Interaction Notes
Note 325

Electromagnetic Puise Penetration Through Dielectric Skin
Panels on the Leading Edge of Aircraft Wings

May 1977

A.D. Varvatsis and M.I. Sancer

TDR, Inc.
Los Angeles, California

Abstract

EMP penetration through the dielectric skin panels covering part of the
leading edge of the wings on an aircraft is considered in this report.
Approximate expressions and simplified estimates are derived for the current
and voltage induced on conductors housed in the wing cavity. These expressions
are functions of the geometry and the longitudinal current and charge densities
evaluated at the short-circuited apertures. These densities must be supplied
by a separate external interaction analysis.
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SECTION I

INTRODUCTION

Penetration of electromagnetic pulse energy through the
various ports of entry on an aircraft and the assessment of
its effects on mission critical subsystems is a subject of
importance. In this report, energy leakage through the dielec-
tric skin panels covering part of the leading edge of the wings
of an aircraft is considered and approximate expressions and
simplified estimates are derived for the currents and voltages
induced on conductors housed in the leading edge of the wing
cavity. These panels are made of fiberglass and are supported
by metal ribs as shown in figure 1. The task is to calculate
the current and voltage induced on the pneumatic duct and also
the current induced on the unshielded cables spaced unifocrmly
and set against the partition wall which, along with the
leading edge, form a wing cavity cross section of approximately
triangular shape. The task is accomplished as follows: In
section II the formulation and solution is presented for low
frequency penetration through a periodic array of apertures
into a cylindrical waveguide that can support a TEM mode and
this is related to the manner in which the wing cavity is
approximated. As a model for the aircraft the one developed
in reference 1 can be used but any other model or experimental
results can be used since the formulas involve the longi-
tudinal current density and charge density induced on
the short-circuited apertures due to the EMP interaction

with the aircraft. KXnowledge of the external interaction
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quantities is necessary for the calculation of the equivalent
voltage and current forcing functions at the site of the
apertures. The method employed to calculate the induced TEM
currrent and voltage fcllows a formulation found in reference 2
and is developed in a manner similar to the one used in refer-
ence 3. In section III the TEM parameters are calculated for
a cylinder with a triangular cross section housing an inner
éircular conductor and also the current induced on the cables
near the partition wall. 1In section IV the results are
displayed in a compact form that allows the induced currents
and voltages to be calculated without any reference to the
rest of this report except appendix B in which calculations
are given of the aperture polarizabilities. In the same
section the E~4 aircraft is considered, whose pertinent
dimensions are known, and simplified formulas for the induced
current and Voltage are given. Finally, appendix A provides
a derivation for the magnetic and electric dipole moments

in terms of the aperture electric field for the problem of
low frequency penetration through an aperture in a perfectly
conducting planar screen and appendix B calculates the
magnetic and electric polarizabilities for a periodic array
of rectangular apertures in a perfectly conducting planar

sCreen.

2. Van Bladel, J., Electromagnetic Fields, McGraw-Hill Book
Company, New York, p. 418, 1964.

3. Lee, K.S.H. and C. E. Baum, "Application of Modal
Analysis to Braidel-Shield Cables," Interaction Note 132,
Air Force Weapons Laboratory, January 1973.



SECTION II

FORMULATION AND SOLUTION

The configuration we are considering in this report is
depicted in figure 1. We assume that an EMP of arbitrary
direction and polarization is incident on the airplane and
we wish to calculate the currents induced on the pneumatic
duct and wiring cables due to the EMP penetration through
the fiberglass skin. Naturally, the complexity of the struc-
ture makes this calculation a formidable if not impossible
task. To be able to obtain a useful estimate of the induced
currents without excessive labor we have to make model ideal-
izations and also seek approximate solutions. Some of these
idealizations and approximations will be given shortly. The
rest will be presented as we formulate and solve the problem
later on in this section.

l. For the external interaction problem we need to know
the short-circuited current and charge densities at
the location of the apertures. These quantities can
be obtained either experimentally or analytically by
modeling the aircraft in a certain manner. For example,
the wings, fuselage, horizontal and vertical stabilizers
can be modeled as perfectly conducting elliptical
cylinders. Such a model of an aircraft has been
employed in reference 1 to study the external inter-
action of EMP with aircraft and consequently we can
utilize the results of this study to calculate the
total tangential magnetic field (or equivalently
current density) and perpendicular electric field
(or equivalently charge density) on the surface of
the wing. These guantities, as we will explain later,

can serve as inputs for the calculation of the current



induced on the interior conductors due to penetration
of the EMP through the apertures on the wing.

We will neglect the effect of the fiberglass skin
covering the apertures and assume air instead. Thus
the penet;ation takes place through the apertures
separated by the metallic dividers or ribs shown in
figure 1. By setting the dielectric constant of the
fiberglass skins equal to one we actually overestimate
the amount of energy leaking into the wing cavity and

consequently this calculation provides an upper bound.

For the interior problem, the wing cavity will be
approximated by a perfectly conducting cylinder with

a triangular cross section. The pneumatic duct and

the triangular cavity cross section form the cross
section of a doubly connected region which can support
a TEM mode. It is this mode only that we will consider
in our subsequent calculations. Notice that for the
calculation of the TEM mode we will ignore the presence
of any other conductors. In particular, the wiring
cables are replaced by the partition wall shown in
figure 1. The current induced on the cables will be
estimated, as we will explain late— in detail, by
calculating n x H on the partition wall times the
diameter of the cable. The justification for ignoring
the TM and TE modes that can be excited relies on the
fact that for the bulk of the EMP energy the frequencies
involved are sufficiently low to only excite evanescent
TM and TE modes; consequently their energy cannot sig- .
nificantly propagate down the waveguide (and into
circuitry) a few radii away from the apertures. (By
radius we mean the average linear dimension of the wing

cavity cross section. See section IV for more details.)



We will now outline the formulation and solution to our
problem. We will start with an exact set of equations involving
the TEM magnetic and electric field coefficients (within a
cylindrical waveguide that can support a TEM mode) and the
axial component of the total eleétric.field evaluated at the
apertures on the surface of the guide. Next we will relate
the usual voltage V(z) and current I(z) definitions to the TEM
coefficients and thus obtain a set of exact equations relating
V(z), I(z) to the z-component of the total electric field at
the apertures. Theoretically, this component of the electric
field can be obtained in two steps. First we solve the exterior
problem, i.e., the interaction of the EMP with the cylinder
(or the aircraft in our case) provided we short circuit all
apertures on the surface of the body. This calculation gives
the current density distribution Es. . on the body and in
particular on the location of the short-circuited apertures.
The second step requires knowledge of the exterior and interior
Green's function that allow the derivation of an integral
equation for the total aperture electric field in terms of the
current density distribution on the location of the short-
circuited apertures calculated in step one. (Solving this
equation numerically also requires knowledge of the short-
circuited charge density.) Reference 1 has derived a computer
code calculating J_ . for the aircraft model described earlier
in this section. For our purposes the axial aperture field
E, will not be directly calculated. For wavelengths large

compared to the dimensions of an aperture, A, one need only

calculate
fE(l) dsS and fE(O)zdS
z Z
A A
where Eél) and Eéo) are the first order and zeroth order

aperture electric field respectively. These integrals are



proportional to the magnetic dipole moment and electric
dipole moment respectively. The details of their calculation
and concomitant approximations will be given later on in this
section. These moments act as sources for the excitation of
the TEM mode, the detailed calculation of which will now be
given.

We start with equations (13.8) in reference 2, for an
e—imt time dependence, valid in a cylindrical waveguide that
can support a TEM mode (fig. 2) and for now assume that there

is one aperture only.

dao 1 3d,
dz ~ W%, T 1\7 E, =n 9°
o cC
do
oz ~ 1we a = 0 (1)

where E, is the z-component of the total aperture electric
field and a s o, are expansion coefficients for the TEM mode

electric and magnetic fields respectively such that

erem = 20(%) Vil
ETEM = ao(z) ez X Vt¢o (2)
where Vt is the two-dimensional gradient operator (3/3x)éx +

(B/ay)éy. The integration in Equation 1 is over a contour c
as indicated in figure 2, i.e., a contour passing through the

aperture A at location z = z. The normalization constant Né

is given by

2 2 '
N, = flvtcpoi as (3)
$
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and ¢o satisfies Laplace's equation over the waveguide cross

section:
vZe (: x s | (4)
t¢o(x,y) =0 1Y €
with boundary conditions
¢0(2) =0 ¢o(l) = 1. (5)

To relate a, and o to the usual definitions for voltage and

current we recall that

1 1

vi(z) =f SV f 35 (2) Vyoy + dL
2 2

= ao(z) [¢0(1) ¢O(2)] = ao(Z) (6)

and from figure 2

I(z) = f l-I—TEM : i@_: f O‘o(z) éz X V’c:(bo ’ —d—l—

(7)

I
(o]
0
N
Q
Q
-
:"o
Q
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We will now show that Ng given by Equation 3 is equal to the
integral in Equation 7. We start with the identity

_ 2 2
Vt ) (¢ovt¢o) - lvt¢ol + ¢ovt¢o

2
|

A

10



Integrating both sides over the cross section S and using
Gauss' theorem we obtain

-7 S
[oo g as= f o 50 a= fingtes
S

S cl+c2
where n is the outward normal (fig. 2). Recalling thLat ¢O(2) =0,
¢o(l) = 1, we finally arrive at the desired relationship
3¢
o _ 2 2

fﬁdz -f|vt¢o| ds = N_ (9)

€1
and

I(z) = a_(z) Ni A (10)

In view of Equations 8 and 10, Equation 1 becomes

99
dz U Z dn

C

dI . _
where
'y 2
L = —% C=c¢N (12)
O O
NO

are the inductance and capacitance per unit length for the
transmission line corresponding to the TEM mode of the wave-

guide structure. These quantities are explicitly calculated

11



in the next section. The above set of Equations 11 has also
been derived in reference 3 via a somewhat different approach.

From Equations 11 one easily obtains

2 on

2 3¢
9L, k%1 = iue /E -2 dc (13)
dz (o) z

c
2

2
where k™ = w uoeo.

The particular solution of Equation 13 can be found with

the aid of the one-dimensional Green's function G(z,z') = (1/2ik)
explik]z-z']] representing outgoing waves at z = =
o]
1 , ik|z-z"| ,
I—2ik[f(z)e dz
-0
3¢ .
_ 1 vy Yo _ik|z-z'] .
= 77 sz(z ) 55 © as (14)
A
. . , _ 1/2
where f(z) is the source term in Equation 13, Zo = (uo/eo)

and A is the aperture. Assuming that (3¢O/an) does not vary
appreciably over the aperture (the contour c) Equation 14 can

be rewritten as
: —_ 1
I(z) = =— = sz(z‘) elklz 2'| agr. (15)
A

We will simplify Equation 15 by considering two cases: 2z > b
and z < -b (fig. 3). For z > b Equation 15 gives

12



Figure 3. A Rectangular Aperture on the Outer Conductor of a Cylindrical
Waveguide
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i 3¢ . R
_ 1 o _ikz -ikz!
I(z) = -—-—ZZO 55 © sz(z") e ds' (16)
A

Assuming now that 2kb << 1, i.e., that the linear dimension
of the aperture 2b is much smaller than A/2m where A is the

wavelength, we can expand exp(~ikz') and only keep two terms

3¢ ; .
—__.L__O ikz ! T 3 / ] 1 ]
I(z) = 2Zo an © sz(z ) ds ik Ez(z )y z' ds .
A A
(17)
To relate these integrals to the magnetic and electric moments,

as we suggested earlier, we make some pertinent calculations.

First we show that

fﬁx§d5=iwuo fgsﬁ-gds (18)

A A

where n is the unit normal to the aperture surface and rg
the radius vector at points on the surface. (The exact shape
of the surface is not important, but it usually matches the

rest of the metallic surface.) To arrive at Equation 18

we use
Vt * (nx E £s) = rth + (nx E) +nxE
E+0=0

(where U is the tangential unit vector at the edge of the

aperture) and Gauss' theorem on a surface to obtain
fﬁxgds=-/£svt-(ﬁxg) ds. (19)

A A

14



Next we recall that V x E = iwuog and use the identity

Ve * (A xE) =-n+V_xE +E-*V

£ £ t £ X n to obtain

=

- H. (20)

Vt * (n x E) = —iwu,

{One can show that Vt X n = 0 on a surface.) Combining Equations
19 and 20 we arrive at Equation 18. If €¢ is a unit vector on
the surface of the wing along a direction perpendicular to z

we can write

e (21)

=3

»
|t

Il

1

>

=

+

tz

and

szds = [—muo f;s n - H ds] 8y - (22)
A A
If we expand E, and H in a power series in ik we have
e, =0 @ 4
z z
H = Ii(0) + H(O) + (23)

where the nth term is proportional to (ik)™ and from Equation 22

we see that

(0) =
sz ds = 0

A

(1) I ~  (0) .2 '
sz as = [ 1wk f£s n - H ds] ey - (24)
A A '

15



If we recall that we only kept the first two terms in the
expansion for exp (-ikz') we understand that in the calculation
of gaEz dS we must use no higher order terms than first and in
the calculation of fz' Ez ds, Ez must be the electrostatic
field. From Equations 22 and 24 we see that we need only know
H to zeroth order for the calculation of_fEZ dS. Thus we can
evaluate the integrals in Equation 17 by solving an electro-
staitic and magnetostatic problem.

One defines

ms -t fﬁxEds-—-—fr n - Hds (25)
- iwyp = =s —

as the imaged magnetic moment and consequently

_[Ez ds = J.wuo m - e¢. (26)
A

We will now relate the second integral J.Ez z'dS to the imaged
A

electric dipole moment p.

One defines

€
p E——22 [ES'EndS. (27)
A

Definitions 25 and 27 owe their origin to the problem of low-
frequency penetration through an aperture in a perfectly
conducting planar screen. If one places both m and p in front
of the short circuited planar aperture, the far zone fields

in the transmission side due to the dipoles are equal to the
far zone transmitted fields for the original penetration
problem. (See Appendix A.) As we found earlier, we need

only calculate E, in j'EZ z'dS to zeroth order. Thus we can
A

16



set E = -Vy where Yy satisfies Laplace's equation with ¢y = 0

on the conducting screen.

If we expand rg E

r. * E= zEz + pEp

where p is a coordinate orthongonal to z (Ep = E¢) we can show
that

[z'Ez dS=/pEp ds (28)

A A

by noting that

— = - . a = 14 - = -
fwds fwds +/\7t (z'yé,) das fz é, « Vg pds /;,'Ezds
and similarly

—/lpds = -prp as.

Thus if D varies slowly over the aperture we have

p=-g; ° n [Z'Ez ds = -e ﬁfwds (28)

where Ez is the electrostatic field.

Returning to Equation 17 we find

ikz A

1 . . A
(1wuO m e¢ + ik p * n), z > b.

_ %o
I(z) = 7z 3n ©

(29)

17



e-ikz Ve
I(z) 2 7Tg - qu

o)
"z < ~b
v(z) = —ZcI(z). : (34a)
Since 2kb << 1 we can set
v
_ _ 1 [ eq
I(z=0+) = 5 ( 7 + qu)
c
V(z=0+) = ZCI(z=0+) (33b)
Vv
—0_y = L {_eq _
I(z=0-) = 5 ( 7 qu)
c
V(z=0-) = —ZCI(z=0—) (34Db)

with z=0+, 2=0- meaning to the right and to the left of the

small apertures respectively.

Figure 4 gives an interpretation of Equations 33 and 34,
that is, Veq and qu are voltage and current sources respectively
acting at the location of the aperture and I(z), V{(z) are the
induced current and voltage waves propagating down the two branches
of the infinite transmission line. If the transmission line
is loaded as indicated in figure 5 we can apply standard trans-

mission line theory to obtain

exp (ikz) + PR exp[ik(ZLl—z)]

1
I(z) = — __ v
Zo + oy, 1 Por PR exp(21kLl) TL
z >0
Z exp(ikz) - p, explik(2L,-2)]
V(z) = 753 1 - —— (2ikL1) — Vop (35)
c TL Por Pr ©XP 1

18



When z < -~b, ‘Equation 17 gives

a9 :
— 1 O -ikz,. . A s . A _
I(z) = fﬁ;“ﬁﬁ—e (1wuo m e¢l ikp n) z < -b
(30)

and from Equation 11

V(z) = 2,I(2) z > b

V(z) = -2.I(z) z < -b (31)
where Zc = /L/C.

For a coaxial cable, Equations 29 through 31 have been
derived in reference 3. There is a sign difference between
our equations and those in reference 3 because 8¢0/8n
is a negative quantity.

If we define

an¢o R
Veq = o Z_mm T 7S¢
— ad”o ~
qu = iw—sp *n (32)
then
eikz Vé
I(z) = 5 (irg + qu
o
z >b
v(z) = ZcI(z) (33a)

19
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Figure 4. (a) Sign Conventions for Infinite Transmission Line
(b) Equivalent Network
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Figure 5. Sign Conventions for Currents and Voltages on the Two Branches of the Transmission Line



exp (~-ikz) + P, exp[ik(2L2+z)]

1l
I(z) = : v
Zc + ZTR 1 - Por PL exp(21kL2) TR
z <0
-7 exp(-ikz) - p, expl[ik(2L,+2)]
V(z) = % 1 - P (OTRE 2 v
c TR Por Pp, ©¥P(2ikL,) TR (36)
where
o =Z —ZR
R +ZR
2 -2
o] L
Pr = o (37)
L Z+ZL
1 -0 exp(2ikL2)
Z = 2 :
TL cl+pp exp(21kL§T
. ., - PR exp(21kLl) (38)
TR c 1l + P exp(ZikLl)
o = Zo = Zqq,
OL +ZTL
2 - 27
C TR
p = (39)
OR Z+ZTR
Ver = Veqg T Zrn Teg
Vor = veq = Zop qu . (40)

When L1 and L2 are infinite PR = Py, = Por = Por, = 0 and
Equations 35 and 36 reduce to Equations 33 and 34. Notice

22



that for both branches the current is considered positive'when

it flows in the positive z-direction.

The calculation of I(z) and V(z) depends on the knowledge
of Veq and qu as defined by Egquation 32. Z, and 3¢o/an are
functions of the geometry of the waveguide with short-circuited
apertures and m and p are given by Equations 25 and 28. As
we mentioned earlijier the aperture electric field can be obtained
from knowledge of the short-circuited aperture current density

and because of linearity we can write

m=—-ae .
- =m -s.cC.
_ e
B = &% Eg .. (41)
e
where H, . and E, _ are the magnetic field and electric

field averaged over the short-circuited aperture and calculated
by solving the exterior interaction problem (with the aperture

short-circuited). The exact magnetic and electric polariza-
e

tions gﬁ, ag depend on the full geometry of our problem.

Because it is very difficult to calculate these quantities

we make the following approximation. We define

m = * (-H + H

ext —int

)

a
=m

p = ¢€.a_ (E - E

o e —ext —int) (42)

where Hoxer Egyt 2re equal to He .7 Eg ¢, respectively,
Eint’ Eint are the short-circuited fields for the interior
problem, which, in our case, are the TEM fields, and o s Qg
are the polarizabilities for the interaction problem of a
planar perfectly conducting screen with a (2b x 2a) aperture

in it.

23



Before we discuss the validity of Equations 42 we explain
the sign conventions. For a penetration problem through an
aperture in a planar screen one defines the side where the
source exists as the illuminated side and the other side
where the transmitted fields exist as the shadow or trans-
mission side. The dipole moment p in the shadow region is
always parallel to the short-circuited electric field whereas
the magnetic dipole moment m is always antiparallel to the
short-circuited magnetic field. For calculations in the
illuminated side p and m have opposite signs (fig. 6). As we
will explain shortly, Equations 42 involve an external excita-

tion through E and an indirect internal excitation

Eext’ Hoxt

through Eint’ Hipe- By <hoosing a positive direction for
the external and TEM fields as depicted in figure 7 we can
now understand the signs in Equations 42. Thus in the shadow
region (inside the waveguide) <5} due to the external excita-
tion is equal to o Eext (ae >0) and P, due to the internal
excitation in the illuminated side (still inside the waveguide)
is parallel to P, and equal to ~a, Eint’ i.e., antiparallel
to E; ¢- Similarly m, in the shadow region (inside the wave-
guide) due to the external excitation is equal to A Hovt
(o .-

mij
illuminated side (still inside the waveguide) is equal to

Yo " Hines
nents whereas Eint only has one component in the ¢-direction.

0) and m, due to the internal excitation in the
In general Hext has two nonzero orthogonal compo-

In our case we are 1nter¢sted inm - e¢, i.e., —am¢¢(Hext)¢
- am¢z(Hext)z' As we will show at the‘end of this section,
symmetry arguments require that am¢z = 0 and consequently

ext)¢’ i.e., within the validity of

our approximations the z-component of Eext does not contribute.

f ith - H
we are left wit am¢¢(

The justification of Equations 42 goes as follows. If
only a TEM internal excitation existed, the presence of the

aperture would cause reflection of the TEM mode (and also

generate higher order modes). Then m and p would be

24
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Figure 6. Directions for m and p for Calculations in the Shadow Region (b)
and T1luminated Region (c)
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proportional to Ein and E, respectively. If the excitation

is external then fi:ld penégﬁation excites a TEM mode which is
reflected by the loads and other apertures and again reflected

by the discontinuity caused by the presence of the aperture.

Thus the presence of Eint’ Eint in Equations 42 partially takes
into account the interior geometry. (Notice that Equations 41

do not explicitly include the TEM fields. However, polariza-
bilities should be calculated by taking into account the exact
geometry, interior and exterior, of the problem. From a boundary-
value point of view the loads are geometrical structures with
known electromagnetic proprerties and conseguently az, ag would
contain their effect on the induced TEM fields.) The substitution
€ and of
m e

tion if 2a is smaller than the distance between the aperture and

of «a by the planar polarizabilities is a good approxima-
any conductors inside the waveguide and also smaller than the
radius of curvature at the aperture site (ref. 4). Our aperture
width 2a is not smaller than the distances between the aperture
and the nearby conductors. Notice, however, that using the
planar polarizabilities will result in a larger amount of

energy leaking into the wing cavity, that is, our calculation
will provide an upper bound for the energy leakage and this is

an acceptable result.

Equations 25 and 36 give the induced currents and voltages

in terms of the equivalent sources, Veq and I However,

according to Equations 42 these sources conta?g the TEM fields,
i.e., the induced currents and voltages. Thus we will have to
rewrite Equations 35 and 36 in order to obtain the final
expression for I(z) and V(z). A method that can readily be
generalized to our real case involving periodic apertures is
used in reference 3. The first step involves calculation

of the equivalent lumped network for a small aperture. This

4. Latham, R. W., Small Holes in Cable Shields, Air Force
Weapons Laboratory, Interaction Note 118, September 1972.
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can be done by considering the internal excitation problem
and defining
* H

o .
=m =int

B = "8% Ejnt (43)

Recalling Equations 2, 6, 7, 12 and 32 we find
3¢ \ 2
- 1 %
Veq = W, 0Lm<N2 Bn) I
o
. 3ds) 2
eq = -iwe o (559 v (44)

where

@ = & & (45)

and I and V are evaluated at the location of the aperture.

If we recall figure 4 we understand that the transmission

line equations with internal excitation only are

ar _ .
a._E = 10CV + qu (S(Z)
g_‘z’ = LT + V8 (z) (46)

because they satisfy the discontinuity conditions

I(0+) - I(0-) qu

V({0+) - V(0-)

\Y
eq

dictated by figure 4.

28



Thus we can define

I

eq —1wCaV

Veq 1wLaI (47)

and rewrite Equations 45 as

az - iw[c - Caé(z)] vV(z)
av _ .
az = iw[L + LaG(z)] I(z) (48)
where
2
_ 3%)
Ca = €% on
1 %)\?
La = uoam(N2 onj) . (49)
o)

The equivalent networks of the transmission line and the
aperture are shown in figures 8a and 8b. (Notice that this
representation of the aperture is purely reactive, i.e., does
not account for radiation leakage through the aperture and
into the exterior region. The reason for this is that our

calculation for m and p makes o and a, real. We could

use m and p to calculate the ragiited power into free space
and introduce a resistive element to account for it. We '

will not attempt to do this because in the absence of radi-
ation leakage into free space our calculation will again be

an upper bound for the EMP energy leakage into the waveguide.)

If now an EMP interacts with the aircraft, we use Equation 42
to extend Equations 46 or 48

29
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Figure 8. (a) Aperture Imbedded in the Network of the
Transmission Line
(b) Network Representation of Aperture in
the Transmission Line
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dz ~ iw[C - CaG(z)] v(z) + quG(z)

az iwl[L + Laﬁ(z)] I(z) + Vqu(z) (50)

where from Eguation 32

Z L)
= —i o . . a
Veq" Wiy Z_ on (@ * Hoxt! €6
—~ % 8¢0 ~
eq = lwgpiegee Ege ° D - (51)

Equations 50 assume the existence of only one small
aperture. In our problem, however, we have a periodic configur-
ation of apertures. As .7e see from figure 1 the apertures
are trapezoidal and not of equal size. To simplify our cal-
culation we will assume that all the apertures are rectangular
and equal. The average width of the apertures will be the mean
of the widths at intersections BB and AA. Again we tend to
overestimate the amount of energy penetration by considering
larger apertures than the ones that would result by averaging
over the entire length of the wing.

If the ith aperture is located at z = z; we can rewrite
Equation 50 as

ar _ . _ z : _ z : _
3z = 1w C Caﬁ(z zi) v(z) + qué(z zi)
i i

az imL+Z La6(z—zi) I(z) +Zveq6(z—zi)
a i (52)

As shown in reference 3 one can expand the delta function in
a cosine Fourier series over the interval -d to 4@ and only
keep the first term. Thus our final set of transmission line

equations is
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ar _ . _ _a eq
daz = *\C " 2q) V(@) + =55
L v, _(z)
g‘E’ = iw<L + 2—2—-) I(Z) + ‘—e%d— (53)

where qu énd Veq are given by Egquations 51 and C,- La by
Equations 49.

From Equations 53 we obtain

dIz

2 C \Y
a1 2. . _ _a eq 1 eq
2 Kt T l‘”<c Zd) 2d T 23 &z (54)
z
where
C L C L
2 _ 2 _ _a ay _ .2 _ a a
ke = ( fa)(L + 55) = k (1 fﬁﬁ)(l + faf>' (55)

The particular solution of Equation 53 is

i / c dar .
N : - .a _eq| ikelz-z'| |,
Ip(z) 4iked‘[. [1@(0 Zd) Veq Ml P } e dz

or after some manipulations
— = "ikez
Ip(z) =1 e z < Ll

ikez -ikez

Ip(z) = Il(Ll,z) e + Iz(z,Lz) e

Tt elkez z > L2

Ip(Z)
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where

4

- 1 ] "ikezl
Il(Ll,z) = 4Zecd [Veq(z') + Zec qu(z 4 e dz'
Ll :
+ —
I = Il(Ll,Lz)
Lo
= 1 _ ikez'
IZ(Z,LZ) = mf [Veq(z') Zec qu(z')]e dz'
z

and

L + 1L s2a\ /2
7 = a ) (58)

ec Cc - Ca/2d

In deriving Equations 57 we have assumed that the aperture
configuration extends from z = Ly to z = L, and that qu(z)
and z > L,. Using the first

1 2
of Equation 53 we can obtain the particular solution for V(z).

and Veq(z) are zero for z < L,

If the transmission line is loaded at z = 0 and z = L3
with impedances Z., and Zp respectively, the total current

solution (particular + complementary) is

|:RI © ) ikaz -ik z)
- - e e
I(z) IKAL (pL e + e ’ z < L

l .
(59)
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= 1 - =2ik,L +
I(z) = —553, [—p (I e e™3 4 p.I
PpPp = € 2ikgL3 L _ R

+(5RPL - e_ZlkeL3) Il(Lllzq etke? +[;DR(I+ + DLI_)

- a—2ikgL3 -ikoz
+-GRpL e ) IZ(Z’LZU e e L, <z < L,
+ -—
I + p. I .
_ - L~ _ikg(z-2L3) -ikez
I(z) . e—ZIng3 e e + PR © e z > L2
PRrPy,
(59)
where
o = ce ~ %1
1, Zce+ZL
Z -7
.. ce R
PR =% T2 (60)
ce R
L + L_/2a 172
Zce = \E = c_72d (58)

ke is given by Equation 55, Ca' L, by Equation 49 and Veq'
qu by Equation 51. (Notice that we have set V(0)/I(0) =

—ZL and V(L3)/I(L3) = ZR because of the conventions in

figure 5.

To find V(z) we use the first of Equations 53 and notice
that

dI, (L,,2z) . dIi,.{(z,L,) . I
11’ ikez 2772 -ikgz _ Teq
az e t —az e e = 53 (61)
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Consequently the voltage can be obtained by multiplying the
current waveforms that propagate in the tz-directions by
izec'
In order to explicitly exhibit the dependence of the
induced current and voltage on the parameters of the problem,
we obtain an upper bound for the simple case 2, = Z_ = Zc

R L
i.e., when the equivalent transmission line is matched.

el

(In general, similar bounds can be obtained through Egquations
59). Thus we recall Equations 56

I (z) =1 e~ 1Kez
p Z < Ll
V,(2) = -Z,, I (2)
I_(z) = I+ 1kez
P z > L2
Vp(z) = Zec Ip(z) -
where
L2
- —1_ 1 _ Y ikez ' N
I = 47 d Jﬁ [Veq(z ) Zec qu(z )]l e dz
ec
L
1
Lo
+ _ 1 ' ' -ikez' '
I a7 d.f [Veq(z ) + Zec qu(z )] e dz'.
ec
Ly
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We can now write

L
2 .
_ 1 Fike (2'-2)
I = 47 df [veq(Z') * zec qu(Z')] e dz’
ecC
Ly

-

Lo
1 1 ] dz!
< Z—Z_;E ]Veq(z ) X Zec qu(z )I Z .
L

1
12
L v ]
I< 43 d_/. ]Veq(z )| o+ |Zec qu(z )| ¢ dz
ec
L
1
n
v
_ L { eq , ¥ } (62)
2(24) 2 eq
where L = L, - L; and (L, - L.) ¥:= L2]f(z')ldz' The drivin
W 2 1 2 R : g
terms Veq and qu are given by Equation 51. Eext and Eext are

the magnetic and electric fields on the short-circuited aperture
configuration and are obtained by solving the external inter-
action problem. By modeling the interior of the wing cavity

in a certain way we can also calculate 8¢o/3n and Zc‘ This

will be done in the next section. Finally the knowledge of

é¢ I é¢ = am¢¢, é¢ ot éz = am¢z and oy is required.

The first and second guantities result from considering Eext

in the ¢~ and z-direction respectively and approximate formulas
for their calculation are developed in appendix B. The third

quantity o is zero for the following reason. We have,

meoz

by definition,
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and

E:—a « H

If we consider a rectangular aperture in a planar screen
(fig. 9) then

hoeoey T amxx(Hext)x + 0"mxz(Hext)z
and
a b
. B = - ' ' v
m e, ffx H dx'dz’.
-a "~-b )

For an H_ in the z-direction the normal component of the

total H iitthe aperture is antisymmetric with respect to

the center of the aperture in the z-direction and consequently
the integral over z vanishes. Thus T 0. In our case

we have a periodic configuration of rectangular apertures

but the normal component of H in any aperture is still
antisymmetric with respect to the center of the aperture in
the z-direction and S is zero. (Actually because our

array of apertures is finite the antisymmetry property breaks
down near the end apertures but the contribution from O zx
of the end apertures should be small compared to the excess
enexrgy leakage due to a number of overestimations we made

in our previous calculations.)
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Figure 9. Geometry Showing the Antisymmetry Property
H (z) = -H (-2)
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- SECTION III

CALCULATIONS OF TEM PARAMETERS AND CURRENT ON THE CABLES

l. TEM PARAMETERS

In order to calculate the TEM parameters, the wing cavity
shown in figure 1 with shielded apertures will be modeled
as a perfectly conducting cylindrical tube of triangular
cross section with the pneumatic duct as the only inner
conductor. The actual wing cavity does not have a constant
cross section but again allowing for overestimation of the
EMP energy leakage we will assume that our cylindrical tube
has a cross section equal to an appropriate average of the
true cross sections at interesections B-B and A-A, i.e., an
average weighted more by the larger cross section B-B. (More
energy is expected to leak into a large empty cavity than a
small empty one through the same aperture assuming that all
dimensions are much smaller than the wavelength of the
electromagnetic wave. Also the pneumatic duct in cross
section B-B is closer to the leading edge of the wing and
depending on the direction and polarization of the incident
EMP the induced current density and charge density can assume
large values at the leading edge and close to it.)

First we calculate an approximate expression for the
potential ¢o satisfying Laplace's equation and ¢O = 0, ¢O = 1
on the walls and the inner conductor respectively. If we
consider a line source, with a charge per unit length equal
to Q, located at the center of the pneumatic duct, then the
equipotential curves around the line source and close to it
are approximately circles. Thus we will set the potential
¢o at x = Xg = X5 ~ 8pr ¥ = ¥, = ¥, egqual to unity, where Xy
Y, are the coordinates of the center of the pneumatic duct
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(fig. 10). The potential ¢o(x,y) will be found approximately
by using eight images as shown in figure 11. These eight
charges are chosen such that ¢o = 0 on the hypotenuse and

¢0 & 0 on the other two sides. The potential due to the

above charges is

0 N(x,¥; X :¥,)

¢ = &n " (63)
o 2me D(x,y: xo,yo)

where
N(x,y; xo,yo) = R(xo,yo) R(—xo,-yo)

RIx' (x,-y,) y'(xo,-yo)] RIx" (=x_,y ), ¥' (=x,,7,)]

D(x,vy; xo,yo)= R(—xo,yo) R(xo,—yo)

R[X'(xo,yo), y'(xo,yo)] R[X'(—xo,—yo), y'(-xo,—yo)]

(64)
2 21172
R(XilYi) = [(X - Xi) + (Y - Yi) (65)
x'(xi,yi) = x, cos 20+ (L - yi) sin 2a
2 .
y'(xi,yi) = -y; cos 2a + 22 cos” a ~- x; sin 20 (66)
By requiring that ¢o(xO - aD, yo) = 1 we determine the unknown
Q and obtain
N(x,yi X,/¥Y,) N(X Yo7 X 0Y,)
¢ = |&n Y T x ) n BT T x y (67)
°© XiYi Xoi¥g c'¥ci *o'¥s

Lo




Figure 10. The Wing Cavity Cross Section Modeled as a Triangle
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Figure 11. The Eight Charges Used in the Calculation of the Potential Function
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v, -

With the aid of Equation 67 we will now calculate Ng given by
the first integral in Equation 9. Assuming that the pneumatic
duct surface is equipotential (which is approximately true)

we have

n n [R(xo'yo)] ~
V¢ e+ e ® =V - e
o o] 2n (Nc/Dc) o)
Xor¥e
- - 1
R(xo¥o) IMNG/DS) |
c'¥c
o 1 _ 1 (68)
YT afn(N./D)  a-tn(D_/N_)
D c’ ¢ D c’ ¢
and
N2 - 2w
o Rn(Dc/NC) (69)
where
N, = N(X,/Yoi X ¥ ) D = D(xc,yc; xo,yo). (70)
Combining Equations 60 and 12 we obtain
. ln(Dc/Nc)
Yo _ 27
e 2T
=
C o Rn(Dc7Nc)
. -z zn(Dc/Nc)
‘e o 27
= 1/2 '
Zg = (B/e )1/ (71)
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Next we calculate 8¢o/an on the hypotenuse. Referring to

figure 12 we obtain

3¢o . cos B(XO,yo) . cos 6(-xo,—y°)
on R(x_,Y.) R(-x,s"Y)
cos 6(-xo,yo) ) cos e(xo,-yo)
R(-x_/¥) R(xo,-yo)
where
_l 2
' N(x ,vy i X _,v) . N
K = n c c_’*"o O =———9 (X =X -Qa_, Y
[ D(X, Y i Xo.yo) 27 T cC o D c
cos e(xl,yi) =1n - eRi = (sin o e, + co;cxey) .
(—x. + x -y, + Yy
&, + —2 &
Rl X Ri Yy

(x - xi) 31n§1+ (y - ¥i) cos a

Ry
_ (2 ~ yi) cos ? - Xy sin o
R.
i
2 2, 1/2
R, = R(xi,yi) = [(x - xi) + (y - yi) ]
y =% - x tan a

by

(72)

Yo
(73)

(74)

(75)



Figure 12. Geometry Appropriate for the Calculation of a¢o/an on the
Hypotenuse
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Equation 72 calculates 3¢o/an at a point along the aperture.

If we recall Equations 11 we understand that the subsequent
formulas were derived under the assumption that 3¢o/an varied
slowly over the aperture. In reality, i.e., in the present
case, this assumption is not valid because actually 3¢0/3n
varies considerably over the aperture. For the model of the
cross section of the wing cavity, which we will introduce in
the next section, the maximun -8¢O/8n is 5.04 and the average
(over the aperture) is 1.87. The true a¢o/8n'that should be

used in Equation 51 is

JE, (3 /3n)dc

(3¢,/0n) p = = (76)
éI‘Ezdc

as we can see from Equations l1ll. For a planar rectangular

aperture with a uniform Ee Ez varies slowly except near

‘
the edges where it goes toxzero (in a direction perpendicular
to z). Also E_ does not change sign over the aperture. 1In

the present case (Hext)¢ or equivalently J, (the induced short-
circuited current density on the wing) varies over the aperture
but E, still vanishes at the edges and doe= not change sign;
its maximum, however, will be shifted from the center. If Ez

does not change sign, Equation 76 shows that

30, 3¢,
(‘ TET) < (‘ 7ﬁr> .
T

max

Depending on the particular configuration —(3¢0/8n)T can be
smaller or larger than (—8¢o/3n)av = (1/2a)ér(-3¢o/an)dc where
2a is the width of the aperture (in the ¢-direction). If
3¢o/an peaked sharply in such a way that we could replace
a¢0/3n by A + BS{(c - co), where A + B/2a = (3¢O/8n)av, then
Equation 76 would give
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—=°2 - =1

+
_I; ,dc j; (E_/E_) (dc/2a)

on =

(3?9_) = A + (E)o B (E,/E), (B/2a)
T E

where E, is the maximum Ez and (Ez)o is EZ evaluated at c = Co
where -a¢o/3n is maximum. Notice that (E-Z/Em)o < 1 and
.€(EZ/Em)(dc/2a) < 1. Thus (3¢o/8n)T can, as we mentioned
earlier, be smaller or larger than A + B/2a = (3¢0/Bn)av.

If Ez peaked at the same position as —a¢o/8n then (-8¢O/3n)T
would be smaller than (—3¢0/8n)av. However, as we mentioned
earlier, the position for Em is shifted from the center and
depending on its exact location (—8¢0/8n)T can be larger than

(—a¢0/8n)av. We will assume that (—3¢o/8n)av < (—B¢O/3n)T and

(oe) - 3[e) - (). | o
on T 2 on nax on av

as the value for 8¢o/3n to be used in Equation 51. For complete-
ness we give the formula for (ad)o/an)aV

2 4 1 2a - x; cos o =(2 - y,) sin a
8¢0 _ No E : € <tan 1 1 1
— —_— e e— l
an 2Ta

. |xi sin a -(2 - y;) cos af
av i=1

- X, cos o +{(2 - y.,) sin o
+ tan t 3% = ) (78)
|x; sin o -(% - y;) cos o
where (x).¥) = Xo:¥ ), (%5.¥, = —xo'_yo)f (x3/¥3 = =Xg0¥,)
(x40, = xo’_yo)' €6 =€ =1, €3 = ¢, = -1, 2a is the aperture

width and Ng is given by Equation 69.
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2. CURRENT ON CABLES

In order to calculate the current induced on the cables we
assume that they are so closely spaced together that they form
a conducting wall which coincides with the partition wall.

Then the current density induced on this wall is equal to n x H
where H is the total magnetic field on the wall. Assuming that
only .the TEM mode contributes, we can calculate n x H using

Equation 2, i.e.,

n x H = ao(z) ; x(éz X Vt¢o)
= a_(2) E;?O é, = IB‘];’ % é, (79)
o
Then the current induced on a cable will be
I X I:]g) a:% (2a) (80)
o

where a, is the radius of a cable.

We have already calculated I(z) in section II (Equation 58)
and Ng is given by Equation 69. 1In order to calculate a¢o/8x
we can use four charges (fig. 13) or twelve (fig. 14). Both
cases make ¢o = 0 (exactly) on the partition wall. With four
charges we obtain a larger 3¢O/8x than with twelve charges,
i.e., we overestimate the current I. induced on the cables.

We will give both formulas.

a. Four Charges

5 .
M _ _ o [ 1 - 1 ] (81)
ox T 2 2

R (Xoly }) R (Xo’_yo)
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Figure 13. Geometry if Four Charges are Used in the Calculation of
a¢°/an on the Partition Wall
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Figure 14. Geometry if Twelve Charges are Used for the Calculation
a¢0/an on the Partition Wall

50



where K is given by Equation 73,

2 - 2
R%(x 2y ) = x5+ (y 7 y,) (82)

and y is the y-coordinate of a point on the partition wall.

b. Twelve Charges

2
% _ _ Y [ 1 1 ]
) m ] 2
x RZ(x ,¥,) R (xg:mY)
x'(x_,y.)
+ 2K § 5 o9
] - ] -
R[(x (xo, yo), Yy (xo, yo)]
x'! ("‘x Y )
4+ — - - o’“o

RI[x" (mx_,¥,) » ¥' (=% ,¥) ]

'
AXV (XO'YO)

2
R™x' (XO'YO) P y' (Xo’yo)]

x'"(-x_,-v )
- _ o o (83)

RZIX'(-XO,—YO), y'(—xo,—yo)]

where K is given by Equation 73, x'(xi,yi) and y'(xi,yi) by
Equation 66,

2 _ 2 _ 2

R (Xi:Yi) = X3 + (y yi) (84)

1

and y is the y-coordinate of a point on the partition wall.

51



SECTION IV

SUMMARY AND NUMERICAL EXAMPLE

In this report we have considered the problem of EMP
penetration through dielectric skin panels covering part of
the leading edge of the wings of an aircraft (fig. 1). 1In
order to assess the effect of energy leakage into the wing
we calculated the current and voltage induced on the pneumatic
duct (this voltage is the potential difference between the
duct and the metallic wall of the wing) and the current
induced on the unshielded cables positioned in front of
the partition wall (fig. 1). In order to perform these
calculations analytically, we modeled the leading edge of
the wing backed by the partition wall as a cylindrical tube
of triangular cross section with a periodic array of rectangu-
lar apertures on its top side (fig. 15). (For simplicity
the dielectric skin panels were replaced by air and as a
result, our calculations overestimate the amount of energy
leakage.) The pneumatic duct and the triangular tube, with
the apertures short circuited, formed a structure that
could support a TEM mode which, due to low frequencies com-
prising the bulk of the EMP spectrum, was the dominant mode
to be excited. Thus we were able to neglect higher order
modes and derive an equivalent transmission line to describe
the behavior of the pneumatic duct. For this calculation
we ignored the presence of any other metallic objects housed
in the wing cavity (including the unshielded cables). Once
we determined the TEM electromagnetic field we calculated the
current induced on the unshielded cables by assuming that
they were sufficiently close to each other to form a wall
(see section III). Figure 15 depicts the equivalent trans-
mission line for the pneumatic duct. We have calculated the

induced current on the duct by assuming two gensral loads,
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Figure 15. (a) and (b) The Edge of the Wing Modeled as a Cy]indrica] Tube with a Triangular Cross Section
and a Periodic Array of Rectangular Apertures on it. (c) The Equivalent Circuit
for the Pneumatic Duct



ZL' Zn terminating the transmission line on the left and
right sides respectively (Equations 59). The voltage can be
obtained by multiplying the current waveforms that propagate
in the #*z-directions by 22 e where Zec = (L'/C') is the
characteristic impedance of the transmission line. The

parameters shown in figure 15 are given by the following

formulas.
La Ca
L' =L + g (Henry/m) , c' =¢C - g (Farad/m)
' iwp_a Z
- - om fc v
Veq = 5d Zo A Jz(z) (volts/m)
iwae 5
1T
qu = 53 gﬁ-d(z) (Amps/m)
L = 2° (Henry/m) C = ¢ N° (Farad/m)
= N2 enry , = €, Ng arad/m
o
- 1/2 _ 1/2
Zc = (L/C) (2), ZO = (uo/eo) ()
2
- 1 {2¢
L, = Mo N2 (an) (Henry/m)
o
2
- CIR
Cy = €.% <8n) (Farad/m)
N2 = 2" _ (Dimensionless)

o ln(Dc/NC)

2
I

Rc(xo,yo) RC(-XO,-YO) Rc[x'(xo.-yo). y'(xor—yo)]

R Ix'(=x_sy5)r ¥' (=% /¥ )]
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D, = R (-%X,s¥,) R (x,,-y.) R, IX'(x,,¥,), g'(xo,yo)]
R I[x'"(=x_,~¥ ), ¥' (=% /-y )]
R (x,y) = [ix, - )2+ (v, - 7 (m)
c c c .
x'(x,y) = x cos 20 + (£ - y) sin 2a
v'(x,y) = -y cos 20 + 2% cosza - x sin 2a

|
o)lo:
Sle
[}
N[
/"l\
%)
%
-
5
N—
8
o
%
+
g
@
%
5‘69
S
V]
<
|
3
|
'_l

(Section III)

3%, _ N -1 2a - x; cos a - (2 - y;) sin a
" on T 2ma € 1tan © “ix. sin o - (£ - y;) cos a]
av : i i

-1 X3 cos a + (% - Yi) sin o

Ix, sin o - (2 - y;) cos al] (Section III)

(xlryl) = (Xo:yo), (leyz) = (-Xor—yo)l (X3IY3) = (—XO;YO):

(x4,y4) = (xo,-y )

il
)
Il
=

~
™
I
m
il
|

2 .
§&§ = maximum & [?os p(xo'yo) + cos_e( *o1¥o)
max T R(xolyo) R(—xo,-yo)

cos 0(-x_,Y.) cos B(x_,~y.)

R(—xo,yo) R(§o,-yo)

]} (Section III)
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[(—8¢0/8n)max = maximum of —3¢o/an over the aperture.]

4 - _ .
cos O(x,y) = i____Xl_%%i,;) X sin a

2

GXA - X) (m)

where Jz(z) (Amps/m) [= (Hext)¢]’ g(z) (Coulombs/mz)
[= eo(Eext)n] are the short-circuited current density (= mag-

R(XIY)

1/2
+ (L -y - xA-tan o) )

netic field) and charge density (= €, X electric field) respec-
tively averaged over the aperture at z; and are obtained by
solving the external interaction problem with all the apertures

short-circuited. o_ = o (m3), ae(m3) are the magnetic and

m mo¢

e¢lectric polarizabilities respectively calculated in Appendix B;
XY, {m) are the coordinates of the center of the pneumatic

duct (fig. 10); x_ = x_ - an: Y = Y, and a,, (m) is the radius

Cc o} D
of the pneumatic duct; o and 2(m) are defined in figure 10;

a(m) and d(m) are defined in figure 15 and xA(m) is the x-

coordinate of a point in the aperture. (—8¢>O/8n)av was obtained
by integrating (—8¢o/8n)av over the aperture and dividing by
2a, i.e., (-3¢/3n)_ = (1/2a) {1_3¢/an) dec, .
The current induced on the unshielded cables is given
by
96
_ I(2z) o)
I (z,y) = =5~ -~ d (Amps) (85)
N
o
2
Wy . Np % 1 1 -1
- = - - (m ™)
ox T R%(x_,y)  RY(x_,-y.)
o' Yo o' ¥o
2 _ .2 - 2 2
RO(x /2y ) = x  + (y 7 y,) (m™)

where I(z) (Amps) is the current induced on the pneumatic

duct at z, dc (m) is the diameter of an unshielded cable and
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Y (m) is the coordinate at the center of an unshielded cable
(the x-coordinate is taken equal to zero).

As an example we consider the E-4 aircraft specific dimen-
sions of which are given in figure 16. In addition we choose

the following average dimensions (fig.. 10)

xo = 0.4 m 22 = 0.9 m
yo = 0.2 m a = 35°
2 =0.8m

In order to obtain a simrlified formula and upper bound for
the current induced on the pneumatic duct, we assume that

the equivalent transmission line in figure 15 is matched

. . _ _ - v sy 1/2 X
on both sides, i.e., ZL = ZR = Zce (L'/C") . In this
case the current is given by Equations 62

Y
Vl
I < %; 293 + I
- ec ed
XL ( Z ~
i A X _c I
T "4d |on lam(z ) Iy * og cc} (86)
ec

where
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Figure 16. Geometry for the EMP Penetration Problem Corresponding to an £-4 Ajrcraft.
(A11 Dimensions in Meters)



and Jz(z), og(z) are, as we indicated earlier, the short-
circuited current and charge densities respectively averaged
over the aperture, L. the length over which the array of
apertures extends and c = speed of light = 3 x 108 m/sec.

For the specific dimensions corresponding to the E-4 aircraft

we can find

99| _ -1 -
Isﬁl— 3.5 m —, Zc = 0.15 ZO
[ - [ B
L 0.20 uo, C 4.63 60
= v iy L/2
Zec = (L'/C") = 0.21 ZO
_ _ 2 .
ZC/Zec = 0.71, am = a, ¥ ma“d/2 (from Appendix B)
' U : ' — :
Veq = —-0.0835 1qu(zL qu 0.?57 iko (z)
V' = 0.0835 kJ ' = 0.557 k3
eq = 0 2z eq = 0- o
and Equation 86 gives
A
I < 0.28(kL) (0.71 ¥ + c0) (Amps) (87)
vV =0.21 ZOI (ZO = 377Q) (Volts)
Jz is measured in Amps/m, ¢ in Coulombs/mz, k = (2nf/c) in

m—l and L. in m.
w

In order to calculate the current induced on the cables
we choose a representive one with y = 0.4 m, i.e., in the
middle of the partition wall. Then the current induced on
this cable is given by Equation 87 where I(z) is given by

Equation 86 and
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3¢o

x| = 0.392 .

1
N2
o
Thus

v v
I <0.11 (kp)d, (0.71 J, + co)

where dc is the diameter of the cable.

In order to obtain J, and ¢ we should solve the external
interaction problem with all apertures short-circuited, for
frequencies such that 2kb << 1 (b is shown in figure 15).
Notice that the zeroth order magnetic and electric fields
we considered in Section II in the calculation of the dipole
moments are static fields only inthe sense that they are the
zeroth order terms in an expansion of the true magnetic and
electric fields in kb. These zeroth order terms depend on the
external interaction problem which can be solved for a range
of frequencies satisfying the condition 2kb << 1. However,
one should examine if this condition is also sufficient to
cause a rapid decay of the higher order modes generated at
the aperture sites. For a coaxial cable with radii ays285s
condition ko(al - a2) < 1 insures that the higher order modes
become negligible over a distance a; - age In our case the
average linear dimension of the triangular cavity is the
same order of magnitude as 2b and consequently condition
2kb << 1 is sufficient to cause a very rapid decay of the

higher modes.
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APPENDIX A

DIPOLE MOMENTS FOR AN APERTURE IN A PLANAR SCREEN

In this appendix we consider an interesting aspect of the

problem of electromagnetic penetration through an aperture in

a perfectly conducting screen.

We show that in the low fre-

quercy limit (kd << 1 where d is the linear dimension of the

aperture) the transmitted far zone electromagnetic field can

be obtained by considering the far zone electromagnetic field

due to an electric dipole p and a magnetic dipole m, placed

rin front of the conducting screen with the aperture short-

circuited such that

where r
=s

E
It

fo
Il

-1 f(ﬁ x E) dS
lwuo —_

A

€

O ~

e fern i
A

is the two-dimensional radius vector

and E is the true aperture electric field for

penetration problem.

Equations A-1 of course

we include our proof here for completeness.

(A-1)

in the aperture
the original

are not new but

We begin with the well-known equation (fig. Al)

E(xy)

where g =

= -2[(?1 x E) x ngds
A

ikR
e
41R

R=|r -

r
=o
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Figure Al. Geometry for the Calculation of m and p in Terms of the Aperture
. Electric Field
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In the far zone we have

v ike1kR g - r N ikelkr—lker-zs (-é ).
s9 & 4TR R 4mr r

and for |kér * r | << 1 (low frequency limit)

. ikeikr o n
Veg v~ Ty (1= dkey I e (A=3)
Using Equation A-3 in A-2 we obtain
.. ikr
- ike ~ ~
1_3_(_1_')-— _ZTTTf(nXE) dSXer
A
k2aikr J. . R ~
-—ZT (I'l X E) (er hd £S) dsS x er (A'—4)
A

A magnetic dipole in free space produces a far zone electric
field (ref. 5)

ikr ~
E(m) - Zok2 inr (m x e, (A-5)

Comparing Equation A-5 with the first term in Equation A-4

we understand that

_ i
m= 2 7% J.(n X E) ds
o)
= qu J.(n x E) ds (free space)
A

5. Papas, C. H., Theory of Electromagnetic Wave Propagation,

McGraw-Hill Book Company, New York, 1965.
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and in front of an infinite perfectly conducting screen

= —1 A
m = o0 J.(n x E) ds
A .

which is identical to the first of Equations A-1. To show the
truth of the second equation requires some manipulation. First

we recall that

V. (Ar) = (V, A r_ +A (A-6)

where éT is the transposed of A.

Employing Equation A-6 we can write

fzsg_ ds = st - (K £s£s)ds - st + (K £s)£sds' (2a-7)
A A A

If K =n x E then E - 4 = 0, where U is a tangential vector
along the rim of the aperture. If we use this property and
the two-dimensional form of Gauss' law we can set the first

integral on the right-hand side of Egquation A-7 egqual to zero.

If we now use

Vg = (Kxrg) = (Vg - K) £y + K

and the continuity Equation 20 in Section II we can rewrite

Eguation A-7 as

j£s Kds = —fg £Sds + 1wuo[n * H £s£s ds . (A-8)

A A
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Next we observe that

A A i ~
K = . - .
(£g x K) x e, =Ky e ~IgK" &

and combine this 'with Equation A-8 to obtain

2 _ 1 n
J‘EESdS er—fj-(gsxg_) ds x e,
A A

iwug . ~
+ 5 n + H r.ro ds - e. . (A-9)

With the aid of Equation A-9 we can now rewrite the second

term in Equation A-4 as

g(2) _ kzeikr J.[ (h x E)]AdS x é_%x & (A-10)
= int rg x (nx B X e, r
4 .

where we have discarded the integral involving H as higher
order. Recalling that the far zone electric field due to an
electric dipole p in free space is (ref. 5!

2 ikr

e

E(p) ke (ér X p) X e

4ny r

we can use Equation A-10 to deduce that
€q ~
P=-—5 Jxrs x (nxE)ds
A

if p is placed in front of an infinite perfectly conducting
screen. Notice that rg x (n x E) = ﬁ(£s « E) and the expression

for p coincides with Equation 27.
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APPENDIX B

CALCULATION OF DIPOLE MOMENT POLARIZABILITIES
FOR A PERIODIC CONFIGURATION OF RECTANGULAR APERTURES

In this appendix we give an approximate calculation for the
magnetic and electric dipole polarizabilities for a periodic
configuration of rectangular apertures in a perfectly conducting
screen (fig. Bl). (In reference 6 a categorization of the types
of apertures is given, including one-dimensional arrays or
gratings.) As we explained at the end of section II, for the
calculation of the equivalent voltage and current sources we
need only know am¢¢ and O since am¢z is zero and ooy does
not enter into the calculation for the equivalent sources.
However, in this appendix, in addition to the magnetic polariz-
ability amxx(= am¢¢
calculate Oz 2 for future reference.

1. MAGNETIC POLARIZABILITIES

) and electric polarizability a, we also

By definition

m=-g - Eext’ m = —J/.Es n « HAS (B-1)
A
where Eext is the short-circuited magnetic field, r, is the

radius vector in the plane of the aperture and/ﬁ * H is the

normal component of the aperture magnetic field. (n points

into the source region.) We are interested in calculating
o and o ; l.e.,
mxx mzz
My = 8y ° Eext = _amxx(Hext)x - i}rx n - HAS (B-2)

6. Baum, C. E., K. C. Chen and B. K. Singaraju, Categorization

of the Types of Apertures, Interaction Note 219, Air Force

Weapons Laboratory, January 1975.
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Figure Bl. A Periodic Array of Rectangular Apertures
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m, = =0 Hoxt)x = %mzz Hext) 2

= gz Hext)z = —fz n + HAS (B-3)
since a . = O .. T 0. Thus we must first calculate n « H
for H in the x- and z-directions.
—ext
a. o_ =

m - Ymxx 0Lmq)cb

For the geometry depicted in figure B-1 with Eext = Hext éx
we can introduce a scalar potential such that H = VY. Because
of symmetry the total magnetic field at z = #d,*3d etc. lies
entirely in the xy plane and consequently 3¥/%z = 2 at z = 4,
+3d etc. At y = 0 and outside the apertures 3¥/3y = 0 since
the total magnetic field is tangential to the conducting screen.
By introducing appropriate Green's functions such that 9G/3z = 0
at z = #d4,#3d etc. and 9G/3y = 0 at y = 0 we can employ Green's
theorem for the regiony >0 -d <z <dandy >0 =-d <z <4d

to derive the following integral relationships

a b
y >0 ¥Y(x,y,2) = WeXt(x,y,z) + ‘[ dx'~f Gl(x',O,z'; X,¥,2)
-a -b
S 1 ] L ]
. Iy T ¥(x',vy',z") dz
. =0
a b
y < 0 ¥(x,y,2) = —f dx'f G2(x',0,z'; X,Y¥,2)
-a -b
d dz" (B-4)

¢ Wr ‘i’(X',Y',Z')

y'=0
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where

ext _
¥ = Hext X
VIZG(I. 8 ' ]
1 (& iY) = (r' - r) y',y > 0
3G
oG 1
W'_=0 yl=0 -87'-:0 z' = x4
VIZG L _6 T [ ] <
H(r'ix) = 8(x' - r) y',2y £ 0
9G
3G 2
yr -0 Y =0 gpF=0  z' =23

Gy and G, have the followinc explicit forms

[e ] [+ o]
€ -
Gl(x',y',z'; X,Y:2Z) - E .f- dp 5%% % e Y% cosh y's
n=0 -0

eip(x'—x)

G, (x",y's2"; x,¥,2) = Gy (x',-y',2"; x,-y,2) 0>y' >y
' (B-5)
where €, = 1, n # 0, €, = 0.5, s = (ki + p2)l/2, kn = nn/4.
The above formulas can be obtained by expanding §(z' - z) in

a cosine series, i.e.,

oo
§(z' - z) = E (en/d) cos k,z' cos knz,
n=0
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writing §(x' -~ x) as

0
(l/21r)f dp eip (x'-x),
- 00
setting
o0 ]
. '
G = E ./. dp gn(y',y,p) elp(X X) cos knz' cos knz
n=0 -

and solving for gn(y',y,p) in the usual manner.

In order to obtain an integral equation for 3¥/sy' y' = 0
= Hy(x',O,x') we let y + 0 in Equation B-4 and use the boundary
conditions: V¥, H_ continuous in the aperture. Thus we can

derive the following integral equation

a b
1 ' =
f dx f (Gl + G2) Hy dz' = Hext X
-a ~b
or
a b
1 . v — -
f dx'f K(x',x; z',2) Hy dz' = Hext x (B-6)
-a -b
where
€ : ' _
K(x',x; 2',2z) = Z 1 dp elp(X x) cos knz' cos knz

S T
") (e k) (B-7)
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For kh ¥ 0 we can use the well-known relationship

eip(x'—x)
)1/2 dp

. o0
2K°(kn|x' - x|) = f » 3 »
- (p + kn

where Ko(u) is the modified Bessel function of the second kind
of zeroth order to rewrite Equation B-7 as

[«
K(x',x; 2',2) = K(o)(x',x; z',z) + #%- E Ko(knlx' - x|)
n=1

1 ) —
cos knz cos k_z (B-8)

In order to solve Equation B-6 approximately, we guess a
functional for Hy that satisfies the edge condition and symmetry
properties. (A similar approach can be found in reference 7).
The simplest form is
x' H d
' Yy — - o 7 Text _
H (x',z') = = 172 (B-9)

y 2 _ 12
a2 - x'2) (b z'%)

In order to determine a, which is assumed to be independent
of position, we integrate both sides of Equation B-6 from
0 to a and -b to b. The resulting expression involves several

integrals. First we consider n = 0

7. Lam, J., Metal Skin Panel Joints, AIP Memos, Memo 3, Air
Force Weapons Laboratory, November 1976.
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We have

b b
dz' _ _

f . . 172 = T, f dz = 2b

-b (b" - 2'7) -k '

and
a ipx" a ‘
] t 3 L

f x' e 7 = 2if x' sin pxl/2 dx' = ima Jl(lpla) _.g_
o (a2 - x'?) (a® - x'?) =l

a
-ipx 1 -ipa
f e dx ip 1 -e )
o
Next the integral
3 (lpla) (1 - e P9
I=f 5 dp
o p
arises. (Notice that (p2 + klzl)l/2 = |p| for n = 0.) We can

write

8. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals,
Series and Products, Academic Press, New York, 1965,
p. 419, 3.753-5.
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) dp

® Jl(pa)(l - cos pa)
I = ZJﬂ S
o p

To evaluate this integral we define

fm Jl (pa) (1 - cos pB)

Il(alB) = i dp
o p
and
g .
Erl(a,B) _ qlfgg) sin p8 dp = B B < a
aB - P P o =
(o}
according to reference 7. - Thus
2 2
=B = B
Il(a:B) = 3 + c(a) = 7a

1/2. Next we consider the

fl

since I{a,0) = 0 and I = Il(a,a)

integrals corresponding to n # 0. We have

b cos knz' 1 cos knu
] -—
f " 173 dz zf 177 = wJo(knb)

b (b2 - 2'%) o (L - u?)

according to reference 8.

Since Ko(knlx' - x|) involves both x' and x the following

two-dimensional integral arises
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a a

oef o f

-a (a

x'Ko(knlx' - x|)
1/2
)

ax’

2 2

- x!

To reduce I, to a one-dimensional integral, we set x' - x = u,
x' = x' and refer to figure B2 to transform I, to

O

a a
_ x' dx!
I, —f duk  (k u) f . 172 +f duk_ (k_[u])
- X'

o u (a ) -a

u+a -a uta

x' dx! J[ x' dx!
+ duk_ (k Iul)f X
_/ 5 2 1/2 o' 'n 2 5 1/2

u (a® - x'%) -2a -a f(a” - x'%)

2 [ 5 172 2 [
= 2a f Ko(knau) (1 - u™) du - 4a / KO(anau)

(o]

o)

2 1/2 _ 2 _
e (u - u’) du = 2a S(kna), k = T (B-10)

Using the above results we obtain

mb/d e (B-11)

- _
b 8 ntb ._(nth nwa
a T E: nmw Jo( d ) Sln( d ) Sn( d )

where S is given by Equation B-10.

With the aid of Egquations B-2 and B-9 we find

a b
a = o — / dxf dz x = X9 Mext
m -~ mxx H ﬂ 1/2 -, 172
ext J -b (a2 - x2) (b2 _ 22)

(ra2d/2) o (B-12)
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Figure B2. Coordinate Transformation for the Evaluation of a Two-Dimensional
Integral in Appendix B



and

2
o' = a___ /28 = 18 @ (B~13)

For an infinite slot the magnetic polarizability per unit length
a; is ﬂa2/4 and

= a ’ (B-14)

Q 'Q
g 8|8~
|

where o is given by Equation B-11.

= i - i = i v =
When b d Equation B-1l1l gives « 1, i.e., on (amxx/zd)

a: as expected. For the E-4 aircraft considered in section IV

(£ig. 16) b/d = 0.65/0.654 & 0.994, a/d ¥ 1, i.e., a! ¥ a:; =

wa2/4. We can show this by bounding the sum in Equation B-11.

A simple calculation gives Sum < 0.14 << 1 and consegquently

¢ ~ 1. This can also be seen from the graphs in figure B3 where
aé/a: is plotted versus b/d with a/b as parameter. When

b/d = 0.1 the apertures are far enough from each other to be
viewed as isclated. In this case amxx(= Zdaﬁ = nazda/z) should
represent the magnetic polarizability for a rectangular aperture
in an infinite conducting screen in the presence of the short-

~

circuited H = H €._. This polarizability has been calcu-
—ext ext "x
lated in reference 4 and its value is used in the table that

follows.
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This Report

a/d a/b Ref. 4 (b/d = 0.1)
0.005s |  0.05 33.7 3.3
0.01 0.1 16.2 17.9
0.025 0.25 6.91 7.45
0.05 0.5 3.67 3.96
0.08 0.8 2.48 2.61
0.1 1 2.08 2.22
0.125 1.25 1.75 1.85
0.2 2 1.26 1.34
0.4 4 0.818 0.886
1.0 10 0.518 0.560
2.0 0

.393 0.393

The agreement between the results in reference 4 and
this report is good and it improves as a/b increases. When
a/b < 1 the magnetic field Howe éx is perpendicular to the
long side of the rectangle whereas a/b > 1 corresponds to a
magnetic field parallel to the long side. In the next sub-
section we calculate the magnetic polarizability Oy for a
magnetic field in the z-direction and we find that again the
agreement improves for large a/b, i.e., when the magnetic
field is perpendicular to the long side. For the case
displayed in the above table, i.e., for b/d = 0.1 our results
overestimate the true polarizability results and it is expected

that this is also true for larger b/d.
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b. a
mzz

For the calculation of o ., WE consider a short-circuited
external magnetic field in the z-direction. Again we introduce
a scalar potential ¥ such that H = V¥. 1In order to derive an
integral equation for 3¥/3y = Hy we choose ¥ = 0 and G = 0 at
'z = *d,*3d etc. We also recall that 3¥/3y = 0 on the metallic
part of the screen and impose the condition 3G/3y = 0 at y = O.
Under these circumstances Green's theorem leads to the following
integral relationships.

a b
‘PeXt(x.y,Z) +f dX'/ Gl(X',O.Z'; X,Y,2)
-a -b

y >0 ¥(x,y,2)

) 83!‘ Y(x',y',x") dz'
y'=0
a b
y <0 ¥Y(x,v,2z) = -./. dx'./. G2(x',0,z'f X,V ,X)
-a -b
. B;' Y(x',y',2") dz' (B-15)
y'=0
where
ext _
b'g = Hext z
(o] [+ ]
Gl(x',y',z'; X,¥,Z) = - E J{ 22gs % e Y5 cosh y's
n=1 -«
ip (x'~-x) : ' : '
e sin knz sin knz 0 <y <y
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Gy(x',y's2"; X,¥,2) = G (x',~y',2'; x,~y,2) 0 >y' >y
' (B-16)
1/2
2 2
where s = (p + kn) ' kn = nw/d. |
By allowing the observation point to approach the screen
and invoking the continuity of ¥ and 3¥/dy in the aperture we

can derive the following integral equation

a b
t [} ', | -
f dx f K(x',z2'; x,2z) Hydz Hext z {(B-17)
~-a ~b
where
[o8]
K(x',z'; x,2) = %% Ko(knlx' - x|) sin k z' sin k z
n=1

Ko(u) is the modified Bessel function of the second kind and

of zeroth order and kn = nn/4d.

In order to find an approximate solution for Equation B-17
we assume a simple form for Hy that satisfies symmetry require-

ments and edge conditions, i.e.,

zZ H b
- ext . _

2 _ XZ) (b2 _ 22)

(a
and integrate both sides of Equation B-17 from -a to a and

0 to b. The resulting equation involves the following

integrals
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b b z' sin knz' sin knz b

] - -—
f f 172 dz'dz = i (1 cos knb) Jl(knb)
lo] b

(b2 _ 2.2) n

according to reference § (p. 419, 3.753-5) and

a g Ko(knlx' - x|
= ax dx'.
2 2 1/2
-a -a (a® - x'7%)
If we introduce the transformation x' - x = u, x' = x' and

refer to figure B4 we find

2
= Zaf K, (k,au) [g + sin (1 - u)] du = 2as(k a) (B-19)
o}
and
B = — S (B~20)
3 s (1 - cos k) I, (kb) S(ka)
n=1
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Figure B4. Coordinate Transformation for the Evaluation of a Two-Dimensional Integral
Appendix B




where S (k a) is defined by Equation B-19. With the aid of
Equations B-18 and B-3 we find

a b 2

o =1 dx dz - - —z > Hext

mzz Hext 5 5 1/2 2 5 1/2
-a -b (a© - x7). (b™ - z7)

as

(B-21)

where B is given by Equation B-20.

In figure B5 we have plotted amzz/(ﬂ2b3/2) versus b/d with
a/b as parameter. When b/d = 0.1 the apertures are far enough
from each other to be considered isolated and O zz should
correspond to the polarizability of a rectangular aperture in
a perfectly conducting screen inthe presence of a short-

~

circuited magnetic field Hoyt = Hgoyy ©,- We can then cornipare
the results of our calculations to those obtained in reference 4
where the polarizability for a rectangular aperture in a per-
fectly conducting screen was calculated. In the table that
follows we display our results for b/d = 0.-. and those obtained
in reference 4 (which of course correspond to b/d + 0). Notice
that the normalized gquantity displayed is amzz/b3 rather than

3
so want =
amzz/a because we also want to compare our results for H <t

HeXt éz to those obtained in the first subsection of this
appendix, i.e., when Eext = Hext e, where the roles of a and

b are interchanged.
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N 0‘mzz/b3
This Report
a/d b/a Ref. 4 (b/d = 0.1)
2 0.05 33.7 33.8
1 0.1 16.2 | 16.4
0.4 0.25 6.91 ' 7.32
0.2 0.5 3.67 3.91
0.125 0.8 2.48 2.65
0.1 1 2.08 ©2.22
0.8 1.25 1.75 1.88
0.5 2 1.26 1.35
0.025 4 0.818 0.394
0.01 10 0.518 0.589
0.005 20 0.393 | 0.464

The above table shows good agreement between the results
in reference 4 and this report. We observe that the agreement
is excellent for large a/b, i.e., when the magnetic field 1is
perpendicular to the long side whereas the opposite is true
for Hoyt in the x-direction as we found in the previous sub-
section of this appendix. In the present case, i.e., for
Eext in the z-direction a large a/b, say 20, corresponds to
a long aperture and O zz should approximately be equal to
(n/2) b%a. Indeed o___ = 33.8 b> = 33.8 b>(a/20) = 1.69 b’a 3
(ﬁ/2) b2a. The above table shows that the calculation of S S
in this appendix overestimates its value for b/d = 0.1 and it

is expected that this is also true for larger b/d.
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2. ELECTRIC POLARIZABILITY
In order to calculate the electric polarizability we

€5% Eoyxt® Eoxy 1S the short-

circuited external electric field (fig. Bl). Thus

a b
oy = - El f dx/ ¥(x,0,z) dz (B-22)
ext -a b

where ¥ is a scalar potential such that E = -V¥ and ¥ = 0

recall Equations 28 and p =

on the metallic part of the screen. Due to symmetry the

total electric field E at z = *d,£3d etc. lies entirely in the
Xy plane and consequently 9¥/3z = 0 at z = #d,*3d. Thus in
order to derive an integral equation for ¥(x,0,z) we introduce
appropriate Green's functions such that G = 0 at y = 0 and
3G/d%z = 0 at z = *d,%3d etc. Application of Green's theorem
results in the following integral relationships

3G
y >0 ¥(r) = WeXt(g) - er(g') 5§% das!
A y'=0
9G,
V() = JYEh) 5F as’ (B-23)
A y'=0

where A is the -d < z < d, -a < x < a aperture,
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00

(2]
€ -
- E f dpﬁeyS sin h(y's)
n=0 -«

eip(x'-x)

i

Gl(x'ly'lz'; X,Y,2)

cos knz' cos knz 0 <y' <y

G, (x',¥',2"; x,v,2) = -G (x',-y',2; x,-y,2) 0 >y' >y
(B-24)

1/2
(p? + x2)" . kx_ = nn/d.

to approach the screen

and €5 = 1/2, €, = 1 for n # 0, s

If we allow the observation point

i

(y = 0) we obtain

acl
A = ~§(x' - x) 6(z' - z)
y'=0,y=0
3G2 .
A = §(x' - x) &(z' - z)
y'=0,y=0
and Equations B-23 give two identities since WeXt = 0 at

y = 0. Thus as y - 0 Egquations B-23 cannot be used to
calculate VY¥(x,0,2) as we did with the magnetic polarizabilities.
However, we can still use Equations B-23 to derive the following

set of integral relationships.

3Y (x) Y. (r) f 3G
= inc'=" 9 ' 1 '
= 3y 5y ¥(r") il das y >0
A yv'=0
oY (r) 3 3G,
— ' = ]
5y~ = 3y J Y& 35 ds y <0
A y'=0

(B-25)
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As y + 0 we use Equations B-25 and the continuity of ¥ and
o¥/3y at the aperture to derive the following equation:

Ye 2G

ov.
inc = |9 ‘ ' 1 2 '
Ty ayf‘“x 002 gy tgyr| W
Y=0 A y|=0 Y=0
oo [¢o]
2 E : €n . i -
= 3y J,ds' Y(x',0,2"') =3 ./- dp sinh ys elp(x X)
A n=0 -
cos k z' cos k_z
n n
y=0
or

[}

©
€ 7 -
-FE =fdsl y(x',0,z") E ;r—rdl/ dp /pz + kfl elp(x' x)
n=0 —co

ext
A

' -
cos knz cos knz {B~-26)

Again we guess the simplest form of Y¥(x,0,z) that satisfies

the symmetry requirements and edge conditions

1/2

1/2
) (% -zt

2y (B-27)

- - 2 _ a2
¥Y(x,0,z) = ——7-Eext(a X

and use this expression in Equation B-26. To determine y we

integrate both sides of Equation B-26 from -a to a and -b to b

and do the resulting integrations:
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> 2 2 1/2 ip (x'-x) -ipx ma
f(b-—x')' e'P ax' = &P¥ 2 7, (pa)
-a
Y 5 2 /2 s x 2 az' = b J, (k. b) (= wb2/2 for n = 0)
(b° - z'%) “n k, 17 )
-b

]
=2

-ipx _ 2 sin pa - 2 .
e dx = —_—ir__— ‘ jf cos knz dz i sin knb
n
-a -b
( = 2b for n = 0)
If we define
(o]
1/2
£(k_a) = QU oin wJ.(u) (2 + k2 ad) (B-28)
n u2 1 n

and notice that f(o) = 1 (ref. 8, p. 743, 6.693) we obtain

y = — - 1 (B-29)

©o

2,.\2
1+ E (%%) (%) 31 (kb) sin(k b) £(k_ a)
=1

Thus the electric polarizability ag is determined with the
aid of EBEgquations B-22 and B-27
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a b
2vd E 1/2 1/2
dy = 5 fdxf—z—‘”"imz-xz) ? - 2% az
/- lp, b

e Eext :
a

- 2yd B (wab)z 1 _ 1ra2d-Y
nbz ext) 2 Eext 2
al = 0g/2d = y. (B-30)

For an infinite slot, a: (polarizability per unit length) is
equal to na2/4 and

Q

lo

= y. (B-31)

e
o 8

When b = d Equation B-~29 gives vy = 1 and from Equation B-31
we obtain aé = aZ = ﬂa2/4 as expected. For the E-4 aircraft
(fig. 16) b/d = 0.65/0.654 ~ 0.994, a/d X 1 and one can show
that B £ 1 and al 2 a: = ﬁa2/4. To exhibit the dependence
of electric polarizability on b/d and b/a we have plotted
in figure B6 aé/a: versus b/d with b/a as parameter. When
b/d = 0.1 the apertures are far enough from each other to be
considered isolated and a, = 2daé corresponds to the electric
polarizability for a rectangular aperture in a perfectly
conducting screen in the presence of a short-circuited Eoxt =
Eoxt ey. Reference 4 has calculated this polarizability and
the following table allows a comparison between our results

and those in reference 4.
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; t =
4 I-2b-1 l—2d—1
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b/d

Figure B6. “é = (Aperture Electric Polarizability)/2d for an Infinite Periodic

Array of Rectangular Apertures, o, = Electric Polarizability
per Unit Length for€an Infinite Slot

91



ae/b3

This Report
a/d a/b | Ref. 4 (b/d = 0.1)
0.1 1 0.910 . 0.955
0.15 1.5 1.62 | 1.74
0.2 2 2.38 2.52
0.25 2.5 3.14 ‘ 3.39
0.3 3 3.92 - 4.10
0.4 4 5.48 5.81
0.5 5 6.95 7.41
1 10 14.9 15.5
2 20 30.6 31.2

The agreement is very good and it is excellent for large a/b.
The calculations for Og in this report overestimates its
value for b/d = 0.1 and it is expected that this is also true

for larger b/d.
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