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Abstract

This work contains a general exposition of the methods which
are available in analyzing the transients on a lossless terminated
line. After reviewing the well-known method based on the I'-series
expansion we present two alternative methods, one in the form of a
Volterra integral equation and another corresponding to the singu-
larity expansion method. For a resistively terminated line we have
proved the identity between the I'-séeries solution and the one
obtained by the singularity expansion method. The application of
these methods to more complicated terminations is illustrated by
the case of a series RL termination. Weber's soiution for a
short~circuited line is compared with our solution. The importance
of injecting the causality condition in our formulation for this
class of problems is emphasized. The application of these methods
to the treatment of the input current response of a thin biconical

antenna is briefly outlined.
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I. Introduction

Transients on transmission lines is a classical problem in
linear system analysis. Many authors have contributed signifi-
cantly to the study of this problem. We like to mention particu-
larly the work of Levinson [1], Bewley [2], Weber [3], Kuznetsov
and Stratonovich [4]. Although the formulation for lossy lines
terminated by an arbitrary load is known, a general solution seems
to be not available because of the difficulty in evaluating some
of the inverse Laplace transforms. For a lossy line terminated by
a series RL load, the exact solution was found by Kuznetsov [4]
with the aid of Lommel functions. When the line is lossless the
analysis is considerably simpler. Even then no detailed treatment
seems to be available for arbitrary terminations except for the
case of a resistive load which is discussed in many standard books.
It is therefore desirable to present a general treatment by which
one can solve the problem for arbitrary termination in a systematic
way. The work reported here is partly motivated by our desire to
investigate the transient phenomena on biconical antennas which
can be interpreted as a pair of biconical transmission lines ter-
minated by a distributed load admittance [5,6]. Whatever method
which we use for the transmission line problem is then equally
applicable to analyze the transient response of a biconical antenna.
Before the general methods are presented we like to review first
the conventional treatment for a pair of lossless lines terminated

by a resistive load.



II. Conventional Method of Treating a Lossless Line Terminated
by a Resistive Load .

We consider a pair of lossless lines terminated by a load
impedance Z. The lines are assumed to be excited by a2 unit step
voltage at the input end. _

For convenience we introduce several normalized variables

defined as follows:

"X/% = normalized distance; 1 > & > 0

length of the line (m)

= velocity of propagation on the lossless line,
)1/2

-
T = tc/% = normalized time v
. .

c

being equivalent to 1/(L'C' (m/s)

L',C' = inductive (H/m) and capacitive (F/m) line
constants, respectively
s = (R+jw)l/c = normalized Laplace transform

variable
w = 27f = angular or radian frequency (rad/s)
f = frequency (Hz)

(Note that in special cases 0=0)

In terms of these normalized variables we denote

V(£,7) = instantaneous line voltage (V)
I(£,7) = instantaneous line current (A4)
?(g,s) = Laplace transform of V(g,t) (Vs) or (V/Hz)

= ZIv(e, 0] = [J v(g,1)e " dr

Ice,s) Laplace transform of I(Z,t) (As) or (A/Hz)
£i1e,m] = [J I(g,1)e " ar

For a unit step voltage applied at the input end we have

V(O,t) = u(t,0)

hence

%(O,S) =J[ u(t - O)e_St = é
o

In terms of normalized variables & and s the line voltage and
the line current in the Laplace transform domain can be written
in the form




~ -&s | % -(2-g)s
V(e s) = e + I'(s)e

> (2.1)
s[1 + F(s)e_zs]

e"ES _ E<S)e—(2-i)s

2s]

Z,1(E,s) (2.2)

s[1 + T'(s)e”

where T(s) denotes the voltage reflection coefficient defined in
the s-domain at the output end of the line, £=1, and Z denotes
the characteristic impedance of the line, being equal to (L'c") /2.
For convenience, we assume ZC to be equal to unity in the subse-
quent analysis.

The conventional method of determining V(&,Tt) or I(&,T) is

to express (2.1) or (2.2) in a series using the expression

2: _T(s)e 281n (2.3)
1+ F(s)e n=0

Substituting (2.3) into (2.2), with ZC = 1, we have

Tg,s) = 21758 - T(e)e™ (3808 3 [F(s)emoR (2.4)
n=0

For a resistive load f(s) is a real constant which will be denoted

by T and its value is given by

r - 1
T 1

r =

where r denotes the normalized terminal resistance. The inverse
Laplace transform of (2.4) with [(s) = T yields

n+1

I(5,7) = 2: [(-T)® u(r-2n-8) + (-I)P" y(r-2n-2+2)] (2.5)

=0

where u(T—Tn) denotes a unit step function commencing at =T,



Although (2.5) is known to be a valid solution by physical
reasoning its derivation is considered to be unsatisfactory from
the mathematical point of view because expansion (2.3) holds true
only if [f(s)e—zsl < 1, and in executing the inverse Laplace
transform the contour of integration lies in the left-half plane
where if(s)e_2s[ could exceed unity. This presentation is found
in many books without justification. One way of removing this
weak step is to expand the same function in terms of a finite sum

with a remainder instead of as an infinite series. Thus, we write

—ZS]N+1

5 (2.6)

N ~

1 o , ~ ~-2s.n [-T(s)e

= = [-T(s)e 7717 + "

1 + T(s)e 2S nz=:0 1+ T(s)e™

when substituting (2.6) into (2.2) the remainder would yield a

term of the form

[-T(s)]NH2

s[1 + T(s)e”

e—S[z(N'*'Z)—g] (2.7)

ZS]

Because of the shifting theorem and the causality condition the
inverse Laplace transform of (2.7) vanishes when T < [2(N+2)-£].
In other words, if one evaluates the series (2.5) up to

T < [2(N+2)-£] the remaining terms vanish identically. The impor-
tance of this remark is that (2.6) applies not only to resistive
termination but to any termination. From now on we will designate
the solution based on (2.6) as the TI'-series solution. In addition

to the T'-series method there are two alternative methods for treat-

ing the transients in an arbitrary terminated line. The discussion

of these two methods is the main objective of this note.




ITII. Volterra Integral Equation Method

We consider the general case where T(s) is a function of s.

If (2.2), with ZC =1, is multiplied by 1 + }(s)e_2s the follow-
ing equation results
I(g,s) + F(8)e™®5T(z,8) = 11788 - T(s)e™(28)s) (3.1)

By taking the inverse Laplace transform of (3.1) we obtain

I(g,m) = I_(£,1) + £ T [-T(s)e 51 (s)] (3.2)
where ,
I,C,1) = T R(8,1) + I (E,T) (3.3)
with
- -1 e—Ss
(5,0 = 27 &1 = u(r - ©) (3.4)
Ip(E,T) = &1 o= (2-8)s) (3.5)

Iof(a,r) represents the initial forward current wave propagating
on the line and Iob(g,r) represents the first ref}ected wave or
backward wave from the termination. For a given I'(s) we assume
(3.5) can be evaluated, thus Iob(E,T) is considered to be a known
function. On account of the convolution theorem in the Laplace

transform (3.2) can be written in the form

T
Ig,1) = I (e,m) + [ k(- v 1¢E,t)at (3.6)
O

where
k(7) = £ 1[-F(s)e 2] (3.7)

Equation (3.6) with I(Z,t) as the unknown function corresponds to
the Volterra integral equation of the second kind. Its solution

is given by Picards' series [7], namely

I(g,0) =3, I_(E,7) (3.8)

n=0



where IO(E,T) is given by (3.3) and

T
I, =./” k(t - t)I _4(&, ") dt’
o)
for n = 1,2,... (3.9)
In the case f(s) is a real constant, previously denoted T, we
obtain from (3.5)
I (5,7) = -Tu(t - 2 + ¢)

hence
u(t - &) - Tu(t - 2 + &) (3.10)

T, (E,T)

and from (3.7) we have
k(t) = -Té(t - 2) (3.11)

where 8(1t-2) denotes the delta function defined at t=2. Substitut-
ing (3.10) and (3.11) into (3.9) we obtain the same expression
given by (2.5). Of course, for a resistively terminated line it

is entirely unnecessary to formulate the problem by this integral
equation method as the method of T-series is much simpler. The
integral equation method, however, is much more efficient and con-

venient for more complicated terminations. As an illustration we

consider a series RL termination. In this case, we have
f(s) _Z(s) - 1
Z(s) + 1
where -

B(s) = o~ [ + s($)L]

c
= 1r + s
_ _cL _ L
r=R/Z, , 0 =57 =1g
c
L' = inductive line constant




The coefficient o is a measure of the load inductance in terms of
the total line inductance. The reflection coefficient f(s) can

now be written in the form

o s - s -
F(S) = g—;—éz | (3.12)
where
SO __(I'&l)’ Sl" _(I‘;l)
thus N s - s
Is) .1 __"0y_2,1=-0p (3.13)
s s's - s4 s s - 84
where
_ fg _r - 1
p = 1 - r 1 ’
using (3.5) and (3.7) one finds
sl(T—2+g)
I €, 1) = -u(t -2+ &)[p + (1-o0)e ] (3.14)
sl(T—2)
k(t) = =6(1t - 2) - u(t - 2)(1 - p)sle (3.15)

Knowing Iob(g,r) and k(1) we can find Il(g,f) using (3.9). The
result gives

51(T-2+E)
I(E,7) = —u(t - 2 + £)[o + (1 - pJe ]

s, (T-4+8)
24 (1- 0%, (r -2+ )e }

“u(r - 4+ )2 4 [1 -9
(3.16)
The successive terms of In(g,T) for n > 2 can be found accordingly.
If the T'-series method were used the process is more tedious
because one has to expand [f(s)]n/s in partial fraction that is
quite involved as a result of the multiplicity of the poles con-
tained in [f(s)]n. Another advantage of the Volterra integral
equation method is that once the first reflected wave is known the

successive waves can be found based on this information alone.



This is due to the fact that the kernel k(t) involved in the

integral equation is related to the derivative of the first

reflected wave. Since

- 1 T(gye~(2-8)s

Iob(E,S) = S

and

e _ - -2s

K(s) = £[k(1t)] = -T(s)e
hence

K(s) = sIOb(O,s)
it follows that

oI . (0,T)
_ ob "’
k(t) = s

where we interpret the derivative in a generalized sense that for

a discontinuous unit step function

du(t - Tn)
9T

= §(1 - Tn)

For example, from (3.14) one finds

-

8T . (0,1) s,(1-2)
——9%?————-= =§(t - 2) -~ u(t - 2)[(1 - p)sqe 1

which is the same as k(1) given by (3.15). This completes our
discussion of the integral equation method. Our next section

deals with the singularity expansion method.
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IV. The Singularity Expansion Method as Applied to a Resistive
Termination

The terminology of this method was first suggested by Baum
[8] in connection with his work dealing with the scattering of
electromagnetic waves by objects. This method when applied to
transmission lines was used by Weber [9] for the special case of
a short-circuit terminated line. We shall comment on Weber's
treatment at the end of this section. For our purpose we will
apply this method to a resistive termination and show the analytic
connection between the solution obtained by this method and the
one based on the T-series method. For simplicity we consider just
the input current to the line, corresponding to £=0. Equation
(2.2), with ZC=1 and E(s)=F (real constant), becomes
1 1= Te™®s
S

1(0,s) = ]
1+ Fe—zs

(4.1)

To assure the fulfillment of the causality condition in the final

solution we write E(O,s) in the form

2s

f(o,s) = ¢ [1 - -2

1 + Te

55/ (4.2)

In addition to s=0, the poles of E(O,s) are given by the roots of
the equation

1+ Te"?8 = o (4.3)

Denoting these roots by s, we find for T < 0,

Sn=%'q'nlrl +jn'n" n=O,i1,i’2,... (4'4)

and for T > 0, we have

Sn = %[Qn(F) + jom], n = *1,23,... (4.5)

11



Without loss of generality we assume I to be negative and not
equal to -1 in the following discussion. The case of I'=-1
requires a special treatment and will be discussed later.

The expression for i(O,s) as given by (4.2) can now be
expanded into a residue series in terms of the poles of that func-

"28)_1 which satisfies the

tion. We consider the funection (1 +-Te
criteria as required by Mittag-Leffler theorem [10]. Then its

expansion is given by

+oo
1 L 1 S 1 1 1
1+ Fe—Zs =1+7* / 2 (s - s, * Sn) : (4.6)
n=0 '
hence
1 1 < 1
= + (4.7)
s(1 + Te-2s) (1 + Ds Z_ 2sn(s - sn) X

Substituting (4.7) into (4.2), we have

e 1 -2s
1(0,s) = s 2l'e [(1 + P)s ‘E: 2s (s - Sy )] 7 (4.8)

The inverse Laplace transform of (4.8) yields

1 esn(T—Z)
2s

o B (4.9)

M

I(0,T) = u(t - 0) - 2Tu(t - 2)[i_%_7 +

s}
I

If we let
S, = o + JBn
where
o =% n|r|
2
B =nam, n = 0,x1,+2,
n

then (4.9) can be written in the form

12




I(0,t) = u(t - 0) - 2Tu(t - 2)[1 1 5

+ ea(T43)§5 (2 ~ 6n,O) acos[B (T-2)] + 6nSin[Bn(T—2)]J
2 2 2
n=0 a” + Bn
(4.10)

here 6n 0 denotes the Kronecker delta.

According to the [I'-series method, for &

0, (2.5) reduces

to
1(0,7) = u(T - 0) - 2Tu(T - 2) + 2T2yu(t ~ 4) + -+~ (4.11)

Equations (4.10) and (4.11) would be equivalent only if the series
contained in the summation sign of (4.10) is proportional to
e_d(T_z) with the constant of proportionality determined by the
time interval in which the series represents. The proof of the
identity between (4.10) and (4.11) is shown as follows: we recog-
nize that coan(T-z) and Sian(T—Z) are two orthogonal sets of

functions with a periodicity equal to 2, thus we let

e™(172) = 37 la, coslBy(x - 2)] + by sin[8 (7 - 2)1]

n=0

for [2(m+1)] > T > 2m. One finds

0
]

_ (2 - 6n,0)(1 LT o

n 2 (_F)m u2 + Bi
b = (1 + 1) Bn
n m 2 2
(-I) a” + 8
hence,
> (2 - 6n,0> acos[B (t-2)] + anin[Bn(%—Zﬂ (- _d(T_2)
2 2, g2 S oTar e
n=0 o + By
for [2(m+1)] > T > 2m (4.12)

13



In view of (4.12), we can write (4.10) in the form

m
1(0,7) = u(tr - 0) - 2ru(r - 2)[A3-E

[2(m+1)] > T > 2m... (4.13)

If we let m take the successive values 1,2,3,... (4.13) indeed is
identical to(4.11). Of course, it is not easy to recognize that
the series obtained by the singularityrexpansion method as given
by (4.10) is an alternative representation of the I'-series solu-
tion without such a detailed analysis. For a non-resistive ter-
mination the poles are more complicatedly distributed. 1In fact
for most-of the cases there is no closed form solution for these
poles; the proof of the identity between the I'-series solution and
the one obtained by the singularity expansion method would be
extremely difficult. Based on what we have discussed for the
resistively terminated case, we have the confidence that these
alternative representations must be equivalent. B
Finally, we like to comment on the treatment given by Weber
[9] for a short-circuited line (I = -1). The function which Weber
analyzed corresponds to the voltage distribution along the line
for a step input*voltage excitation. In Laplace-transform domain,

the function which he considered is

E&s _ ~(2-8)s

=2, (4.14)

V(E,s) =
s(l - e

The residue series representation of (4.14) was obtained by
Weber without following the discipline as demanded by Mittag-
Leffler theorem. Although his result is correct the procedure
which leads to his solution is, strictly speaking, not justified
for many irrational functions. The final solution which Weber

obtained is of the form

14




V(E.T) = u(t - O)l:z 2 81n[nﬂé§]+ E 81n[nﬂ(r - £)]
n=1

51n[n (T + E)ﬂ
. E: m | (4.15)

The solution clearly represents D'Alembert's solution for the one-
dimensional wave equation. From the point of view of transient
analysis it does not explicitly exhibit the causality condition:
V(E,T) = 0 for T < &. Actually (4.15) is a Fourier series expan-
sion of the periodic wave shown in figure 4.1. The function indeed
is vanishing for £€ > T > 0. In contrast to Weber's presentation

we treat (4.14) as consisting of two terms, i.e., we let

V(E,s) = Vi(E,s) + V,(£,8) (4.16)
where
-£
Vi(g,s) = —= - 5
s(1 - e™°%)
V,(E,s) e~ (27805 (4.17)
,8) = - .

2 s(1 - e—ZS)

By applying Mittag-Leffler theorem to the function
1 1

1 - e—2s 2s

which has no pole at the origin, a condition required by that

theorem, we obtain
1 1 _
l_e—2s_§-§_-{1+z:s—s:l (4.18)
n=+1 . )
where

s = jam
n J

15



V(,E;a"f) 1

0 &  2-¢ 245 4=t 4+r  6-  6+E

—_—e—p T

Figure 4.1: V(&,t) for a short-circuit termination.

|

4-... V.
V.(g,1)
3L [ .
2 | >_/\___J
14
2~ 2+g 4-¢ 4+¢ 6-5 6+f
o g L J i [y i
——— T

VZ(E-:T) ’

Figure 4.2: V1(E,T) and V2(£,r) for a short-circuit termination.
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hence
+00

1 11 .1, K% 1 }
e (4.19)
s(1 - 2% 2 [Sz s ngi:l s, (s - s,)

As a result of the shifting theorem we obtain,
1,1 = 1

Vi(E,T) = u(t - 5)[5 +5(t - &) + ., == sin[nn(t - sﬂ}..

n=1 (4.20)

_ 1.1 = .

Vo(E - T) = u(t - 2 + g)[§+§(r -2 +8) + ) sin[an(r - 2 + g)]]
: n=1 ,

(4.21)

Except for the negative sign, V2(£,T),is merely a delayed repro-

duction of Vl(E,T). It is observed that because of the step

function u(t - £) contained in Vl(E,T), the causality condition

is automatically met. It can be shown that our solution is

actually equivalent to Weber's because the function f£(t) = 1 - T,

2 > 1T > 0 has a Fourier series representation given by
— 2
1 -1= :E; o sin(nm T) (4.22)
n=

Egs. (4.20) and (4.21) are shown in figure 4.2. The sum of the
two functions yields again the periodic square wave shown in

figure 4.1.
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V. Summary

In this note we have examined several distinct methods of
analyzing transients on lossless transmission lines with arbitrary
terminations. It appears that the integral equation is potentially
more appealing because from the information of the first reflected
wave it is possible to construct the kernel of the integral equa-
tion and subsequently to find the complete scolution based on
guadrature. The singularity expansion method, on the other hand,
does furnish the complete solution without iteration, provided
that the singularities of the response function are available.
Unfortunately, even for a simple series RL termination it is
necessary to solve a transcendental equation to determine the
numerical values of these singularities. For a resistively ter-
minated load we have shown that the solutions obtained by these
different methods are analytically equivalent. This establishes
the foundation that for an arbitrarily terminated line all these
methods are equivalent. The methods discussed here are equally
applicable to the transient analysis of small-angle biconical
antennas. The only difference is that the terminal impedance or
admittance function involves exponential integral functions, hence
the determination of the singularities then becomes more laborious.

This work will be reported elsewhere in a separate note.
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