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SECTION 1
INTRODUCTION AND SUMMARY

Not only does electromagnetic (EM) coupling to an
electronic system take place through intentional penetrations
such as antennas and waveguides, but in addition there usually
are present many inadvertent EM coupling paths through cables,
apertures, grounding loops, etc. While usually designed to
handle the normal signal and noise background adequately, an
unhardened system subjected to an unusual EM disturbance such
as a radiated continuous wave (CW) field or the electromagnetic
pulse (EMP) produced by a nuclear detonation may be caused to
malfunction by spurious signals introduced through these
inadvertent coupling paths. Analyzing and predicting inad-
vertent coupling for the purpose of assessing and protecting a
complex system has historically been and still is a difficul:
and challenging task.

While in principle an arbitrarily accurate analysis of
the EM coupling can be derived by solving the Maxwell equa-
tions in the context of a boundary value problem [1l], in
reality even for a relatively simple system, such a classical
deterministic approach often demands more effort and resources
than are available. To keep the mathematics tractable, Jjudi-
cious use of approximations and engineering judgments are
inevitably required. Even so, the effort presently needed
to obtain approximate deterministic predictions for EM coupling
to complicated systems is still substantial [2]. On the other
hand, when the statistical properties of the coupling by
themselves play a dominant role in the problem being addressed,
a much less detailed probabilistic approach may be adequate.
In view of these observations, a statistical theory like the



the one presented in this paper may provide a productive
new approach to EM interaction technology.

The problem of describing the EM interaction with the
many interaction paths and modes of a system has some similarity
to the problem of describing the behavior of a gas in a box.
One possible approach to analyzing the gas problem is to work
out the interaction forces and then apply Newton's law to
solve simultaneously for the dynamics of all the gas molecules
--a rigorously correct approach which has met with very
limited success. An alternate approach is to take advantage
of the fact that there are a large number of degrees of freedom
in the motion of the molecules and to formulate a statistical
model of the gas [3]. While this statistical approach reveals
much less information than the deterministic one and predicts
only the statistical properties of the gas, it has nevertheless
proven to be of considerable practical value. Similarly, the
EM interaction with a complicated system consisting of a large
number of similar basic coupling elements can be modeled
statistically to yield a number of interesting results.
Applications of these results include estimating the distri-
bution of EM coupling data to be obtained for large systems,

and interpreting the experimental results.

The fundamental approximation in the probabilistic
approach to EM coupling is the hypothesis of a basic element
of interaction whose parameters are statistically distributed.
We take this basic element of interaction to be the small
dipole (although a more complex element could be accommodated
by the theory) and the basic variables randomized are the
incident polarization and direction, the sizes and orientations
of the basic dipoles, the mutual coupling strengths, and the
lumped load impedances. The basic elements and variables are



then aggregated in a probabilistically rigorous manner to
yield the final results. In contrast to the deterministic
approach, such probabilistic models, when applicable, do not
become proportionally more complicated but should yield
increasingly accurate results as systems being analyzed

become more complicated, if this complication results from

the repetition of the basic element. However, we emphasize
that the validity of the probabilistic approach to EM coupling

should be reviewed for each case to which it is applied.

For complicated systems when the coupling is dominated
by low frequency magnetic fields, a wide range of basic
coupling element parameters and statistical distributions
produce a current probability distribution whose central
part is nearly log-normal with a standard deviation of
about 6 to 7 dB. However, conclusions based on the extrapo-
lation of the log-normality of the current distribution from
the values near the median to the extreme percentiles are
susceptible to substantial errors. These results may provide
some insight into similar EMP coupling data to large systems
[4] obtained for PREMPT (Program for EMP Testing) [5].

To indicate the scope of the statistical coupling method,
an investigation of the basic results for some simple electric
dipole cases is also presented, as is the difference in effects
caused by the elliptically polarized incident waves and
linearly polarized ones. 1In the following text, Section 2
presents the statistical physical models. Section 3 considers
the magnetic dipole interaction case, and shows a comparison
with PREMPT experimental datas Section 4 presents results

J— S

for specific electric dipole cases, while Section 5 investi-



gates the difference in effects as caused by elliptically

versus linearly polarized incident waves.

The results obtained for subresonant CW excitation
appear to be sufficiently interesting to warrant investiga-
tion of the response of resonant electric structures to
transient electromagnetic waves.
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SECTION 2
STATISTICAL PHYSICAL MODEL

2.1 BASIC MODELS

Consider a plane EM wave, with a linearly polarized
magnetic field E and a frequency w, incident upon a thin
and small circular loop [6], as shown in Figure 1. To
obtain a basic statistical model, we randomize both the
incident field and the loop configuration to have the random
variables (@in’¢in) for the incident wave direction, Y for
the incident magnetic polarization, (0,%) for the loop's
normal direction n, and R for the loop's radius. Accordingly,

the induced current has an amplitude [7]

~

v /—lquog *n

I = | |~

- (L)
z P l
loop lun, + Rrag * Rloss

where p 1s the permeability of the surrounding medium (usually
its vacuum value uo), AO the loop's area, L, its inductance,
and Rr and R

ad loss
resistance. For a small and thin loop, the induced current

respectively its radiation and wire-loss

random variable I [8], from (1), can be normalized such that

the assumed value i is given by

i=n= 0 <ic<l1 (2)
rm
with
n = |cos8 cosy sinein - sin8 {cosy cosh,
- cos (¢ - cbin) + siny sin(¢ = ¢in)] . (3)

11



“

t<< R<< A

z t=RADIUS OF WIRE
A R=RADIUS OF LOOP
= A= WAVELENGTH OF INCIDENT EM WAVE
~
~
\\ ~
~
AN ~
N N
AN
N \W
N\ Y P
R [~ ERvAL!
\
~ O, |
@ n I '
, |
' |
} -
> I |
P —v\\\ | [
®. L \i\ I
\J \\[

Figure 1. Orientation of the IncideRt Field
and the Laop with Normal n

12



Here, r < r , 0 <8 <m 0 <9, <2m 0< 6, <m, 0< ¢,
< 2w, and 0 < ¢ < 27 are the values taken respectively by the
random variables R, 0, ¢, ein, ¢in' and Y with their corre-

sponding probability densities denoted by pp(r), pgy 4(8,¢),
’
d (ein,

0] a ¢
in, "in
ized induced current has a probability distribution

P@ ), and pW(W). In terms of these, the normal-

in

(loop) ‘1 =
. in, "in
ir
r < —=
- n
. deind¢in pw(w) dv pR(r)dr (4)
and a probability density
pitOoP) (1) = & pl1ooR) gy < 4}, (5)

Equations (2) to (6) give the procedure to compute the
probability distribution of the induced current from those
of the randomized model parameters.

For the coupling mechanism based on short electric
dipoles, as shown in Figure 2, we can model it similarly.

For this case, the induced current's amplitude is [9]

2 ~
L°|E - L|
M N,
I~ . (6)
L/2 L
ln(B)
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where L is the length of the wire with direction unit vector
L, M the position along the wire at which the current is
considered, D the diameter of the wire, and E the incident
electric field. Compared with the magnetic coupling case,
the differences are that E, £, and L replace, respectively,
H, n, and R and that the additional random variables M and D
are introduced. From Equation 6, the normalized induced
current assumes the values

2
= 3§§—&212, 0 <i<1. (7)
b™in x
Here n is given by (3), 0 < s < 1 is the value assumed by

the random variable S

M/(L/2) with probability density
ps(s), and 1 << x < b is the value assumed by the dimension-
less length X = L/D with density px(x) where b is some
largest length constant. Finally, from /6) and (7), we have

the normalized induced currentz' probability distribution

(wire) Sy
F {1 < i} = J[ p9'¢(8,¢) dedo Pg. o, (ein,¢.
2 5 in, "in
SX'N . b
in X — ¢n b
. deind¢in pw(w) dy ps(s) ds px(x) dx (8)
and the corresponding density
(wire) ,., _ 4 _(wire) :

15



The above simple coupling models form the basis of our
statistical coupling analysis of induced currents. Before
specific cases are examined, we shall make several observa-
tions. First, the ratio of the current in the magnetic case
to that in the electric case is

L
B = IImagpeticI " 4R Qn(ﬁ) . H (10)
,IelectricT nL2 we E
This, for a plane EM wave with |E/H| = /u/¢, reduces to

4R Zn(%) 2R Aln(é)

D
R~ 5 = 55 . (11)

Twyue L T L

Thus, for small and thin loops and wires of comparable sizes,
i.e., 2R v L, R ~n Azn(L/D)/21r2 R) >> 1, the magnetic coupling
is much more important than the electric one. This leads us

to place more emphasis on magnetic field coupling.

Second, some very simple probability densities for
angular orientations, to be used later, are listed in Table 1

for convenience.

Third, consider an observation that is very simple but
useful in interpreting some of the special results. For a
random variable U = f£(Y)|cos®|, where © is the angle between
a fixed axis and an orientation equally probable in all
spatial directions, Y is positive with a probability density
Py(y), and £(y) > 0 and is monotonic such that f_l(y) exists.
Then the probability density for U

16



TABLE 1. SIMPLE ANGULAR ORIENTATION DISTRIBUTIONS

Description Py 4(8:9)

Equally probable in all directions

in space sl:e
Equally probable in all directions (6 - 8.)
on a conical 8 = g, surface ———7?——9—
™
Fixed direction at 8 =8 , ¢ = ¢ s(e - 8,) 8(o - 9,)
_ -1 4 -1, dy
py (W) = f o (7t w) [& ] 2 (12)
u
implies
] —l d "l
up/ (u) = -p, (£ (w) [a-a £ (u)] : (13)

Thus, if f(y) is a monotonically increasing (decreasing)
function of y, the pU(u) is a monotonically decreasing
(increasing) function of u. One of the simplest examples

[10] is when f(y) = y, in which case U is the projected length
onto a fixed axis of a random length whose spatial orientation
is equally probable in all directions. Then, no matter what
probability distribution that random length has, the pU(u)

is a decreasing function of u-~the projected length is more

probable to have smaller values than larger values.

17



Fourth, we emphasize that the simple models considered
are for electrically small basic coupling elements, loops or
wires, with the interactions among these elements neglected.
(Such interactions may be neglected, for example, when the
elements are placed far apart so their interactions are small.)
However, these mutual interactions can be taken into account
and moderately change the resulting current distribution in
a predictable way, as will be shown in the next section and

the special examples.
2.2 RANDOMIZED MUTUAL COUPLINGS AND IMPEDANCE LOADS

Consider first the mutual couplings by examining the
current induced on the kth element due to the incident field
and the multiple-scattered fields produced by currents at

all other elements [11l]:

= . - (0) '
I, = aplE, + D Byl = I 11+ 6
j#k

. (14)

Here, the superscript "o" stands for the mutual-coupling-
neglected current. Now, since the :E: Ej is the sum of a
j#k
large number of fields of fully randomized current elements,
the central limit theory applies [12]. Thus Gi > G'eN(uG',
cG.), a normal distribution with mean Hgo and standard
deviation OG" However, interested only in the relative
amplitude of the induced current, we can normalize out the

resulting factor (1 + uG,) from (14) and get

1=101 + g (15)
where GeN (0, O = oG,//l + uG.). Thus the standard

deviation O of G measures the strength of the mutual

18



<< 1 representing very weak and negligible

>
G Vv
The value of og is, of course, determined by the more detailed

coupling, with 9

mutual couplings and o 1 representing strong coupling.
physics and geometry of the basic interacting elements and
cannot be derived from statistics alone. We shall treat it
as a parameter.

From (15) and making use of the formula for the product

of random variables, we immediately obtain

? P_(o) ¥ . .
pr(i) = f ax = [pG'(%) * pG'(-x_l)]' i>0

0 (16)

where G' = 1 + G ¢ N(l,oG). Thus, the inclusion of the mutual
couplings among the basic dipoles gives rise to an extra
factor to the induced currents as shown in (15) and changes

the current probability density from P (o)(i) to PI(i) accord-
I

ing to Equation (l16). To the mutual-coupling-neglected and
normalizéd current I(O), which distributes itself in the
interval [0,1], such an inclusion tends to enhance the
probability density for smaller i and to give rise to a
prolonged density tail for i > 1. For the mean M1 and the

standard deviation ¢ a simple calculation using (16) shows

II

2 1/ag 2
_ [z _-1/(20%) f E—
U = = g.e G + 2 —_— e (17a)
I I(o) T "G . L

19



G
—_—
uI(O) [l + O(oG)] _ (17b)
OG >> 1
. 2 . 1
¥ Yo EGG [1”0(?(;')] (17¢)
and
2
71 (o) 2
1 + [1 + OG]

2 M
°_I_ _ 7 (@) .
[ 2

1l/a 2
_ 2 G -1/(2x°)
[% o e-1/(205) 5 /‘ dx e

G
0 V2T
(18a)
2
9 (o)
0g << 1{_I + 0(02) (18b)
— \ *_(0) G
I
2
0. (0)
g. > 1w I 1
G =11 + -1 + o(——). (18c)
2 uI(o) oé

Further, one can easily show that the ratio [l + (UI/uI)z]/

[l + (o

I
Thus, this ratio lies between 1 and 7n/2 for all Ogr @ variation
not too sensitive to the mutual coupling strength OG-

(o)/“I(o))zJ is monotonically increasing with Ig-

Next, consider the effect of a randomized lumped load
impedance RS + iXs in series with the dipole elements. This

renders an induced current

20



v

1fs) o0 o 1 =10 . p. (19)

where XO is the dominant reactance of the dipole element.
Lacking the detailed information on the distribution of the
load impedances, we make the assumption that the probability
density associated with an impedance is a decreasing function
of the value of the impedance. This is certainly true above
some values of impedance, and considering the prevalence

of low impedance ground loops in most systems, that value
should usually be zero. A simple try would be to have a
pl/F(E) - qa-q(é-l)
case of no load impedance as the parameter g - « and the case

for £ > 1 and g > 0, which includes the

of a wide range of virtually uniform loads as g +- 0, and
consequently results in a p,(f) = getd £72 &Y% for o < £ < 1.
In view of its having a strong zero at £ = 0 and being a smooth
and monotonically increasing function of £ in [0,1l] but diffi-
cult to manipulate mathematically, we can now assume and
examine a qualitatively similar but simpler pF(f) to gain
insights into the effects of such a distribution--e.g., by

choosing

0 <f <1
pp(£) = (n + 1) £7, (20)
0 < n
With this pF(f), we obtain
. .n i pI(o)(X)
PI(S)(l) = (n+ 1) i dx - —;E_I_T_ (21)

i

21



and from which

n+1
W = U . (22)
I(s) I(o) n+ 2
\2 N 2
o o]
r(s) ) 7 (0) (n + 2)2 N 1
u (s) M (o) (n + 1)(n + 3) (n + 1)(n + 3)
I I (23)

To effect a strong zero for the pF(f + 0) of (20), n must be
much greater than 1. Consequently, from (21) to (23),
randomized loads have little influence on the induced currents'
statistics, except slightly enhancing the near-zero portion

of the induced current probability density by ~(n + 1)/n and
reducing the value at its end to zero. These results suggest
that it may be reasonable to ignore the load impedance random-

ization in our special case investigations.

22



SECTION 3
SPECIAL CASES FOR MAGNETIC LOOPS

In this section we investigate the random coupling
results for several cases of the magnetic loop model. This
could represent, for example, the EMP coupling with a com-
plicated system consisting of many ground loops. We calculate
first the I(O), then take into account mutual coupling by the

method outlined in Section 2.2.
3.1 VERTICAL PLANE ORIENTATIONS

Consider first a conductor geometry where nearly all
of the loops are in vertical planes, such as might be the
case for a single large bay of electrical equipment. If all
the loops are in vertical planes, i.e., their normals are
horizontal, and have their normal pointed equally probably in
all azimuthal directions, then only the horizontal magnetic
field component can induce current in the loops and all
horizontal field directions have the same effect. Thus,
without suffering any loss of generality, we can consider a
Hx— polarized plane wave incident along the -z direction

(see Figure 1) onto these loops.

Now, if we further assume that the loops' sizes are

distributed with equally probable areas between a; = wri
to a, = nrg, then from (2) to (5) we obtain the probability

distribution of the normalized induced current amplitudes

(loop) (o) _ 4
F 098 {I < 1} = - fr dr dé (24)
Q

23



re[rl,rzl
Q: $e(0,27]

r cosd <1ir,
Here, the subscript (A,2d) indicates the case of egually
probable areas of loops in two-dimensions. The probability
density, from (24), is (see Figure 3)

A-i2-h?-i?, o0<ica
SO e ) R
’ ™ - Q
1l -~ i2 ’ a <ic<1l
(25)

where a = rl/r2 < 1 is the parameter showing the range of
spread of the loops' sizes. Thus, the induced normalized

current I(o) has a most probable value o, an average

2
(o) _4(1 + a + a)
Ha,2d) T T 3 (L ¥ @) (26)

and a standard deviation

5y 1/2

©)  _J1+a® e +a+a?] (27)
(.20 ) TTa 3 F o) .

o]
If we assume the loops have equally probable radii,

instead of areas, between ry and r,, we then similarly obtain

(see Figure 3)
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as Functions of i

Figure 3. Sketches of p
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2 ]
(in 1+ i/l -4 ' 0 <i<ua
) « + va? - i?
p(loop) (i) = 2 < .,
I(o) (R,Zd) Tr(l - a) ’ -
1+ /1 - 32 .
@n T . a <1i<1
: -

(28)
where the subscript (R,2d) indicates the case of equally
probable radii in two-dimensions. Its average and standard
deviation are [13]

(o) _ 1+
“(rR,20) T T (29)
g (o) )1 +a + o2 1L+« 2)L/2 (30)
(R, 24) 6 ™ .
: : s (o) (o) (o) (o)
Notice the inequalities H(R,2d) < Y(a,2d) afid 9 (R,2d) < %a,2d)’

an intuitively plausible result because the equal-probable-area
case gives less weight to small sizes than does the equal-
probable-radius case. Also, (25) and (28) approach the same

expression 2/<w/l - iz) when ¢ + 1, as they should.

The a dependences of the averages and the standard
deviations, as well as their ratios, are shown in Table 2.
We see that the standard deviations, at about 0.3, are very
insensitive to the range of the spread of x (whether a wide
spread over 0 to nrz

2
the nature of the spread (whether equally probable in area

2
Oor a narrow one clustered near nrz) and

or in radius). Also quite so insensitive are the ratios of
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TABLE 2. AVERAGES AND STANDARD DEVIATIONS FOR MAGNETIC LOOPS EQUALLY
PROBABLY ORIENTED IN VERTICAL PLANES WITHOUT MUTUAL COUPLING

r (o) (o)
ozl o) 4lo) S%Ajggl ,(0) 50) (R, 2d
r,  “(A2d)  %(A2d) (o (R,2d)  °(R,2d) (o

(A,2d) (R,24)
0.0 0.424  0.264  0.623 0.318  0.256  0.803
0.050 0.425  0.264  0.620 0.334  0.252  0.755
0.100 0.428  0.263  0.614 0.350  0.250  0.713
0.150  0.433  0.262  0.504 0.366  0.248  0.677
0.200 0.439  0.260  0.593 0.382  0.247  0.645
0.250  0.446  0.259  0.581 0.398  0.246  0.618
0.300 0.454  0.258  0.559 0.414  0.245  0.594
0.350  0.463  0.258  0.556 0.430  0.246  0.574
0.400  0.473  0.258  0.545 0.446  0.248  0.556
0.450  0.484  0.258  0.534 0.462  0.250  0.541
0.500 0.495  0.260  0.524 0.477  0.252  0.529
0.550  0.507  0.261  0.515 0.493  0.256  0.518
0.600 0.520  0.264  0.508 0.509  0.2¢9  0.509
0.650  0.533  0.267  0.501 0.525  0.268  0.352
0.700  0.547  0.271  0.496 0.541  0.269  0.497
0.707  0.549  0.272  0.495 0.543  0.269  0.49
0.750  0.561  0.276  0.492 0.557  0.274  0.492
0.800 0.575  0.281  0.489 0.573  0.280  0.489
0.850  0.590  0.287  0.486 0.589  0.286  0.486
0.900 0.605  0.293  0.485 0.605  0.293  0.485
0.950  0.621  0.300  0.484 0.621  0.300  0.484
1.000 0.637  0.308  0.483 0.637  0.308  0.483
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the standard deviations to the corresponding averages, varying
from about 0.5 to 0.7.

To correspond to customary electrical engineering

(o)

practice, we now examine the probability law of I when

represented as the (cumulative) probability distribution of

v(©) = 59 log; ,11°'. 1o

its logarithmic value in decibels:
represent the results, we use a log-normal graph (a log-normal
distribution {l4] is a positively-sloped straight line in such
a graph) to plot the probability distributions F{1(0) < i}
[15]. These plots for the a = 0 and a = 1 cases are shown in
Figure 4. These plots, specified by (25) and (28), are not
log~-normal and therefore are not straight lines. But they

are approximately linear, up to 75 percent in the (R,2d} and
v60 percent in the (A,2d) cases for a = 0 and up to 50 percent
in both cases for a = 1; and they flatten to one at higher
percentiles. The flattening at the higher percentiles is
caused by the induced current being bounded by the maximum
response of the basic element of interaction (when mutual
coupling is ignored), which provides the normalization of the
curves. The effect of the mutual interactions tends to
straighten the curves, as was explained by (16) and its fol-
lowing reasoning, and is shown in Figure 5. Figure 5 plots
the mutual coupling included distributions F{I = I(O) - |1 + G
< i}, with mutual coupling strengths Og = 1 and Og = 30, for
the corresponding cases in Figure 4. Excluding the extreme
percentiles, curves in Figure 5 clearly exhibit rather close
resemblances to straight lines. The resemblance is better

for larger oge

Within this resemblance, I is approximately log-normal
and its average p and standard deviation ¢ are related

approximately to those of Y = 20 loglOI by
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2
uy=ﬁ—{lnu—%ln[l+(§) ]} (31)
_ 20 g\2
oy = 2% Jln 2+ )] (32)

Using the relation (18) that links the o/p of I to the
o(o)/u(O) of I(O), we immediately have

o] < g., < O (33a)
g@ = 7Y 2% (=)
where
o 2
(0)
_ 20 (o ) }
ag = In| 1 + | —= (33b)
Y(o) ln 10 [ u(o)
2
(0)\
20 T o
g = — In| =11 + - . (33c)
Y(°°) 1n 10 2 (uk0)/

The superscripts o and =« of Y represent, respectively, the
cases of Og ~ 0 and Og = ©- The two limiting standard devia-

tions of the logarithmic currents,o (o) and ¢ (w) r ATE plotted
Y

Y
in Figure 6 as functions of o(o)/u(o). The shaded area,

representing the range of c(o)/u(o)

given in Table 2, exhibits
the narrow range of possible values for the corresponding

log-normally distributed standard deviations ¢ (o) and o () *
Y Y

Figure 6 shows a range of standard deviations for Y encom-
passing “4 to 8 4B for any distribution-size parameter a,

and centered around 6 to 7 dB.
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Very little statistical data on EM coupling to large
systems is available, most that exists was taken from the
PREMPT program [l16]. These tests measured the maximum peak-
to-peak current response to broadband pulsed fields and
therefore are the result of a more complex interaction than
the CW case analyzed in this paper; however, it is stili
interesting to see if the analysis and the data follow the

same general trends.

The distributions of three sets of such measured data,
normalized by each of their own median value, are shown in
Figure 7 [17]. They are rather similar to each other and
are approximately log-normal with standard deviations to
their logarithmic values at 5 to ~7 dB. A comparison to
the theory and the data is also shown in Figure 7 by overlaying
the median-value-normalized theoretical results, for the

cases of (A,2d) and (R,2d) with parameters a and 0. being

0 and 1, on top of the data. The comparison showsGrather

good agreement for the V40 percent and higher percsentiles,

but displays a discrepancy at low percentiles: there are

fewer low (compared with the median value) currents in the

data than in the theory. This discrepancy is not surprising.

We suspect that the smaller number of low current measurements
is caused at least in part by a systematic bias in the current
data that would result from an engineering judgment to avoid
measuring currents that are obviously uninteresting because

they are so small and are difficult to measure in the background

of system noise.

To the extent that the theoretical curves can be approxi-
mated by straight lines near the median value of the distri-
butions, and therefore by log-normal distributions over this
region, the standard deviations implied by their slopes are

similar to those of the data (see Figure 6).
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3.2 THREE-DIMENSIONAL ORIENTATIONS

For loops oriented equally probable in the three-
dimensional space, as might roughly be the case for a large
electrical facility, we can obtain the induced current
probability densities by the same procedures used in
Section 3.1. For the equally probable area case,

l - «a, 0 <i<a
O I
I (A, 34) l -a 1 - i, a <i<1 (34)
and
() _l+a+a®_ (o) (35)
H(a,3q) 3(1 + @) "(a,2d)
5 5 2]1/2
(o) _l+a_l+a+a) (o)
%(a,3d) '{ 6 ( 3(L + a) < 9a,2a) (38)
For the equally probable radius case,
1n é ’ 0 <i<a
(loop) o 1
109 (r,3q) ) T - 1
,34) ln T , a <ic<1l (37)
and
(o) _ 1 +a (o)
M(R,30) T T2 ° M(r,2d) (38)
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(o)
< O(R.24) " (39)

g (o) _|{l+a +ra2 _ (1 +
(R,34)

The three-dimensional probability densities are depicted
in Figure 8. They are monotonically decreasing functions of
i, as expected in view of the remark made at (12) and (13).
Also, they favor lower current values more than their two-
dimensional counterparts do, as can be seen easily in'Figure 8
or by observing the inequalities in (35) to (39). Such a
behavior is intuitively obvious because in three-dimensions,
unlike in two-dimensions, there is more solid angle within a
A® near the perpendicular to a given direction than there is
near the parallel. Furthermore, similar to the two-dimensional

(o) (o) (o) (o)

cases, we have ¥ (g,3a) X ¥@a,3a) 2™ %(r,39) < “(a,30)"

Table 3 lists the numerical dependences on o of the averages
and standard deviations. They exhibit even more insensitivity
to the changes in a than the two-dimensional cases do.

Figure 9, similar to Figure 4, plots in log-normal graphs

the distribution of I(o) for the three-dimensional cases

(A,3d) and (R,3d) with a = 0 and « = 1. Finally, we point

out that an inclusion of the mutual coupling effect, similar

to that in Section 3.1, again renders a cumulative current
distribution that is in its central part roughly log-normal

and results in standard deviations for 20 log10 I even slightly
more closely packed near “6 dB. The last statement can be
easily seen by reading the G(O)/u(O) values of Table 3 into
Figure 6. A comparison of the PREMPT data and the three-
dimensional loop distribution results, similar to the two-
dimensional results shown in Figure 7, is shown in Figure 10.
As before, the trends in the theory and the data correspond

quite well.
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3.3 REMARKS

The results of the model, taken together with the
limited available data, lead to the following tentative
conclusions. First, our statistical coupling models are not
of the type that have a large number of parameters and can be
made to fit virtually any data by adjusting these parameters.
On the contrary, our models have very few parameters and
yield distributions for their major central part insensitive
to the values of those few parameters (see Section 3.2 for
three-dimensional cases). In view of this, the correspondence
between the data and the models, as pointed out in the previous
sections, may have important implications in two aspects. On
the one hand, the EM coupling to large systems, when dominated

by low frequency magnetic fields, is largely insensitive to

~he coupling detail and yields a distribution whose central
part is nearly log-normal with a standard deviation of about

6 dB. On the other hand, precisely because of the insensi-
tivity of the major central part of the distributicn to the
model, one may not be able to use it to determine the detailed
parameters of the coupling (e.g., the loops' orientations,
their relative sizes, their mutual coupling strengths, etc.).
Second, the shapes of the extreme percentiles of the distribu-
tion may depend on and be sensitive to the detailed nature

of the coupling. This, combined with the first conclusion,
would make apparently plausible assumptions concerning the
data distribution function (e.g., log-normal) and the extrapo-
lation to the extreme percentiles based on the central part
of the distribution susceptible to substantial errors. Con-
sequently, any conclusions dependent upon such assumptions

and extrapolations might be susceptible to substantial errors.
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10.

11.

where the last inequality uses the assumption that the
thickness t of the loop wire is much larger than the
conducting loops' skin depth. Using this, (1) implies
(2).

See any textbook on probability theory, e.g., E. Parzen,
Modern Probability Theory and Its Applications, Chapter 7
(Wiley & Sons, 1960).

For thin short wires, linear wire current distribution

gives £(M,L) = M/(L/2), and D << L gives the static self-
capacitance
c = wELL
Thus
H 2.2
IRrad T k'L 13,3
1 Nt 1 ~n T << 1
1wC 1wC ln( B)
and
L s
RlossI 0wﬂde ?¥ k2L2
1 ~ 1 N << 1.
Tac TuC 81n(3)

Agaln, the last ineguality uses the assumption that the
wires' diameters, although small compared with the wires'
lengths, are not small compared with the conductor's

skin depth &y “at the frequencies considered. Using these,
we obtained (6) and (7).

W. Feller, An Introduction to Probability Theory and TIts
Application, Vol. 2, pp. 32 (Wiley & Sons, 1971).

This can also be shown formally by using circuit analy515
notations. For a linear network, we have for the kt
circuit
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12,

ik _ %k Y oiA T3 %4k
Zyx Zyx

where Zyyx is the self-impedance and Zj3, 1 # 3, are the
mutual impedances. Thus, we obtain

22.. &, - Z. I. = S. ) E.
2;( ii °3k ix! 4 %; 05k @50 E5

or in matrix notation

Z2' + I =
v

- E
Py v

o]
A
where the matrix 2' has diagonal elements Zii and off-

diagonal elements Zi5s i # j. Formally inverting 2',
we get A

o, E a.E. a, BE
Iy = zk - {l + Zrx Bki lzl}z zk . {l + Gk}
kk i By kk

where

A . = (Z' -1 - ki — 0
for i#j

See any probability textbook, e.g., Reference 8, Vol. 1,
Chapter 10 (third edition, 1967). Strictly speaking, the
fields E4 from all other dipoles j # i are not totally
independént of each other, because of their mutual couplings.
Intuitively, these Ej's are approximately and essentially
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independent random variables since their deterministic

mutual coupling mechanisms are controlled by the independent
random variables associated with their geometric
configuration. However, we have not been able to prove

such an approximate and intuitive independence and gquantify
rigorously its implication to the applicability of the central
limit theory.

13. Use the integration results

./;x In(l + V1 - xz] = sin"lx + x[ln(l /1 - x? )- l]

'/;:dx nl1 + /1 - x2]= -v[Vl—“Y— ¥ - (nv- 1)]

i 3 3 /- 2 . =1
j&de 1n|1 + ﬁ _ XZ} - X ln v _ x~ _ X 1l - x 4 Sin "x
where V = 1 + V1 - x2.

14. See, e.g., J. Aitchson and J. A. Brown, The Log-Normal
Distribution, The Cambridge University Press (Reprinced
1963, first printed 1957).

15. The F{I(o) < i} are obtained by integrating the correspond-

ing densities as:

In
'.l
A
{3

.
fl/l-iz—/az-izdi , 0
(o]

(loop) (o) L 4
F(a,2a {I hl — 7.

Fj: di(/l - 1% - /a? - iz)

i .
+f i - i%ai
(s}

\
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- 2
m(l - az)
(laop) (o) _ . 2
F(r,2d) 1 =1r(1-a)J
"
2

(L - a)

1l6. See Reference 5.

( i
jf 1ln
o 2 2

a + Ya© - i

fldilnll+/1-12!
o 4

a
-f di ln|a +
o

i
-Jr di 1ln i,
o

sin” "i - asin”

1+/1-12>
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17. See page 9 of Reference 4.

18. See Reference 14.

19. See, e.g., J. A. Stratton, Electromagnetic Theory, P-. 279
(McGraw-Hill, 1941).
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APPENDIX A
SPECIAL CASES FOR ELECTRIC WIRES

The results of the short electric dipole coupling

(o)

probability distributions of I for several interesting

special cases are given in this section. Here, the nota-

tions used are: K = azln b/(bzln a) < 1; xl(i) the solution
of xi In b = ib2 in Xy: and 1 << a < L/D = X < b. The analysis

follows procedures similar to those in Section 3, but with
the basic coupling described by (6) to (10).

A.l1 COPLANAR ORIENTATIONS

For the short wires all lying in the 8 = 7/2 plane (see
Figure 2) and oriented equally probable in all azimuthal
directions, a plane wave incident from the +z axis induces

the following current probabilities.

When both wires' lengths X and the relative pcsition of
sampled current locations S are fixed, we obtain for the

normalized current I(O)

wire) L2 1 gcic1 @l
1'°'(1,2a) T )

Here the subscripts (1,2d) indicate the first case considered

in two-dimensions. It has a ”Ei)Zd) = 2/7m = 0.64 and a
(o) _ - 2,1/2 _

When X is equally probable in the interval [a,b] and S

is fixed, we obtain



(wire) . 2
(i) = —prronu-—
1() (2,24 mib = a)

max(a,xl(i))

2

. dx b In x , 0 <ic< 1.

.y 2
x%1n b‘/l - _1%_111_5
x"1In b (A-2)

Its average and standard deviation can be obtained numerically.

When X is fixed and the current sampling locations are
equally probable anywhere along the wire, S uniform in {0,1],

we obtain

VY
tr/l-3 0<i<1l, (A-3)

(wire) (1)

(o) = % in
I (3,2d)

which has a u§§)2d) = 1/m = 0.32 and é 052)2d) =(1/6 =~ 1/11'2)1/2

= 0.26.

To investigate the effects of nonnormal incidences, we

let the incidence make an angle 90 # 0 with the -z axis.
Now the polarization angle ¥ influences the results. For
example, if ¥ is a fixed angle wo and both X and S are fixed,

then

p(Yéfe) (i) = % L , 0 < i< |sin 8]
1'°’ (4,2d) vg;nzeé - il

(a-4)



where 65 is the angle between the z axis and the incident
polarization E, cos 65 = cos wo sin eo. The (A-4) has a

(o) R ' (o) 1/2
“(4,2d) = sin eo/w and a 0(4’2d)

If, instead of a fixed value, the Yy is equally probable in
all angles over {0,271], then

= (1/2 - 4/w2) sin eé.

/ 1
J. £(8) dg » 02 i< cos @
0
(Yéfe) (i) = < 1
1() (s5,2q) I £(£) &, cos 8_ < i < 1
. 2 2
_Ygﬂ—.cos 80
\ sin 60 (A-5)
where
ey = 4. 1
£(g) = -n-2 5 1/2 5 5 5 5 1/2
(1L - £7) (& Sinao + Ccos eo - i7) (A~6)

Notice, of course, both (A-5) and (A-6) reduce to (A-1) as

Go + 0. The nature of the probability densities (A-1) to (A-3)
is depicted by Figure A-1l.

A.2 THREE-DIMENSIONAL ORIENTATIONS

For wires with equally probable orientations in a three-
dimensional space, the induced currents' probability distri-
butions are independent of the incident and the polarization
directions. Except the trivial case of fixed X and fixed S,

which incurs a uniform currents' probability distribution,



EQ. (A-4) FOR FIXED WIRE LENGTHS
AND FIXED CURRENT POSITIONS,

// OBLIQUE INCIDENCE AT ANGLE 6,
WITH POLARIZATION ¥,

(?S;e)“) ] |
l
EQ. (A-5) SAME AS FOR (A-4)
EXCEPT Yn IS UNIFORMLY
| pIsTRIBUTED |
l
l

. (A-2) FOR UNIFORM NIRE/
LENGTHS AND FIXED CURRENT
POSITIONS, NORMAL INCIDENEE

EQ. (A-1x FOR FIXED WIRE
LENGTHS AND FIXED CURRENT
POSITIONS, NORMAL INCIDENCE

EQ. (A-3) FOR FIXED WIRE LENGTHS
AND UNIFORM CURRENT POSITIONS.,
NORMAL INCIDENCE

Vﬁ-co£2¢osin 8y

(W1re)(i) of Induced Currents

Figure A~1. Probability Densities P (0)
' I

on Short Electric Wires Uniformly Oriented in a Plane



several interesting cases are given in the following and their
resulting probability densities are sketched in Figure A-2.

If X is uniform in [a,b] and S is fixed, then

(P 2
J. dx 95;5—5 ' 0 <i<K
a x"1n b
(wire) . 1
(i) =
bzln X
dx = K <i«<l1.
. ln b -
xq (1) X
(A-7)
If X is fixed and S is uniform in {0,1], then
(YéfE) (i) = -1n i, 0 <ic<l1 (A-8)
I (2,34)
which has an average 1/4 and a standard deviation vV1/9 - 1/16

= 0.22. If both X and S are uniformly distributed, respectively,
in [a,b] and [0,1l], then

b 1

i ln x di’'
(-lnR-J‘ x2 dx +f'i'
a K
b
(wire) (1) = b2 f In X ax, 0<i<x
I(O)(3,3d) (b - a)ln b xl(i') X
1 b
|
\s%f lnzxd, K <ic<l1
' X
i xl(l )

(A-9)



(wire}

p (i
1(0)
| EQ. (A-10) FOR UNIFORM WIRE
\ LENGTHS AND FIXED CURRENT
POSITIONS, BUT WITH ALL

ANGULAR ORIENTATION FIXED

|
EQ. (A-8) FOR FIXED WIRE

|
LENGTHS AND UNIFORM CURRENT '
POSITIONS l

|

I
|

EQ. (A-7) FOR UNIFORM WIRE
LENGTHS AND FIXED CURRENT
POSITIONS

EQ. (A-9) FOR UNIFORM WIRE ™~
LENGTHS AND UNIFORM CURRENT
POSITIONS

Figure A-2. Probability Densities p(ygge)(i) of Induced Currents on
I

Short Electric Wires Uniformly Oriented in 3-Dimensional
Space, Except for £q. (A-10) which is for all Angular

Orientations Being Fixed.

A-6



-

Now, to distinguish the separate effects as caused by the
randomness of the lengths X and that of the relative positions
S, we consider the wires' orientation, as well as the incident
wave direction and polarization, to be fixed. Then, a uniform

X in [a,b] and a fixed S gives

[bln xl(i)]2

(wire) (1) (b - a) x,(1) 1In b [21n %, (%) = 1T '
1 1

19 (4,34a)

K<ic<l1. (A-10)

However, a fixed X and a uniform S in [0,1l] gives simply a
uniform I(o) in [0,1], as it should be. Finally, the proba-
bility density for both the X uniform in [a,b] and the S

uniform in [0,1] is exactly (A-7) again. From these, we clearly
see that as far as the induced currents' probability is con-
cerned, the effect of randomness in the current measurement
position S, uniform or fixed, is the same as that of randomness

in the wire orientations in three-dimensional space.






APPENDIX B
ELLIPTICALLY POLARIZED INCIDENCE

If the incident monochromatic EM wave is elliptically
polarized, then the coherence of the two superposing perpen-
dicular linear field components substantially changes the nature
of the probability density of the basic induced current I(O).

To bring out this effect, we shall consider a simple case of

an elliptigally polarized wave incident upon a short wire of
direction L from +z axis, with a semi-major axis of polarization
in the y-direction and an angle of ellipticity x in [0,m/4]
inc/Einc
the y - 0 case is a linear polarization, and the x - 7/4 one

defined by |E

2 tan x < 1. Notice that by definition

is a circular polarization [19]. It follows then that

|[E » L] 2 £ = sin 8 - //cos2 (1 - tan2 X) + tan2 X .

(B-1)

With this £ replacing the n in (3) and (6), we obtain the
following results.

B.l COPLANAR ORIENTATIONS

When the wires lie in the 6 = m/2 plane but orient
themselves with equal probability azimuthally and have fixed
X and S, we obtain

0 0 < i < tan ¥

I(o)(l,Zd) 2, ] i ' tan ¥ < i <1

‘n' —
/& - i2 /&2 - tan2 X




This reduces to (A-1l) when x + 0 for a linear polarization, as
it should, becomes (i ~ 1) when x » 7/4 for a circular polar-
ization which does not distinguish one direction in the plane

from another, and has

X>0 2/
(0) = % E(" Vi - tan2X> -

u
x (1,24d) N (B-3)
——

) 5 )1/2 1. T
O(o) - ‘sec X _ [ (o) } l
x(1,2d) 1 ) My (1,24) j

X * 7/4 0 (B-4)
—_—

where E(¢,k) is the elliptical integral of the second kind.

Table B-1 shows uE;)zd) and 022)2d) as functions of y.
14 14

TABLE B-1. AVERAGES AND STANDARD DEVIATIONS FOR INDUCED CURRENT ON WIRES
UNIFORMLY ORIENTED IN A PLANE, WITH AN ELLIPTICALLY POLARIZED
AND NORMALLY INCIDENT PLANE WAVE

X

{degree) tan x u a alu
0 0.0 0.637 0.308 0.483
4.5 0.079 0.643 0.299 0.466
9.0 . 0.158 0.659 0.280 0.425

13.5 0.240 0.679 0.260 0.382
18.0 0.325 0.707 0.231 0.327
22.5 0.414 0.738 0.203 0.276
27.9 0.510 0.773 0.178 0.230
31.5 0.613 0.818 0.136 0.166
36.0 0.727 0.868 0.100 0.115
40.5 0.854 0.928 0.066 0.071
42.5 0.916 0.959 0.025 0.026
45 1.000 1.000 0 0



B.2 THREE-DIMENSIONAL ORIENTATIONS

When the wires orient equally probable in the three-
dimensional space, the probability density for a uniform X
in [a,b] and a fixed S is

~
( L] ul(x)
f dx du 0 ¢ 4L <K ®an ¢
a uo(x)
x, 1 (x!
fdxf defd.xf du . K tan ¢ ¢ L ¢ min (X, tan g}
a ua(x) u, (x)
2, 2
2m<= 'a x)
p(vlr-. X) I
L

[€-]] (L) = < ,
I (1,3d)
r t(b-a) 7l-u L'u g (x)]z' (x)-u Anzx]z

fdxf du s tan ¢ ¢4 ¢ K
a u

o
X, 1 b uI(x)
d.xf 4du ~fdx f dua K sl < %an
x, uolx) x, uo(x)
-] i
dx du , max (K, can g} < L ¢ 1
xl ua(x) (B‘S)

which, of course, reduces to (A-7) as x = 0. Here, UO(X) =

ibzln x/(len b); ul(x) = ibzln x/(tan x -* len b); uo(xl) = 1,
1

from which Xy > b as i - 1 and Xy

from which X, b as i » tan x and X, > aas i » K tan x.

’

+ a as i - K; and ul(xo) =

Several special cases of (B-5) are worth noticing. For

wires with the same lengths, a + b and (B~5) reduces to



1
fd/" ) , 0 < i< tanX
0
(wire,X)
P_(o) (1) =< bAv+G(vii,X)
1'°7(3,34) ) 5 5
/Ql-i )/ (1-tan®x)
f ) , tany < i <1
0
(B-6)
where
Glvii,x) = 2 — i ,
/(1-v2) [1-v2 (1-tan?y) ] [1-i%-v? (1-tan®y) ]
(B-7)

This density further reduces to a uniform one as X +0 and to

i//l-iz, with an average m/4 ~ 0.79 and a ¢ = (2/3—Tr2/16)1/2
~ 0.22, as ¥ + m/4. 1In general, the (B-6) starts with value

172

0 at 1 = 0 and ends with value (l-tanzx) at i = 1.

The general behavior of (B-5) starts with 0 at i = 0,
reaches a maximum in 0 < i < 1, and ends with 0 at i = 1.
Further, as y + n/4, (B-5) reduces to

b

.f ax ’ ' 0 <i<K
a
2
. i bzln X 1
pr(d) = ‘53 " |2 ) >
b x"1n b ﬁ - uo(x)

dx) ' K<i<l

xl(i) (B-8)



From the above, we see that for spatially randomly
oriented wires with no preferred direction, the elliptically
polarized incidence, as compared to a linearly polarized one,
makes it less probable for smaller (near zero) induced
currents and pushes the most probable current to a higher
value (toward the maximum possible current). A basic differ-
ence from the linear polarization case is that the probability
densities are not a monotonically decreasing function of the
induced current amplitude. 1In view of the similar nature
with which the polarizations enter into the basic coupling
mechanisms, (1) and (6), these conclusions apply to the

magnetic coupling cases as well as to the electric ones.



