms :
Given a circular cylinder %E (axis 0z , radius Rz) with e = ¢
and U = Y, outside %32, it is shown (annex B) that two diffracted
field ¢t "and ¢'" verify :

’ >4 =
(8) —;- (" AE'" )M as = — el “n
where e 1s the complex conjugate of e .

. . . + + .
The right side of (8) is the scalar product of ¢ and w' in
Ly(2n) (DL, (2} . Thus we write :

- -
%-JJ (E+ A H'+)§ ds = C <¢'+,¢+> , where € 1s a normalisation
2 o+ + constant.
In particular, if ¢ = ¢ , the energy flux of the outgoing field
¢ «p*,9"> is proportional to the square of the norm ||¢|| . The result ‘

is that, for a lossless scatterer, the S-matrix does not change the norm
of the vectors, and consegquently, everywhere its inverse exists, the
S-matrix is unitary.




II.3. Relations from the symmetries of the scatterer.

The symmetries of the scatterer give various relations between
the matrix elements, which may be useful to check the validity and the
accuracy of numerical results. For example, using the exp(ind) basis :

a) if xOz is a plane of symmetry, we get :

m,p ~m,p ?

(9) Sn!q — S—naq.

b) if yOz is a plane of symmetry :

n,q n-m n,q
10 g7 -1 S
(10) m,p (-1) -m,p

k4

e¢) if Oz is an axis of symmetry (order 2) :

(11) %% = ()i gt |
m,p m,p

The latter formula shows that the one over two parallel to the main
diagonal of the matrix are zero. This is in agreement with the remark
of paragraph ITI.S5. ) ) -

IIT — ANALYTIC CONTINUATIONS OF THE S-MATRIX AND THEIR SINGULARITIES.

As it will be shown later, an interesting problem is to .study
the analytic continuations of the S-matrix for complex values of diffe-
rent variables.

Because the translational invariance, tf is an operator-valued
function of vy and ko = w/esu, - The definitions of the incoming and
outgoing waves are obvious for real values of the variables, but it is
not the same when the variasbles are complex. ILet us assume that there
is no ambiguity in the definition of & , which implies the use of
appropriate branch cuts ; if such branch cuts are used, we assume that
they do not lie between the singularities and the segment of the real
axis we are dealing with.

III.1. Continuation in the frequency domain.

We assume kg complex and ¥y a.given real number. The study
is suggested by the presence of resonance peaks in the cross—section
curves versus frequency. For a given scatterer, the peaks alﬁays appear,
for the same frequency, whatever the angle 6 of incidence. This sug-
gests to relate such resonances with singularities of the S-matrix in
the complex frequency plane.

¥ will not try to give here a rigorous mathematical basis for
this continuation. But the comparison of the harmonic diffrected field
computed directly, or reconstructed by means of singularities expansions,
enables us to check the validity of our hypothesis. It seems not hazar-
dous to assume that, outside a discrete spectrum and for Re(k) > 0 ,
the ¥ -operator has an inverse. ‘
' 7



Let .us introduce the eigenvectors |i j> of s

values ¢y
g i3> = c; |1 j> , where the subscript Jj is used for .

and the eigen-

degenerate eigenvalues.

We assume that S 1is regular enough to use the decomposition :

Zl><i.

(12) s

isd 4
where <i j| is an eigencovector of s for ¢; such as :
< 2 s = & ) . . . .
iilim .61’1 83,m (6131 is the Krdnecker symbol)

The poles of S are the values of k +that reduce dhe eigenvalue ci(k)
to zero : they are given by the roots of equations:

(13)  e;(x) = 0.

Let us now assume that the poles are simple, i.e. the roots of egquation
(13) are of first order. This hypothesis can be understood if we remember
that a perfectly conducting shpere has only simple poles [15] and it
seems likely that the same thing applies for finite-size objects. Our
two dimentional problem is similar because i1t has a finite-size cross—
section.

Then, the residue of the S-matrix for the pole kl is defined by :

(1) R, = 1im (x - k) s(k) .
1 kg 1

Assuming that the transition operator (? =3 - 1 is compact, the

Fredholm analytic theorem [16] implies that R, has a finite rank. This
rank is the order of degeneracy of the resonant mode defined by the pole
ky . Let us developped the S-matrix in terms of its poles and residues :

(15) s(x) = § il + 8 (k)
5 = ly=w o(K) .

Equations (1k4) and (12) give :

= 1i 13 §> < 3t
R, = lim (k - k;) 'Z_ =
1.d 1

. Kok,

b

where the only contributions are obtained for 1 =1 . Thus :

dk

(1) B = T 2 1 d> <1l -
J .
The residues are matrices (dyadiecs) given by the eigenvectors and covec-
tors of 8 for k = k. , constant with respect to k . Thus the interest .

of this expansion for tThe study of transient electiromsgnetics is obvious.
Using classical hypothesis about the asymptotic behaviour of ¥ (k) , we
may know the time dependent electric field by means of a contour integral

8
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in the complex k plane : this is the classical SEM [2]. Residue theorem
implies that the regular part So(k) of the S-matrix does not contribute
to the integral : from this point of view transient response seems more
easy to get than the harmonic one. But, the difficulty to determine di-
rectly the response makes the validity of expansion (15) difficult to
check. In particular, the contour integral determination nescessitates
the knowledge of all the poles lying inside the contour which are the
roots of a transcendental equation. Thus, the number of poles is unknown,
and it is very difficult to be sure to have determined all them.

This incites us to improve expansion (15) in order to be able to
compute also the harmonic diffracted field. This is easy for perfect die-
lectrics with well separated resonances (The meaning of '"well separated
resonances" is given in the paragraph dealing with the symmetry proper-—
ties of the modes). In practice, we must have a permittivity e, greater
than 4 in the case of perpendicular incidence. The unitarity of the
S-matrix for real values of k implies that det(S) = 0 for conjugated
values of the poles k3 of S(k) .

This property incitesus to write :

k - k.

(17) (k) 7 L g (x)
17 s(k) = —= R. + sMx) .
1= BTk °

Numerical experiments have shown that the variations of Sé(k) with k
are negligible provided that the discrete sum includes all the poles
lying near the segment of the real axis we are concerned with to obtain
the harmonic response, this expansion will be used in a limited frequency
domain. Sé(k) is a quasi-—constant matrix which gives the contribution

of singularities lying outside this domain.

IIT.2. Continuation to complex propagation constant vy .

Let us now assume that k, is given and real, e is real and Y
is allowed to be complex. If a pole vy, of S lies on the real axis,
this means that there is a solution to Maxwell equations without incident
field. In other words, if vy > k, , the field outside the cylinder de-
creases when r goes to infinity : we recognize here a guided mode of
the dielectric waveguide, constituted by the cylinder with axis Oz , and
Y is the propagation constant. The eigenvector |1 j> of the S-matrix
describes the propagating mode.

Thus, our diffraction study enables us to determine the mode of a
dielectric—waveguide of arbitrary shape.

Of course, this method also works for complex values of the per-
mittivity ¢ , but then Yp is complex. Its imaginary part gives the
attenuation along Oz . If we find solution for Re(yy,) < k, , the corres-
ponding mode is a radiating one. Consequently, there 1s an attenuation
along Oz , and the corresponding pole is again complex. The poles vy
are also useful for purposes other than guided propagation. For example,
if we get a space-packet of incident waves :

. Yo s .

T



we can determine the response of the scatterer as we did for grating-
couplers in ET].

III.3. Continuation to complex angular constant o .

The two preceding ways to do the analytic continuation of the
S-matrix was obvious. The way proposed here is less intuitive. The equa-
tions are invariant if we change 6 in 0 + 27 . This implies (Floquet's
theorem) that a wave having an exp(iaf) dependence is coupled only to
exp[i(a + n)e] . .Physical reasons imply that for finite cross—section
cylinders, - o can only be an integer. But we may consider the continua-
tion of the S—matrix to complex values of « : this is done by radio-
engineers who study the propagatlon over the earth [17] with the use of
Watson transform. This.is alsc employed in guantum theory of scattering
by people dealing with the Regge poles [123.

Por us, the interest of such a procedure appears when the incident
field imposes the values of vy and k . The localization of the poles
Op allows us to predict the occurence of 8 resonance waen op is near
in integer value. Of course, is an integer when we are in guided-
propagation conditions and become complex when <y is smaller than k .
if is near the real axis, we have a radiating mode, but we can con-
sider that it is induced by rotating wave. It is the same has in the
preceding paragraph, when we consider complex propagation constants vy ;
for small section, it seems that the propagation along Oz is more im-
portant than the rotation around Oz , but for large radius of curvature,
the rotation is an interesting point of view and lead to "creeping-waves"

[18].

III.4. Searching poles and computing residues.

Numerical difficulties could arise if the determinaetion of the
poles is conducted with the S-matrix, and are avoided if we use its
inverse S~1 . This could be done very simply, inverting outgoing end
incoming conditions, so the program computes directly the inverse matrix.
The poles are the roots of equation :

aet(s™!) = o .

Thus, we have to found the zeros of a complex function of complex variable.
This could be done by an iterative method using a linear spproximation as
we do in this program, or as we did for grating-couplers Pﬂ using an homo-
graphic approximation. :

The residues are given by the eigenvectors of S . For a dielectrie
cylinder the S and S~ ! matrices are unitary, so all the eigenvalues
are of modulus unity. Usual iterative methods, such as the Von Mise one,
does not work with such matrices but it is possible to dlagonallze the
matrix (8 + 8%)/2  (vhere 8% is the adjoint of 8) which is hermi-
tian by the efficient Jacobi method. Another way is to diaginalize g-1 .
taking into account the zero eigenvalue. This could be done by elimina~
tion of superfluous equations, but nescessitates the knowledge of the
main components of the eigenvector. For small matrices of order 2 or 3,
an analytical solution can be exhibited. All the three methods proposed
.here have been used successfully in our programs.

10




The computation of the residues also nescessitates the determi-

nation of the derivative ci of the eigenvalues. This is done from the

derivative t?’ of & using the formula :

ef = <4l is

IIT.5. Numerical determination of the S-matriux.

Differential integration methods, such as the Rungé-Kutta ones,
allow us to compute dlrectly the S-matrix in the exp(iné) basis. The
equations used to this aim are glven in annex C. We must emphasize that
such a computation does not require much more time and memory than the
direct determination of one diffracted field by one given incident field.
It is only when the numbers of terms necessary to get an accurate repre-
sentation of the field is great that the use of an iterative method as
proposed in [19] can lead to substantlal savings.

An interesting feature of our program is the use of symmetry
properties of the scatterer to reduce computation requlrements. Suppose
that Oz 1is an axis of symmetry of Nth order (it is invariant when 6
is changed in 6 +. éw/N) from Floquet's theorem a wave having an
~exp(iaf) dependence is only coupled to the ones having a
{exp[i(a +-nN)6] , 1€ Z} dependence. Consequently, it is possible
to split the matrices in N independent ones of order N +times smallet.
The number of elementary operations is approximately proportional to the
third power of the order of the matrices in a multiplication. Then for
the calculation of a complete S-matrix the computation time is divide
by N. Moreover we need only one sub-matrix to search a pole. Since this
- sub-matrix has less poles than the complete one, the iterative method
used to find the pole locations work better. The computation tlme is
then divided by N2 .

IV - REPRESENTATIVE RESULTS.

IV.1. Checking owr program.

The validity of our mwaerical program has been checked with various
tests. The energy conservation criterion (or "optical theorem") and the
rec1proc1ty relations between matrix elements are satisfied with an accu—
racy of 107

- We have computed the difféfential
cross—sections of cirecular cylinders,

R ' when the axis of the cylinder is shifted
0 « from 0Oz (figure 2). The results agree
\\\\\;"//// LY with the curves presented by Lind and

dry

Greenberg [20]. We have also writen an
enalytical program, using matching con-
ditions which gives the ssme results.
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For normal incidence, that is to say for an incident wave perpendicular
to the Oz axis, the results have been compared with. success to our prex

vious programs using Noumerov algorithm [2 1'] or integral formulation [22] . .

The necessity to perform a numerical integration of Maxwell egqua-
tion has been proved by writing the point-matching counterpart of our
program. The table 1 gives the total scattering cross section of a cir—
cular cylinder, for various shifts of its axis. When the results are
good, the cross section is independent of the shift, but experiment
shows that for a shift equal to half-radius, the program basejon point
matching method diverges before a good result is obtain. On the opposite,
the numerical integration of Maxwell equations always gives the same
result, for these different shifts.

~

Eos 0.1 0.15 0.20 0.25
N
13 3.495 3.565 3.741 3.927
15 3.489 3.595 3.636 3.779
17 3.487 3.501 3.564 3.716
19 3.486 3.Lok 3.535 12.25
21 3.465 3.800 28.20 300 000.
23 2.707 27.64
Table 1
Total ceross section of a shifted circular cylinder.
koR = 0.5

permittivity : e = 2.56
oblique incidence : ¢ = 45°
dimension of the S-matrix : N
normalized shift : kya .
Method used : Point-Matching .

For square or rectangular cross sections, we have computed the propaga-
tion constant of dielectric waveguides. This time, the results always
agree with the values achieved by Goell [23] with a point-matching me-
thod. Several reasons can be invoked to explain the validity of cylin—
drical expansions in this case : the use of modified Bessel functions
instead of Hankel functions outside the waveguide ; the small number

of significent poles lying at the left of a given frequency with re-
gard to the diffraction problem ; the poor sensitivity of poles loca-
tion to this kind of errors.

IV.2. Poles of the. square cylinder.

The poles of a square dielectric cylinder come near the real ‘
axis when the permittivity increases. This is shown in figure 3 for
relative permittivity between 2 and 6. As expected, we see that the

12




number of poles lying between the imaginary axis and a given freguency
increases also with the permittivity. This may be connected with the
necessity to increase the number of terms used in the Fourier series to
describe the field accurately

4 Im (k)

.24

Figure & :

The locus of natural frequencies for a square lossless dielectric
cylinder with normal incidence (y = 0) when

2 & < 6. The
denomination of poles (Ay , Ao , By 5 By , E) is tZe same as the
one of the corresponding irreducible representation of the stmetry
group. The zeros of S are conjugated with the poles.

It is interesting to draw the trajectories of the zeros and the poles as
a function of the losses in the scatterer. Figure L shows them when the
imaginary part of the permittivity increases. When the zero trajectories
cut the real axis we have a remarkable phenomenon of total sbsorption for
suitable incident fields. Of course, it is not so impressive as for gra-
tings 8|, because the total absorption needs a special structure for the

incident field (mode structure) not easy to achieve experimentally, but
the phenomenon is not different in nature.

£a Im {ka)
. ZEROS
4.
I 4, M
! ‘ \\4HQ9 “, s .
. 3 . 4
L % b Feits
+ R b 4 -
5 '4.4'!0.9 % ‘%‘ ;; Re(kaj
O ) § :?»
1 - Y4409
4 g4 PR 45
» —05 , Ol ' *0*’ v" d
7 4 ,.-") 4309 ‘;’. ,,x“
44109 4409 B.2 B M "
E , 1 E
At POLES :
Figure 4

Tragectories of poles and zercs of «a square cylinder as a function
of the imaginary part of permittivity (e, = 4. + < ). The inci-
dence is perpendicular to the cylinder axis.
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Figure 5 gives the diffraction pattern for a freguency near the cross-—
over of the real axis and a zero trajectory, for an incident plane wave.

Since the plane wave does not have a mode structure, there is some
energy diffracted.

— 1)

A,
-Figure 6

Diffraction pattern of
© a square cylinder with
X €p = 4. +'72 0.9 and

‘E’ ka = 3.4 .

The iterative method used to search the poles needs to know approximate
values of them. A raugh localisation could be done by drawing the tra—
Jectories in the complex plane of matrix elements as a function of the

frequency (figure 6). .

A

Im

AL Im

3.8

3.7 . 3.7 £.9

Figure 6-4 3. 3.2 Figure 6-B

Figure 6-A shows the trajectory of a matric element as a function
of the normalized frequency for a detached poles : the argument
change is about 3m/2 when passing near the pole.

Pigure 6-B shows what happens when two resonances are mixed ; the

argument change about3n if we take the origin inside the loop.
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As expected, the pole trajectory on figure 7 tends to the real axis
when the projection y of the wavevector on the cylinder axis in-
creases. The junction point gives the cut-off frequency. The smooth
transition shows that it is possible to obtain poles with a small

. imaginary part even with small permittivity, i.e. to observe sharp
resonance peaks.
Alm{ka)
i 5 6 7 8 .
0 HY
i Re(ka)

Figure 7

Pole trajectory as a function of the propagation constant vy .
The square cylinder has a permittivity £, = 2.56 .

IV.3. Direct computation of scattering cross sections.

Our program can be also used to draw directly the cross section
‘ of a cylinder. Examples are given in figure 8 and figure 9.

E a
CSlIt 4
'5 L

b L

E
- L5°
-== 0Oq (45°)

1) e OTE (0°)  arsed ///,//j:a D P

¥ N ¥ ¥

1 2 3

Foe
i
=
o

Total cross-section vs. normalized frequency for a square dielectric
. gylinder (e, = 6.), for two oblique incidences with (0=, k) = 45 °
18 the incident wave vector.

Figure 8
15 .




4
\\ﬁ
A\

ot ' - ®

Figure 9

Differential cross-sectign of a square dielectric cylinder (e, = 6.)
with Hy, = 0, ¢ = (02,k) = 45°

0, (0%180°) ; - ---- oDE(45°, 2959 .

IV.4. éomputatéon of diffraction patterns by the singularity
expansion approach. '

At a given frequency, the diffraction pattern can be drawn using
formula (17). The comparison with directly computed curves gives a good ‘
idea about the accuracy of the expansion. An example is given in figure
10.

3.1;
et
Lj’“""\.\.}. 3.1
vy
/; ¢ "
E T *{-" 0,2 0,k ﬁRe
> .:' 3‘1{:" .
Figure 10-4 Figure 10-B

Figure 10-A. Diffraction pattern of a square cylinder (ep = 6.)
with H,=0, y=0, 68;=0, ka=2.5.

Direct calculation
== With expanston (17).

Figure 10-B. Locus of 2 matrix elements as a function of ka for .
. a square cylinder with losses (e, = 4. + 2 0.5)

4+ — + ——  Dirvect calculation
* — + —  Using formula (17) with the zeros of
det(S) instead of kl
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V = SELECTION RULES AND SYMMETRY GROUF.

V.1. Introduction.

We just give briefly the meaning of few words necessary to un—
derstand the use of group representation theory in electromagnetic
scattering. For further informations, Quantum Mechanic books EEM,25},
as well as more specialized ones, could be consulted with profit.

Let us define the symmetry group of a scattering object by the
set of all the geometrical transformations leaving invarisnt the object. -
The number of these transformations is finite because rotations are
difined modulo 27 . Thus, it is said that the group is finite.

¥ take, for example, the symmetry group %%/ of a square cylinder
(fig. 11). It is composed by 8 elements : identity, rotations = , w/2
and -n/2 around Oz , plane reflexions
Ai v with respect to x0z , yOz , and 2 dia—

gonal planes of symmetry.
N\ We see that the composition of 2 geome-—
\\\ trical transformations of the group gives
P x a new element of the group. Thus, it is
\\\ possible to draw the group Pythagorean’
\\ table.

It is important to understand that the

group structure is not relevant of the

geometrical nature of its transformations.

The relations produced by the composition

Figure 11 law,between the elements, give the struc-—

ture : the same "Pythagorean table" can
be obtained, starting with 8 square matrices with dimension N . The set
of these matrices is said to be a N-dimensional linear representation of
the group %%:. If the matrice multiplication table 1s deduced from the
group table Dy confounding two or more elements, the representation is
said not faithfull.

We use here a set of N exp(ing) basis functions to define the
vector space of representation. Height matrices acting into this space
will give us the representation itself. Changing the space basis, we
get 8 new matrices with the same multiplication table. This new repre-—
sentation of the group is said equivalent to the first one. Practically,
we don't distinguish two equivalent representations, and they will have
the same denomination. If one can find a basis where all the matrices
of the group have the same "diagonal-box" form (figure 12), the represen-—

g ﬂ.
;/.
Z |
%}’/‘ Figure 12
42 A diagonal box matrix
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tation is said decomposed into a direct sum of representations, each
corresponding to a "box".

If there is no invariant sub-space with respect to all the trans-—
formations of the Group, the representation is irreducible. This notion
is very important because it is the foundation of Group theory applica-
tions in Physics. For finite groups, it can be shown that all represen—
tations could be decomposed in a sum of irreducible representations.

V.2. Connection between the scattering phenomenon and symme try
group. ) _

The propagation equations (A-L4) are left invariant by the trans-—
formation ﬁ?l belonging to the group §;~. So we can write :

o= & e ——:;‘glw* = 3"%&6.
Consequently : '

t? = %%/11 3 E}l —_ é? and E;l commute : L&?, 3?1] =0

Let us consider, for example, if as an operator-valued function of k
with pole k; . W get :

lim (k-ki) [335%1] = 0 .
k-k;
From the definition of residue Ri s We get &

[Ri’(gl] = 0.

Ir |i> is an eigenvector of R; , such as Ri |i> = c. |i> s
we get :

3 G Jix.

R, 6, |i> = G R [i> = ¢,
Thus Gy li> is also eigenvector of R; for the same eigenvalue c¢j .
Consequently, the space defined by the eigenvectors associated with ¢
is left invariant by the Group transformations. We assume, as it is done
in Quantum Mechanics, that this space defines an irreducible representa-—
tion and that '"the contrary would be an utterly improbable coincidence™
[25]. As the group is finite this sub-space may be finite 3 this is in
accordance with the Fredholm Analytic Theorem [16] for compact operator—
valued functions.

We can now associate an irreducible representation ERai of the symmetry
group to each resonance. If {}ii is one-dimensional, the residue R;

is a matrix of rank one and has only one eigenvector li> . This eigen—
vector is the representation of t;% resonant mode assoclated with the
residue R; . If the dimension of \fLi is greater than one, R; has
independent eigenvectors, and a resonant mode corresponds to any linesr
combination of eigenvectors : it is a degenerated resonance.
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The same properties also holds for &f as a function of propagation
constant vy . Consequently each waveguide mode is associated to an
irreducible representation of the symmetry group cross section. We think
that it gives a logical way to designate the modes.

V. 3. The characterization of représentations.

The diagonal elements sum (i.e. the trace) of a matrix Gl repre-—
senting one element of the group remains the same in a change of
basis : it is called its character. Thus, two equivalent representations
have the same characters.

Two elements of a group having the same characters for all possi-
. ble inequivalent irreducible representations are of the same class. It
can be shown that the number of classes is equal to the number of irre-
ducible representations of a group.

The square cylinder has five ineguivalent irreducible representa—
tions [25] noted A; , Ay , By , B, and E . The five classes are :

E; for the identity I ,

Co vt rotation R(w) ,

2C, " rotations R(w/2) and R(=m/2) ,

20 " plane reflexions with respect to x0z = o/x0z or yOz : o/yOz,
2¢' " " " with respect to the diagonals.

The table of characters is given in table 2.

1
qu Ei 02 204 20 20

A 1 1 1 1 1

E 2 -2 0 0 0

Table 2

The table of characters for the symmetry group Cy, of a square
cylinder (C,, is tsomorph to group D, used in theoretical physigs)

The dimensions of representations are equal to the character of E; . We
see that A; , A, , By , By, are one-dimensional representations and E a
two-dimensional one. :

Practically, for s given resonance, we compute the eigenvector on
the exp(in®) basis. It is the Fourier expansion of a function u(g) .
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Performing one transformgtion of the group is equivalent to change 6 into

8' . Thus, we get 8 functions and comparing these functions to the initial

one, we determine the characters of the representation attached to the

resonance. Using the table 2, we get the corresponding irreducible repre- .
sentation. This procedure allows us to classify logicaly the resonances

of the cylinder with respect to their symmetry properties, whatever the

shape of the scatterer is.

V.4. The interest of a logical mode denomination.

A good example of the disadvantages of the traditional mode deno-
mination for square waveguides is given by Stalzer et al. in a recent
paper E261. They show that in a square waveguide made with a perfect
conductor, modes TEys; and TE,( are degenerated. If the section is a cross
such as the one represented in figure 13, the degeneracy is broken. On

' the contrary, TEg; and TEjg modes remain
degenerate. Thus, the usual mode denomina-—
tion does not allow us to predict this
phenomenon. But the symmetry properties of
TEg; and TE;q¢ show that these modes are
connected to & bi-dimensional irreducible
representation E . Thus, TEp; and TE;p,
remain degenerate for all cross—sectilons

' having the same symmetry group Cy- . The

Figure 13 phenomenon is different for TE, g and TEgy -

The symmetry properties show that the sum
TEgs + TEp( has the symmetries of an Ap
irreducible representation, and that the
gifference TEgs — TE,g has the symmetries
of a By one. Thus, we can say that the
degeneracy of TEgy and TE;q is an hazard
caused by the infinite conductivity of the wavegulde walls for a square
cross section. Thus, the degeneracy is removed when the cross—section
has the same symmetry group but is not a square.

Gutde cross—section
with symmetry Group qu

V.6, Selection rules for one—dimenmsional representations.

The interest of the classification of resonances is not purely
formal : it is the first step to found selection rules for differential
cross-section. These rules are consequences of the following theorem
[?5] : Let {Z be an operator invariant with respect to all symmetry
transformetion, |i> and |j> the vectors of 2 spaces of irreducible (non-
unit) representations. The matrix elements :

<] Qz |i>

are zero if |i> and Ij> are related to inequivalent irreducible repre-—
sentations.

— o e . o e wee e — e v - e e e -

Let us consider an incident field ¢ with frequency close to
a natural frequency resonance (k # Re(ki). The main contribution to dif-
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fracted field generally comes from the residue R, , corresponding to
the resonant mode excitated by the sources. Thus, the diffraction pat-
tern 1s essentially a picture of a resonant mode.

For the sake of simplicity, let us assume that the incident field
propagates normaly to Oz with the electric field EY parallel to Ozt .
Thus, the differential cross-section is [10] :

251 +2
(18) op = lim 2mr ?. = on |E vgl” .
| e

. . + . . . .
We write |1> for ¢y and ld> for Dirac distribution &§{6 - ed) . We get :

(19) o5 = o |<a| § |i>]2 .
Near the resonance, there is only the residue R; contributing to G:li> ,
and vwe can assume that |i> belongs to the irreducible representation

Sti attached to the pole. Changing 6 - 65 1into -{8 - ed) leaves

§(6 ~ 83) invariant : we define the group of symmetry izi of |d> by the
two elements : identity and plane-reflexion with respect to the direc—
tion of diffraction 653 . We find the group Cg , whose table of characters
is given in table 3.

Cs(ed) B %a E, 18 the identity
A 1 1 94 igs the plane symmetry with respect
> . >
B 1 -1 to the plane (Oz,u) with (Ox,u) = 64
Table 3
An interesting case arises when Cg is a subgroup of the group of

the scatterer. For a square cylinder, it occurs when the directidn of
diffraction is parallel to an axis or a bissectrix (og = ¢ or o4 = o').
Of course |d> belongs to the representation A of Cg ?{d> is symmetric
with respect to o ).

Let us consider an irreducible one~dimensional representation ik/i
of 35/ . It is also an irreducible representation of 3 - If we take
the Two elements of existing in ?’d ,» we get the characters of a
given representation.

For example, if %%/ = qu s, the characters of a B2 representation
are :

e

T This restriction permits to ignore the complexity introduced by
intrinsic symmetry of the field. Here, this symmetry shows it=
sell by the pseudovector nature of H, , and implies different

relations between vector components Hy «
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t
CL*Vr Ei 02 ECH 20 20
B, 1 1 -1 -1 1
If Ud =g , we extract for E?d = CS :
CS ' Ei Gd =g
B2 , 1 -1

By identification with table 3 , we conclude that By of C,. is also a
representation B of Cg : it is antisymmetric with respect to axis Ox or
Oy . Consequently the field diffracted towards these two directions is
null, as shown in figure 1h.

v

Figure 14

0(45o’ed) for a 32 resonagnce

v

at ka = 2.5

OQ

In other words, the table of characters gives us informations about the
symmetry or antisymmetry of a mode with respect to particular directions.

Of course the same theorem could be used when the incident
field Yy has particular symmetries. Our case of interest will be a plane
wave : it has the same symmetry as (6 - 65) . Consequently, we see that,
according to the reciprocity theorem, a resonance cannot be excited by a
plane wave propagating in a direction where the resonance does not ra-
digte. This can be seen by comparing figure 15-A and 15-B.
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Figure 15-A Figure .15~B
ka = 2.5 ka = 2.8
od(Oo,ed) : the resonance od(0°*ed) : the resonance B,
By is only excitated s only excitated

V.6. Selection-rules for degenerated resonances.

When the resonance 1s degenerated, the corresponding irreducible
representation -of is multi-dimensional. Thus, it is not an irreduci-
ble representation of C_ and it must be decomposed. The following re-
lation is convenient to achieve this decomposition : .

= 1 ]
(20) n = . ) trace(G;) trace(Gi)
n is the number of irreducible representation R of g;a in the decompo-
sition,
g is the number of elements in 3 s

trace(Gi) is the .character of element Gi of the group we want to de-
compose,

trace(Gi) is the character to the corresponding element of the repre-
sentation JU of ‘g/ .

For example the irreducible representation E of C,_ can be decomposed
into irreducible representations of Cq (elements : E; and o/0x) by :

Decomposition on A of Cg :
n =2 (2x1+0x1) = 1.

Decomposition on B of Cy ¢
n = %—(QX1 + 0x1) = 1.,
== Each irreducible representation of C5 appears one time in the
decomposition. It is the same for the other planes of symmetry ¢ . Con-=
sequently, the E resonances are always excited by a plane wave of sui-
table frequency, and here no selection rule holds.
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But, for given directions of incidence and diffraction, we can
find selection rules. The incident field excites only one particular
linear combination of degenerate modes, and imposes additional symme-—
tries. For example, a direction of incidence 8; = 0 implies a plane
symnetry with respect to x0z . As -2 is the character of the rotation
R(t) in the bidimensional representation E (table 2), the corresponding
1 Q
o -1
symmetric with respect to Oz. Putting together this anti~symmetry and
the symmetry with respect to 0x , we conclude that the excitated mode
is anti-symmetric with respect to Oy . Consequently no energy is diffrac-
ted in the Oy direction. This can be seen in figure 16.

4

Figure 16

diagonal matrix is and all the linear combinations are anti-

v

c(0,8) for ka = 3.5 . The resonance E does not radiate
in a dirvection perpendicular to incident wave.

This is an example of selection rules occurring in multi-dimensional
resonances.

V.7. The splitting of degenerate resonances.

Group theory allows us to know if a degenerate resonance is split—
ted or remain degenerate when the scatterer loses a part of its symmetries.

Let us continue with our square cylinder for example. If we trans-—
form the square into a rectangle, what will happen to E-type degenerate
resonance ? Formula (20) gives the answer. The symmetry group of a rectan-—
gular—-cylinder is C,v « Its characters are given in table k.

CZV El 02 0Ox crOy

Ay 1 1 1 1

Ay 1 1 -1 -1

By 1 -1 1 -1

Bz 1 : "1 ‘1 1
Table 4

The table of characters of 020
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Formula (20) shows that E representations of C,y are decomposed in two
inequivalent representations (B; and Bp) of C,y . Thus, outside an
"utterly improbable coincidence", going from square to rectangular cy-
linders, E resonances are splitted into two different parts, occuring
for different frequencies. Selection rules show that one part is exci-
tated by a plane wave propagating along Ox (this corresponds to the
part By of C,y ) and the other, by an incident wave propagating along
Oy (part B, of C,v ). This is illustrated in figure 17, giving the
back scattering cross-—section of a rectangular cylinder for these two
incidences. The resonance which occurs for ka = 3.4 gives two maxima
for different values of ka ; this'is not the case for the Ay resonance
corresponding to ka = L.

Figure 17-4 Figure 17-B
Back scattering cross—section Transverse scattering : the
for a rectangular cylinder reciprocity theorem implies
(Er = 6., Hz =0, v=20) that the two curves are su—
perposed

When the direction of diffraction is perpendicular to the incident one,
the reciprocity theorem imposes that the curves are the same for the
two incidences. Consequently, as shown in figure 17-B, only non degene-
rate resonances hold here.

V.8. Separated and mized resonances.

From the preceding considerations, we see that two resonances
relevant from inequivalent irreducible representations can be said se-
parated : even if the corresponding poles lies near each other in the
complex plane, formula (17) is valid. This is not obvious on scattering
cross—-section curves, because resonance peaks are then superposed. On
the contrary, two poles connected with equivalent irreducible represen-
tations gives mixed resonances, and necessitate a more elaborated for-
muls than (17). Conseguences on matrix elements are shown in figure 6-B.
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V. 9. Conclusion and perspectives.

As we have tried to show here, the scattering operator singula-
rities contain numerous informations about the diffraction of electro-
magnetic waves by a cylinder. These informations allow not only an
efficient calculation of the diffracted field, but also give a better
understanding of the phenomenon. We think that, in this case, this
method is a substantial improvement compared to the diagonalization of
operators upon the real axis which gives the characteristic modes [27].

We deal here with cylinders of finite cross—section such as die-
lectric rods, but diffraction operators may also be determined for other
scatterer [28,29]. The differential formalism proposed here 1s now
transposed to cylinders with infinite periodic cross—section such as
gratings, grating-couplers and DFB Lasers. A program has began to work and
gives a good agreement with measurements. We hope to be able to give more
details about this new development in a next paper.
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(A-1)

(A-L)

(A-5)

ANNEX A

The electromagnetic field verifies Maxwell equations :

T x 3 R
X =-u-a—.t—
> > ai
VxH = € 7t
Using (2) and projecting on Oz and x0y , we get :
[ VxE, = i H
J T Twn Z ez
> > . >
I‘V x H. = ~-1weE e
T z 'z
- -> -+ ) >
+ =
[‘V Ez X ez 1y ez X ﬁT i TR HT
) > - . > .
Y + = -
LV H, % e, ivye, x ﬁT iwe ﬁT
with ¥2 = w2ey - y2 , we have [13] :
[ __1___, - > .
COE = v (-1 wn e, X VH + iy K EZ)
L}*{T:%z_(iwg‘ézx$gz+iy$ﬁz).
k

From (A-2) we get the propagation equations. As all the differential opera-
tors act on continuous quantities, these equations are true in the sense of
distributions as well as in the sense of functions :

.
Vx|&=2% xVE + X—FH| + ¢E & = 0
o T z & 7z 2

K2 w K2
R BT S . X . 2 = .
() v x kz ez XV Hz w kz $ EZ s HZ eZ 0

Wth ¢ = €p €5 0 B T U and 9_ being the partial derivative with res-
pect to r , we get :
[? €. . - €.
3 3 E +——m—23 H -2 3 E +—L— 3 H +re E = 0
4
r e rz €0 ﬁZ S é} 6 . ﬁ2 67z w eg ﬁZ r ;} r "z

- ¥
d_ =93 H +——7—
AT v
r {%2 T2 g W
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ANNEX B

A reciprocity theorem.

We start from a well known relation of reciprocity for isotrope medium [11]

j(f « f') . 1 ds Jjﬁ(ﬁ‘ x H) . , (B-1)

(£,%) and (B',8') are two given fields satisfying Maxwell egquations, %?2 is the
circular cylinder of axis Oz and radius Ry &

4 T4

The field (B,H) has en outgoing part (E ,H ) ; we define :
>4 - . ¥
B (r,0,2,8) = Re |B(8) o(r,z) expl(~iut)]

From Maxwell equations, for r > R, , we get :

V.E =0 = olr,z) VES) + 7V é(r,z) . B(6) =0 . (B-2)

When r tends to infinity : v E(e) m- 3, E (8) = ou_) and from (3 ) :

¢(r,2) v exp [i(yz + ﬁor)] V2

Using (B-2), we conclude that €'¢(r,z) is perpendicular to E(0)

A1SO T+ o w» ¥ $(r,z) ~ 1 (ﬁoﬁ + vy gz) o{r,z)

As Qo is the projection of ﬁo upon the xOy plane and y its projection on
the Oz axis, we have shown that the diffracted electric field is perpendicular
to its direction of propagation ko .

The Maxwell equation :
> o . > .
r>Ry ¢ VXE = -1 wyug H+ gives :
> > '
; k ko ¥ B

> 4] - .0 T _
SV e() x Be) v o x B(0) 6(ra) = e . (B3)

G o
r+« : H ~n

Far from the cylinder, the diffracted field hag locally the same structure as e
plene weve propegeting with an angle ‘¥ = (0z kg)

This 1mp11eg that providing that the incoming fields propegate with the same
angle €, for Ry + = :

j (F < 77" .3 as =ﬂ\(§'+xﬁ).'ﬁds . (B-4)

The 1ncom1ng part always satlsfles Maxwell equations with e = €5 , B = Hg »
thus we get :

3« BT). Toas = ﬂ @ CZas . (85)
fle o

From (Ekt), (B-5) and (B-1), we gét :
Ry » @ 1 ﬁ (B x H" + B x )7 as = {( E T+ B E )R as . (36
NCAS
vl

30




. From (A-5), it can be shown without difficulties that :

& -iwe o) 1wy F o
Ry + @ 1 (E x §')n as o 0 E 3 E' 45 - —2 H' 3_ H_ dS. (B-T)
v Z r z Y zZ Tr 2
L@ kOZ & kOZ
2 ©q &

2
From (B-6) and (B-7), a tedious but elementery calculation shows that :

ghs2 o g &P
n,p —n,q
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ANNEX C

Computation of the S—matrix. ‘

W use the same method as in [21}. Let us consider that e and u are
constants for r <Ry and r > R, . We use expansiocn (3) in Hankel function if
r > R, , and similar expansion with Bessel functions if r < R; . The S-metrix
gives the coefficients of the outgoing waves in expansion (3) from the coefficients
of the incoming waves. Of course, we only compute a finite matrix of N order. Ve
begin by teking N arbitrary linearly independent values for the field in r = Ry ;
- N simultaneous integrations by Runge-Kutta algorithm give N values for the field
and its normel derivative on r = Rp . Suitables linear combinations give the
corresponding outgoing and incoming waves, which can be written in terms of ma-
trices My and M . Then the S~matrix is obtained by : S = My (M_)-1

We must taske care to use integration algorithm with continuous functions with
respect to r . This can be done if we write propagation equations (A-5) as =
differential system of the first order. We define :

n €, T
¥ oI o+ L Loy,
k2 weg k2
"ﬁ:;"iarﬁz+-———-\( %_aegz,
- ¥? w g k2
and we get
&N
. - 2
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Using the exp(ing) Fourier basis, we have a set of ordinary coupled differential
equations. If we call En the n th component of E, , we get :
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