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Abstract

The transmission through one or more electrically small apertures of
arbitrary shape located in a planar electrical wall is investigated. The
orientation of the incident fields for minimum and maximum transmission is
discussed. Through the use of equivalent inner and outer radii, lower and
upper bounds are found for the electric and mean magnetic aperture polariz-
abilities. As a result upper and lower bounds and approximations are found
for the transmission coefficient of single apertures of arbitrary shape.
Plots are also given of the energy distribution in typical cases. A rule
is given for the ordering of aperture transmission according to shape for
small convex apertures. These results are extended to include transmission
through many apertures in a linear array. It is found that coupling among
apertures can either increase or decrease the transmission per aperture
depending upon the relative orientation of the incident magnetic field with
the 1ine of the aperture array. A numerical example demonstrates these
concepts for the case of grazing incidence.
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SECTION I
INTRODUCTION

The problem of electromagnetic coupling through a smali circular aperture
was apparently first solved by Bethe [1] in an approximate manner. The
scattered field was found to be equivalent to the field of electric and mag-
netic dipole sources located at the center of the aperture where the electric
dipole was proportional to the normal electric field and the magnetic dipole
was proportional to the tangential magnetic field. The derivation was based
on electrostatic and magnetostatic approximations of the fields in the aperture.
Figure 1 shows how the transmitted fields are similar to those produced by
electric and magnetic dipole moments Po and By -

An exact solution [2,3,4] was found to agree with the Bethe result in the
far field. However, the near field of the approximate Bethe solution does not
satisfy the edge condition [2,3,5,6] and has an incorrect coordinate dependance
near the aperture.

In this report the amount and distribution of energy transmitted through
one or more small apertures are of interest. In section II the approximate and
exact solution in the near field are compared. Plots are given of the energy
distribution. The problem of noncircular apertures is discussed in section III
which includes the special cases of e]liptica], rectangular, triangular and
rhombical shapes. The analysis uses the notions of inner and outer radii which
were recently used by Papas in similar calculations [7]. Section IV contains
a useful approximation for the coupling between two small apertures of arbitrary
shape. The effect of many small apertures is examined briefly in section V.

An application for the case of grazing incidence is given in section VI.

Section VII contains comments and conclusions.
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Figure 1. Sketch Showing the Equivalence of Small Hole Radiation and Radiation
From Electric and Magnetic Dipole Moments Pe and P, The dipole
radiation shown is valid for fields on the shadow side of the small
hole (solid lines). Oppositely directed dipoles produce the correct
scattered field on the illuminated side of the small hole.



SECTION II
TRANSMISSION THROUGH SMALL CIRCULAR APERTURES

The Bethe result is most easily obtéined through consideration of
the complementary disk problem'and a subsequént application of Babinet's
principle. The electric and ragnetic susceptibilities X& and X™ can be
found for metallic circular disks of radius a [8]: For the electric

and magnetic fields normal to a disk of radius a we have, respectively,’
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where y = permeability of free space

For tangential electric and magnetic fields we have

e _ 16 3
Xdisk = 3 & 2

) (2)

moo
Xdisk = O
where € = permittivity of free space

The susceptibilities are defined by the ratios of the electric and magnetic

dipole moments to their respective incident (trave]ing-wave) field

amplitudes Einc and H'"®.  The incident fields vary as e1(5f£'wt).
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X = pm/Hmc

For the case of circular apertures, we can find the dipole moments through

Babinet's principle and the use of electromagnetic duals,

Pe = S1nc1§ e aEINC g e, (4)
B, = -cosB;G Mo a3 Hmc _]_ ' (5)
where
sin a = (gincxel _L/E"'c

cos B tl-1nc. 8_|_/Hmc

For parallel polarization B = 0 and for perpendicular polarization o =
The right-handed coordinate system formed by the triad of unit vectors
Ell, %L and €n is shown in figure 2. The transmitted fields E'" and H

are found as a function of the dipole moments (and hence the incident

fields) and the spherical coordinates (r,6,¢) from Papas [9].

E:r = %—-pe cos e(- §%¥_+ g?) G : } (6)
0 r

Egr=__E; p. sin e(%§ - %§-+ kz) G - iwp cos ¢(ik-=)6  (7)

EG" = iwp,, cos 0sin o (ik - )6 (8)

H:r = %;—p sin 6sin ¢( -2ik + %ﬁ) (9)
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Figure 2. Geometry of Incident Fields and Circular Aperture for Parallel and

Perpendicular Polarization.
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TR iwp, sin e(ik - ;JG + %«-pm cos ¢ (%? - l?-+ k2) G (11)
where 0 r

G = eikr/4nr r = radial distance from origin

k = w/c = 2n/) | 6 = polar angle from e

¢ = vacuum speed of light ¢ = azimuthal angle from €||

A = vacuum wavelength

w = radian frequency

and where the time dependence e"i“’t has been suppressed. vThis result is
identical to Bethe's approximation [1].

We now consider the total energy density in the near field (i.e.,
r << A) as computed from the above equations. The time-averaged energy

density w is defined by

W=t W (12)
where

- & *

We = T_E_ . E (13)

- U

wm = ]0_!1 . .H_* . : (]4)

The ratio of the near-field transmitted energy density to the inci-

dent energy density can be computed as

4 c0526(4 sine sin2¢+ cose sin2¢4~cosz¢)J_polarization

Wtr = 2 (_3_)6

wnt gt ' 4(4 sinze sin2¢+ cosze sin2¢4-cosz¢)+-sfn2a(4 coszei-sinze)
|| polarization

for r << ) (15)
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The first term of (15) is due to the electric energy; whereas the second
term is due to the magnetic energy. Therefore it is apparent that most
of the near-field energy is magnetic in nature. This is due to the fact
that for all polarizations the magnetic dipole contribution dominates the
contribution from the electric dipole. Plots of the relative transmitted
énergy density in the E-plane (¢=0,m) and the H-plane (¢ =+m/2) are
given as a function of 6 fo a constant value of r/a in figure 33 -
Several items concerning the transmitted energy in the near field should
be noted from this figure: |

1. maximum energy transmission for all polarizations occurs at the
the intersection of the H-plane and the aperture
plane (¢ = zn/2, 6 = n/2)

2. maximum energy transmission occurs for the case
of parallel polarization énd grazing incidence (a = m/2, B = 0)

3. minimum (zero) energy transmission occurs for perpendicular polar-
jzation at grazing incidence (o = 0, B = 7/2)

4, for any given angles 8 and ¢ , parallel polarization always produces
an equal or larger energy transmission than does perpendicular
po1arizétion

5. the distribution of energy‘as a function of 0 is relatively inde-

pendént of the polarization of the incident wave.

The previous results will be compared with the exact calculations of
Bouwkamp [2,3] for the case of normal incidence. For this comparison we

note the ratio of the transmitted energy density to the incident energy
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Figure 3. Relative Energy Distribution in the Near Field of a Small Circular
' Aperture. Note the symmetry with respect to the aperture normal.
Maximum energy density in the H-plane occurs at the aperture plane.



density along the three coordinate axes. Bouwkamb's exact expression

for this ratio is

( .
[arccotj?z- - (1 - 150]2 r along e“
2 7 0 7
'r‘...
=tr - R
ﬁgnc = _i?-< [arccot}rz- - -il——'(] + %EJJZ r along ?L (16)
exact r-1 :
-~ .2 ~
[arccot ¥ - -JEEJ r along e
for ~ T
a<r<<a
where
r = r/a.

Upon expanding the above expression in powers of ;‘] we find
11 + 3?'2/5+'0(F'4)] r along €H
401 + GF'Z/S s0(FH1 v along %L (17)

11 - 1277275 + 0(+ %7 r along 8,

However, the first term of (17) corresponds to the approximate solution
given in (15) which is based upon polarizabilities and identical to

Bethe's result [1]. Explicitly, we find from (15),

1 r along &
wer 8 ,a\6 I
—— = (<) 4 r along e (18
ainc g2 T il )
1 r along én

Thus, for r << X, we expect the approximate solution outlined previously
to hold for distances such that r > a. A comparison of the exact and

approximate transmitted energy densities from equations (16) and (18)
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Figure 4. Ratio of Transmitted Energy Density to Incident Energy Density in
' the Near Field Along the Coordinate Axes. The exact expression is

due to Bouwkamp and the approximate expression is the dipole
approximation.
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is shown in figure 4 as a function of normalized distance. It is
clear from this figure that in the near field, the approximate solution
based upon po]arizabi]ities is adequate for observations at distances
greater than or equal to the aperture diameter. The maximum error in
the approximate expression for the energy density is less than 3% for
r/a > 2 with r taken along the éllor éL axes. Similar results hold for
the calculation of individual field components.

The previous comparisons between exact and approximate values for
the fields andbenergy transmitted through a small circular aperture
were performed for the case of normal incidence. We assert that the
results based upon polarizabilities can also be used for arbitrary polar-
izations and angles of incidence. This provides us with a means for cal-
culating the near-field coupling among several small apertures regardless
of the incident field orientation. Before carrying out the coupling cal-
culations, several other computations will be made.

It is well known that the solution of Bethe is exact in the far-
field (i.e., r >> A). Hence, we can use the previously developed equa-

tions (4-11) to find the distribution of transmitted energy.
/

=tr 4.6 coszs[l -sinze sin2¢] 1_po1arization
=1inc 2.2
W mr 2 . .2, 2 .1 .2
[cos“e+sin“e(cos ¢ +g sin a) || polarization
L 4+ sinasing cos ¢]
for r >> A,

The transmitted energy density in this case is due to equal contri-

butions from the electric and magnetic fields. Plots of the relative

12



distribution of the energy density are given in figure5. We note
the following facts concerning the far-field energy distribution:

1. maximum energy transmission occurs in a direction opposite to that of
the incident wave vector for parallel polarization (this is simi-
lar to the large backscatter energy which occurs in scattering
from an electrically small metallic sphére)

2. regardless of the angle of incidence, maximum energy transmission
occurs in the direction normal to the aperturé for perpendicular

polarization (this is the usual dipole radiation which is similar to

the scattering of energy from an electrically small dielectric sphere);

3. in all cases the far-field energy distribution is significantly

different from the near-field distribution.

The transmission coefficient T is defined as the ratio of the total
far-field power transmitted through the aperture divided by the total power

normally incident upon the aperture. This can be written as

l gy utre . 8 dA
RHS

(20)

= lim :
r - o I gine Ejnc*. 8 dA

n
. Ap

where the integration is taken over the right-half-sphere in the numera-

tor and over the aperture in the denominator. The result is

PRY. cos B | polarization

_ 64 (ka

T 1+ g sinta (21)
" oS o || polarization

which agrees with well-known results for the circular aperture [1-3,10,11].

13
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Figure 5. Relative Energy Distribution in the Far Field of a Small Circular
Aperture. Note the maxima which occur in a direction opposite
to that of the wave vector for grazing incidence.
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SECTION III
NONCIRCULAR -APERTURES

Noncircular apertures present additional computational dif-
ficulties for two reasons. First, the geometry prevents easy
calculation of the magnetic and electric susceptibilities in most
cases. Often numerical solutions are required. Second, the
magnetic susceptibility becomes anisotropic. In this case the
magnetic dipole moment is related to the magnetic field through
a 2 by 2 matrix. As a result, magnetic dipoles appear along
both the éll and él_axes while the electric dipole appears along
the € axis as before.

In this section we first examine transmission through elliptical
and rectangular apertures since many aperture geometries can be
approximated by these shapes. We also make several comments and
approximations regarding other aperture shapes. Our goal is to
find simple expressions for the dipole moments or the transmission
coefficient without resorting to the solution of complicated
boundary-value problems.

The geometry for the problems considered is shown in figure
6. The tfiad of vectors Ejns/Einc’ ﬂjns/Hinc and k/k are given
by various rotations of the unit vector triad éll’ ?L and én.
Consider a positive rotation about én by the angle x which is
followed by a negative rotation about éi.(éil) by a (B) for
parallel (perpendicular) polarization. These operations produce

the following relations.

15



A
% r
\ 8
\ ) N
%en

1 Polarization

Figure 6. Geometry of Incident Fields and Noncircular Aperture for Parallel
and Perpendicular Incidence.

16



k -sin B sin x éll + sin B cos x él; + cos B &
k -sin o cos ¥ éll - sin a sin ¥ él. + cos a En
inc cos x 8| +sinye
e [eos xE) Xe
g'n¢ COs o COS X éll + cos a sin ¥ él. +sin o €,
H_1nc -cos B sin ¥ éll + cos B cos ¥ él_+ sin B e,
pine -sin ¥ éll + €0S X ?l

| polarization

|| polarization

(22)
] polarization

|| polarization
(23)

| polarization

|| polarization

(24)

For x = 0, the above incident fields are just those considered in

the previous section (see figure 2). The projection of the magnetic

field in the plane of the aperture is along the minor axis (see figures

6-7). For x = m/2, the projection of the magnetic field in

the plane of the aperture is along the major axis (see figures 6-7).

We define the electric and magnetic dipole moments as
- inc ' |
Pe = &y O (E7. én) én (25)

LIRS RUR e+ al1-2) i e)le (20

Bm(Z) ="U0 [am(Z) (.liinc . é_l_) + am(Z,]) (_H_inc . é“)] éJ_ (27)

17
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Figure 7. Geometry of the Aperture Plane for Elliptical and Rectangular Apertures.
The eccentricities e are defined such that for e=0 the ellipse
becomes a circle and the rectangle becomes a square.
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where o, is the electric polarizability and “m(])’ am(Z),

am(]’z) and um(Z,]) are the magnetic polarizabilities. The
polarizabilities are dependent only upon geometric factors and

are simply related to the susceptibilities introduced in the previous
section. If lines of symmetry exist in the aperture, then

am(],Z) = am(z’]) = 0 [12]. This will be the only case considered

for the remainder of this section. Comparing equations (25-27)

with(4-5) we find immediately that

3

(2 circte = %—a (28)
(Om(])) circle = l%'aB (29)
(am(Z))circ1e - lg.a3 (30)

A similar result for elliptical apertures with semiaxes a

and b is well known [12,14] (see figqure 7).

(o) 11inse = 3 EEE_ e
elellipse 3 (.2
] 4 12,2
(“m( )) ellipse -%'(1-62)EK(22) - E(ed)] (32)
22
( (2)) . _ M ab~e 33
®n ellipse 3 1.2y _ (1-¢%) K(e?)] )
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where

e = /4 - bz/a2 = eccentricity

w2 de’
<K(e2) = f = complete elliptic integral of the
0 h_e? sinzﬁj first kind
/2
2\ _ 2 .. 2.0 P . e .
E(e”) = 1 -esin"8" dp =complete elliptic integral of
0 the second kind

For future calculations we also write the expressions for the

perimeter P and the area A (see figure 7).

(A)ellipse E(ez)

(P) = 4a E(e?) = 4 L L
-e

ellipse

(34)

(A) mab (35)

e]]ipse=
The polarizabilities for the rectangular aperture are found
by a numerical method [12]. The expressions for the perimeter and

area are noted as

| , -1/4 , 174
(P)rectang]e = 2(+d) = 2 J(A)rectang1e [(1-e")  + (1-€%) ]
(36)
(A)rectangle= 2d (37)
where

e =J/1- d2/£2 = eccentricity

for a rectangle of width d and length 2.
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The normalized polarizabilities are plotted in figures 8
and 9 for elliptical and rectangular apertures of various
eccentricities. We observe that for small eccentricities the
polarizabilities are equal to the square of the area tfmes a
slowly varying function of eccentricity divided by the perimeter
(i.e. o = F(e) A2/P where F(e) is a slowly varying function of
e). Thus, for small eccentricities, the polarizabilities are
mainly dependent upon the ratio of the square of the area to the
perimeter. This fact may indicate that simplified approximations
to the polarizabilities can be made from simple geometric
considerations.

Papas has asserted that the transmission coefficient t for
normal incidence and for apertures of any shape is bounded by
simple expressions involving the area and perimeter of the
aperture [7]. The simple expressions are found by substituting
inner and outer radii, rin and Yout? for the radius of a circle
into the equation for t given by (20-21). These radii are given

by the expressions

", A
in 0 (38)
P
out = 7w
Application of the above equations to the values for the

polarizabilities of a circle produce the following inequalities.

21
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Figure 8. Normalized Electric Polarizability as a Function of Eccentricity.
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3/2

% (%-) < g i% (%,—) | (39)
3/2 3

16 ,A 16 ,P

=5 @) o3 G (40)

However, a comparison of these inequalities with figures 8 and 9 or the

expressions (31)-(33) show inconsistencies. For example, by applying

(40) we find

<

3/2 3/2 9 4 -
8 (A (o)) 8 A (1+=xe’)
3@ < eanipse <3 7) o4 (4n)

for e << 1

The actual value for the electric polarizability is given by

o]

3/2
(A

(ae)e1lipse "3 O-ge) (42)

for e << 1 .
Therefore, the bounds in (39) are incorrect. In a similar manner, an

examination of (40) shows discrepancies in the values for the magnetic

polarizabilities since the bounds are given by

lg' (%)3/2i(°‘m)empseil% (%)3/2 (1+ 3% e*) (43)
for e << 1
whereas the actual values are
(a,,,‘”)empse YU TR P
() 1450 = 3 B0 2 g o
for e << 1
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Since these»bounds are based on scalar calculations rather than vector
calculations, it is not surprising that the calculation may fail when
polarization is important (i.e., for calculations of am(]) and am(z).
However, for incoherent or randomly polarized incident fields the arith-
metic of the magnetic polarizabilities (i.e., one-half of the trace of the

2x2 matrix) should be the important quantity. This quantity is invariant

under axis rotations and is given by the definition

a, , (@
o= m (45)

For the ellipse

_ 36 (A\3/2 3 4
““n’ellipse ~ "?'(E) (1 t3pe ) (46)
for e << 1

which does satisfy the bounds of equatfon (43). A further numerical com-
parison for the elliptical and rectangular aperture shows that the mean
magnetic polarizability satisfies the bounds of (40) for all eccentrici-
ties (see appendix). This is not surprising, since both the cube of the
perimeter and the largest polarizability vary as (1- e2)'3/4 for large
eccentricities. These bounds indicate that for an aperture of given area

the magnetic polarizability is smallest for the circular aperture.

A fix-up may also be found for the electric polarizability. Noting
that this quantity varies as A2/P, we can rewrite the expression for the
electric polarizability as 8A2/3v2a for a circular aperture of radius a.
Replacing the radius by the outer and inner radii respectively, we calcu-
late the upper and lower bounds for an aperture of arbitrary shape

2 3/2 _
SRS LN ()



For the ellipse this becomes

8 ,A\3/2 3 4 8 ,A\3/2
3 ('17 (1 - 77 e ) < (ae)eﬂipse <73 (F) (48)

for e << 1

which is satisfied by (42). The bounds indicate that for an aperture of
given area, the circular aperture has the largest electric polarizability.
We note that the bounds are sufficient for e11iptica1'and rhombical aper-
tures but that the lower bound breaks down for rectanqular apertures of
large eccentricity (see appendix and Ref. [12]). For lonc narrow rectangular
slits the lower bound overest%mates the electric polarizability by approxi-
mately 8%.
The following list summarizes the findings concerning polarizabili-

ties:

1. We assert that the following bounds hold for convex apertures with

small eccentricities

2 3/2
%%'é" 2% 2 %(%9 /
(49)
3
SN ORCPRMEPS N

2. The lower bound given by (49) approximates the electric polariza-
bility for small eccentricities, but may slightly overestimate
this quantity for large eccentricities;

3. The upper bound given by (49) approximates the larger magnetic
polarizability but underestimates this value;

4, The circular aperture will produce the sma]]est maximum trans-
mitted field of any convex aperture of a given area, since the

ratio of perimeter to area is the smallest for this shape [7].
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Additional tables of polarizabilities and related quantities are given
in the appendix.

To show explicitly the usefulness of the previous results, it is
necessary to find the transmitted fields that are due to the dipole

sources p., Em(]) and Em(z)- From Papas [9] we write

tr _ 1 -2ik , 2
E. = ¢ P €Os © (""Tr'+ ~5)G (50)
0 r
Egr = - %g P, sin @ (lé-- %2-+ K2)6 + iw(pm(]) sing - pm(z) cos ¢)
. 1
- (ik - 26 (51)
E:‘” = iw(pm“_)cos o+ pm(z)sin ¢) cos 8(ik ']?)G (52)
tr _ 1 (1) (2)_; . -2ik 2
He = ﬁ; (pm cos ¢+ p,° 'sin ¢) sin 6( =+ ;EJG (53)
. ik 1 2
ng = %;,(pm(])cos b+ pm(2)51n $) cos 6(1;-~ ;7 + k°)G (54)
Hir = iwpeSin o(ik - %QG‘- %— (pm(])sin¢ - pm(z)tos )

(o

.k ]:2-+k2)G (55)
where G = eikr/4nr, and where the time dependent e"i“’t has again been
suppressed.  The distribution of energy for the above expressions is
given by the ratio of the transmitted energy density to the incident

energy density. This expression in the far field is
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Wtr‘ 4 . s
s " "1L7? [azsinza sinze + 2o sinasin 0

16 0
" . "(ogm(”sin xsin ¢+ ozt(nz)cos X cos ¢)](])

2 2
+ {dm(]) sinzx (- cosz¢ sinze) + am(z) cosZX(1 -sin2¢ sinze)

2
cos B
+ 2%(1)am(2)sinx cos X sin ¢ cos ¢ Sinzfﬂ( 1 ) (56)

for (%{) polarization and ro>> .

For the cases where the projection of the magnetic field on the plane of
the screen is along the major (X = 7/2) or minor (X = 0) axis of the aper-

ture, we have the following simplifications:

tr 4 0
¥ = k {(a? sinzu sin26-+2a o, (1)sin<xsin $sin 9) ( )

inc e em

W ) 167r _ _ 2

.o (P o . 2. [cosE
o (1 - cos“¢ sin"6) : (57)
for X = 1/2 ,
wtr A

0
5 {(ai sinza sin26-+2aeam(2)sin<xcos¢ sin @ (1 )

2
2 cos B
+ o (2) (1 - sin2¢ sinze) ( )] (58)
1

for X = 0 and (%r) polarization.

w"C  16mr

The last expression is identical to equation (19) which was found before
for the circular aperture. Several plots of the transmitted energy

through an elliptical aperture are shown in figures 10 and 11 for normal
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Figure 10. Relative Energy Distribution in the Far Field for a Small Elliptical -

Aperture of Eccentricity e = 0.9. The incident wave is normally
incident.

29



and grazing (parallel polarization) incidence. Three incident field
orientations are considered in each of these figures. The eccentricity
inc

is 0.9. Here the E-plane is defined by E'"~ and & (or E'" and k for

grazing incidence), and the H-plane is defined by ﬂjnc and En. As ex-
pected, the transmitted energy is increased as the magnetic field becomes
aligned with the major axis of the ellipse. The asymmetries evidenced in
figure 11 are due to the interference between the various dipole moments.
We again note the large backscatter which is particularly evidenced in
figure 11. Here the maximum energy transmission is in a direction oppo-
site to that of the incident wave vector. This phenomenon cannot be ac-
counted for by Kirchhoff diffraction theory, but is typical of problems

involving scattering from electrically small metallic particles.

The transmission coefficient is

2 ;2.0 2., 2 (2)% 2 cos’Y
k4 o sin Y(]) + (am sin® x+o cos X ) (59)
T oA ' . ’

cos Y

for (%]) polarization, where cos y = g;én/k and A = aperture area.

We can place bounds on the maximum transmission by considering the in-

equality given by (49). By taking the maximum value of the square of this
quantity we find

2 2
am(]) or am(z) < 4[1% 0%;) I

of <D 2

This produces an absolute upper bound for the square of the polarizabilities
and hence produces an upper bound for the transmission coefficient. How-
ever, under this approximation, which holds for 'large eccentricies, the

smaller magnetic polarizability is negliglble when compared with the
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larger polarizability. Hence, the use of one-half of the value given by
the upper value of expression (60) is suggested when the transmission co-
efficient iS calculated. This suggestion is further supported if we re-
member that the upper bound of the mean magnetic polarizability also
approximates the largest polarizability. For small eccentricities we use
the polarizabilities which are given for the circular aperture. Thus we

have the following approximation for the maximum transmission coefficient

32
16 (P e > 1
: 2, I =) 1]
y y%sinzy(?),r 2(°05°) 3 \Tn (61)
TApprox = Y2mA _ ] 3/2 2
cos y 16 (A
A7 e
for ([f) polarization.

Plots of the exact expression (59) and the approximation (61) are
given in figure 12 for an elliptical aperture and a variety of incident
field orientations. It is apparent that the approximations give appro-
priate bounds on the maximum transmission (i.e., for X = w/2), but they
may not be very useful for calculations involving intermediate eccentric-
ities. The absolu:e upper bound for the transmission is found by multi-
plying the second term in the upper expression of (61) by the numerical
factor 2.

A more useful approximation is found for the transmission coefficient
of unpolarized waves. Averaging equation (59) over input polarizations
and summing over output po]arizatfons we find that

4 fa "~ sin
_k e
<T> = 48n/\[

2 2
Zy + (am(]) + am(z) Y (1 + coszy)]

cos Y (62)

By using the same approiimétions as in (61) we find

32



“L1 -0L seunbLy uL ¢ ‘g ‘L s43qunu dy3
031 puodsauuod 2/u ¢ /L ¢ Q = X sanjeAa 8yl °"SpL3td Juspidou]
PSZL4R|0d 40} dunisady (eo13dL {3 ue O JUILDL$JD0) uOLSSLWSUBA] *ZL a4nbL4

aousplou] buizoig

0=X

¥
As00 (1)

“"(z_O| X)

33



1 il 2 8T 1
<> K4 7 sin"y + 2 (1 + cos“y))f3'2r e
Approx = 15 ~ :
481A cos y 16, A 3/2 2 e << ]
- sy BS)™

(63)

The plots of equations (62) and (63) are given in figure 13 for an ellip-
tical aperture. Note that maximum transmission occurs for normal incidence
and that the approximation is accurate to within a few percent of the exact
expression. The approximation is very good in this case because the
polarization effects are averaged out and the vector nature of the problem
becomes less important. An absolute upper-bound for the transmission
is given when the second term of the upper expression in (63) is multi-
plied by the numerical factor 2, However, this absolute bourd is not
very useful for calculations since it is significantly larger than the
actual value. We assert that the approximation given by (62) is good
for other shapes as well. For example, in figure 14 we show how eccen-
tricities can be defined for the isosceles triangle and the rhombus.
The relations between the area, perimeter and eccentricity for these
figures are given in the appendix. Plots of the maximum transmission
(i.e., for normal incidence) as a function of eccentricity are shown in
figure 15 for unpolarized waves; The values are derived from equation
(63). Note the sharp increase in energy transmission for 2 > 0.7,

We assert that for any given area and eccentricity, the ordering
of shapes as a function of increasing transmission is as follows:
ellipse, rectangle, rhombus and isosceles triangle. This ordering is
identical to the ordering of the ratios of perimeter to area for each
shape. This assertion on ordering is supported by the expefimenta]

polarizability measurements of Cohn [15,16].
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In this section we have examined several types of convex non-
circular apertures, of which the elliptical aperture is Fhe archetype.
Expressions and plots of the energy distribution are aiven. The use of
equivalent radii provide upper and lower bounds on the maximum polariza-
bilities and transmission coefficients and provide approximate values
for these quantities. Further work must be done to find more accurate
bounds and approximations for polarized waves. However, very accurate
approximations are found for the unpolarized case. Based on these
approximations, we assert that the ordering of differently shaped aper-
tures of equa1 area as a function of increasing transmission can be made
by simply ordering the perimeters. Tables of values corresponding to

some of the figure values are given in the appendix.
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SECTION IV
COUPLING BETWEEMN TWO APERTURES

Two apertures which are in close electrical proximity will interact

through the coupling of electromagnetic fields. For example, the scattered
field of the first aperture will impinge upon the second aperture. There-

fore, the secondAaperture will be excited by the vectorial sum of both the

scattered field of the first aperture and the incident field. Similar

coupling occurs in the theory of artificial dielectrics [8,14].

The geometry for the two apertures under consideration is shown in
figure 16. The notation for the incident fields is identical to that of
the previous section (equations [22-24]). The 1ine connecting the
two apertures‘makes an angle Y with respect to élland the apertures are
separated by a distance d. The important coupling fields will be the
near fields. A1l other fields will be a factor kd smaller, and we assume
initially that kd<<1. It can be shown that at distances where the inter-
mediate and far fields become comparable to the near field, the coupling
becomes negligible. Thus, we will use the near-field or static approxi-

mation for coupling calculations.

The calculation starts by including interaction fields _ﬁnt and

i

H'"t in addition to the incident fields E

¢ and H}nc in the calculation

for the dipo]é moments.

Pe = eoae[(g]"°+ E}nt/Z) . (64)

Pé1) i} _uo[a(l)(ﬂjnc+ L{.in‘clz) ] 8||+ a&l’Z)(ﬂﬁnc+_ﬂi"t/2)- gl]g”

m
(65)
péz) - _uo[uéz)(ﬂjnc+ E_int/a). ?L + aéz,])(ﬂjnc+ ﬂﬁnt/Z)‘ gn]gl
(66)

39



1 Polarization

Figure 16. Geometry of Incident Fields and Two Noncircular Apertures for
Parallel and Perpendicular Polarization.
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The interaction fields are simply the scattered fields of the other
aperture. (The factor of 1/2 appears in the interaction field terms

since the polarizébi]ities are defined for this report in terms of one-
half the total field at the aperture.) In the static approximation we find
the dominant interaction fields in the aperture plane on the illuminated

side. These fields are opposite in sign to the fields on the shadow side.
We calculate

Eint - Pe (67)
n Zﬂeod

pé]])(3 coszw- 1) + p&z) 3 sinycos ¥

int 68
Hnn a-s . (68)
. 2nu°d

(2)(3 sin? (1) 3 g

. v-1) +p 3 siny cos ¥

Hlﬁt=_pm . m (69)

Zwuod

(where magnatic [electric] interaction fields have been ignored due to

electric [magnetic] dipole moments). By substituting equations (67-69)
into (64-66) we can find equivalent polarizabilities &e’ &é]) and &éz)
which relate the dipole moments_direct]y to the incident fields. By as-
suming that the total interaction is small (i.e., d > 1.5L where L is a
typical aperture dimension) and keeping only the first power of polariza-

bi]ity/(separation)3 we find after some algebraic manipulation

Pe * €oae[§jnc ) éﬁ] é\rl o
e R R U RN Y
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~P§2) i} -u [a(Z)(HlnC éL) + &éz,])(ﬂfnc. élp] %L (72)
where
-~ a _1
5y = o[l - Z;:?] (73)

a,f,‘> - a(l)[1 (”(3 cos®y - 1) + 0‘(1 2)3 sin g cos v }'1

41rd3

2, 1)[ ( »2) (3 sin%y - 1)+ a‘g”3 sinycos )
°m 4'rrd3 J
=(2) a(2)[1 - °‘n(12)(3 sinfy - 1) + (aé‘Z,])?’ sin vcos wf'
" " 4Wd3
(1,2) (2 1 (3 cos?y - 1) aé‘z)?' sin ycos ¥
* o [ 3 J (75)
4md

-1

~(1,2) _ (1,2)[1 - (1 i siny cos § + 0‘(])(3 cos?y-1)
n 4'nd3 }

. a&l‘z) (2)(3 sin w 1)4-a(]) ( )3 siny cosy
3
~(2,1) _ (2,1) [1 213 siny cos y + a2 (3siny - 1)1
% = % T 3 ]
4nd
. altr1) {13 coszxp-;)+a§|2) all)3 siny cos v
4nd (77)

The values for symmetric apertures take on a particularly simple form,

~ [ ae ]_] .
% = Gll - 78
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(1), 2 -1
(1) _ (])[ o (3 cos“y - 1)] 79
“n *m ] 41rd3 (79)
(2) , 2 -1
~(2 2 a7/ (3 sin“y -~ 1)
aé - aé ! [] " 4md> (80)
(1) (2) .
-(1,2) i an oo 3 sinycos Y (81)
“m 41rd3
&ISIZ,'I) - &rg'l,Z) (82)

for a(]'z) = a(z’]) = 0.

™ m We note that for symmetric apertures the elec-

tric dipole moment is always increased by the presence of a second aper-
ture. However, the magnetic dipole moments may be either increased or
decreased depending upon thé relative orientation of the two apertures.
Therefore, the tqta] dipole moments or the energy transmission per aper-
ture can be either increased or decreased due to the coupling or interac-

tion of a second aperture. The dominant polarizability &él) (&éz))

takes on a maximum (minimum) value at y = O,m and a minimum (maximum) value

at y = n/2. At y = +54.7° and 180° £54.7°, all) ué]). At p = £90° + 54.7°,
&m(2)= aéz). The cross polarizabilities &é]'z) and &$2’1) take on positive
values for y in the first and third quadrants and negative values for y in

the second and foﬁrth quadrants. The change in polarizability due to cou-
pling is small for circular apertures. For example, in the case d/a = 3,
find G, = 1.008 agy 541 = 1.032 al1) and §(2) = 984 of?) when y = 0. Thus,
the correction due to interaction of the circular apertures is, at most, on
the order of a few percent unless d/a-2. This supports our initial assumption
that only the near-field terms are needed in the coupling calculation. We

note that the coupling may become considerably larger than this for

particular orientations of two noncircular apertures.
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An alternative way to think about the coupling is to consider the

induced dipole moments. We can write the total dipole moment p for the

shadow side of the screen as

p = “EP + E-1nd (83)
where E? is the original dipole moment for the illuminated side of the
ind

screen and p is the induced dipcle moment for the shadow side of the

d

screen (See figure 1). Note that Eﬁ" is caused by E?- The symbol p

refers to Pe> 9;1) or Eéz). Figure 17 shows the various dipole moments
that can be ipduced in the aperture plane. It is apparent that the
largest induced magnetic dipole moment, and hence the largect interaction,
occurs when the line connecting the two apertures is along the incident
magnetic field. In this case the induced magnetic dipole moment is
parallel to the originé] magnetic dipole moment "By The induced and orig-
inal magnetic moments are antiparallel when the incident magnetic field
is perpendicular to the line connecting the two apertures, but the inter-
action is smaller than in the previous case. We have again ignored the
unimportant magnetic (electric) dipole moments which are due to the elec-

tric (magnetic)interaction field.

No fundamentally new phenomena are introduced with regard to energy
distribution or transmission coefficient over that found for noncircular
apertures. That is, the results of the previous section can be used

directly (for each aperture) by the following formal substitution
O sin x - &é]) sin x - &él’z) cos X
(84)

2 ~(2 ~(2,1
(2) (2) 05$, )

O © COS X > o €OS X - sin yx
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This brings about still another equivalent method of viewing aperture
coupling. For circular apertures and ¢ = 0 or m/2, it is known that
&;1’2) = 5@2’1) = 0, Thus, for this case the coupling only changes the
values of &é1), &;2) and &e away from the uncoupled values a;]), aéz)
and O+ This is identical to changing the eccentricity away from zero.
Interestingly, for v = 0 (i.e., apertures along élp, the counled circu-
lar apertures are equivalent to uncoupled elliptical apertures with

their major axis along élr For ¢ = m/2 (i.e., apertures along éi) the
coupled circular apertures are equivalent to uncoupled elliptical aper-
tures with their major axis along 8]_' A sketch is shown in figure 18,
The equivalent eccentricity depends upon the orientation of the incident
field and further calculations will not be given here. However, we note
that in general we can think of coupling as increasing the eccentricity
and/or asymmetry of the aperture in such a way that relative elongation
appears along a line parallel to that joining the apertures.

Before considering the case of more than two apertures, we should
state exp]icit1ykthe approximations that were used to derive the coupling
formulas. First, we assumed that the near fields of the aperture were
just the near fields of the dipole. This point was taken up earlier in
the second section where it waé shown that for the circular aperture the
dipole fields closely approximated the exact field for r = d > 2a (see
figure 4). However, the average field over the aperture is considerably
larger than the dipole field as d - 2a. Thus the coupling is somewhat
underestimated for 2a < d < 3a. However, for d > 3a the dipole field is
adequate. We assume that for noncircular apertures the dipole approxi-

mation holds for d > 1.5L, where L is a typical aperture dimension. To

get more exact values for small d, one could use a local radius of curvature
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of the aperture edge as a value for the radius a, and use that result
in the exact expression for the fields of a circular aperture (see refs,
[2,3] or equation (16) or figure 4).

In the second approximation we neglected the intermediate and far
fields in calculating the interaction fields. This is almost always jus-
tified because the coupling is usually small even for closely spaced
apertures. If phase effects are important, however, the static
approximation given in (67-69) can be replaced by the exact expressions
given by (50-55). In thic case the polarizabilities would become complex.

The third approximation involved elimination of higher order terms
in po]arizabi]ity/(distance)3. This assumes that the interaction is small.
Since this is almost always true, it is not necessary to give the exact
expressions for the polarizabilities. However, the calculation is
straightforward and can be found directly from equations (64-72).

In the fourth approximation we assumed that the interaction field
was constant over the aperture. As is true for most of the other approxi-
mations, this approximation only breaks down for d < 1.5L. The correction
for nonuniform fields has been given by Eggimann for the special case of
circular apertures [17].

In this section we have given simple expressions for the coupling
between two apertures of arbitrary shape. This coupling can be thought
of as due to equivalent polarizabilities, induced dipoles, or changes in
symmetry and eccentricity. In general the coupling produces crossed mag-

netic polarizabilities and either increases or decreases the dominant

magnetic polarizabilities and increases the electric polarizabilities.
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Thus the transmission coefficient for each aperture may be either in-
creased or decreased. This change is typically 10% for circular aper-
tures spaced approximately 3 radii apart. When the incident magnetic
field is parallel to the line connecting the apertures, the transmission
per aperture is increased. When the incident magnetic field is perpen-
dicular to the 1line connecting the apertures the transmission is decreased.
The simple results given in this section are valid for 1.5L< d< 0.5%

but may be fixed up to account for other separation distances. Further
work needs to be done to find exact solutions for coupling between closely

spaced elongated apertures.
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SECTION V
TRANSMISSION THROUGH MANY SMALL APERTURES

The results of the previous section can be generalized to include
the case of transmission through and coupling among many small apertures.
The configuration that we will consider is shown in figure 19. A row
of N apertures of arbitrary shape are spaced a distance d aparc and are
oriented along the array line which makes an angle ¥ with respect to the
€||axis. In this section, two effects need to be calculated. First,
there are interactions or coupling among all the apertures. The expres-
sions found previously for the polarizabilities and induced dipole moments
will be slightly modified. Second, the radiation pattern of the array of
apertures will have to be found. In the previous section, with only two
apertures and kd << 1, the far-field energy distribution was similar to
that of a single aperture. However, if Nkd > 1, then phase effects along
the array will become important and the distribution pattern of one aper-
ture needs to be multiplied by an appropriate array factor AF which
accounts for the N apertures. We now consider each of these problems in
detail.

The most significant coupling effect upon any given aperture is due
to the adjacent apertures. Since the interaction fields (67-69) are the
same for vy = y' and Y = ' + m, the effect of adjacent apertures is to
double the coupling or the induced dipole moments. Other non-adjacent
apertures will have less effect. To include all of these additional

couplings we can make the substitution for the qth aperture
e+ Cq/d3

in the formulas for the polarizabilities (73-81). Cq is now the effective
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Figure 19. Geometry of a Row of N Apertures Spaced a Distance d Apart.
The aperture array line makes an angle ¢ with gli and an angle
 with r.
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coupling coefficient of the qth aperture which accounts for the cou-

plings due to all other apertures. Thus, find

=p (o )
Eeq Pe e
(1) _ () (1) {122y (85)
qu P m, |
@) _ (R 20,
g T Umg g
"W here c
o, =a,ll- ——qft%]'1 (86)
q 4nd , (1,2)
B ) %2’[3(:‘1’2 "’) M+ 21 3 smwcosw
7 1-¢ |
amq m q 41rd3
Gr @ sindy )
¥ anm %n ’ [3(c032w)‘ 1] + ozmz 3 siny cosﬂ'] (87)
1.3 4ﬂd3 ] ) j
’ (5°7) () [cosTy -1
G @b [ [t 3 sinveosyr gy ” (3(S,.nzw)-1)
0‘mq " q 41Td3

( ) ) 2
. e O‘m 0‘",1 z;g $ -1+ Ot(])ot\.(nz)3 sin ycos ¥
q 41rd3

(88)

Using the methods and approximations of the previous section we can eval-

uate the effective coupling coefficient,

q-1

Cq=n

N-q 1

He~11

5 + (89)
n

nes1

1 n=1 n
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The upper bound for Cq (g # 1,N) is

c = 26(3) = 2.4081 ., ., (90)
qmax

where z(n) is the Riemann zeta function. The lower bound for Cq (g # 1,N)

is

c T 2 - (91)
Imin N>2

The bounds for C] = CN are one-half the values given by (90-91). Thus we

can write

22 Cy 228081 . (q # 1,N) (92)

1 5_Cq < 1,2021 - « - (g = 1,N) (93)

For N = 5, the upper bounds of (92-93) produce values that are approxi-
mately 6% too large. The upper bound becomes more accurate for N > 5,

Thus, for a large number of apertures, we can use the approximation
C =C=2.4 (g=1,2,+-:N) (94)

with 1ittle error. For circular apertures spaced a distance d = 3a apart

2)

we find & = 1.020 a, aé‘) ~ 1.078 aé]) and aé = .961 uéz) when ¥ = 0.

For ¥ = m/2 we find & = 1.020 o, &1 = .961 af1) and &{2) = 1.078 o(?).
This implies that the change in transmitted energy due to the coupling
will be~10% for apertures with zero eccentricity which are spaced

d > 1.5L apart. As before, we note that for very closely spaced aper-
tures or apertures of large eccentricity, the change in transmitted energy

could be considerably larger than 10%.
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The problem of radiation from many apertures is now reduced to the
well-known problem of radiation from many dipole moments. The dipole
moments in the field expressions (50-55) should be replaced by the fol-

lowing expression for N even:

N§2 i[k(2g9-1)d cos Q]/2
+ e
P o1 Bq

-i[k(2g-1)d cos Q] /2
+ Eq e (95)

where cos @ = sin6cos ¢ (see figure 19) and where Eq may be either

I Eél) or Réz). A similar expression can be written for N odd. The

q q q
problem is now solved. However, a useful approximation occurs for the

case of large N. For the case of many apertures, we can replace Cq by

C ~ 2.4 and sum the series given in (95). Thus we have

By large B AF (96)

sin(NQ/2
AF = —--7?lsm S (97)

and again p may be Pgs 241) or géz). AF is the array factor which adapts

where

the results of radiation from a single aperture to the case of radiation
from many apertures. Many examples of the use of the array factor are
given in the references [8,9,11,14]. We note here that the fields given
previously (50-55) should be multiplied by AF to go from the result N =1
to N large. Similarly the far-field energy distribution given in (56) and
shown in figures 10-11 should be multiplied by |AF[2 for N large.
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In this section we show the changes that are needed to convert
the single-aperture expressions into the expressions for many coupled
apertures. The coupling is calculated in the static approximation as
before. The phase effects along the aperture array are taken into ac-
count in an exact manner. A simple result for the fields and energy
distribution is found under the approximation that the coupling between
each aperture is identical. The total change in transmitted energy due
to coupling among apertures is on the order of 10% or less if the apertures
are spaced at least three radii apart. When the magnetic field is
parallel to the line of the array the transmitted energy is decreased.
The transmitted energy is increased when the magnetic field is perpen-

dicular to the Tine of the array.
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SECTION VI
AN APPLICATINN

The previous sections contain calculations and expressions
for the general case of arbitrary incidence. In shielding problems
it is often of interest to have simple expressions which describe
the aperture under the conditions of maximum transmission. For the
case of polarized waves maximum transmission occurs for grazing
incidence when the magnetic field is aligned with the major axis of the
aperture. For aperture arrays, maximum transmission occurs for grazing
incidence with the magnetic field aligned with the array axis (for aper-
tures with small eccentricity) or with the magnetic field along the major
axis of the aperture (for apertures with large eccentricity). For
unpolarized waves, maximum transmission occuré for normal incidence.
The simplified formulas for maximum transmission will be denoted by
the subscript "max" and will be given in the first portion of this
section. The second part will contain a numerical examole.

For grazing incidence with the magnetic field along the maor axis

of the aperture (i.e., o (1) > o (2), x =7/2, o = 7w/2, B = 0) we find

m m
the far-field energy distribution from equation (56) as

" tr 4
<‘41nc> - 2 [ag sin’ + eueam(])Sin 4 sin €
W max 16mr
2
+ am(]) (1 - cos%s sinze)] (98)

The transmission coefficient becomes
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s 2 ()2

k4 [ e * O ] ’
Tmax ~ T127A cos ¥y (99)

from (59). The maximum transmission coefficient for unpolarized waves

occurs for normal incidence (i.e., a = 8 =y = 0) and is given by (62)

4 2 2
k 1 2
“Phax ~ 24mA [am( " “m( ) ] (100)

Upper bounds for the transmission coefficients can be given explicitly

by combining (60) with (99) and (100), We find

6 .
68(P/))
T (101)
max. = 27ﬁ3COS y(A/xz)
) ‘
< > < .6_4.0.).[-&-— (]02)

max - 27n3(A/A2)

for the cases of po]arized and unpolarized waves, respectively. For
completeness, we repeat the coupling formulas for apertures with lines

of symmetry as given in (86)-(88).

-1
o
8, = o [1 - Cq 3;3'3'] (103)
, (Va3 coc?y - 1
- (.I) B (-l) Q (3 coS w - ])
. o 1- ¢, :n — ] (104)
(2),. .2 -1
(2 5 o (3 sin“y - 1)
R L — l (105)
N (1) (2)3 sin Y cos P
5 (1:2) Cq% % — -5 (&0 (106)
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Consider now the following numerical example. We want to calculate
the equivalent polarizabilities and maximum transmission coefficient for
a polarized wave which is incident upon an infinite array of rectangular
apertures spaced 50.8 cm apart and of size 25.4 cm by 35.6 cm. The array
Tine is parallel to the smaller side of the aperture. This means that the

eccentricity, spacing, area, perimeter and array angle are given by

e = .701 (107)
d = 0.508 m | (108)
A= .0904 m? (109)
P=1.22m (110)
X =m/2 (111)

From figures 8 and 9 or from Latham [12] we find

o, = 1.808A%/P = 1.21 x 1072 (112)
am(1) = 5.503A%/P = 3.69 x 1072 m3 (113)
o () < 3.3358%p = 2,23 x 1072 3 (114)

Upon substitution of (108), (111) and (112)-(114) into (103)-(106) we

calculate
G, =1.22 x 1072 3 (115)
5 (10 <350 x 1072 2 (116)
5 (?) = 2,27 x 1072 3 (117)
5, (102 < g (20) - g (118)
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where we have used the fact Cq = 2.404, Note that the polarizabilities
change at the most by less than 3% due to coupling. The maximum trans-

mission coefficient per aperture is given by a generalization of (99) with

the result . &2 . (-I )2
max 12nA | cos v 2Aeos Y |

under the assumption X >> 0.3 m. The value for T . without the coupling
taken into consideration is approximately 5% larger than the value shown ‘
in (19). The upper bound given by (101) is easily satisfied by (119).
A straightforward calculation indicates that the above value for maximum
transmission can be reduced by ~40% if circuTar apertures (of the
same area) were to replace the reactangular apertures.

In this section the formulas for worst-case shielding calculations
are gathered together. These resu1fs are then apolied to a simple

numerical calculation. The calculation parameters used here model the

windows along the fuselage of the E-4 aircraft.
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SECTION VII
CONCLUSIONS

In this report we have examined energy transmission through one

or more small apertures of arbitrary shape. We list several major

conclusions:

1.

Electric and magnetic dipole moments will be induced in
apertures by normal electric and tangential magnetic inci-
dent fields. .

For circular holes, maximum energy transmission occurs for

parallel polarization and grazing incidence.

The maximum near-field energy distribution occurred at the
aperture plane for all polarizations and angles of incidence.
For noncircular apertures, maximum energy transmission occurs
for grazing incidence when the magnetic field is aligned with
the major axis of the aperture.

The largest amount of far-field energy occurred in a direction
opposite to that of the incident wave vector for grazing inci-
dence.

Inner and outer radii can be defined and used to give lower
and upper bounds for the electric and mean magnetic polariza-
bilities; from these polarizabilities, bounds can be placed

on the transmission coefficient.

Accurate approximations can be given for the transmission of
unpolarized waves through apertures of arbitrary shape; the
ordering of aperture transmission according to shape is iden-
tical to the ordering of the perimeters for a given area.
Simple expressions are found for the coupling between two or
more apertures; the coupling increases the energy transmission
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when the 1ine of apertures is parallel to the incident mag-
netic field and decreases the energy transmission when the

line of apertures is perpendicular to the incident magnetic field.

9, For apertures spaced at distances larger than five times a
typical dimension, the coupling is neg}igib]e (< 1%).

10. For a large number of equally spaced circular apertures, the
coupling changes the total transmitted energy by less than 10%
for aperturevspacings equal to or greater than three aperture
radii; larger changes may be possible for apertures of large

eccentricity and/or for apertures of very close spacing.

Through the first part of this report we have seen that simple geom-
etric considerations can extend the results for the transmitted fields of
circular apertures to the case of transmission through convex apertures
of arbitrary shape. The second part of this report extended the results
of single apertures to many apertures through the use of static coupling
techniques and array theory. Further work needs to be done on the problem
of very closely spaced apertures and on finding more accurate approxima-
tions for the transmission of polarized waves through noncircular apertures.

The problem of apertures in nonplanar electrical walls is also open to

investigation.
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APPENDIX

This appendix contains several tables of parameter values
which were used in the main body of this report. Some of the tables

correspond directly to parameters plotted in the figures.
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Table 2.
VALUE OF PERIM{-:TER/AREA]/2 FOR VARIQUS ECCENTRICITIES AND SHAPES.

1/2
P/A
e ELLIPSE RECTANGLE RHOMBUS TRIANGLE
0 3.544 - 4,000 4,000 4,559
.2 3.545 4,000 4,000 4,559
4 3.550 4,004 4.008 4,566
.6 3.578 4.025 4,050 4.602
7 3.620 4,057 4.113 | 4,659
.8 3.718 4.131 4,258 4.791
.85 3.818 4,207 4.405 4,928
9 4,006 4,350 4.673 5.186
.95 4,453 4,697 5.303 5.811
.99 6.015 6.076 7.605 8.211
= e ey )
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Table 3.

VALUES FOR NORMALIZED (a/AB/Z) POLARIZABILITIES AND INTERMEDIATE
QUANTITIES USED IN CALCULATIONS INVOLVING ELLIPTICAL APERTURES.

o2
e (1-€8)  E(ed) k()  aa? aé])/A3/2 o) /332

0 1.0000 1.567 1.571 4789 9578 .9578
2 .9600  1.555 1.587 4789 .9726 9433
4,800  1.506 1.640 4782 1.023 8978
6 .6400 1.418  1.751 4785 1.138 .8139
7 .5100  1.356 1.86  .4689  1.246 7517
.8 .3600 1.276 1.995 4565 1.443 6694
85 L2775  1.228  2.110 4846 1.612 6139
9 .190 1.172 2.281 4239 1.909 5448
95 L0975  1.103 2,591 3812 2.615 4462
99 .0199  1.029 3.156 2747 6.540 2867
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Table 4.

VALUES FOR NORMALIZED (o P/Az) POLARIZABILITIES OF ELLIPTICAL AND
RECTANGULAR APERTURES. VALUES FOR RECTANGULAR APERTURES ARE TAKEN
FROM THE NUMERICAL WORK OF LATHAM [121 (FIGURES 8 -9).

oP/AZ
ELLIPSE RECTANGLE

2 (1,02 (2),,,2 2 (1), ,,.2 (2), 02
e aeP/A o P/A O P/A aeP/A o P/A o P/A
0 1.698 3.395 3.395 1.82 4.2 4,2
.2 1.698 3.448 3.344 1.82 4.2 4.2
4 1.698 3.632 3.187 1.81 4.4 3.8
6 1.698 4.071 2.912 1.81 4.9 3.6
.7 1.698 4.512 2.722 1.80 5.5 3.3
8 1.698 5.363 2.489 1.80 6.4 3.0
.85  1.698 6.155 2,344 1.78 7.6 2.8
.9 1.698 7.647 2.182 1.76 8.8 2.5
.95  1.698 11.65 1.987 1.74 13, 2.2
.99  1.698 40.42 1.772 1.58 32, 1.9

e e e - e — . |
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Table 6.

APPROXIMATE VALUES OF NORMALIZED TRANSMISSION COEFFICIENT (<t> cos Y/k4A2)
FOR UNPOLARIZED WAVES AND SEVERAL APERTURES OF DIFFERENT SHAPE AND ECCENTRICITY
(FIGURE 15 AND (63)). THE FIELDS ARE NORMALLY INCIDENT UPON THE APERTURE.

<T> €05 Y
k¥ A
e ELLIPSE RECTANGLE RHOMBUS TRIANGLE
0 2.432 x 102 5.023x102 5023 x 1072  11.01 x 107
.z 2,435 5.024 5.026 11.01
4 2.454 5.052 5.084 1.1
6 2.573 5.213 5.409 11.65
.7 2.761 5.466 5,935 12.53
.8 3.242 6.096 7.311 14.84
.85 3.802 6.811 8.954 17.57
.9 5.066 8. 305 9.826 23.85
.95 9.566 13.16 27.26 47.23
.99 58.05 61.71 237.3 375.9
—— —
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