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ABSTRACT

This repert describes the algorithms and numerical results for a
lossless multiconductor transmission-line network which is excited by a
number of lumped voltage and current sources located on the transmission
lines. As opposed to previous analyses of multiconductor transmission
lines, the method described in this report is capable of treating networks
which contain one or more closed transmission-line loops. The formulation
of this analysis involves defining a large matrix equation (the BLT
equation) for currents incident on each of the junctions of the transmission-
line network. Matrix inversion then provides the solution for these
incident currents, with the reflected current component then being
determined from knowledge of the scattering properties of the junctions.
The total junction currents are then found by combining the incident
and reflected components. Te illustrate this approach, a single-wire
network and a more general multiconductor transmission-line network
are considered with numerical results for the voltages at points within
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SECTION I
INTRODUCT ION

The use of transmission-line theory plays an important role in
the analysis of system response to a nuclear electromagnetic pulse (EMP).
Various transmission-line models ave typically employed for EMP intermal
interaction studies so as to calculate how EMP energy is distributed
within the interior regions of the system.

Inputs or source terms for such transmission-line models are
series voltage generators and shunt current generators distributed along
various portions of the transmission lines. Such sources arise from
EMP energy penetrating through slits, holes, or other apertures in the
outer shielding surface of the system, or diffusing through skin panels
and then coupling to the transmission line.

The response of interest is usually a voltage or current at a
particular point on the line, usually at an impedance element which
represents the load impedance of a circuit which might be damaged or
upset by the EMP transient. In many cases, both time harmonic and
transient responses are considered to permit the prediction of EMP
effects on the system.

One of the most straightforward approaches for solving the
internal interaction problem involves modeling a complicated trans-
mission-line network by one or more single-wire transmission lines which
are interconnected in series or parallel, but with no closed loops
being formed. Such single-line models are described in references (1)
and (2). In addition to these, references (3) through (9) discuss
various improvements which can be made to the single-line model by more
accurately accounting for the nonidealized geometry found in the actual
interaction problem.

Another approach for treating the internal interaction problem
is to use multiconductor transmission-line theory. While this increases
the complexity of the calculations involved for a particular problem,
the accuracy to which the computational model approximates the actual

problem is much greater.



The anlaysis of multiconductor transmission lines is well
documented in the literature. One popular approach is to employ a
lumped parameter network (LPN) model for the multiconductor transmission
line and then perform a circuit analysis using a large network analysis
code. Such a procedure is discussed in reference (10). A major
difficulty with such an approach lies in the fact that if a complicated,
electrically long cable harness is to be analyzed, substantial time must
be spent in defining the network to be analyzed, choosing the element values,
and setting up the problem. Moreover, computation time can be substantial.

An alternate approach for treating the multiconductor transmission
line is to solve the set of transmission-line equations directly. The
solution is accomplished by using the modal concept, as discussed in
references (11) through (18). This method involves determining the
various quasi-TEM modes and related propagation constants which can
exist on the multiconductor transmission line. This is achieved by
determining the eigenvalues and eigenvectors of a propagation matrix
which contains the fundamental line parameters. The total solution
for voltage or current on the multiconductor line is then describable
as a linear combination of all possible modes on the line,
| Previous application of multiconductor transmission-line theory
to the internal interaction problem has involved simple branching trans-
mission lines or, at times, a single section of line. To solve the
transmission-line network problem with branching, all branches except
one are represented by a Thévenin or Norton equivalent circuit and the
resulting single-section transmission line is solved to obtain
voltages and currents. This process is repeated until all branches in
the network are all studied. Not only is this method tedious and
time consuming, but it has the weakness of nct being able to treat
transmission-line networks with complicated branching or connections
involving closed loops.

In many practical cases, however, the wiring configuration is
not simple. In general, there may be a variety of closed loops formed
by transmission lines in an actual system, and induced currents on this
transmission-line network can behave quite differently from currents

induced on a simple branching transmission-line network.




The method adopted in this report of analyzing a general lossless
multiconductor transmission-line network is based on the scattering
matrix technique used widely in distributed network analysis (ref. 19).
Thus, at a junction where a number of transmission-line tubes meet, the
reflected currents (or voltages) at the nodes are related by a scattering
matrix to the incident currents (or voltages) at all the nodes at the
same junction. These quantities at the two ends of a branch are also
related by a propagation matrix. With the knowledge of excitation
sources and termination conditions, these two relations are sufficient
to yield the current (and voltage) at éll nodes by means of matrix
inversion. This procedure is similar to the solution of lumped circuit
problems using mesh analysis (ref. 20), and has been discussed recently

in the literature (refs. 21 through 23).

This report is intended to give a concise summary of the
solution procedures for lossless multiconductor transmission-line
networks. The detail description of the basic theory is discussed in
a separate report (ref. 24). Reference (24) also treats the more generél
transmission-line networks that may include losses.

Various definitions and concepts are introduced in Section II.
The overall procedure of solving the transmission-line network problem
is also summarized. In Section IIT, an example of how to apply this

method, as well as some numerical results, are given.



SECTION IIT
BASTIC CONCEPTS AND APPRCACH

In this section, a few definitions and concepts that are
unique to general transmission-line networks are first introduced.
These quantities are useful for the discussions in the later part of
this section and the rest of the report. Detailed descriptions of
these quantities are presented in reference (24). The fundamental
relations needed for the development of the computer code are then

summarized.

1. Graph Representation

In Figure la, a simple multiconductor transmission-line network
is shown. In analogy to the lumped network amalysis, a graph is intro-
duced in Figure 1b to represent the entire network. The basic elements
of the graph are tubes and junctions. A tube is a section of multi-
conductor transmission line with uniform or gradually changing configura-
tions. In this report, we assume that there is one common reference
conductor for the whole network.

A junction is where one or more tubes meet. We denote a
junction by Jj R j=l,2,...,NJ , Where NJ is the total number of
junctions within the entire network. A tube connected between
junctions Jj and J

k i,k

the same tube as Tk 50 assuming there is only one tube between the
b

is denoted by Tj K Thus, T, identifies
b

two junctions.

The network graph representation enables one to visualize the
overall network connections in a simple form and is particularly useful
when the network is extremely complicated and contains a number of
closed loops and crossed comnections. Here, a double line represents a
tube which contains many conductors and is a distributed element,
and a circle represents a junction within which multiple connections
between conductors of the tubes are possible.

Figure 1b does not completely describe the network topology.

Details of intertube connections within a jumction must be described.
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Figure 1. (a) A simple mutliconductor transmission-line
network, and
(b) its associated graph.



A junction subgraph is needed for each junction. Thus, in Figure 2,
junction subgraphs for the four junctions of Figure 1 arc presented.

In the junction subgraph where morc details are shown, each
line represents a conductor in the bundle of multiconductor transmission
lines, and each dot represents a node or connection between individual
wires or impedances. The identification with single (or scalar)
quantities thus makes it a more detailed representation compared with
the network graph of Figure 1b, which is identified with multiple

(or vector) quantities.

2. The Transmission-Line Propagation Matrix

Current and voltage waves on a transmission line can be decomposed
into a forward traveling component and a backward traveling component.
At a junction, these components are also identified as the incident
and reflected components. Let us consider a typical single tube (see
Figure 3) which is spanned between two junctions with voltage and
current sources at z = £ . Here we denote the two components by
(I(re)(z =0,s)) and (Iil)(z 0,s)) at one end (the left end) of the
tube and (I(re)(z—L s)) and (I él)(z—L s)) at the other end (the
right end). The superscrlpts (re) and (3i) denote the reflected and
incident components, respectively, at the junctions. The conditions
z=0 or z =1 define the junctions of interest. The parameter s
is the complex frequency, and L dis the length of the tube.

At the two ends of the tube, the total current is the sum of the

two components at that point, il.e.,
@ (2,9 = AP o) + A7 () &

where z =0 or z =1L.

Tor a tube of multiconductor tramsmission line with Nc
conductors plus a reference, there are NC propagating modes (refs. 3
and 14). 1In relating currents at different positions along the tube, it

is necessary to (i) decompose the total current into modal currents,
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(ii) relate the modal currents at different positions by the modal
propagation matrix, and (iii) convert the modal components so related
back to the total current.

Details of this procedure have been described in references (3)
and (24). Here, we summarize the important results in the following.

For the lossless case, the modal current (fc (s)) 1is defined so that
n

(I (z,8)) =

(o
n

,m)'(lc(s)) (2)
n
where (é7n ) is the similarity transform matrix formed by the
eigenvectors of the matrix ((Cg m)'(Lr'l m)) . The corresponding eigen—
b b
values of Gg n m) are the elements of the diagonal matrix (?c (s))z,

b
which is given by m,m

G, =t D7l a0 (3)

m
n,m
The elements of (?C (s)) are in the form of - s/(mode velocity). The

. . . n.,.m . . .
characteristic impedanice matrix (ZC ) is given by
n,m

= 1 _-]- . v, . —l
@, )= 7 q, =)) IR (4)

The reflected current components at the two ends of the tube are related
to the incident components by

z(re) 5 + (1)

GPm)  fo ) @) faPem)

= 1w ECAIO)!
~(re) ~ ~ (i
@@/ \E, ) o D (I (L,8))
(5)

where (ﬁn m(s)) is the current propagation matrix of the tube and is
b

given by

11



@, ) = (T D@, Gnu-d | DT (6) ®

n,m

o(s R
@9%)(5)) is the source vector of the tube referred to the two ends,

and is given by

2@ D@, N DT
5(s) ’ oo ,
(3 (0=

5, D@, (NL-EN@ | T

,
n,n

1A @) + @, )T E, 9]

n,m
(7
TE Ee) - 2, T E 9
n,m
If the tube is excited by distributed voltage source (V( s)' (z,s8)) '

and distributed current source (I< s)' (z,s)), then

L[5 T e, enand | O
() n,m
(39 o)) = f
0 \3 @ HewF, DI-ED- D7
T ,m
a® e + @, O TRES @ o]
n,m
a
@ @ - @, @A @)

n,m

For the tube with N conductors (plus a reference), (?n m(s))
>

is an NCXNC matrix and QS<S)(S)) is a 2chl vector.

12




At the two ends of the tube the total voltage is given by

@ (2,9 = az, (A7 (z,9) - AP (@9 (8)

n,m

where q=+1 at z =0 and q =-1 at =z =1L.

3. The Junction Scattering Matrix

For a junction J, with NJ tubes connected, the quantities

associated with tube Tj o, are dendted by the subscript Tj k. ®
LR s K.,
i= 1,2,...,NJ' . For exaéple, (In(z,s))T is the current vector
of Tube T. J. J’ki
3ok;

For —distributed circuits, the reflected and incident quantities
at a junction are often related by a scattering matrix (ref. 19).

For junction Jj the current junction scattering matrix (Sn m(s))J
b

is defined so that J
G CHIE I AN
1 J,kl 1 J,kl
A ) AR CHIET N
Lk T, ,k
2 J,k2 5 2 J,kz
(S (S)) .
. J :
AR CTINN G e
n J’IQN T- J,IQN T.
J 3sly J. 3sky
i J. i J.
J
(%)
where zj . i= l,2,...NJ is taken to be the appropriate coordinate
of the tubel Tj K at the 3 junction Jj.
From Equa%ion (9), it is clear that the submatrix (Sn m)
b
is given by Jj

13



Thus, for n=m, (S )J is the current reflection matrix,
n,mJ,
o N :
whereas for n # m, (Sn m)J is the transmission matrix.
b .
J

Two cases of particular interest are treated here: (i)} junctions
contain tubes only which are interconnected, and (ii) junctions where

a tube is terminated by external impedances.

(a) Junctions with tubes only

At a junction where there are only direct connectiomns be-
tween tubes, the Kirchhoff current law and the Kirchhoff voltage law
have to be enforced.

Kirchhoff's current law states that the sum of the current

flowing out a node is zero. For the case that the nl—th wire of tube

T, is comnected to the n,-th wire of tube T, , and to the
Jakl 2 J,kz
e —-th wire of tube T, , ete., then
J 3sky
J J.
3
q. 1 (z » S) + q, I (= ,S)
Jokp ooy 2Ky T, L J.ky 1y sk T, 4
3> 1 3 2
+ ...+ q. T (z ,s) =0 (10)
qJ’kNJ “NJ J’kNJ T, .
3 j | J’kNJ
J
h = +1 f . = 0 nd . = -1 if 2z =L
where 4 ’ki * ZJski a qJ’ki jsk J,ki,
i=1, 2, ..., NJ..
J

Equation (10) can be put into the matrix form, i.e.,

14




00

(In(zj,kl’s))T, .
Jo» 1

(I(z. ., ,s))
' R B NN

) ()

3k

(in<z )

s
J. kNJ

J

In Equation (11), all elements in the left matrix are zero unless
they correspond to the conductors which are connected at the node.

For KJ connections within the junction J , there are KJ

equatloﬁs similar to Equation (10), and we can define the Junatlon
) so that

T
n,m j

connection matrix (CI

(In(zj,kl,S))T

Jsky
(Gl Dr |
(CI )J y . 2 = (On,m) (12)
n,m = j :
(I (z, ,8))
" J’kNJ j’kN
j J
J j
where (CI )J- is a KJ.XMJ- matrix, and MJ. is the total number
n,m j J J J

of conductors connected to junction Jj , l.e.,

15



N
J.
3

My = EE: Ne
J4=1

T, ..
J,ki

where Nc is the number of conductors of tube T,

k"
'T. Js K,
kg *
Kirchhoff's voltage law, for the case of simple connections,
requires all voltages associated with each conductor to be the same

at the same node. Thus, in the particular example above, we have

(z ,S) - (z s) =0
n ,k T n, j,k, 7T, .
1 1 iy 2 2 1.k,
Vv (z. ,S) — e =0
ny 3k Ty
2
ceen - 6 z, s =0
nN ( J,liN H] ) T, k
J J. Jo%y
J J Jj

The above equation can be easily written in matrix form. For a consistent

set of connections, there are M. - KJ equations. Let us denote the
corresponding matrix as (C /jJJ sucl that
n,m j
(V_(z,  »5))
n k T,
J’ l J’kl
. ’ = (0 13
(Cy )J. . 2 ( n,m) (13)
n,m j .
v (z, »8))
( n( J,kN T,
J 3oky
3 J

In addition to the above, two special situations have to be
considered: (i) a conductor is open-circuited, and (ii) a conductor

is short-circuited to ground.

16




When the ni—th conductor of tube T, K is open-circuited,
y K
. i
the current there is zero and we have

L.y 8y =0 (14)
1 1

3oky

This corresponds to the entry of the value 1 at the appropriate
location in the matrix (C )J in a row where all other elements
are zero. In this case, therd ig no corresponding equation for the
voltage law.
When a conductor is short-circuited to ground, the voltage at
the node is zero, i.e.,
?/ni(zj,ki,s) T =0 (15)

J,ki

This corresponds to a value of 1 for the appropriate element in the

matrix (C ) in a row where all other elements are =zero.

n,m j
Using Equations (1), (8), (12) and (13), the current scattering

matrix is given by
(Sn,m(s))J, - )

J .
(c, D@  Z, N

n,m Jj (16)

17



(b) Junctions with termination impedance

For a tube terminated in an impedance network (iT (s)) ,
n,m

the current scattering matrix (gn m(s)) relates the reflected and
3

incident current components of the tube, i.e,
= (re) _ % ()
I 7 (z,8) = (Sn’m(S))4In (z,8)) Qan

In this case, (§n m(s)) is identical to the current reflection matrix
2

(Tn m(s)) , which is given by (ref. 3)

b

G, a6 = @ () == (G (N + @, N

i n,m n,mn

((Z (8)) = (z_ ) (18)

n,m n,m

4., Solution of the Network Problem~-The BLT Fquation

After evaluating the current propagation matrices (?n m(s))
and the source vectors (ééés)(s)) for all tubes, and the cur;ent
scattering matrices (gn,m(s))J_ for all junctions, one can combine
these quantities and obtain a network equation, which has been called
the BLT equation.

Each of these above matrices or vector must be arranged to
fit into the overall network matrices or vectors. This re-arrangement
can be achieved by eiﬁher a matrix transformation (ref. 23) or by
carefully renumbering the individual matrix and vector elements Lo
fit into the network matrices and vectors. Another way is to consider
the network quantities as supermatrices or temsors of rank four (ref. 24).
For the network, we have

ATy = G, )y AP ey (19)

18




and

z(re) 3 = (1) & (8)
. 5 = . +
(T )y = B ) =@ ey + (F %)y (20)
where all matrvices with subscript N indicate network quantities.

Note that here the network current vectors are defined by referring

to the tube numbers. An alternate way is to refer to the wavenumbers

as discussed in reference (24).
Combining Equations (19) and (20), we obtain one form of the
BLT equation, viz.

3 (s)

n

S B a® -
((Sn,m(s))N - (Pn,m(SD) N ATy =« (s))y (21)

13

The total current is obtained by combining Equations (1) and (21)

. o ~ . ~ -1, .z (8)
(In(s))N = ((ln’m) + (Sn,m(s))N ) ((1n,m) - (Pn m)N ) & a (S))N

3

(22)

where (ln m) is the indentity matrix, defined by

s 1 for n=nm

I 0 for n#m

Kronecker delta

19



SECTION ITI
EXAMPL.ES

In this section, an example of a multiconductor transmission-line
network is first presented. Numerical results for a single transmission-

line network and a more general multiconductor network are then given.

1. Example for a Multiconductor Transmission-Line Network

Consider the multiconductor transmission-line network of
Figure la. Let us label the tubes and junctions as in the graph of
Figure 1lb. The junction subgraphs are illustrated in Figure 2. 1In

this example, we first demonstrate how to obtain the matrices
5 3 G (s)
@ n&ys G (D) and I T

b

(a) The propagation matrix

For tube T1,2 the current propagatlon matrix (Pn,m(s))Tl
is given by Equation (6) with (¥ (s))T given by Equation (3.
The tube source vector & (s)(s))n,m islg%ven by Equation (7), i.e., .
n Tl 2
1 .z -1 e
La et c@ o
2 c T n T
~ (s) L, m 1,2 1,2
ST O
1,2 1 £7
-5 ( ) « (exp (¥ (s) L, ).
2 n,n Tl,2 cn,m '1’1,2 1,2
-1 - -1 ~
R N I S R CAS TRV
™12 Saum 1,2 1,2
where Gj ) is formed by the eigenvectors of the matrix
n,m Tl 9
«' ) (L' ) .
n,m Tl,2 n,m Tl,Z . i
For Tube T2,3 , we have (Pn,m(s))T and (Yc (s))T given by,

respectively, Equations (6) and (3), and theté3is no source vec%é%.
Similar procedures are applied to tubes T3 4 and T2 4"
-~ b b
The network propagation matrix (Pn m(s))N and the network

source vector can be readily identified using the results above, and

we have

20




~ (re)

(In (O,S))T
~(re)

(In (Ll,Z’S))T

v (re)
(I (0,s))
n T3

~(re)
(T, (O,S))T

(17 0,9,

(iére)(L

1c

1,2

G, o,

2,4
Y (re)
(In (LZ,A,S))T

3,4

3,4’5))T

[

[~ (s)
Un (),

)
(0,)
0)
0)

©_ )

| ©0)

poee
~

) G

(1), .
([n <O’b))m

1,2
~(1)
G 0y
1)
(L7 (0,s))

n Ty .3
(”(i)

77 (L, ,»>8))
n 2,3 ?2,3

I77(0,s))

n T2,4
(1)
(In (L2,4’s))T

% (1)
(I-77(0,s))
n T3,4

22
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(b) The scattering matrix

For junction Jl where tube Tl , is terminated in the impedance,
~ L -
(2 (s)) by Equation (18)
T J
n,m 1
= > -1
(s_ _(s)), = -((2 (s)), - (2 ) ) T ((Z (s)), - (Z ) )
m J T ' ) ’
s 1 n,m Jl Cn,m Tl,Z Tn,m Jl Cn,m T1,2

For junction J the junction connection matrix is

2 b

Tube T Tube T Tube T

1,2 2,3 2,4
0 0 i -1 0 E 0 0
_ 1 _ 1 _
(CIn m)JZ = 0 1 0 i 0 1 { 0 1
> o 0 1 | 0 0 i-l 0

Tube Tl,2 | Tube T2’3 Tube TZ,A—
1 0 0 g -1 0 0
13
o 1 0 i -1
©, ), = .
Vo,m 72 o 0 0 | 1 -1
Lo o0 1 i 0 -1 0 _

2z ) © © .
n,m T2,l n,m n,m
@ (z (. = |0 O @ ) ©. )
> n,m I, n,m n,m T2,3 n,m
lon,m) (On,m) (z )

c
n,mn T2,4

The scattering matrix is thus given by Equation (16). Hence, collecting

terms, we have




z(re) (1)
(i(re (L, 1s))T (cn m)l (cn m)Z (z,n’m)3 (In (Lz’ls))T
2, ’ ’ 2,1

~(re) 3(1)
(1.7%(0,8)), =1 G Cads Cande H T 0580

2,3 2,3
z(re) = (4)
(1."° ©) Cawd7  Cowds Cade/ VT @8

Y

of the submatrices (Cn m) are useful to visualize when filling up the
b

twork scattering matrix g .
ne r a g ( nués))N

where (8 _ (s))j is rewritten to contain the submatrices (z_ ). The use
n,mn 2 n,m

For junction J3 ,» we have
Tube T3’2=Tube ‘1‘3’4
1 0 o=l
(¢ Y, = i
Thm I3 o 1 1 o

and, employing the same procedures as for junction J2 ,» We eventually

obtain
~(re (1)
(I, Ly 5080 (oo Cowdi1\/(Fn (g 2080
3,2 ? 3,2
~(re) - ~(1)
(I (O’S))T3,4 (f;n’m)l2 (‘:n,m)13 (T (O’S))T3,4

For junction J4,

Tube T4s31 Tube T4,2
0 11
(c ). = !
In,m T4 1 1o o
i

and

23



I(re) ~
(x (I44’3,s))T4,3 ] Gy w1 Condis . (1> (L4’3,s))T4,3
(e i = (1) ‘

(1 (L4’2,s>)T4 , (z;n’m)16 (Cn,m)l7 (T, (L4’2,b))T4 ,

The network scattering matrix (gnxés))N is obtained by suitably
s S =
rearranging the above junction scattering matrices so that the ordering
of the components of the incident and reflected currents is the same

as in the propagation equation. Thus, this equation becomes

24




5¢

P(Er(lre(o’s))Tl,z 7 _(Sn,m)Jl I T I N B G I N R I I r (1(1> (O’S))Tl,Z
(Effe)@z,l,s))Tz 1O Camr G @ Gy O O O <1(i>(L2,l,s>>T2 .
(i(re)(o,snT2 3 | 0,0  Gods Gaps O 0 Gooc D © b @ o || G0, 1 |
(1(”)( 3, 2,s>>T3,2 T T (T L S P e S C R e (R TR e (1<1) (Ly 5080073 5
(E<re)(o,s>>T2 p ) O, 0  Gowy Cawds O Ce O © o © o | AP 0,90, ,
AP0,y | O @R O O O Gy O G ARy ooy
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Equations (23) and (24) contain all the matrices required to

solve the BLT equation.

2. Numerical Examples

A general computer code, QV/T, has been developed for treating this
class of transmission-line problems. Both time harmonic and transient
results are obtained, the latter being provided by a FFT algorithm
(ref. 25).

To demonstrate that the above approach can solve transmission-
line problems involving closed loops, a simple example invelving only
single transmission lines is first presented. The use of single-line
configuration avoids unnecessary complications inherent in the multi-
conductor analysis and serves to illustrate typical results. Results
for a multiconductor network will then be illustrated.

For the single-wire example, Figure 4 shows a simple five-junction,
five-tube network, which contains a single lcop and is excited by a
voltage source. The characteristic impedances of each line are 750,
the propagation velocities are all 3X108 meters/sec and all lengths
are 1 meter. All junctions with the exception of junction J5 have zero
intrinsic impedances, so that the current scattering matrix for these
junctions depend only on the number and impedances of lines connecting
the particular junction. JunctionJgis assumed matched with a 75
load. A single voltage source in the transmission line connecting
junctions J and Jp provides the excitation for the network. This source
is located midway 5etween ﬁhe junctions at z = .5 meters, and is
denoted by VS. »

Figure 5 shows the magnitude of the voltage at the 75{ 1load,
denoted by ¥, at junction JS , as a function of frequency for a unit
voltage excitation. The various peaks observed in this spectrum are due
to resonances within the lcop structure, as well as resonances on the

transmission line comnecting junctions J3 and JS"
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Figure 4. (a) Physical configuration of single-wire
transmission-line network.

(b) Connected graph for transmission-line network.



ufqﬁ<

] Y T T .‘ [}
.5 -
0 ! L ] -vr
6 200 - 400 ' 600 800
Frequency (MHz)
Figure 5. Impulse spectrum of load voltage at junction Jj5 .
=== T T T I [}
3T e
-+
. 2 o §
I5
-1 r 7]
0 1 (N [ ﬂ 3 m 1L
0 10 20 30 40 50 60 70
Time (ns)
Figure 6. Step function excited load voltage at junction Jg.
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By multiplying this impulse response spectrum by the spectrum of
a step function voltage and performing a numerical Fourier transformation,
the step function response at the load can be determined. This is
illustrated in Figure 6. Note that even though the circulating loop
current goes to infinity as time progresses, the load voltage (and
hence load current) goes to zero, as required by a dc analysis.
A careful examination of the times of arrival of the various voltage
pulses provide one way of validating the correctness of the analysis.
Figure 7 shows the step excited load voltage at junction Jg
for the same network, but with the voltage source located in the mid-
point of the transmission line connecting junctions.I3and~I5. As in the
previous case, the times of arrival between the various waves which
comprise the total transient waveform shown in this figure can be
used to verify the accuracy of the calculation. It should be noted

that because there is no direct current connection from junction J J

1> o0 Iy
and J4 to ground, the voltage of junction J; excited by a step function

excitation V will approach zero in late time, due to the lack of

S b

current flow through the 758 load at the junction J The finite slope of

the vertical lines of the waveform, most evident foi late times, is
caused by the fact that the transient waveform is sampled at discrete
points. In the ideal case, these lines should have an infinite slope.

The transient response of the load voltage due to the two
sources previously considered exciting the transmission line at the
saem time is illustrated in Figure 8. Although this result is calculated
directly using the BLT equation, the same result can be obtained by
superimposing the results of Figures 6 and 7.

As an example of the results for a more complex multiconductor
network, consider the transmission-line configuration, illustrated in
Figure 9. As is indicated in that figure, the network comsists of four
transmission-line tubes. Tube T is a three~wire transmission line with

1,2

tubes T2 3 and T2 4 being two-wire lines. This is the same network as in
N s

Figure 1, but with different sources. The points at which the metwork
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response is calculated are also indicated. The linear graph for this
network is the same as in Figure 1b.

For this example, each multiconductor tube length is assumed to
be 1 meter long. For each tube, the capacitive coefficients were taken
to be 6.O><]_0—ll farad/meter for the self (diagonal) terms and
--1.0><lO--ll farad/meter for the mutual (off diagonal) terms. The
capacitive coefficient matrices for each line were assumed to be
highly symmetric such that these two numbers completely describe the
matrix. All propagation velocities on the multiconductor lines were
assumed to be uniform and equal to 3.0X108 m/s so that the inductance
matrix is related to the inverse of the capacitive coefficient matrix.

For the single-wire transmission line in tube T the characteristic

s
line impedance was taken to be 100 ohms. That impedancg:Atogether with
the assumed propagation speed of 3.Ox108 m/s determines the capacitance
per unit length of that line.
The terminating impedance network at junction Jy is chosen such
that the line is perfectly matched. With the capacitive coefficient
chosen as above, this matched load is described by an impedance matrix
with the values 59.52 ohms on the diagonal and 11.90 ohms off the diagonal.
Other terminations for the transmission-line tubes are indicated in
Figure 9. Note that tube'T2’4 has its open circuit at junction J4. Similarly,
the second wire of tube T2,3 is open circuited at junction J3.
In this example, the sources exciting the transmission-line
network are taken to be current sources. A step-function current
source of magnitude IS is applied at time t = 0 to the midpoint of
the first wire in tube 1. Similarly, there are two current sources of
magnitude ZIS applied across tube T2’3 at a distance of .1 meter from
junction 2. Finally, tube T2’4 is excited by a step function of magnitude
4IS occurring at time t = 0. This current source is located at a
distance .4 meter from junctionuizand excites only the second wire of
tube T2,4 .
For this example, the voltage response at three load points is

considered. These load points are 1llustrated in Figure 9.
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Figure 10 illustrates the step function, current—excited voltage ‘
across load point 1 as a function of_time. This quanitity is normalized
with respect to the quantity IS . Note that due to the complexity
of the transmission-line network, this response is much more complicated
than responses previously seen.
The first contribution to the load voltage that arrives is

due to a traveling wave from the source on tub. to the load point

1,2
.5 meter away. This corresponds to a time of 1.66 nanoseconds. The
second arrival of a wave to load point 2 occurs from the sources on
tﬂbET2,3 which are 1.1 meters away. This corresponds to a time of
3.66 nanoseconds.

The next arrival of a wave which contributes markedly to the
voltage response at load point 1 is at 9.66 nanoseconds. This contri-
bution arises from a wave traveling along the first wire of tube T2’3
toward junction 33- At junction\JBthere is a change of impedance level

of the line, and a fraction of the wave is reflected, eventually returning

to load point 1. The portion of the wave that is transmitted through

junction‘J3continues along tube15,4 and suffers complete reflection
at load 4, wehre there is an open-circuit cendition. This wave eventually
reflects back and reaches load point 1 at a time of t = 16.33 nanoseconds.

All of these times may be verified as being correct from the
voltage plots presented in Figure 10. Each of the additional break
points in the voltage plots of Figure 10 can be attributed to arrival
times of various components of traveling waves on this transmission-line
network.

Figure 11 illustrates similar results for the voltage at load
point 2. Notice that the first time of arrival is at t = .33 nanoseconds
which corresponds to the distance of .l meter.

Figure 12 illustrates the step-function current-excited voltage
response at load 3. The calculated turn-on time for this case is
t = 6.33 nanoseconds and agrees well with the results of Figure 12.

An additional check for this case is to investigate the behavior of

the current at load point 3. Since this point is open circuit, i1t

34




Gg

o ]<

300.

200.1

100 .

(] ! 1 ) 1 ! { 1

5 10 15 20 25 30 35 40 45

Time (ns)

Figure 10. Step function, current-excited voltage response of
network in Figure 9 at load point 1.



9¢

o<

300.

200

100.

- -
i - ] 1 1 L H
0 5 10 15 20 25 30 35 40 45
Time (ns)
Figure 11. Step function, current-excited voltage response

of network in Figure 9 at load point 2.




LE

o ] <

300.

200.

100.

Ut -

Figure 12.

15 20 25 30 35 40

Time (ns)

Step function, current-excited voltage response
of network in Figure 9 at load point 3.




is required that the current be zero at this junction. This indeed was ‘
found to be the case.
Note that for late time, the normalized voltages at load points
1, 2, and 3 should all be identical since they are on the same wire
with no intervening impedance elements. As seen from Figures 10, 11

and 12, this fact is verified by the computer calculatious.
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SECTION IV
CONCLUSTION

This report has described and illustrated a technique for
analyzing lossless,multiconductor transmission-line networks. This
method solves for currents at all nodes at the same time, as opposed to
solving the problem in a junction~by-junction manner as in the conven-
tional method. The present approach has an added advantage of being
able to treat transmission-line networks that contain one or more closed
loops. — -

The ability to analyze tansmission-line networks with loops is
important, especially for EMP applications where there is substantial
energy in the low frequency portion of the spectrum. Current efforts
involve extending this method so as to permit the analysis of general
interconnections of multiconductor transmission lines which are excited
not by lumped voltage and current sources, but by distributed sources
which are provided by the incident EMP fields.

The analysis of a more general transmission-line network that:
may include losses will be reported in reference (24). This upcoming
report also discusses in greater detail the general theory of transmission-

line network analysis.
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