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Abstract

a single wire transmission line model for use in EMP internal
interaction studies. The importance of including the effects
of local line perturbations (such as a cable clamp) is
discussed in terms of the reflection coefficient presented

to waves on the transmission line, and general curves for
determining when to neglect such effects are given. Next,
the behavior of a finite length transmission line with
periodic loading is investigated and results are compared
with those of an infinite line using Floquet's theorem.
Finally, the bulk current response of a general multiconductor
transmission is related to the current-on a single wire line
and a prescription for determining an equivalent single wire
characteristic impedance and load impedance from the multi-
conductor quantities is described.

This report discusses a number of modifications of
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SECTION I

INTRODUCTION

The calculation of the propagation and_distributioﬁ
of transient electromagnetic energy within the internal
regions of aircraft and missiles frequently employs trans-
mission line theory. As outlined in other reports (refs. 1,2,3)
solutions using this method often involve the assumptiohs
of having only a single conductor transmission line instead
of a multiconductor line, of considering only TEM modes
of'propagation on the line, and of having a uniform trans-
mission line.

| As indicated in ref. (2), a number of improvements

can be made to increase the modeling accuracy for treetihg
these problems found in the area of electromagnetic pulse (EMP)
internal interaction. One general class of improvements eon-
sists of adding a tee network of lumped, passiée eleﬁents to
an otherwise uniform transmission line, so as to account
for a perturbation in the local transmission line geometry.

Using this approach, an equivalent tee circuit for a
single cable clamp on a transmission line.has been developed
in ref. ( 4).7 Cther "canonical" problems which have been
recently investigated include a cable passing over a thin
septum (ref. 5), a cable passing near a hole in the ground

plane (ref. 6), and a cable with a sharp bend f(ref. 7).

An investigation of actual aircraft cable layouts

shows that there is often more than just one perturbation



to a transmission line. Many times, ﬁultiple loading of
a transmission line will occur in a periodic fashion, as
in a transmission line passing over a series of ribs
within the aircraft, or!fof a line fastened periodically
to a metallic wall by céble clamps. In a recent report

(ref. 8), Lam investigated the behavior of a cable passing +

over periodic obstaclesfusing Floquet's ﬁheorem. By postu-
lating an infinite franémission line loaded at regular
intervals with identicai,‘symmefrical tee sections, the
dispersion relation for;determining the wave prépagation
was developed. This 1e%ds to varioqs‘relgtidns for the

propagation constant, pass and stop bands, and phase and group :

velocity on the line.

Alrcraft cables,ihoweVEr, rarely occur as a single
wire transmission line.t Usually they are multiconductor
cables with a wide variety of loads. Nevertheiess, such
cables are often modeled as é single wire transmission line
with an "appropriate" l@ad impedance. The choice of the best
load impedance for the single Wire model is an important 7
consideration for the use of this simplified internal inter-
action analysis technique.

This report investigates these various topics and
their importance in EMPianalysis. ;Séction II suggests a .

technique for determining when the effects of an isolated

perturbation along a single wire transmission line can be




ignored and when it must be considéred in the analysis ot
transient currents flowing on the line. Section III goes on
to consider the effects of more than one obstacle which is
periodically positioned along the line. Unlike the analysis
of ref. (8), however, we consider a finite number of
periodic obstacles and compare results with those obtained by
Floquet's theorem.

Section IV discusses general multiconductor transmis-
sion line theory and the relation between the total or "bulk"
current on a multiconductor line and ﬁhe current flowing on
a sing;e conductor liﬁe having suitably chosen loads and
characteristic impedance. Specific formulae are presented
for determining these quantities for aﬁ‘aribtrary multicon-

ductor line, and anumber of examples are given.



| SECTION II

IMPORTANCE OF EFFECTS OF PERTURBING OBSTACLES

As described in refs. (4) through (8), the effects of
a localized discontinuiﬁy in an otherwiée uniform transmission
line can be representedfby a tee network of iumpéd,'passive
elements inserted in the transmission line. ‘As an example,

consider a single wire line over a ground plane and passing

near an'electrically small obstacle, as in Figure 1. Figure 2
illustrates the transmission line model for this case, with
the obstaple effects represented'by the capacitance and induc-~

tance elements of the tee network.

In applying the results of the canonical problems to

a single line model of éircraft wiring, it is often useful
to estimate the overall%effect of a particular line pertur—
bation before carrying but a compleée transient analysis of
the transmission line.z If a particular line pefturbation will
only marginally affect the respohse at a load, then it need |
not be considered in tﬁe transmission line model.

One measure of fﬁe importance of a line perturbation
is the reflection coefﬁicieht, o . This quéntity is defined
as . : ' ' N : .

_ v
p = — ; : =

<
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Figure 1. Uniform Transmission Line Passing
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Figure 2. Two-Port Network Representing Effect
of Obstacle



where V~ 1is the reflected voltage wavev(propagating to
the leftof A-A' in F;gﬁreYZ) and \f' is'the incidentrvoltage
wave. Of partiéular iﬂterest is the reflection coefficient
p at the terminals AﬁA' of the equivalent tﬁo—port network
représenting the pertu;bingrpbstacle. _
The reflection coefficient at A-A' will depend -
upon the termination iﬁpédance of the line to the right of
terminals B-B' . Howéver, since we are interested in the
effects of perturbing ébstacle.alone, it is éonvenient to
assume that the line connected to B-B' isrperfectly
matched. In this mannér, fhe reflection coeffiéient at
A-A" willldepend only on the obstacle paraméter§, the

‘line characteristic impedance, and theroperating radian

frequency .
As is well knowé (ref. 9 }, the reflection coefficient

at A-A' can be expresééd as

Zz2. - 2 '
L c )
Zr, *+ %: L - . : T

where . Z, is the charqcteristic impedance of the transmission

line, and ZL is the load impedance presented by the circuit

and transmission line to the right of a-a'.
b )

Since the line to‘the'right of B-B' is assumed to : .

be matched, the load impedance ZL can be computed by




considering the circuit shown in Figure 3. Using s = 0+ jw
for the complex frequency, where 4§ = V-1, elementary

circuit analysis shows that the impedance at terminals A-A' is

s3LZC + szLCZc + 2sL + Zc

Z.(s) = : (2)
L ’ sZLC + SCZc + 1

It is’ convenient to introduce a normalized frequency

p and a normalized impedance & as

sYLC ‘ (3)

L [T 1 | . |
g = c E; . , (4)

so as to simplify Equation (2). In this manner, the impedance

®]
]

and

can be written as

7. (p) = 2 p3£ + p2 + 2pf + 1
L'P c ) '

p” + p/8 + 1

(5)

By inserting Equation (5) into Egquation (l)‘énd

simplifying, the reflection coefficient becomes

pEm2 + 2 - 1/8%)

- 2 (6)
P (pE+2) + p(2E+1/E) + 2




Figure 3. TImpedance at A-A' Presented
by Equivalent Tee Network Loaded
by Infinite Transmission Line

at B-B'.
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It is important to realize that the values 6f L
and C .in the equivalent tee circuit>for the obstacle.may
be positive or negati&e guantities. Thus, caie mustAbe used
in evaluating Equations (3) and (4) for p and g ; Itl
may be seen that the following sets of values for p and

& must be used in evaluating Equatioﬁ (6):

p = sVLC _ L,C>0
| | ‘ o

e -[T L L,C <0
: c

or
p =3sylucl L <0
- . .and
_ Ll cC>0
£ =3 ’El

or

and

1 \c<o
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The behavior off o as“a'ﬁﬁnction of frequency for
~a specific set of Qbstécle parameters L and C gives an
indication of the importance of the obstacle interaction
on the transmission beﬁavior. If, for examplé, the magnitude
of p 1is very small for a particular L and C ovef a
specified freguency raﬁge, the obstacle could be neglected
in the tranémission line model.

For the case of: L. and C both positive or negative,
Figure 4 shows a plot éf'the magnitude of the reflection ;
coefficient from Equatiop (6) as a fﬁnction'of the normalized
frequencf, P=w/f§, for various values of £ . I£ can be
noted from Equation (65 that there is a zero in the reflec-'

tion coefficient at the frequency
Py =t V1/8° -2 . (7)

When ' & < vV2/2 ,lﬁhis gero is real, occurring on the )

axis in the complex fréquency plane. 'For~ £ > V2/2 ;however,
the zero is imaginary %nd is located along the Jjuw axis.
Thus, we expect the curves of lo| for £ >0.707... to be
substantially different from those for |p| presented in
Figure 4. l |

Figure 5 shows the magnitude of the reflection coef-

ficient vs. hormalized;frequenéy for various & > 0.707....

12
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Figure 4. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency

for & £ 0.707.
(L and C both have same sign.)
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Normalized Frequency wvyLC

Figure 5. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency
for &£ 2 0.707.
(L and C both have same sign.)}
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The effect of the zerorin the reflection éoefficient is
clearly'indicated.

For many EMP problems, it is expécted that the re-
flection coefficient of a perturbing obstacie will be rather
small, especially near the low-fregquency end. of the EMP
spectrum. Since Figures 4 and»S have poor resolution for
low frequencies, Figures 6 and 7 show the reflection coef-
ficient for a range of w/O€ from 0 to 0.1.

VA similar set of curves can be drawn for the case
when L and C are of opposite signs. A careful examination
of this case shbws that there is no resonance effect which
caused the null in the reflection coefficient for certain
values of £ in the previous case. The curves for |p| in
this case are all monotonically increasing functions of
normalized frequency w‘JILCl and are shown in Figﬁres 8
and 9 for the range of 0 to 4h in nofmalized f;eqﬁency.‘
As in the previous case, the family of curves exhibit a
decreasing dependence on |£| for 0 < [g' < 0.707 and
an increasing dependence for ]g] > 0.707 .

.Fiéures 10 and 11 present the reflectionlcoefficients
for the same cases over a smaller frequency-interval to
illustrate the low frequency behavior more clearly.

In some instances, it may be expected tﬁat an obstacle:

will present a strong capacitivé discontinuity to the

15



Normalized Frequency wvLC

i

Figure 6. Expanded Plot of Reflection Coefficient

Magnitude vs. Normalized Frequency for
€ < 0.707. '

(L. and C both have the same sign.)

16




Normalized Frequency wvLC

Figure 7. Expanded Plot of Reflection Coefficient

Magnitude vs. Normalized Frequency for
£ > 0.707.

(L and C both have the same sign.)
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Normalized Frequency udeLC|

Figure 8. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency
for |&| < 0.707.
(L and C have opposite signs.)
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Figure 9. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency
for |g| 2 0.707.
(L. and C have opposite signs.)
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' Normalized Fféquency w'JlLCl

Figure 10. Expanded Plot of Reflection Coefficient
Ma?nitude vs. Normalized Frequency for
|&

(L

< 0.707. . ]
Vrand C have opposite signs.)
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Figure 11. Expanded Plot of Reflection Coefficient
; Magnitude vs. Normalized Frequency for
IE? > 0.707.
(L and C have opposite signs.)
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transmission lihe, with?the‘inductaﬁce elements of the
two-port network in Fig@re’z being eithér absent or having
wvery small values. Such was the case in ref. ( 55.. Under
these circumstances it is difficult to employ Figures 4
'through 11 to assess thé importance of the obstacle, since
the ﬁormalized frequencg 2] approa&hes zero and the
normalized impedance apﬁroaches either zero or infinity
at the same time. | | |

To consider fhisiqaée, the load impedance ét A-A"
for zero inductance can:be written directly from Equation (2)
as | |

Z ; o ’

2,(8) = SepsF T | @
which immediately givesja réfiectiéh coéffiéient from
Equation (1) as |

sCZc

p(s) = - gfﬁ;;jrji 7 ' (9)
j

Defining a new normalized complex frequency s, as

Sn = SCZC, ' - . V» ’ ; . . (10)

! . ¥

the reflection coefficient becomes

o (s) =% - (11)

22
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In a similar fashion, if the obstacle presents -
only an inductive discontinuity, the impedance at A-A' is

Z.,(s) =2  + 2sL | (12)

1, (

and the reflection coefficiént becomes

s, = St | | (14)

' Notiée that the magnitude of o frém Equatiolns (11)
or (13) is not dependent on the sign of L or C. Moreover, .
the magnitudes of Equations (11) and (13) are identidal.
Henée, only one plot of this simple function is presented
in Figure 12.

As an example of the use of thesekcurves; éuppose‘that

a transmission line with a characteriétic impédance
Zc = 100 ohms passes near a petturbing obstacle. If the
values of inductance and capacitance are found to be

L = 2.SXIO—9 henrys and C = 6x10_12‘farads from the

solution of a particular canonical problem, the normalized

23
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Figure 12. Plot of Reflection Coefficient Magnitude
vs. Normalized Frequency for Inductive
or Capacitive Discontinuity.
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impedance & ‘bhecomes
_ L 1 _ '
£ =7 7~ .204 | _ (15)

.and the normalized complex frequency p becomes

p=vIC s = 1.225x107 10  (16)

In looking at the imaginary part of the normalized frequency,

(ise., p = © + 3j }, we have

denoted by w
norm norm

norm

o o= 1.225x1070 u - (17)

If ohe assumes that fhé effécts of a reflection coef-
ficient maénitude of less than 0.1 can be safely‘ignoréd in the
analysis using the transmission line médel,'it is then
possible to determine the freguency range over which this
approximation is wvalid. For'example, from Figure 6 it is
noted that for & =0.2, |p| 4is less than O;l for the
normalized frequency W, less than about 0.05 . Hence,

for radian frequencies w such that

w < 93 = 4.08x10° rad/sec
1.225%10 '

25



or frequencies ' £ so that

£ < 64.9 megahertz
the effects of the line;perturbaﬁion can be ignored. Above
this frequency, of course, the effecté become more pronouhced'

and the overall transmission line model should then include.r

the equivalent tee circuit.

26




SECTION III

CONSIDERATIONS FOR PERIODICALLY LOADED TRANSMISSION LINES

In the last section, the reflection coefficient for a
single equivalent tee network on an infinite transmission
line was considered. It was suggested that if the reflection
coefficient were sufficiently small,'the effects of the net-
work in question could be neglected. This analysis, howevér,
was based on the assumption'fhat the line to the right of
the network was infinite and uniform.

_As has been noted in ref. (2), aircraft cablés often
see periodic perturbations along their lengths. Mutuél
interaction between two édjacent line perturbétions can
cause a substantial difference in line behavior from the
single perturbation case. Hence, lines with ﬁeriodicélly
spaced discontinuities should be treated withscare.'

Ref. (8) has investigated the behavidr of infiﬂitely
16ng, periodicaliy loaded transmission lines using Floquet's
theorem. Various relations for the propagation'constant,'
pass and stop bands, as well as phase and group velocities"
were developed. The use of the above approach suffers from
a number of difficulties, however. ' 1In the actual problem,
one is interested in finite lines, nbt infinite‘ones; More-
over, it is not usually required to determine the line

voltage or current at a point on the transmission line, but

27.,



rather, at the load endfof the line. This cannot be computed‘

using the Floquet theorem approach. 1In addition, the impact
of periodic loading on Fhe behavior of the transient

results is not immediately obvious from the infinite line
results. |

This section investigates the effect of periodic

loading on a finite length of transmission line, and compares '

i
t

the results, when possible, to those obtained from»Floéuet's_

theorem.

Considerra transmission line of total length L,
characteristic impedance zc' and propagation constant .y.
At N points aldng the rransmission line, there are
perturbations in the line, and their effects are'represented
by a series ofllgmped paiémeter tee networks, as shown
in Figure 13. These 1ine;pertﬁrbations are-assumed to be
at distance % apart, ané the phy51cal size of the pertur-
bation is assumed to be smali compared to 2._ Due to the.
perlod101ty of the line loadlng, the entire line may be
thought of as.con51st1ng of N cascaded fundamental
sections of line, as shown in Figure 13h, plus a load'end
source section which are uniform lines of lengths 2L~
and zs respectively. | |

In this manner, the entire line may be represented

as shown in Figure l3c,_With the condition

. 28
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Figure 13. Geometry of the Finite, Periodically
Loaded Transmission ILine
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being enforced.

(18)

We are intereste& in computing the transient voltage

induced across the load impedance ZL. For convenience,

we will assume that thegsource voltage is a step function

in time occurring at t = 0. To obtain this transient

result, we will first obtain a time harmonic expression

for the load voltage (eéMtr
later construct the timérdomain
Transform (FFT) methods; |
The analysis of %-numbér
which are cascaded togeéﬁer (or
port network) is faciliﬁated by
mission) paraméteps (ref.ilo).
network in Figure l4a,tﬁe'chéin
be used to express .Vl fand Il

as

30

time .dependence assumed) and

result uSing Fast Fourier

of transmission 1ines 

for that matter, anthwo-
usiﬁé the chain (or’tfané_
Considerinq}é linear.two;port

parameters A, B,VC, D,méy

in terms of- V? and I2

(19)




For two networks connected, as in Figure 14b, the V-I

relationship is given by the product of two matrices as

vy _ .= Vs
|7 - (20)
1 : 2
where El is the matrix for the first network.given by
T o= Al Bl
| = o D . (21)
1 1

and ?2 is given by

el
I

R ' . " (22)

‘The fundamental section which comprises the trans-
mission line can be viewed as consisting of two parts,
as illustrated in Figure 15. The first is a uniform trans-
mission line of length & and the second is tﬁe tee
network.

From simple transmission line theory (ref. 11), the

transmission matrix for a line of length & is given by -

31
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Figure 15. Fundamebtal Section for Periodic
Transmission Line. -
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cosh(y2) . 2, sinhl(yy)

1= (23)

g; sinh(yg) cosh (yg)
o

il
il

where vy is the propagation constant of the line.
Similarly, simple circuit analysis applied to the
equivalent "T" circuit representing the discontinuity

gives the following transmission matrix:

[z, | . -
1+ I, 1 (2,2, + 2,25 + Z,2,)

T o= o (24)
- 3 3 -

Following Equation (20), the fundamental section of the
periodic line can now be described by the transmission

- matrix, TS , where

which when expanded out, becomes

33



( 7 7 | |
cosh (v£) 1+§-1) + 32 sinh (v2) cosh(yt) (5.2 2*2173+7 3,) @
C 43 3 . 3
S 2,
+ 72 _ sinh(y%) [l -+
o ‘ Z3
T ={ |
7. +7 ﬁ . .
371 _. . cosh.(vyg) sinh(Y%) .
sinh(y2) + — e (2,2,%8,%,47,2 )
Z3 Zo :»Z3 23 Zo 172 7173 3
..( . 22 B N
+ cosh(yg) {1 + T
3

(25)

Using this last expression for the transmission through

a single fundamental section, the transmission matrix for

. the entire N section transmission line is given by

'-(2’6)""

where TR is the transmission line matrix for the line of

lengtﬁ ES and is given by Eqdation (23) with . g = RS'

Similarly, ?L is the transm1351on matrlx for the llne of

length 2%, . Denoting the individual- elements of the total

transmission matrix TT, as: AT ,BT , C and DT ’ the

T

v-I relationship for the entire line is then given by

34



°1=f F Tyl (@

To Cr Do il Tn

At the load, we have the relation that

vy = -ZL I (28)
where the minus sign occurs due to our choice of the
direction of current flow. Similarly, at the source end
of the line, the relationship

Vg = V_ + Zg I | (29)

holds.
Substituting these last two equations into Equation (27),

we can solve for the load voltage ’VL as

v, = ZL VS ' (30)
'L ZLAT + BT + ZS (ZLCT + DT) ‘ :

This expression can be easily evaluated for a large number

" of frequencies by first performing the chain of matrix
multiplications indicated by Equation (26) and then obtaining
the parameters Aq,, By 'CT , and Dipe The time-dependent

voltage vL(t) 'is then obtained by Fourier inversion. .

35



As an example of the effects of periodic loading on

finite transmission linés, a siﬁpie teeé;etwork modél of a
cable clamp was used to;represent the periodic perturba-
tions on the transmissibn_line. The,actual line geometry
was that illustrated in‘Figufe 13b, with the lengths |

2 and zL set to zerb.

S -
For this example,fthe series impedance elements
Z, and 2, were chosen to be inductors of 1.0x1072 ‘ -
henrys each, and the shpnt impedance element, 23 , was a

capacitor of 9.7x107 12

~farads. For this case, the unper-
turbed transmission liné characteristic impedance was assumed
to be 120 ohms, a value?which is consistent with the'diménf

sions of the transmissibn line passiﬁg through the cable

clamp. It was assumed ﬁhaﬁ thefe was a 0.4 meter separation
between clamps, SO thaﬁ the fundamental section parameters,

as shown in Figure 15, take on the following valuesi .

Z. = 120 (ohms)

Y==jw/3X108 (meter 1)

£ = .4 (meter) - 7

2, = 2, = ju 1.0x107°  (ohms)
z, = 1./(ij9.7%10"12) (ohms)

It was assumed that thé source and load impedances of the
transmission line, ZS; and ZL_' were'equal to'the line

impedance.
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Figure 16 shows the magnigude of the load voltage
vy as a function of frequency for varibus numbers of cable
clamps. This represents the delta function spectrum of
the load voltage, since the excitation voltage VS was
taken to be unity for all frequencies.

For N =0 (i.e., no cable clamps present), it is
seen that the load response is constant in frequency,
wifh a value of 0.5 times the source voltage. As the |
number of line perturbations increases, it is apparent'
that distinct paés and stop bands begin to form.

Equations (29) of ref. ( 8) provides a transcendental
equation for the pass and stoé band frequenéies for the
infinite transmission line. These frequency bands are |
illustrated on Figure 16 for comparison. As may be noted, |
the pass-stop band structﬁre begins to develop with only
two perturbations on the line, and with 10 perturbétions,
the pass-stop frequencies agree very well with the infinite
case.

One difficulﬁy with the infinite line analysis is
that théere is no information éasily obtainable regarding

the transient response of the loaded transmission line.

Figure 17 shows the computed normalized time domain load

voltage for a step-excited source and various numbers of

37
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cable clamps. In each cese, the origin rt = 0 hes been

shifted by a time corresbonding to the wave transit time

from the source to the load through a transgission line

of total length L = Ng. Thus, 1f the effect of the

clamps were negligibly s@all, each of the curves Qould

turn on at t = 0. The cable clamps, however, introduce

an additional time delay{in the signal.arrival, as is

seen from Figure l7. As hore sections are considered this

time delay grows, but the resulting peak value of the load

voltage does not changelradrcallj. However, the response rise

timebecomes slower as the numbers of sections are increased.
In Figures 16and 17, as more cable clamgs

were considered, the toral transmission line beceme longer.

It is of some interest éé consider a fixed length of line

and observe the effects of 1ncrea51ng the number of line

perturbations. Flgure518a.through18e show the delta functlon

magnitude spectrum and step fgnction transient résponse

for the load voltage acress a line of total length

L = 8 meters. As before, the characteristic impedance

was chosen to be 120 oh&s['to be consistent with the eable

clamp dimensions, and tée line was termrﬁated in this impe—i.

dance et both ends. | :
For no line perturbation, the voltage magnitude

spectrum is a constaht or_vqlue 0.5 and the step response

is a step occurring at t = 0. These results are not
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presented due to their simplicity. Figure 18a treats

the case of a single clamp on the trénsmission line.

The clamp in this case is located at the load end of

.the line. The effect of this clamp on the load voltage
shows up in a high frequency roll-off of the voltage
spectrum, and a decrease in the rise time of the transient
voltage. For the particular values 0f impedance eleﬁehts
for the clamp model, it is seen that the effect of the
clamp on the load voltage ié not particularly significant.

Figures 18b-e showthe impluse spectrum and step
response of the load voltage for various numbérs of identical
clamps épaced equally on the transmission line of 8 meters |
in length. These cases are considerably different from
the case of a éingle‘ciémﬁ, due to the reflection of
waves within the various peaks éccurring in the.transient
- response, as well as create the pass-stop band structure
in the spectrum.

In some circumstances, a set of obstacles near the
transmission line may present oﬁly a strong capacitive
discontinuity to waves propagating on the line. 1In theée
cases, we may neglect the inductive eiements iﬁ the Tee
model of the obstacle and treat the line with periodic
capacitive loading. Such would be.the case of a line

passing over a series of thin ribs protruding from the
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‘ground,planéi " Figures 19a through 19e show the effects of
such periodic capacitance lcading on a typical transmission
line.

For this example, a transmission line of character-
istic impedance Z, = 1009 and length L = 8 meters was
loaded with 10 equally spaced capacitances. The line was
matched at both the input and output ends and the load voltage
impulse spectrum and step response was computed for various
values of capacitive loading. For the transmission line
under consideration, thellinecapacitanceFer unit length C'l

10 farads/meter, thus giving a total capacitance

of Cg = C'xQ = 2.66X10_10' farads for each section of

was 3.33><10~

transmission line between the periodic capacitances. Values
of the capacitive“lqadipg were C/Cs = 0.00375, 0.0375,. 0.1, 0.1875,
and 0.375, where C repreéents the capacitance of the rib.

As may be noted in‘FigurejiL the presence-of_ﬁhg
capacitance discontinuities has a marked effect on the
spectrum of the load voltage. However, for ﬁhe transient
response, the major effect of the periodi¢ loading is in
a time deiay caused by é slowiﬁg of the group velocity on
the transmission line. The peak 6f the transient voltage wave-
form across the load at times exceeds the voltage‘pre~
dicted without considering the capacitances in the lihe.

This over-voltage, however is seen to be only about 25%

of the peak value in the worst case, and may not be
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and step excited time response (ii) for an
g-meter, 100 ohm, transmission line with 10
capacitive discontinuities of C/CS= 0.375.

52



particularly important if only order of magnitude responses

are desired. Figure 20 shows the difference between the péakl
voltage with the capacitancé présent, and  the voltaage without
capacitance, expressed as a percentage of the latter, as a |
function of the normalized discontinui ty capacitance C/CS.
However, as observed in Figure 19, the risé time of the voltage
response increases for larger discontinuity capacitance.

It is difficult to draw many general conclusions from
this study of a particular line perturbation other than to
say that care should be exer;ised in defining the electrical
model for internal EMP calculations. Periodically spaced
obstacles can have a marked effect on transmission'line
behavior and may be required in a model if accurate results
are desired The technlques discussed here can be ea51ly
utlllzed in a transmission line analysis for . .treating a
specific case.

From an examinationbof the computed results in the
previous figures, it is appafenﬁ that there is a much more
pronounced effect in the frequency domain response than in
the transient results. " This is because the step fpndtion-:
voltage driving the transmission liﬁe has a rather large
bandwidth, encompassing many péss and stop bands. The effect§
of £he pass-stop band nature are therefore somewhat masked
through the Fourier transform process in going tdlthe time
domain. '

If one assumeé a more realistic voltage waveform,
such as a damped sine wave, which would correSpohd to the

excitation provided by skin currents and charges induced on
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the exterior of an aircraft, it is expected tha£ the pass-
stop band nature of the frequency respdnse would be much more
important for the transient response. This would be
especially true if the fundamental frequency of oscillation
of the excitation occurred in the region of a stop band.

In that case, very little EMP energy would be. transmitted

to the load. Such effects must be carefully considered

in an EMP system assessment.
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 SECTION IV
RELATIONSHIPS BETWEEN SINGLE~WIRE TRANSMISSION LINE

CURRENT AND THE BULK CURRENT ON A MULTICONDUCTOR LINE

An often used technigque for analyzing internal inﬁér*
action problems is to médel multiconductor transmiséion lines
by single wire transmission lines. Not only are the formﬁ—
lation and analysis ofiproblems made simpler, but the computer
programs needed to obtéin numerical results are relatively
simple to write and théy execute quickly;

In performing such a simplified analysis, it is
desirable to determinefthe appropriate single ling paréméters
in terms of thfzparameﬁersdefining the multiconductor line.
One way.to do this is io require that the curren£ on the
single wire transmissign line have similar behavior to the
bulk or total current fldWiné on a ﬁulticonductor.line. To
assufe this requiremegt, it is necessary to choose an
optimum load impedancé and charactéristic line impedance'for
the single wire model, using knowledge of the multiconductor
line. An alﬁernate wa§ is to equate the single-wire voltage
+to the averaged quantity of the voltages on the multiconductor
line. However, this ﬁatter method is not studied here.

| Consider an N fwire multiconductor transmiséion line,
as shown in Figure 2la. At z = 0 there is a generalized
termination impedancefmatrix ?s and at z = %, there is
a similar impedance Ez'» At an arbitrary position along
the line, there are ﬁ voltages relative to the reference

conductor (the oth wire) which are represented in vector
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form as V(z) . Similarly, the wire currents are denoted '

as I(z). Both T and V are complex N-vectors. It is

‘desired to represent the behavior oﬁ the bulk cuirent on

~this multiconductor traﬁsmission line by the single

line illustrated in Figﬁre 21b with éppropriate.choi;es of

z,, 2, and Z_. ; , | o ; ‘
For the multicondgctor transmission iine, it is well

known that the spatial éependence of T and ¥ are des-

cribed by a set of 2N transmission line equations given

in ref. (12) as

dl T(2) T(z)
2 \T(2) ’ T(z) -

where é is the complex frequency, 0 is an NxN zero

ol
el

0l
el

matrix, L and ? are respectively”the per-unit-length
inductance matrix and the per-unit-length capacitance
matrix, both being NxN: in dimension.

Equation (31) must be solved subject to the appropriate
boundary conditions at 2 =10 and z = ¢. For the example

of Figure 21, it is seen that these conditions are

V(0) = VS - ?s T?O) | (at z = 0) : (32a)

and A 7
7, T(1) | (at z

2} (32b)

V()
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‘Equation (31) can be decoupled to yield two second-

order differential equations for I and V as

g—% =s?TT T(z) (33)
dz

and
dzv 2::._
S5 =s°LC V() «(34)
az

As discussed by Liu (ref. 13), the product CT
in Equation (33) is often assumed to be a diagonal matrix

of the form

(35)

all

= L
2

Ol
l

where U 4is the NxN unity maﬁfix and v ié the propa-
éation velocity of waves on the line. This special case
occurs for wires in a homogeneous médium.

For a multiconductor transmission line in an 1nhomo~
geneous dlelectrlc region, such as a bundle of wires each
having a dielectric insulation sheath, it is possible to
have multiple wave velocities on the transmission line. 1In
that case, moreover;'the product CL is not a simple

diagonal matrix as in Equation (35).
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As discussed in a series of péperé by Paul (refs. 14,15,16),

=

it is possible to diagonalize € through the use of a : .
d

L
nonsingular NxXN matrix denoted by T, so that

(36)

oY
il
=1

where vy is an nXn éiagonal matfix witﬁ.real positive
and nonzer¢ scalars yi? on the diagonai and zero for the
off~diagonal elements.

As discussed by Paul (ref: 14), the matrix T is easily

constructed from the solutions to the eigenvalue equation '
- ]

5= v F, ,, | N (37

ol
£

where Ei is the current eigenvector associated with the

eigenvalue yi . The matrix T is then constriucted with
various columns being the eigenvector, as

= (G Fpeendy) " (38)

=

It is to be noted that the current eigenvectors, 31 ’ are’
not functions of position aldng the line. Physically, tﬁese
correspond to the distribution of currents on each wire
'which will propagate together with a p;opagation constant

Yi
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By introducing a change of variables in the line

current as
I(z) =T I_(2) (39)

where Tﬁ(z) represents modal currents, the wave equation

for the currents becomes

I
0n
=
Qf

il
=T
]l

(40)
or, upon using Equationv(36)

2 —

a’T (z)  _

d22

This equation represents N decoupled scalar equations
since the matrix 72 is diagonalized. The solution to
Equation (41l) can be written by'inspection as

T (z) = e Y2 gt 4 Y% 5= | (42)

where o and a- represent the magnitudes of forward

and backward propagating modes. and the term e'? is a

= Y2
NXN diagonal matrix with elements evf i = e . and
. 14
e’? . =0 for i, j=1,...N and i#j.
1,3
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From Equations (39) and (42), the line current can be

'expressed directly as

T(z) =% (e Y2 gt + 2257 (43)

This last egquation can be regarded as the superposition

of two‘traveling waves, as
T(z) = TH(z) + T7(2) (44)

where the superscriptsf + and - indicate the propagation
direction in z.
The voltage on the line can now be found from a

portion of Equation (31) as

dI(z)
dz

- s E¥@ | (85)

Using Equation (43) we. obtain

?‘17[?(e’Yz-a* - e

]

Of
<
N

V(z)

]
n =

54)] - (46)

and upon defining a characteristic impedance matrix fc as

(47)

palf
It
ol
}
[}
=1
ni=|
+3
i
t—t
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the line voltage becomes

T(z) = 2 ?(e-—Y_Z at - &% ) | | (48)

or, in terms of forward and backward tfaveling voltage waves,

V(z) = Vi(z) + V7 (2) | (49)

In comparing Equations (43) and (48), it is noted
‘that the well-known relationship between the forward and
backward propagating line voltage and current waves exists:

VH(z) = 7_ 1T (z) (50a)

(50b)

The unknown modal coefficients ot and &~ must be

determined through the use of the boundary conditions of

Equations (32a) and (32b).

By defining modal current reflection matrices,

P =Tt (@, +T)7h (T, -F)FT  (atz=o0) (51
and ‘
5, =71 @ +Z)v 3@ -FT) 7 £z = 52
Py, 3 c ) ! (at z = 2)  (52)
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+

solutions for ot and a- can be.obtained and substituted

into Equation (43) to yield the following expression for

the current on the multiconductor line

= YR = YR -l
Pg e B )

Y (z=2) = -yL
Y( ) 50 Y

al

) (

e
Z +z2.) -V (53)

The reflection matrix, p , provides information
on how a particular mode, say the ith mode, reflects

and excites other modes which propagate away from the load.

For example, the element p;, ; is the self-reflection

r

coefficient for the ith mode, and Ei,j is the coefficienf
for determining the stfength of the jth réflected mode due
th '

to the 1 incident mode.
As can be seen f:om Egquation (52), if the multiconductor
line is matched (i.e.,:2;=§é==?c),'the reflection matrix

is a zero matrix. Under this assumption, the relation for
the transmission line current from Equation (53) simplifies
considerably to-yield
T(z) =T e /2T v . (54)
For most EMP analysis probléms, however, it is not poésiblé
to assume a perfectly matched multlconductor line because,

as discussed in ref. (17),matched 1mpedance load consists not
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'only of impedance elements from each wire to ground (the
diaéonal terms in ?L) but also'of impedances between the
various wires (the off diagonal terms in ?L);

The total or "bulk" current on the multiconductor

transmission line can be obtained by addinag all of the

individual wire currents found from Equation (53) as

IB(z) = }: I(z), ' (55)

th

Here, I(z)i represents the 1 element of the line

current vector TI(z). As may be noted from Equatibn (53);
this is a very complicated function of the terminating’

impedances ZS and Z, .
A similar scalar analysis of the transmission line of
Figure 21b leads to the following equation for the single

line current:

e~ YZ _ 0, oY (2=22) v,
I(z) = T ' e_zyi AR Zs (56)
pl ps c
where
.2 Z,ﬁ + Z.c v . .
and

65



- Zs Zc R - o - - S
o, = F2rsS | o . (58)
s c : ) ‘ ’ .

As may be noted, this is simply the scalar version of
Equation (53}). 7

The best choice of the single iine loads Z_ and 13z,
so that the current Ifz)_ approximates IB(Z) iS'hOt at
all obvious. It is possible, however, to make a few simpli-
fications of Equation (53) to gain insight into the modal
nature of the multiconductor current.

A close examination of the current eigenmodes $i of
typical multiconductor cables (i.e., the columns of the T
matrix) shows that thereris generally one mode of the system
which is éredominatelf a bulk mode and the rest of the modes

are predominately differential. Thus, in the use of

Equation (55) to defiQe the bulk current, it is often found

that only one column of T contributes significantly to the
bulk current.

It is often conVenient to make the assumption that all
modes propagate with the same velocity. Recent studies
{ref. 18) indicate thét thereffeété of multivelocity modes
dre not extremely impdrtant in determining the transient
response of a load for a step waveform. FOr‘others;'it may
be important. This aésumption is expressed in Eéﬁation |

(35) and implies that the eigenvalues of the matrix CL

66




are all the same. Thus, the exponential matrix e‘Yz in
Equation (53) becomes e Y2 T and the line current may be

simplified somewhat as

T(z) = T(e V2 T - eY(Z-ZQ) ?L)(? - e 2vk ) )"l

2—'[—‘

X

17 +zZ)7t T (59)

Since the eigenvalues of C L are identical for this
case, there is considerable freedom in choosing the trans-
formation matrix T. The main requirement is, of course,

that the eigenvectors of CL be linearly independént. One

particularly common choice for T is the identity matrix,

U . This implies that for the jth moda, there is a unit

current on the ith wire with zero currents on all others.

With this choice of T, Equation (59) for the line

current reduces to

(&"YZ T - oY (z=238) 5 (@ - e"2Y = = y" L3

L +Z)t T

I(z) = Ps PL, c s s
. (60)
which is the.samevas Equation (8) of ref. (13). Because each
mode contributes to the total or buik current, it.is necessafy
to employ Equation (55) to calculate L
It is possible, however, to simplify the analysis some-
what by choosing a different form of T. Consider a trans-

formation matrix of the form
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[ R TR B
1 1 0... 0
r={l 0 1.0 0 (61)
1 0 o0.. 0
_l 0 Q»..HO 14

Note that the first méde (the first column of T) is a pure
bulk mode, and the otﬁer modes giye no contribution to the
bulk current. It may be easily demonstrated that these modes
are linearly independent, and thus will correctly represent
the current flowing oﬁ the multiconductor line.

From Eguation (59), it is possible to identify various
mechanisms which excite the different modes on the trans-
mission line. The first, and most obvious, is the source
term VS. As shown in Figure 21a, VS represents n
voltage sources at one end of the transmission line.

One could, by avclever choice of thg elements of GS,
determine an excitation which excites only the bulk mode.

This would be the st which satisfies the equation

(62)

|

)

I
e D O

where o 1s an arbirary constant. Solving for Vé r we

find

(63)

<
1}
Q
X
Q
+
¥
ey
e O
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and upon performing the multiplication

Of the T matrix
given in Equation (61) and the vector [8 ,
VS may be expressed as
1
_ - — 1
VS = oc(Zc + ZS) % (64)
or, equivalently, in component form as
N .
T =a Z z + 7 ' (65)
Sn C.‘ . . >
i i51 i, Si,j

Thus, when the N wire voltage sources satisfy
Equation (65), only the bulkmode will be excited. For a
realistic cable, however, there is no way to assure that .
the excitation will be of this type. It should be noted
in passing that a similar develﬁpment can be carriea out
for current éources'exciﬁing the multiconductor line. An
incident electromagnetic field on the transmission line will
induce both voltage and current sources‘along the line and,
hence, béth types of sources must be considered.

A second mechanism for the excitation of the various

and ?s . As has been discussed, the i,jth element of

? indicates the magnitude of the jth reflected mode

excited by the ith mode incident on a load. With the

modes 1s through the reflection coefficient matrices,
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choice of T in Equation (61), the first row of the T?Fmétrix
indicates the excitaticn of other differential modes due to
the bulk mode incidentvon the load.

If is.a diagonal matrix, then there is no mode

hell

conversion at the load. An incident bulk mode would be
reflected as a bulk moée. If the excitation were purely
bulk in nature, as excited by the voltage of Equation (65),
then only a bulk wave @oul@ exist on the line. 1In examining
Equation (52), it is e&ident that p_ will be a diagonal |

2
@, - Z) is the

matrix if the matrix (?2 + ?c)

idéntity matrix. This will happen if ?k equals zero
(all lineé shorted together'and_grounded)f Gehgrally,‘

however, it is to be expected that the reflection coef-

ficient is not a diagonal matrix.

There is one inﬁeresting case where p is diagonal,
due to assumed symmetfies in the characteristic impedance
matrix. Supbosé thét;a ﬁulticonductor cable éonsists of
N identical wires which are randomly positioned within
the cable (ref. 19). .If the cable length is sufficiently
long compared with thé distance over which fhe wires'
éoéitibns change inbthe cable, it is possible to then
define the capacitivefcoefficient matrix using only two
numbers: 1) an average capacitance coefficient along the

diagonal, and 2) an average of the off-diagonal .terms.
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With the assumption of a single propagation velocity,
the above conditions lead to a characteristic impedance
matrix which has the elements Zcui. = Zl ' Zc. .= 22

i i 1,7
where Zl and 22 are the two complex impedances which
describe this randomly laid line. If the load impedance
matrix is also diagonal with all impedances the same, then
= = -1

the matrix (ZQ + Z )

o (Z, - 70) also has a diagonally

symmetric form, with all diagonal terms the same, and all
off-diagonal terms equal. The multiplication of this
resulting matrix by T and ﬁ—l, as in Equation (52), then
yieids.a diagonal matrix for o . |

The restrictions places on thebload impedances and
the transmission line geometry for assuring a diagonal
reflection coefficient are rather severe, so, in the actual
case, it is to be expected that there will be mode conver-
sion at the loads of the multiconductor line. 1In order to
attempt to model the bulk current on a multiconductor line
by asingléline; it is useful to extract the buik—bulk |
mode reflection coefficient ffom the ? matrix and then
require that the single line model have the same reflection
coefficient at the load. |

For the special choice of the eigenmbdés on the

transmission line and the resulting T matrix in Equation

(61), the bulk mode reflection coefficient at a load is
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given by the i =1, 3 = 1 element of the reflection

coefficient matrix, 52 . Denoting this reflection coef-

ficient as and equating to the single line

0
21,1

reflection coefficient of Equation (57), we obtain

Zq
2 ZQ, + ZC Q'l,l . ]

where Z2 and Zc are the load impedance and characteristic

impedance of the single wire line. This last equation may

be solved for the single line load impedance as

7 ='z ~ , ' (67)

With Equation (67)7the load iﬁpedanc; of the éinglérr
wire transmission linezis found in terms of the load
and characteristic’impédances of a multiconductor trans-
mission line. It is still necessary, however,:to éetermihé
an appropriate value for the singie line characteristic

impedance, 2, .

On the single wire transmission line, the charac-

teristic impedance relates voltage and current as

vz = 3, 17 (2) (68)
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where the.(+) sign refers to the forward propagating waves
on the line. Since we wish the single line current I(z)
to behave similarly to the bulk current on the multi-
conductor line, IB(x) , we can equate the forward propa-

gating components as

N ‘
+ _ _ + :
I*(z) = I5(2) = ) T2 (69)
i=1
where Iz(z) represents ‘the individual forward propa-
gating components of the current on the ith wire.

Similarly, we can define an appropriate single 1line
forward propagating voltage, V+(x) , by averaging over
the elements of the multiconductor line voltage, VT (z),

as

N

+ _ 1 X :

vi2) = ¢ ) Vi@ (70)
i=1

with the forward propagating single line voltages
and current thus defined, the single line characteristic

impedance may be defined as

N
N D) vi(z)
_Vi(z) _ i=1
I (z)
N Y 1t(2)
i=1 *
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From Equations (43)'and (48), the forward propagaﬁing

nulticonductor voltages and currents can

THiz) = _ T & V% ot

and

!
H)|
o

i
<
I
+

TF (z)

Thus, Equation (71) formally becomes

N —_—
= ez -'YZ —+
Egl[zc eE o ]i

i

2 =
C

N .
N Z [T " Y2 E‘f']i
i=1 .

Note that this definition is rather undesirable,

is a dependence on the line position 2z, as well as the

+

be identified as

{72a)

(72b)

(73)

since there

mode excitation, af . : Ideally, a characteristic impedance

should not depend upon.these parameters.

Considerable simplification results if it is possible

to identify one mode which is the predominant bulk mode.

Letting El be the bulk mode and yi be its corresponding

eigenvalue, Equation (73) can be simplified to give

N : »
—_— _le —
(_Z Iz, ¢1]i) e [5+1,

c = 7 N .z
N(_Z [Elv]i)e Yoy
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since the sums of the other current modes_ZEj and voltage

P 1 —

modes Z_ ¢ are very small, because, by definition, they

J
are differential modes which do not contribute to the bulk
current.

In this last equation, it is now possible to eliminate
the mode excitation term, E* and thé exponential propa-

gation term, since they are both scalars, to yield the

following equation for the equivalent single line impedance:

'FtVJz
©-

[z 1,
c 171 .
g = 1=l | (75)

C N
N [F]
i=1

i

If, as discussed previously, it is aséumed that only_
single velocity waves propagate on the line, so that the
current eigenmodes can be chosen to have the form given
by Equation (61), the bulk mode 51 will then be a
constant vector. If the characteristic impedance matrix

has the form Z, . = Z4 and Z, =23, which is a
i,1 1,]
consequence of a random lay cable configuration, the single

line.characteristic impedance can then be expressed as

Zl + (N.,—l) Z2

c N (76)

which is simply the average of a row (or a column) of the

multiconductor characteristic impedance matrix, Zc.
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Il

As an example of é'caiculation;usiﬁg this buik currehtp
concept, consider a seven-wire tranémission}jxmahaving a |
cross section shown in Figure 22. For this linekconfigura~
tion, the capacitive coefficient matrix © as defined in‘r

refs. (12) and (13) and calculated.by Chang (ref. 20)

takes the following form:

5.54 -.91 -.91 -.91 -.91 -.91 '-.91.“1

-.91 4.83 =-1.08 =-.02 =-.003 -.02 -.08
-.91 -1.08 4.83 -1.08 =-.02 =.003 =-.02
1071 x}-.o1  -.02 -1.08 4.83 -1.08 -.02 -.003| farads/
' . meter
-.91 -.003 -.02 -1.08 4.83 -1.08 -.02

~.91 -.02 -.003 -.02.-1.08 4.83 ~1.08

-.91 -.08 -.02 -.003 -.02 -1.08 4.83 |

The inductance matrix © is calculated from the

1 via Equation (35) and assuming a propagation

8

inverse of C

velocity of Vv =c = 3x10° meters/sec, the L matrix

takes on the form:
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Dielectric Insulation
Radius r_ =1

o .
e= 2,0

Wire Radius ri = .2

."

\\\Reference Conductor

Radius R = 10

Figure 22. Cross Section of Seven Wire
Transmission Line
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L

3.04 1.05 1.05 1.05 1.05 1.05 1.05
1.05 2.93 .97 .53 .44 .53 .97
1.05 .97  2.93 .97 .53 .44 .53
1077x |1.05 .53 .97  2.93 .97 .53 . .44| henrys/
meter
1.05 .44 .53 .97  2.93 .97 .53
1.05 .53 .44 .53 .97  2.93 .97
1.05 .97 .53 .44 .53 .97 2.93

Note that the propagation velocity will be sightly slowei
than the velocity of light in free space due to the dielectric
present around the wires. This effect, however, is neglected
in this illustrative exa@ple.

The eigenvalues of 6 I thus become

yi = (s/3><108)2

for i =1 to 7. Using the currentyéigenmodes defined by
Egquation (61); and assuﬁing the load impedance to consist
of 100 ohms from each wire to ground (i.e., Z, = 100 0),
Equation (52) may be ﬁséd to find tﬁe reflection

matrix ‘?2. In this calculation, the characteristic impedance |

I

matrix 2 is found from Equation (47) to have the form
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[or.2 31,5 315 315 31.5  31.5  31.5
31.5  88.0 29.3 15.9 13.3 15.9  29.3
31.5 29.3 88.0 29.3 15.9 13.3 15.9

31.5 15.9 29.3 88.0 29.3 - 15.9 13.3 ohms

Sl
i

31.5 13.3 15.9 29.3 88.0 29.3 15.9

31.5 15.9 13.3 15.9 29.3° 88.0 29.3

31.5 29.3 15.9 13.3 15.9 29.3 88.0

The result of these relatively simple calculations is

the following reflection coefficient matrix at the load

[-.39 .12 .12 .12 .12 .12 .12

-.01 .23 -.04 .06 .07 .06 =-.04

~.01 -.04 .23 -.04 .06 .07 .06

3@ = -.01 .06 -.04 .23 -.04 .06 .07

-.01 .07 .06 -.04 .23 ~-.04 .06

-.01 .06 .07 .06 -.04 .23 -.04

-.01 -.04 .06 .07 .06 -.04 23

Note that the magnitude of the bulk-bulk reflection
is substantially larger than the other off

p
diagonal terms in op .

 coefficient
In addition, there is a high degree of
symmetry in the matrix ?2'[ although it is not'completely sym-
metric about thé diagonal. 'Had another set of load impedances
been chosen which consisted of a different impedance loading each

wire, the symmetries found in ?2 would be less pronounced.
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coefficient, it is interesting to compute

.Since we-aie interested in the bulk-bulk reflection

under the

assumptions that the multiconductor line randomly changes

the individual wire locations.

Averaging together the

diagonal terms in the per-unit-length C matrix and perform-

ing a similar average: for the off-diagonal terms yields the

following capacitive coefficient matrix

10

Ol
"

-11
X

[4.93
~.57
-.57
-.57
-.57

-.57

~.57

.57
4.93
-.57
-.57
-.57

_057

.57

-.57
-.57

4.93

-.57
-.57

~.57

-.57

-.57

-.57

-.57

-.57
-.57
~.57
-.57
4.93
~.57

-.57

-.57
~.57
~;57
~.57
-.57
4.93

-.57.

L

~.57
~.57
-.57
-.57
-.57

-.57

4.93

i

and the following chaiacteristic impedance'matrix:

paif

[53.8
23.2

23.3

=|23.3

23.3

23.3

23.3

23.3
83.8
23.3
23.3
23.3
23.3

23.3

23.3

23.3

83.8

23.3
23.3
23.3

23.3

23.3

23.3

23.3

83.8
23.3
23.3

23.3

23.3
23.3
23.3
23.3
83.8
23.3

23.3

23.3

23.3

23.3

23.3

23.3

83.8

23.3

23.3
23.3
23.3
23.3
23.3
23.3

83.8

farads/ .
meter

ohms

Other types of averaging procedures can also be en%iéioned

for this purpose. A detailed study of the best methoé for

determining the average line properties has yet to be made.
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Those, when combined with the'previous 1008 1load

impedance matfix, yvield the folléwihg»reflection coefficieﬁt

matrix
~.38 ]
~.38 | 0
-.38
o = -.38
92 |
-.38
0 -.38
- -.38
-
Notice that Py is almost identical to that for the
1,1 ‘ : '

controlled lay cable.
Using Equation (76) to define an appropriate single
line impedance, we obtain
2y + (N-1) 2, 53,8 + 6x23.3

Zc = N = 5 = 31.96 ohms

‘Thé.equivalent single line load is then directly computed
from Equation (67) as

1 + pQ

%, = % = 31.96
2 c _
1 QQ

= 14.29 ohms
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These values of Zg

line model to represent bulk current behavior on a multi-

and Z_ are then used in the single

conductor 1line.

As an example of the.behavior of load curfents in the
time domain, the multicbnéuctor line in Eigurev2lé was
assumed to be excited with identicallinevoltages which
had a unit step function time dependence. The transmission
line length was 2 = 1 ﬁeter and both the source and
load impedances were tdkén as - 100 ohms from the wires to
ground. Figure 23 shows the transient behavior of the total
("bulk") current flowing into the load, as evaluated from
Equation (59) and converted to ‘the time dbmain using the
fast Fourier transform [FFT). 7 | 7

A corresponding:calculation was éerformed for thérzw
single'line model usinéithe éharacteristic impedancé and
load impedances defined above. The traﬁsient behavior fof
the single line load current was virtﬁally indisﬁinguishable
from that of the multi§onductor analysis, a fact notréu£¥r

prising in view of the symmetric excitation and loading of

the line.

By changing pnefof more of the load impedances in
?2 , the reflection coefficient for the bulk current,

Py , and the singie line load impedance, Z s will
1,1 /

also change. For six wire loads fixed at 100 ohms and the
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Currenf (mA)

Load

40 -7 T T  | T T ]

30 r

0'  10 20 30 40
“t(ns)

Figure 23. Step Function Response of Total Load
Current of Multiconductor Line with
L = 1 Meter and Source and Load Impe-
dances of 100 Q2 to Ground
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seventh allowed to vary, figure 24.shows the'resulting fefiec-“
ﬁion coefficiént variation. Alsoc plotted is the variation
of the equivalent load impedance. These quantities are
plotted as a function of the load impedance of wire #7,
dencted by Z2 .
7,7 _

It is interesting to compare the transient response
of the bulk current with the single line curfent of the load
for the case of nonsymmetric loading. In Figure 25, this
comparison is made for a load impedance of ZR = 1000¢Q

7,7
on wire 7. The source . 1mpedance remained unchanged at 14.29Q

for the single wire 1lne and ?s = 100 U for the multi-
conductor case. For this case, the effective single'line
impedance from Equatioﬁ (67) is compﬁted to be Z'Q = 16.47Q .
Figure 26 shows similar tesults for a 1@2 load on
wire 7 of the multiconductor 1ine; This corresponds to
Z, = 10.08 for the equivalent load: |
From an examination of these last twoAfigures, it
may be seen that the single line model will predict the bulk
reséonse with an error:of less than 10%. It must be empha-
sized, however, that tﬁese studies were performed with a"step
function excitation of 1ﬂeallzed loads and a hlGh degree of
symmetry built into the ana1y51s throuqh the various assump—
tions employed. Addlt;onal studies with double exponential
and damped sinusoid waveforms should be performed before it is

possible to say with a good degree of certainty what the

confidence levels are in this.apprpach to bulk current modeling.
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Figure 24. Variation of bulk mode reflection coefficient and resulting

gquivalent single line load impedance as a function of the load
impedance on the. seventh wire in the multiconductor bundle. All

other multiconductor load impedances are 100 £ to ground.
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Current (mA)

Load

40

25

15 T

- — v o]
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r_.__-..__r""

Fov s rcvmnc et

Multiconducior

__-_,-SMQk Line

i 1 L 1 1 ! ~L !
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Figure 25. Comparison of Bulk Current and Single Wire

Load Current for case of 1000 £ load on

"~ Wire 7 and 100 Q load on other wires.
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Load Current (mA)
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Figqure 26.

Comparison of Bulk Current and Single
Wire Load Current for case of 1  load
on Wire 7 and 100 & load on other wires.
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SECTION V

" CONCLUSION

This reporthas presénted a number of improvements of
single-~wire transmission line theory for use in EMP internal
interaction calculations. The éase of a tr;nsmission line
perturbation due to a nearby obstacle has been considered
and various curves of the voltage reflection coefficient
on the transmission line have been prezented as a function
of the equivalent line capacitance and inductance of the
obstacle. V

In addition, the effects of multiple loading due to
two or more perturbing obstacles on a transmission line of
finite length have been considered. Good agreement between
the pass and stop bands calculated for this case and those
of an infinite transmission line periodically loaded with
similar obstacles has been observed. Both transient and
time harmonic results for the load current on therpefiodically
loaded, finite length transmission line have been computed
for a typical transmission line having ﬁypical parametexrs.

Finally, we have investigated the possiblity of
modeling the bulk current on a multiconductor transmission
line by using a single—wiré transmission line approximation
and assuming that the total or "bulk" current on the multi~
conductor line has thé same reflection coefficient as does

the current on the single-wire transmission line. Using this
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~approach, it is possible to determine an equivalent single~
line characteristic impedance'and single-line load impedance
for the approximate model. Comparisoﬁs of the bulk currect
response and che single-wire current response for a step
-function excitation‘have been presented and the agreeement
is reasonable. The responses for a damped sine and double

exponential waveform still need to be studied.

89



Ta.

To .

lOl

REFERENCES

Tesche, F.M., et al., "Internal Interaction Analysis:
Topological Concepts and Needed Model Improvements,"

EMP Iiteraction Note Series, Note 248, Alr Force Weapons
Laboratory, Kirtland Alr Force Base, NM, October 1975.

Tesche, F.M., et al., "Evaluation of Present Internal
EMP Interaction Technology: Description of Needed
Tmprovements," AFWL-TR-75-288, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM, October 1975.

Boeing Alircraft Corporation, "Common Mode Model Development

for Complex Cable Systems," Boeing Report D224-10015-4,
June 19, 1973.

Tesche, F.M., and T.K. Liu, "An Electric Model for a
Cable Clamp on a Single Wire Transmission Line," EMP
Interaction Note Series, Note 307, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM, December 1976.

Coen, S., T.K. Liu and F.M. Tesche, "Calculation of the
Equivalent Capacitance of a Rib Near a Single-Wire

Transmission Line," EMP Interaction Note Series, Note 310,
Alr Force Weapons Laboratory, Kirtland Air Force Base,
NM, February 1977. :

Lee, K.S.H.,, and F.C. Yang, "A Wire Passing by a Circular
Aperture in an Infinite Ground Plane," EMP Interaction
Note Series, Note 317, Air Force Weapons Laboratory,
Kirtland Air Force Base, NM, February 1977.

Lam, J., "Equivalent Lumped Parameters for a Bend in a
Two-Wire Transmission Line: Part I. Inductance," EMP
Interaction Note Series, Note 303, Air Force Weapons

‘Laboratory, Kirtland Air Force Base, NM, December 1976.

Lam, J., "Equivalent Lumped Parameters for a Bend in sa
Two-Wire Trangmlssion Line: Part IT. Capacitance," EMP
Interaction Note Series, Note 304, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM, January 1977.

Lam, J., "Propagation Characteristics of a Periodically
Loaded Transmission Line," EMP Interactlon Note Series,
Note 302, Alr Force Weapons Laboratory., Kirtland Ailr
Force Base, NM, December 1976

Ramo, 8., and J. Whinnery, Fields and Waves in Modern
Radio, John Wiley & Sons, New York, 19614,

Seshu, S., and N. Balabanian, Linear Network Analysis
John Wiley & Sons, New York, 1959,

90




C11.

12.

13.

14,

15.

16.

17.

18.

19.

20‘

King, R.W.P., Transmission-Line Theory, Dover, 1965,

Kajfez, D., "Multi~Conductor Transmisslon Lines," EMP
Interaction Note Series, Note 151, Alr Force Weapons -
Laboratory, Kirtland Alr Force Base, NM, June 1972.

Liu, T., "Electromagnetic Coupling between Multiconductor
Transmission Lines in a Homogeneous Medium," EMP Inter-

action Note Series, Note 309, Air Force Weapons Laboratory,

Kirtland Air Force Base, NM, December 1976.

Paul, C.R., "On Uniform Multimode Transmission Lines,"
IEEE Trans., M.T.T., Vol. MTT-21, No. 8, August 1973,
pp. 556-558.

Paul, C.R., "Efficient Numerical Computation of the
Frequency Response of Cables Illuminated by an Electro-
magnetic Field," IEEE Trans. M.T.T., Vol. MTT-52, No. 4,
April 1974, pp. U54-U45T,

Paul, C.R., "Useful Matrix Chain Parameter Identities
for the Analysis of Multiconductor Transmission Lines,"
IEEE Trans, M.T.T., September 1575, pp. 756-760.

Frankel, S., Cable and Multi-Conductor Transmission Line

Analysis, Harry Diamond Laboratories, HDL-TR-091-1, June
1974.

Baum, C.E., T.K. Liu, F.M. Tesche and S.K. Chang,
"Numerical Results for Multlconductor Transmission Line
Networks," EMP Interaction Note Series, Note 322, Air
Foree Weapons Laboratory, Kirtland Air Force Base, NM,
September 1977.

Morgan, M.A., and F.M. Tesche, "Statistical Analysis of
Critical Load Excitations Induced on a Random Cable
System by an Incident Driving Field: Basic Concepts

and Methodology," EMP Interaction Note Series, Note 249,
Alr Force Weapons Laboratory, Kirtland Alr Force Base,
NM, July 1975.

Chang, S., T.K. Liu and F.M. Tesche, "Calculation of the
Per-Unit-Length Capacitance Matrix for Shielded Insulated
Wires," EMP Interaction Note Series, Note 319, Air Force
Weapons Laboratory, Kirtland Alr Force Base, NM, April
1977.

91



