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Abstract

A procedure is given to calculate the elements of an equivalent circuit
representation of an aperture in an infinite ground plane for a cable passing
by the aperture and parallel to the ground plame. For an electrically small
hole whose linear dimensions are much smaller than the shortest distance
between the hole's center and the wire, explicit simple working formulas are
obtained for all the elements (impedances and generators) in the equivalent
circuit. When the restriction on the hole's size relative to the distance
from the wire is removed, explicit but somewhat complicated expressions for
the equivalent generators are derived. These expressions are plotted against

various pertinent length parameters of the geometry of the problem.
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Figure

ILLUSTRATIONS

A wire passing by an aperture lying in an infinite ground plane.

(a). Coordinate system of the geometry of the problem.

(b). Cross-sectional view of Figure 2(a).

Equivalent circuit of a small hole (Ro >> hole's dimensions).

Here, j replaces -i in the text.

Effect of hole size on the source factor fS , where f is

defined as V =£fV s = f
eq

s eq, small hole qu squ, small hole °

Effect of the distance of the wire from the hole and/or ground
plane on the source factor fS , Where fS is defined in

Figure 4.
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I. INTRODUCTION

One of the most common interaction problems found on an aircraft is a
cable passing by an aperture, such as a windod, the seams of a passenger door,
or an open wheel well. The main concern is that large EMP related currents
may be induced on a cable passing near these kinds of apertures and eventually.

-propagate to mission-critical equipment. In order to perform a reliable
vulnerability assessment of such equipment the equivalent circuit representa-
tion of the aperture must be known from which it is then a straightforward
matter to calculate the induced cable currents from familiar transmission-line
equations. The present report is devoted to the determination of an equivalent
lumped network representation of an aperture lying in an infinite, perfectly
conducting plane with an infinitely long wire running parallel to the plane

(Fig. 1).

The interaction problem between a cable and an aperture has been treated
in the past, almost exclusively for a coaxial cable with apertures in the cable
shield [1 ~-5]. Reference [6] appears to be thc only article dealing with the
geometry shown in Fig. 1, but it considers only the two equivalent sources of
a small circular hole and leaves out the impedance elements in thé lumped

network representation.

In Section II, an integral equation for the aperture electric field is
first formulated under the thin-wire assumption. The resulting equation is
further simplified through a quasi-static approximation and supplemented by
another integral equation relating the aperture electric field and the short-
circuited electric field on the plane. Section III treats the case of a small
hole in which the shortest distance between the hole's center and the wire is
much larger than the hole's linear dimension. Explicit simple expressions are
obtained for all the lumped elements (impedances and generators) in the network
representation. In Section IV, the restriction on the hole's size relative to
the distance frca the wire is removed. Explicit but somewhat complicated
expressions are derived for the equivalent voltage and current sources; data
calculated from these expressions are presented graphically for various

relevant length parameters involved in Fig. 1.
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Figure 1. A wire passing by an aperture lying in an infinite ground plane.



IT. FORMULATION OF THE PROBLEM

In this section we will first set up the integral equation for the tangential
electric field in.the aperture (Fig. 2) under the assumption that the wire is
very thin compared to the distance between the wire and the coﬁducting plate.

The resulting equation will be simplified further by additional physically

" reasonable assumptions and an approximate analytical solution will be obtained.

Immediately below the plate (y = 0-) the scattered tangential magnetic

field is given by, with time convention e ot suppressed throughout,

§ x H(x,0-,z) = 2iwe § x(L +-15 VV)-IJ G(x,0-,z; x',O,z')[§ x E(x',z'")]dx"'dz"'
k

where the surface integral is taken over the aperture A and the free-space

Green's function is

e:i.kv(ﬁx-x')2+ (v - y')2+ (z -z')2

G(x,y,z; x',y',2") = =
4w
/(x—x')2+ (y-y')2+ (z —z')2

Immediately above the plate (y = 0+) the expression of the scattered field

is more complicated and is given by (see Appendix A)

-2iwe ; XQ;-+-!EVV)-JJ G(x,0+,z; x',0,z")[y x E(x",2z")]dx'dz"
k

A\ . . . s s
where Hx is the,magnetic field at y = 0+ dué€ to the wire current aand is given by

H = -iwe JJ K(R,z; R',z')Ez(x',z')dx'dz' )
A
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Figure 2(a). Coordinate system of the geometry of the problem.

(b). Cross~sectional view of Figure 2(a).



with

! ' '
2 ® H (zR)H (zR') '
K(R,z; R",z') = —211T RdR. J ° 2 th(z-2") 4,

e
-0

(¢§) 1)
H (2gd) - H (za)

R=/a2 + x+w)?2 , R =%+ @ +w2, =M -n’

Finally, we match the tangential magnetic field across the aperture and

the following integro-differential equation for the tangential aperture electric

field results:

R 1 n 1
by x@Q + ;?' t%){[ G(x,0,z; x',0,2")[y x E(x',2")]dx"'dz" * Toe ¥ % B,

h g

(2)

where H_ (fgsc) is the short-circuited magnetic field when the sources are

in region 2 (region 1).

In what follows, we will simplify (2) under certain physically reasonable
assumptions. First, let us estimate the order of magnitude of the term on the
right-hand side of (2). Obviously, the main contributiom of K(R,z; R',z') will
come from the neighborhood where h is close to k , i.e., |ci << 1 . Thus,

one can use the small-argument expansions for the Hankel function and obtains

_ 2 o . o
K(R,2z; R',2") ~ = 1 2‘1 S J 5 1 > ei0(z=20) 4
T &n(2d/a) RR'" °’ k - h
_ i % eiklz—z'l
7k 2n(2d/a) RZR'Z




Thus, H: is given by, with Z0 = Yule ,

2
L 4 1 v ey ik|z-zt] L,
B ~%2% wm@ajay 2 ” 2 E (x',2")e dx'dz
o R ‘)R .

]

.from which one immediately deduces that

2

W 1 d”A
Hx < tn(2d/a) R4 Hs‘.c
o
. 2 2 2 . R 2
with Ro =d° + w . Thus, if either A << Ro or d << R or wn(2d/a) >> 1 ,

the right-hand side of (2) can be neglected, implying that the effect of the

wire on the aperture field is negligible.

Next, we make the assumption that the wavelength is much larger than all
the cross-sectional dimensions of Fig. 2. Equation (2) is finally simplified

to the following form:

> 1 \J
vV -JJ ¥y X EGL2Y) gorg.t =+ dentH 3)
tt N 3 —sc
A /Qx—x') + (z-z'")

It-is to be noted that equation (3) alone is not enough to determine the
total tangential electric field in the aperture. This is not unexpected because
under the quasi-static approximation the electric and magnetic problems become
uncoupled. To get another equation we turn our attention to the incident electric
field. To this end one goes through the same procedure that leads to (2) and
obtains the integro~differential equation by matching the normal electric field

at the aperture,

—4-§'VtXJJ G(x,0,z; x',O,z')[§ x E(x',z")]dx"'dz" + §'§sc

%)



where ggc is the short-circuited electric field; E; is the electric field

at y =0 due to the wire current and is given by

E‘; = 'g“; IJ K(R,z; R' ,z')Ez(x',z')dx'dz' (55
A
By the same argument as above the right-hand side of (4) can be neglected.

After making the quasi-static assumption equation (4) is simplified to

SeV x ALX E‘-(x‘:z') 19,0 = S
y Vt IJ > - dx'dz' = zmuy Esc 6)
A J{x-x') + (z-z2")

Equations (1), (3), (5) and (6) constitute the formulation of the problem
under the quasi-static and thin-wire approximations. It should be pointed our
that if one wants to obtain the first two terms of the aperture magnetic curr2nt
y xE in the power series expansion in frequency, then one has also to keep two
terms in the power series expansion in frequency of Esc in equation (6). 1In

Appendix B, equations (3) and (6) are discussed in more detail.

10




IIT. SMALL-HOLE APPROXIMATION

If the characteristic length of the aperture is much smaller tham the
distance between the wire and the center of the aperture, one can easily obtain
from (1), (3), (5) and (6) the network representation of the aperture for the
TEM mode of the wire-plate geometry shown in Fig. 2.

With the aperture closed the normalized field distributions of the TEM

mode for the geometry of Fig. 2 are given by

1 2 (x +w)yd§ - [(x +w)2 —y2 +d2]d§7

ANl x+w+ -2 &+ + @ +d)?]

Jm

(N
h =z xe
—o )
where N = 2n(2d/a)/(2w) 4is the normalization factor. In conformity with the

definitions of Re®. [1], we have

E (x,y,2) =V _(2)e (x,y) , B (%,7,2) = I_(2)h (x,y)
Vo(2) = V@) /X, I(z) = I(z)/N (8)
and
% = iwlI, g—i— = ipCV
where
L =p8&n(2d/a)/(2m) , C = 2me/2n(2d/a)

and Vo R Io » V, I are respectively the mode voltage, mode current, line
voltage and line current.

11



With the aperture open, the current on the wire will be perturbed. The
perturbation on the TEM mode can be calculated by exXamining the fields far
away from the aperture. Clearly, the fields of interest are the fields which

arise from the wire current. From (1) one has
H = -iwe ” K(R,z; R',z')Ez(x',z')dx'dz‘ . at y = 0+

which gives, for 2z + = ,

v Ve /u a2 N 1 C e dk(z=z") . .
B © 7 ma(2d/ay 2t (xt )2 ” 2 7 E,(x',27)e dx'dz" (9)

]
A d™+ x'+w)

By virtue of (7) and (8) the corresponding line current is obtained from 9)

to be

ik(z-~-2")

I(z) = 21rlzc ” d 2Ez(x',z')e dx'dz' , z * @ (10)

2 d2+ (x'+w)

with Zc = JL/C = Yu/e ¢n(2d/a)/(27) . Similarly, one has from (5)

?w = 3_ - ) 1 1 1] 1] 1
5= 32 JJ K(R,z; R',z )Ez(x ,z')dx'dz
(11)
-1 d2 JJ 1 (x' ' ik(z ~-z") ' 1
~ = E (x',z")e dx'dz
T an2d/a) 2, 4 gy? N + x"+w)? ?
and
V(z) = al; ” —7—(1——-§ E (x',z')eik(z z )dx'dz' . z > ® 2)
’A d + (X'+W) 2

12




Note that (10) and (12) can also be obtained from the approach suggested in

Ref. [1]. When the aperture is electrically small, equation (10) becomes

1 ikz d
I(z) = e JJ —————E (x',2")(1 -ikz")dx"dz" (13)
2‘"zc A d2+ (x'+w)2 z
and (12) becomes
1 ikz d
V(z) == e JJ ——————————F_ (x",2") (1 -ikz')dx"'dz’ (14)
2m 2+ x vl ?

A

So far the hole has been assumed only electrically small. The unknown aper-

in (13) and (14) is in general to be determined by solving (3) and

ture field Ez
1
(6). We now assume the aperture to be very small compared to (d2+ wz)/5 . Then
equation (13) can be approximated as
I(z) ~ 1 —é—-elkz  E_(x',z')(1 -ikz")dx'dz’
2nZ 2, 2 z
cd+w
A
(15)

iwZ
_ exp(ikz) | iwy 2, .~ W 2, .2
2 ["Zc (d/R Jm-x "z (d/R )pry

where

IJ y x E(r')dx'dz' = iwpm
A
£ | A
-Z-I r. x [y x E(z)]ax'dz' = p

_15;=xx'+‘iz' . Zw==v'u/e

Similarly, equation (14) givés



~ 'k d ~ 'S
V(z) exp?fl z) [1:11 Smex - “W _512_ P °y] ae)
Rb Ro

Equations (15) and (16) can be easily shown to satisfy the following transmission-

line equatiomns:

?—= iwlI + iwu%i-g § (z)
z TR

o]

@17)
Z

dI w d -
== = iwCV - iw 5~ —5 y *pd(=2)
dz Zc "Ri

With equation (17) we are in a position to find the lumped network represen-
tation of the aperture for the TEM mode of the geometry shown in Fig. 2. To
find the equivalent sources we assume there are E and H externally
=sc —sc

driving the aperture from the y < 0 region. Then, using the definitions

R

where @, and g ~are the electric and the magnetic polarizabilities, we have

from (17)

av _ . o
= iwLI + Vequ (z)

| (18)
ar _
iz - iwCV + quG (z)

where the egquivalent voltage Veq and tne equivalent current qu are given by

14




d A
v = « oy —5 x°g H
eq 2 4" Zse
"Ro
(18.a)
z
= - iwea l—d";}'E
eq e Zc nR? =sc
o

. which agrees with the results reported in Ref. [6].

To calculate the lumped impedance elements of the aperture, we assSuwe a

TEM mode propagating along the wire. Then, we have

2 - ek,
Bo, 4
=-caVe /IWN=——F5Vy
e —o N 2
ﬂRo
(19)
B =g, H,
- . —___d uA
" A Tarh, s Ty
TR
o)
Substitution of (19) in (17) gives
dv
- = 4 +
e in[L La5(Z)]I
(20)
dl
= = + A
P iw[C Cad(z)]
where
o V..
SRRy PR
(20.a)
2 2
C=-ea(z—w—d§)
a e c ﬂRo



Equations (18) and (20) enable one to draw the network representation of
the aperture as shown in Fig. 3. In the next section we will remove the
restriction that the hole size is small compared to the distance between the ‘

wire and the hole.

16
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V,
Ve Ly ’
Ca% Ieq

“d \a . d qeZy
Veq = @ X'Qm - Hger Igq=lwe E
(e ()
d \2 ag [ d \
la "'/—’-am,xx< > ) ~Ca=p i ( 2)
7R, Z:. \mRg

Y.
V4 =2L Zy cosh (d/a)"'2 Zy In(2d/a), Zw=(/.l-/€)2

Figure 3. Equivalent circuit of a small hole (R.o >> hole's

dimensions). Here, j replaces -i in the text.
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IV. MODERATE-SIZED HOLE

In Section III the line current and the line voltage are derived under the
long wavelength approximation. Then, the hole is taken to be much smaller than
the distance between the wire and the hole and a lumped network representation
is obtained for the hole. In some practical cases the wire may be close ‘to the
. hole and the results obtained in Section III for the small hole will no longer
apply. 1In this section we will derive the equivalent sources for a moderate-
sized circular hole and leave out from our consideration the much less important
elements of the equivalent network represenﬁation, namely, the impedances of the
hole. By a moderate-sized circular hole it is meant that the hole's diametec

is comparable to the distance between the wire and the hole's center.

The starting points are equations (13) and (14) in which the unknown quentity
is the aperture field Ez » which satisfies (3) and (6). Assuming that Esc
and Esc » which excite the circular hole from the y < 0 region, are unifoim,

one has {7,8]

- - B2 52y s,
E, (p/m) D"=p") “cos ¢ ¥y E.
(21)
2iwy 2 2. <% .2 2 2 2 -« 2, ~
+ I (b ™-p7) “[(2b7- 2p"+p cos ¢) x-H c p"sin ¢ cos ¢ z-H C]

whe.e b 1is the radius of the circular hole and p, ¢ are the polar coordinates

with respect to the hole with

[
]

p cos ¢
(22)

"
it

p sin ¢
One can convince ouneself that (21) indeed satisfies (3) and (6).

After substituting (21) and (22) into (13), it is seen that the integrals whose

integrands are independent of w vanish and the remaining terms are given by

18



b2
: . , 2 _,2,2 2
I(z) = d elkzi_g}wu ReH, JJ 2b" - 2p" tp cos ¢ odédp
00

léz—pz[(p sin ¢ + w)2 + dz]

b 2w 2 2
iwpe ~ - pTcos’d
=  VE “ pdédp
00

/bz—pz[(psin ¢ + w)2 + dz]

It should be pointed out that this expression can be directly written down from
the general theory of [1]. After some lengthy manipulation the integrals are

evaluated to give

e1kz 2imub2 . iwezwb
-y =& . Je 2
I@) 2 [ mz_ = —scF + Tz y ESCF] (23)
where
. F=(+ A)sin_ls + B 2n(a + /:12—1) - d/v

A= @ -, B = 2dw/b>

o = % Jx+1)? + v +—§— Jx-1)2 + v

B = —%— v/(x+1)2 +v2 - —;— /(X—l)z + v

1 //<1 +02 + 82+ a+a)

X =
RN I
gL /./(1+A)2 82 - a+a
2 faem? + B2



Similarly, the evaluation of (14), as expected, gives
v(z) = ZcI(z) (24)

Equations (23) and (24) will satisfy (18) provided that the equivalent voltage

source Veq and the current source qu are given by

eq fsveq, small hole

(25)

eq steq, small hole

where

3R%
[o]

T

f

We leave it to the interested reader to show that fS indeed reduces to unity

when R0 >> 2b . Curves for the factor fs as a function of 2b/RO and d/R0

are given in Figs. 4 and 5.

20



Figure 4. Effect of hole size on the source factor fS , where fS is

defined as Veq = fsveq, small hole °’ qu = steq, small hole °

21



2.0=2b/R,

1.8

1.6
1.4

.0 _

d/R,

Figure 5. Effect of the distance of the wire
ground plane on the source factor

defined in Figure 4.
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APPENDIX A

In this aprendix expressions for calculating the electric and magrnetic

fields generated by the current on the wire (Fig. 2) will be derived.

We first assume the aperture tangential E field to be a delta function,
that is, y x E = t6(x~x")8(z-2") , t being a unit vector. The result will
then be used to obtain the solution for a general aperture field distribution.

Let the wire current &I induced by this delta-function aperture source be

_ -1 (% = . ihz
61 = z ZHJ 8I(h)e “dh

-0

where 6i(h) = J §I (z)e—lhzdz is the Fourier transform of 6I(z) -.

e OO

w
‘ At the surface of the wire, the z-component of the electric field GEZ

produced by the wire current and its image is

w o 1 (T ez, 02, (1) (1) ihz _
SEY - - wej st ooy -1 Pearie™an (a-1)

-0

with CZ = kz— h2

The electric field G_Fia due to a delta-function aperture field

yxE-= E&(x—x')&(z—z') is simply

=)
m
fl

ZVXEGtx,y,z; x';,0,z")

Z%VX;E'I Hél)[C (x-x')2+y2]eih(z—z')dh$

=00

| 23



B A ~ ~ . . a
where the unit vector t = x tx + z tz . Then the electric field GEZ on the

surface of the wire is

dt. (=
a_ _ i _x " 'y ih(z-z") -
GEZ = T am —KT_J CHO (CRN)e dh (A=2)
. 12 132 2 . ,
-with R' = (w+x')" + d° . From the requirement that the total tangential
electric field vanishes on the surface of the wire, one has from (A-1) and (A~2)
¥ _ 1
2dt. BV (zrrye P2
X o
R'

§7.(h) = iwe a-3)

&) T,
c{H, " (22d) - B, (ga)]

Since the magnetic field in free space from a wire current S§I(h) is given

by the formula

~ 0 P ' v
o8 = - & J QdI(h)Hél) @ YelMan

-0

2
with p = (x+w)2 + (y-—d)2 , the total tangential magnetic field arising from

this current and its image at y = O+ is

w |

did [T (1)’ ihz
T J GI(h)cHO (zR)e  “dh

w
GHx(x,0+,z)

-

oM rryg D'
2 5 (R )Ho (zR) eih(z-—z')dh

21 RR x_w Hél) (2Cd)-H§1)(ca)

I

2 2 .
where R = ¢Q¥-+w) + d° . The total tangeniial magnetic field at y = 0+ due
to the wire current from a general distribution of § x E in the aperture is

found by superposition and the result is

24




(l) 1y
(zR' )H (ZR) )
J d E (x',z") J B eih(z-z )dh dx'dz' (A-4)

ﬂm%n=£ﬂjﬁ
X 21 R R (l)(ZCd) él)(Ca)

-0

Similarly, the normal electric field at y = O+ arising from the wire

current is given by

dh dx'dz' (A-5)

IJ o él) (ER‘ )H(l) (CR) eih(z_z')
. (1)<2;d) 1 (za)



APPENDIX B

The exact integral equations for the tangential electric field in an
aperture lying in an infinite perfectly conducting plane are given by equa-

tions (2) and (4) with the right-hand sides set equal to zero, viz.,

2 . - 152 1] L iLL\u -
(V.7 +k°D J‘G(_I_'t _g_t)yxg(zt)ds =t == H (B-1)
A .

Ao -— ' 9 ' ' = —]; Au -
vV, ><JAG(£,c zt)y Xg(zt)ds oy YV Es. (B-2)

where T, and Eé are position vectors lying in the plane of the aperture.

If terms higher than w are neglected, equation (B-1l) reduces to

1 A .
Vt J ————————-VL-(y xE)ds' = # 1munﬂsc (B-3)

a lz, -zl

which is equivalent to equation (3) in the text. If one introduces the magnetic

scalar potential ¢ via

H= -y, H = -%

V.AxE = -1 = 1 i &)
¢ (y xE) 1wtu iwp

into (B-3) one ottains

f 1 3"’—,— ds' = * my_ (B-4)

26




g

which is the familiar integral equation for planar apertures in magnetostatics.

1f one takes the static limit of (B-2) one obtains

E (.r|) .
~t—t ~ -~
V _ e — \ = + . = - .
. J | X ds myE . E =E yEy) (B-5)
A 1E "I
With Et = -v.%®, equation (B-5) gives
t
2 p(z,) . :
Vt J '| ds' = Fny Esc (B-6)

alz, -z

which is the familiar integro-differential equation for planar apertures in

electrostatics.
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