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Abstract

Although a number of papers have been published on the experimental
characterization of multiconductor transmission lines, they are limited to
the time domain for lossless multiconductor Tines in homogeneous media.

This note presents a method for the complete characterization of multi-
conductor transmission Tines in inhomogeneous media. The experimental
technique for the measurement of multiconductor line parameters is presented
and the appropriate multiconductor 1ine equations are solved to obtain

these parameters. The experimental method is simple and involves only the
short- and open-circuit impedance measurements for different configurations.
The experimental results for a four-conductor line are found to be in good
agreement with computed results and a low-frequency lumped model.
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I. Introduction

The problem of multiconductor transmission Tines characterization
has been a topic of interest for many years. Previous work [1,2] provides
methods of characterization for multiconductor lines in homogeneous media
in the time domain; in which case, all the propagation modes have the same
phase velocity. In general, for a multiconductor line (N conductors plus a
ground reference) in an inhomogeneous medium, there will be N propagation modes
each having a different phase velocity, and the inductance per unit length and
capacitance per unit length matrices can not be obtained from the characteris-
tic impedance matrix without the knowledge of the propagation matrix [3].
Separation and excitation of different propagation modes, for the purpose
of measurement of propagation constants in the time domain, are very com-
plex and impractical for more than a three-conductor line [4].

Analysis of multiconductor transmission lines in frequency domain
have been reported by several investigators [5,6,9,10,12,16]. Some useful
matrix chain parameters were derived [5]. Propagation modes and character-
istics for multiconductor transmission Tines with inhomogeneous dielectrics
are discussed in [10]. Measurement methods of the cable parameters at Tow
frequencies have been presented [13]; the correlation between the theoretical
model and the measured data, to date, has not been entirely satisfactory[14].

This note describes a measurement technique for determining the
parameters for a general parallel multiconductor transmission line system
in the frequency domain. The measurement technique is an extension of the
well known single-frequency technique for measuring the constants of a two-
conductor Tine. It consists of measuring the impedances between all pairs
of conductors under both short- and open-circuit load conditions with speci-
fic source conditions. A method of calculation utilizing a series of simi-
larity transformations for obtaining the appropriate parameters from the
measured data is used in solving the complex multiconductor equations.



II. Theoretical Background

Consider a line formed by N conductors, plus reference conductor
(ground). The line is assumed to be uniform along its length (z coordinate),
but with arbitrary cross-section. In general, the dielectric surrounding

the 1ine is inhomogeneous (e.g., cable made of insulated conductors with
different dielectric constants).

In the presence of materials having different dielectric con-
stants, the propagation mode can not in general be TEM. However, the
low-frequency propagation mode is "quasi-TEM" [7][8] and analysis can pro-
ceed from the generalized telegrapher's equations. These equations are

[7]09].

2 08T 2 e gin (2,007 - [y 7 & (2ot (1a)
20T = e vz, 0)3-[c;, ] & Dn(2o8)] (1b)
with n=1,2,---N
m=1,2,---N.

Where V and Im represent the voltage with respect to the reference con-
ductor and current on the m th conductor, respectively, as a function of
distance z along the line and time, t. [R”], [L”], [C”] and [G"] are respec-
tively per unit Tength resistance, and coefficients of inductance, capaci-
tance and conductance matrices of NxN size. The resistance per unit length
matrix is in general diagonal and the others are symmetric. Also, in [L7],
[C°] and [G”], the diagonal elements are self and the off diagonal elements
are mutual quantities. The coefficients of the capacitance matrix [C7] is
further characterized by the following properties [17],

N
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and - -

Com = 'Cnm
where Cao is the per ;nit length capacitance to the ground of the n th con-
ductor and C;m is the per unit length mutual capacitance between m th and n

th conductors.

LWz ()3T (2.9)] )

d [I (z,s)] _ p Y
= = ~[¥; ($)1[Vp(2,5)] (3b)
where Vn(z,s) and fn(z,s) are the Laplace transforms of vectors Vn(z,t)

-

and In(z,t), and an(z,s) =R+l and Ynm(z,s) =Gt anm.are the
per-unit-length series impedance and shunt admittance between n th and
m th conductors. s = Q + jw, in general is a complex frequency, but for

sinusoidal excitation of the 1ine we have s = jw.

The solution of the coupled set of equations (3a,b) in general is
given in the following form by Paul [5,6] as

v (z,s) V (z_,s)
! = [o(z-z)]1|." ° (4)
I (Z,S) I (Z 5S)

n n‘“o
where zo'is a suitably chosen reference location, and the characteristic im-
pedance matrix [chm(s)] can be expressed in two forms [5] as
1
- ‘] - - 2 - - - -
[Ze,(s)] = [¥;()T YDy (13025, ()]} [an(s)]{[Ynm(s)][an(s)]}(2)
5

and
[chm(s)]

{1270 ()7) Tin()177 = {120 (9)T07 ()T} T7(s)]
(6)

The order of multiplication of matrices is important and in general,

[z: (s)I0Y: (s)] # [¥- (s)10Z; (s)].



The chain parameter matrix, [¢(2)], may be expressed in parti-
tioned form as

[617(2)] [y5(2)]
[0(2)] = (7)
[051(2)1 [6,,(2)]

where submatrices [¢1](2)], [¢]2(2)], [¢2](2)] and [¢22(2)] are of NxN
order. The submatrices are expressed as follows [5]:

[677(2)] = [Y;m(S)]'1{;osh?([Y;m(S)][Z;m(S)]>%2$][Y5m(s)]
= cosh 3([z5m(s)][vgm(s)])%g} (8a)
Coyp(00] = = e[ sinn (017 (1025, (511) %2

s)] (8b)

Cnm(

= -[sinh;([z;m<s)][v5m(s)1)%z}][z
oy (017 = - sinh3([v5m<s>][z;m(s>1Y5z§][zCnm<s>J‘1

- o . . Y

- (2, ] [s1nhg<[znm(s)][Ynm(s)]) zf] (8¢)
Cogp(2)] = coshl ([ (6)1027,(5)7) 2 |

- [Yr’]m(s)][cosh% ([zr"m(s)][Yr;m(s)])’/zz“[vr;m(s)]'1 (8d)

The matrices [¢11], [¢12], [6,,], and [¢,,] also satisfy the following
identities [5]:

[61,100,,0007,17" = [o7,] (9a)

[651106771005717" = [6,,] (9b)



and

[647(-2)1 = [#7;(2)] (10a)
[655(-2)] = [95,(2)] (10b)
[67,(-2)] = -[¢1,(-2)] (T0c)
[651(-2)1 = -[9,,(-2)] (10d)

With the above described theoretical background, we will now proceed in
Section III to represent the line constants in terms of experimentally
measured quantities, e.g., input impedance and admittance matrices.

III. Derivation of Parameters in Terms of Input
Impedance and Admittance Matrices

Consider that the load is located at z, = 0, then Eq. (4) becomes

Vn(Z,S) ‘in(oas)‘l

. = [o(2)] |- J (1)

I.(z,s) I_Vn(O,S)

Furthermore, it follows from the boundary condition at the Toad end, that
[V (0,5)1 = [Z,, (T (0,5)] (12)
where [Zan] js the load impedance matrix.

The voltage and current vectors at the input end of the Tine at
z = -2 can be obtained from Egs. (8) and (11) as

[V, (-2,5)] = [;osh)([z;m(s)J[v;m<z>])%xf][9n<o,s>]

+ sinhg([zr;m(s)][vr;m(sn)'/22% (2. (9)II,(0.9)]  (13)



[T (-2,5)] = [chm(S)]_][sinhg([Z;m(s)][Y;m(s)])% 2%][65(0’5)]
(13b)
+ [v;ml[coshg([z;m(s>J[Y;m(s)J)% Qs][Y;m(s)]_1[fn(O,s)]

For the short circuit load condition (i.e., all the conductors are shorted
to the ground or reference conductor) [z 1 = [0, and [Vn(O,S)] = [0,,]-
Then Eq. (13) becomes

[Z¢, (5)101,(0,5)]
(14a)

[Vzc(-g,s)] = [sinh3([Z;m(s)][Yam(s)])% zg

[175(-2,5)] = [Y;m(S)][coshg([Z;m(S)][Y;m(S)>%R£J[Y;m(s)];][fn(o,s)]

(14b)
Let [Z?E (s)] be the input impedance matrix when the Tload [Zan] = [Onm],
nm

then the voltage and current vectors in Eq. (14) at the input end (z = -1)
are related by

vixe _ roSC ¥sC
[VSC(-2,5)] = [23§,,(5)10135(-2,8)] (15)
Substituting Eq. (15) in Eq. (14) and rearranging we obtain

(235 ()17 = [V (5)] [cosh%([zgm<s>][v;m<s>1)%zq[y;m(s)1‘1

IN
x[[sinhwz;m(s)][vr;m])’% ﬂ [chm(s)]]-] (16)

Premultiplying both sides by.

[sinh3([Z;m(S)][ng(S)])%QS][chm(S)j

in the above equation and using the identity (9a), we obtain



(23N ($)] = [tanh i([Z,;m(s)][Y;m(s)])%lf]tzcnm(sﬂ (17)

where, the definition

_ -1
tanhg([zam(s)][Yam(s)le= coshg([zam(s)][Y;m(s)J)%R%]

r

X sinh;([Z;m(s)][Yam(s)])%QSJ

has been used. The order of multiplication of the two matrices on the right
hand side does not matter, since it can be readily shown that the two functions

of the same matrix commute.

For the open circuit load conditions, [fn(o ,$)] = [Onm] and
Eq. (13) becomes

n

[V (-2,5)] = [:oshg([z,;m(s)J[v,;m<s)])’%$][an,sn (182)

R o (AR O
(18b)

oc . . .
Let [ZINnm(s)] be the input impedance matrix when the load [Zan] = [mnm],

then the voltage and current vectors in Eq. (18) at the input end (z = -2)
are related by

~oC _ r0C T0C
[Vn (-/Q/,S)] - [ZINnm(S)][I n("/Q'as)] (]9)
Substituting Eq. (19) in Eq. (18) and rearranging we obtain
oc ' ' ! !
c _ . . )
(735, ()] = [tanhg([znm(sn[vnm(sn) zé] [z, ()] (20)
Thus Egs. (17) and (20) give the input impedance matrices for the short -

and open circuit Toad conditions. Using the second form of [¢nm] in terms

.

10



of [Ynm(s)][an(s)], it can easily be shown that

I 1
[Ziﬁnm(S)] = [chm(S)] tanh%([Y;m(s)][zam(s)]>ézs] (21)
[Z‘I’,ﬁnm(s)] = [z, (s)] _ta"h;([Yr;m(s)][zﬁm(S )J/zz{l (22)

This formulation clearly shows that matrices [Y;m(s)] and [Z;m(s)] do not
commute; their order of multiplication should be properly maintained. How-
ever, it can be shown that [Ynm(s)][an(s)] and [an(s)][Ynm(s)] have the
same eigenvalues [10].

Define
[r” ()] = ( [z (s)ILY; (s)])7 (23)
then, Egs. (17) and (20) can be written as
[Z§§nm(s)] = [tanh( (s )]2)] Cnm(s)] (24)
[z‘fﬁnm(s)] = [tanh([rr;m(s)]g)]-1 [z, (s)] | (25)

Equations (24) and (25) can now be solved for [chm(s)] and [F’ (s)] in terms
of [ZIN( s)] and [Z ( )] and then from Eq. (6), the per unit 1ength series
1mpedancg and shunt adm1ttance matrices can be obtained.

From Eq. (25)
oc -1 _ -1 -
(255 ()17 = [Zgp(5)] [tanh([rnm<s)12)] (26)
Postmultinlying Eq. (24) by Eq. (26) and taking the positive square

root of it, we obtain

11



tanh([F s)]2 %[z $)1023 (5)1'1;4 (27)

OI",

[r- (s)] = %3 arctanh ([ziﬁnm(s)][z?ﬁnm(s)l“)’f (28)

To solve for the characteristic impedance matrix [ZCnm(s)]’ premultiply both
sides of Eq. (24) by

[tanh [F;m(s)]z ]—]

to obtain B
[tanh ([F;m(s)]z)’ [Z?ﬁnm(s)] = [chm(s)] . (29)
use Eq. (27) in Eq. (29) to obtain
-1
[Zepn(s)] = i[ziﬁnm(s)][z?ﬁnm<s)] § iy, ()1 . (30)

Thus once [Z?ﬁ (s)] and [Z?ﬁ (s)] are known, Egs. (28) and (30) give the

nm nm
matrices [I'py(s)] and [chm(s)]. The eigen values of [F;m(s)] are the propa-
gation constants for the different modes of propagation.

Using [r7 (s)1% = [27, (s)I0Y; ()] in Eq. (6)we can write the

relations for [Z (s,] and [Y;m(s)] matrices as,

[z;m(s>] - [p(9)10z, ()] (31)
v ()1 = [Zg ()17 Ir7, (5] (32)

Substituting for [chm(s)] and [T” (s)] in Eqs. (31) and (32) we arrive at

%

(27 (s)] = %lérctanh ([Z?ﬁnm(s)][z s)] [z (s) (33)

12



1

(311 = F (2 (1771 fovetann (1255 120285 91177)"] (30
nm m

Cnm
Since
[27.(s)] = [RE T+ sl ]
and
[v7.(s)] = [6;,] + slc/ ]

and after setting s'= jw, the per-unit-length parameters are given by

[Rod = Re[Z] (s)] (35a)
(L] = Im{Z (s)] (35b)
[67,] = RelYq,(s)] (35¢)
[Crpd = ImDY  (s)] . (35d)

Thus from the knowledge of input impedance matrices for the short- and open
circuit load conditions under prescribed source conditions, all the param-

eters of the multiconductor line can be obtained. Note that a similar solu-
tion can be obtained in terms of [Y;m][z;m] giving the same final result.

In solving Egs. (28) and (30) for [Fam(s)] and [ZCnm(s)], the
calculation can be made easy when a series of similarity transformations
are used. This simplification is based on the fact that, similar matrices
have the same eigenvalues, and that, a polynomial matrix function f([Anm])
has eigenvalues f(An) when the matrix [Anm] has eigenvalues An. Also
f([Anm]) has the same eigenvectors as those of [Anm] [11]. Thus from the
matrix

_ r7Sc oc -1
[Anm] - [ZINnm(s)][ZINnm(S)] >
one first determines its eigenvalues Au and corresponding eigenvectors [Xm]u'

13



From Eq. (29) it can be shown that tanh(y L) = J_" where Y is the n th
eigenvalue of [T (s)]. Since [T, (s))is a matrix functlon of [A,.1s

it can be determ1ned from a s1m11ar1tv transformation, namely, [F (s)] =
[X ][y ][X ] , where [X ] is the same as the eigenvector matrIx of

[A ] and LY ] is a d1agona1 matrix formed by the eigenvalue Yy 's. Cal-
cu]at1on of [Z Cnm (s)] follows from Eq. (30) in a similar manner. This method
of calculation offers a simple and straightforward procedure and is used in
the following data reduction. Some otner methods for the solution of such
complex matrix equations are also available [11].

IV. Measurement Technique and the Experimental Results

The experimental setup used in the multiconductor line parameter
measurements is shown in figure 1. The multiconductor contained three
6.1 m lengths of insulated wire in a bundle supported 8.9 cm above a
0.92 m by 7.32 m aluminum ground plane. The wires were of 20 gauge air-
craft hook-up wire with a conductor diameter of 1.016 mm insulated with
a PVC jacket of 0.48 mm in thickness. The wires were terminated in pin
jacks so that each could be driven, shorted, or opened as necessary.
Aluminum plates were placed at right angles to the ground plane at the
driven and far ends of the cable in order to short the electric field at the
cable end points and to provide a low impedance current path when a short
circuit was required. A block diagram of the measurement setup is shown
in figure 2.

The voltage probe and current probe were selected to minimize
probe loading effects. An active voltage probe with an input impedance of
1 MQ shunted by a capacitance of 1 pF was utilized for these measure-
ments. The current probe was a clamp-on type with an insertion impedance
of less than 0.1 Q. The overall accuracy of the impedance measurements
obtained was approximately *5 percent over the frequency range studied.

14
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Figure 1. Multiconductor Experimental Setup
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The short circuit input impedance measurements were performed with
the far end shorted (grounded) and the near end of all but the driven wire
open (figure 3a). The current in the driven wire and the voltage across
each of the three wires was measured with probes and the ratio of voltage to
current was recorded as a function of frequency. This procedure was re-
peated for each wire in order to isolate the self and mutual impedance
terms in the circuit equations

+ 21,1, + 75,1

17 T At T 4sls
Vo = Ipyly * Zpply * 25313
Vg = Z371y * Z3pT5 * Z33]5 (36)
The impedances are given by
> = ¥ﬂ- for n = 1,2,3
) m=1,2,3 (37)

The open circuit input impedance matrix [Z?ﬁ (s)] or admittance

matrix [Y?ﬁnm(s)] measurements were performed with farngnd open and the near
end of all but the driven wire shorted (figure 3b). The voltage across the
driven wire and the current in each of the three wires was measured with
probes and the procedure repeated for all the wires to give the self and
mutual admittance terms in the equations

I

1= YqVy * Y2V * YqsYs

2 = YoVq # Yoolp + YpiVg

—
|

—
1

3= YaVy + YoV * Y33V, (38)

17
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with

= V_ for n 1,2,3

1,2,3 (39)

3
[l

In the above measurements the losses in the line were found to
be negligible and are neglected in further calculations. For a lossless
case the per-unit-length series impedance and shunt admittance matrices
become

[z, (s)] =s[L” ] (40a)
[v; (s)] =s[C” T  where s = ju. (40b)

From the knowledge of [Z?ﬁ(s)] and [Y?ﬁ (s)], the parameters
of the multiconductor line can be ca?@u]ated usingmthe equations described
in this section. The parameters [Lﬁm]’ [Cam] and the velocity of propa-
gation of the three modes were calculated as a function of frequency (0.1
through 5 MHz) using the experimental “ata. The measured per unit length
inductance and capacitance matrices at 1 MHz are the following

1.209 0.886 0.870

[L;m]expt =10.888 1.209 0.866 | pH/m
0.872 0.8666 1.206
52.16  .-24.34 -22.87
[Cnm]expt =1 -24.40 51.80 -23.25 | pF/m

-22.84 -23.25 50.27

The propagation velocities were found to be vy = 0.664c, vy = 0.666c,

Vy = 0.922c, where c is the speed of light. The first two nearly

identical values (because of symmetry) are identified with the differen-
tial modes of the cable. The third corresponds to common mode propagation.

In the above [L;m] and [C;m] matrices, notice that these matrices

expt expt

19



are nearly symmetrical. The errors are partly due to the experimental and
truncation errors propagated through the necessary matrix manipulations.

A comparison of the measured coefficient for the inductance
matrix with predicted values was carried out using the formulas [15]

Ly = 0.2 an [4H /d 1, (41a)
Ly =0.2an[S /D ] (41b)

where L;n is the self inductance term of the n th conductor, Lﬁm is the
mututal inductance term between n th and m th conductors. The other param-

eters are defined as:

the diameter of the conductor;

the distance from a conductor to ground;

the distance between two conductors;

the distance from the conductor to the "image" of

v O T o
" il n

a second.

The L matrix using the above formulas and the geometry of the

cable is

1.17758 0.9034 0.9034
[an cale = 0.9034 1.1738 0.9016 | uH/m
0.9034 0.9016 1.1738

These values are seen to be within four percent of the measured coefficients.
Comparison of the calculated and measured capacitance is complicated by the
inhomogeneous dielectric material separating the wires. The measured capa-
citance matrix is compared with the low-frequency model of the multiconduc-
tor line, where the 1ine length is considered to be a small fraction of a

20



wavelength (electrically short transmission line). For an electrically
short cable, the open- and short circuit measurements lead directly to the
capacitance and inductance matrices when the resistance and conductance
matrices per unit length are neglected as follows

[24y,, ()1 = sl (42a)

[Y?ﬁnm(s)] S[C;m] where s = jw. (42b)
This method of calculation of parameters has been used in [13]. The above
relations are only useful for the frequencies where the line can be con-
sidered as electrically short. At higher frequencies the full muiticon-
ductor transmission line equations should be used. A comparison of measured
inductance and capacitance from two methods is shown in figures 4 and 5,

as a function of frequency. It can be seen that the results obtained from
the multiconductor Tine equations are fairly constant over the frequency
range measured, while the Tow frequency approximation values increase with
frequency above 1 MHz indicating the nonvalidity of the model. In figure
6, the velocity of propagation modes are plotted versus frequency. It is
seen that the results from multiconductor transmission Tine equations are
fairly constant while the low frequency approximation values decrease

with frequency because of increased values of Lam and Cﬁm' The mode ve-
locities are the inverse square root of the eigen values of [L;m][cﬁm]'

V. Concluding Remarks

A measurement technique for the characterization of parallel
multiconductor transmission Tine in an inhomogeneous medium has been pre-
sented. The measurements are simple to perform and utilize commonly
available Taboratory equipment. It was found that data with a high confi-
dence level could be obtained without difficulty; however, effects due to

21
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Capacitance (pf/m)
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Magnitude of Velocity of Propagation in m/s
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Figure 6. The Propagation Velocities for Different Modes
Based on Experimental Data
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probe loading, probe cross coupling, stray impedances, etc. can produce
erroneous results. Therefore, a careful mzasurement procedure was followed
to minimize these effects. This method also gives the characteristics of
different propagating modes so that explicit measurement of multiple phase
velocities is not required. The measured data shows a good agreement with
that calculated from theoritical formulas in literature. The matrices in-
volved in the process of calculation for four conductor lines are found to
be well conditioned, so that the error propagation in calculations is mini-
mized. Although the method was verified for four conductor lines, it is
very general, and should work for any number of conductors.
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