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ABSTRACT

This report contains a theoretical study of the electrical
corona on a long wire. The physics of the phenomenon is dis-
cussed in detail, and formulated mathematically in terms of
coupled nonlinear partial differential equations. A number of
boundary-value problems for these equations are solved to pre-
dict the corona breakdown field and the d-c¢ corona voltage-—
current characteristic. The results are in good agreement with
experiment. Finally, the d-c corona effect on large signal
propagation along a single wire above ground is examined by
solving a nonlinear transmission line equation. The purpose
of this study is to identify the set of basic corona equations
as well as the mathematical nature of the problem. The applica-
tion of these equations to analyze the corona effect on aircraft
long-wire antennas will entail the solution of certain time-
dependent problems of considerable mathematical complexity.
These latter problems are not covered in the present study,

and should form the subject of future investigations.
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SECTION 1

INTRODUCTION

On the surface of a good conductor the electric charges are highly
concentrated in regions of small radii of curvature, such as tips, wires,
edges and corners. As a consequence the local electric field can attain
an enormous intensity. It can easily exceed a certain critical value
beyond which ionization or breakdown of the surrounding air sets in. This
critical or breakdown field strength is strongly dependent on atmospheric
condition, and on conductor geometry and dimensions. At sea level its value
is typically of the order of 30 kilovolts per centimeter, which is by no
means altogether too high for common occurrence of the breakdown phenomenon.
When ionization is initiated, the air becomes conducting and a discharging
current flows through it from the conductor. The ionization and the dis-
charge are accompanied by a visual display in the form of an eerie bluish
or reddish glow crowning the high-field region. The discharge has thus
acquired the name of a corona. When the corona appeared on top of the
masts of a ship in a storm, it was often referred to by the ancient mariners
as St. Elmo's fire. The corona is maintained until the discharge brings the
local field strength down to below the critical value.

The corona discharge turns out to be an extraordinarily complex phenomenon
in which scores of processes can participate. The net effect, however, is
invariably the dissipation of electrical energy into heat, light, sound, and
chemical energy. Not surprisingly, early study of the corona was carried out X
by the electrical power engineers. On a high-voltage power transmission line
the surface electric intensity easily exceeds the corona onset value. The
ensuing corona discharge constitutes a leakage current and a power loss. For
a power line going over long distances the accumulative corona loss can be
considerable. Out of this concern a number of investigators, notably Peek,
have conducted a series of detailed measurements on the corona properties, such
as the breakdown field strength, the power loss, and the dependence on atmos-
pheric and conductor conditions. The result is a set of empirical formulas

directly applicable to power transmission calculatioms.



Another area of electrical engineering in which the corona discharge
can exert considerable influence is the operation of large linear antennas.
On Air Force aircraft, examples of such antennas are the LF/VLF trailing-
wire antenna and the HF fixed-wire antenna. The transmitters can con-
ceivably drive these antennas into the corona region, not to mention such
intense electric field sources as lightning and the nuclear electromagnetic
pulse. The appearance of coronas results in power dissipation, signal dis-
tortion and noise interference. Unfortunately there exist as yet few or
no empirical formulas for a quantitative estimation of these effects, un-
like in the case of power transmission engineering. This is due to the
difficulty of making direct corona measurements on the antennas of a high-
flying aircraft. On the other hand the high-altitude atmospheric environment
and the free-flight aircraft-antenna configuration are not easy to simulate
for measurement on the ground. It is desirable to conduct a theoretical
study of the corona discharge from basic physical principles.

The corona discharge is a particular mode of the electric gas discharge
which has been investigated extensively since the latter half of the 19th
century. Out of this long-standing effort came the discovery of the electron,
the invention of the X-ray and electron tubes, the development of quantum
mechanics, and the complete theory of atomic structure. Today it can be
safely claimed that gas discharge is no longer a mystery: no unknown
fundamental mechanisms are believed to be at work behind the phenomenon.

All participating physical processes are accounted for.2 The general gas
discharge theory can be formulated in terms of partial differential equations.
Nevertheless, it is quite another matter to derive particular solutiomns of
these equations describing particular modes of the discharge, such as the
corona. As the equations are coupled and nonlinear, one has here the
essential trappings of .a very difficult mathematical problem.

This report studies various solutions of the basic gas discharge equa-
tions applicable to the corona on a long thin wire. Section 2 discusses the
observational aspects of the electrical corona and the physical processes
that take place in it. A set of basic equations are written down. Section
3 presents the solutions of two linear boundary-value problems of the basic
equations to determine the corona breakdown field strengths for the coaxial

cylindrical electrode geometry, both for quasi-static and for microwave



excitations. Section 4 solves three nonlinear boundary-value problems

to calculate the post-breakdown d-c corona voltage-current characteristic

for the coaxial electrode configuration, taking successively into account
three major physical effects. Section 5 extends the d-c corona voltage-
current characteristic calculations to the line-over-plane (or, equivalently,
parallel-line) geometry. The results are applied to set up and solve non-
linear transmission line equations describing the d-c corona effect on
signal propagation along a single line above a conducting ground plane.
Finally, Section 6 discusses the limitations of the present results and the
importance of some as yet unsolved problems.

It may be appropriate to state at the outset what these limitations and
unsolved problems are. The present study forms the preliminary phase of an
effort to determine the corona effect on aircraft long-wire antennas. Its
goal is to establish the basic equations governing the general corona phe-
nomenon, and to understand the mathematical nature of the antenna corona
problem. A set of boundary-value problems of these basic equations are solved,
and the solutions compare favorably with measurement. However, the results
are valid only in the d-c or quasi-static regime. In the case of a long-wire
antenna excited by an EMP or driven by an LF transmitter, the coroma problem
is, in general, a time-dependent boundary-value problem. The mathematical
difficulty involved will be considerable. 1Its solution must be relegated to

future investigations. More discussions on this point will be found below in

Section 6.



SECTION 2

PHYSICS OF THE CORONA

2.1 Phenomenology

The electrical corona can be generated by the following apparatus
arrangement in the laboratory. Take a long piece of thin well-polished
wire and encase it in a large concentric cylindrical metallic shell.

Apply a static voltage difference across the two conductors, with the
wire positive. As the voltage is gradually raised and approaches a
certain critical value, the electric field at the wire becomes very
strong. Substantial ionization of the air molecules in the neighborhood
takes place. When the critical threshold is exceeded, a luminous bluish
uniform sheath appears on the wire surface, forming the corona proper.
Its thickness grows with increasing applied voltage. The sheath is
essentially a highly ionized plasma with positive and negative ions
coexisting in comparable concentrations. The luminosity is a tell-tale
sign of ion recombination and neutralization through the emission of
photons. A shunt current can be detected to flow from the wire through
the corona sheath and the dark space beyond into the outer cylinder.
This indicates a dielectric breakdown of the air.

If now the experiment is repeated with the wire negative, the corona
is observed to assume the form of isolated reddish tufts or beads more or
less uniformly spaced along the wire. The breakdown voltage is also
slightly off the positive corona value. The sign and size of the difference
turn out to depend on gas, pressure and wire material. 1If the experiment
is performed with an alternating voltage difference, the a-c corona appears
only during that fraction of the period when the voltage exceeds the critical
value. 1Its visual characteristics exhibit the same variation with wire
polarity as for the d-c corona. Essentially the same corona observations
can be made with the parallel-wire electrode arrangement. It must also be
remarked that if the electrode spacing is very small, a spark discharge is
observed and the corona is not formed.

Because of the possibility of substantial corona loss in high-voltage
transmission, Peek1 early this century made a series of careful measure-

ments on long-wire corona characteristics. From the data he derived a set



of empirical formulas which are much respected even today. One set of
formulas gives the breakdown electric field as a function of the wire radius;
another set gives the corona loss as a function of the applied voltage.

These are described below.

Breakdown Field. At normal temperature and pressure (T = 25°C,

P = 760 mm. Hg) and an applied frequency of 60 Hz, the breakdown or critical
electric field EC on the wire surface of radius a at which the coroma

is initiated is given by

Ec = 31(1+—94§g§)kV/cm., a in cm. N
a

for the coaxial geometry, and by

0.301

E, = 29.8(1+ JkV/cm. (2)

a

for the parallel-wire geometry. It is well to note that EC depends only
on the wire radius, irrespective of the location of the other electrode.
For large a, Ec approaches a limit of about 30 kV/cm. which is often re-
ferred to as the dielectric strength of air. For small a, Ec diverges
rapidly. The numerical comstants in (1) and (2) vary with atmospheric

condition. The gquantitative dependence has been investigated by Peek, and more

fully by Stephenson.3

Corona Loss. Peek measured the power loss due to corona and obtained

the following empirical loss formula for a single line above ground:

P = 12(£+25) f% (V-—VC)2 ><10_10 watts/meter 3)

where f 1is the applied frequency in hertz, a and h the wire radius and its
height above ground, V and Vc are the peak values of the applied and critical

voltages in volts relative to ground. Vc is related to the parallel-wire break-

down field in (2) by

v, = aEcJLn(%h) . (%)



Due to the difficulty in making precise high-voltage loss measurements,
formula (3) is admittedly not very accurate, particularly for V close to
Vé. The quadratic variation of P with the over-voltage is not always
corroborated by the findings of other investigators. The noteworthy
feature of (3) is the linear dependence of the loss on the applied fre-

quency, indicating a constant loss per cycle.

2.2 Fundamental Processes in the Corona

The one basic physical process which underlies the corona phenomenon
is the collision ionization of air molecules by free electrons. The
latter are always present in air to some extent as a result of cosmic
ray bombardment, natural radioactivity, air friction, and many other
causes. In an intense electric field such as existing near a highly
charged conductor, these mobile electrons are accelerated and quickly pick
up sufficient energy to break up or ionize air molecules by collision,
producing each time a positive ion and, what is important, one or more
daughter electrons. These new electrons in turn can initiate collision
ionizations on their own. When conditions are right, a chain reaction
takes place. A large number of ions and electrons are produced in an
instant, making the air conducting and able to sustain a discharge.

The criterion which permits the rapid build-up of charged particles
in a small region of space is that the local rate of particle production
by ionization exceed the rate of loss. The primary particle loss
mechanisms are drift and diffusion. In an external electric field,
charged particles drift along the field lines while suffering collisions
with one another and with neutral particles. Diffusion arises from the
microscopic random motion of these colliding particles, and is related to
gas pressure. It forceés particles to move from regions of high particle
concentration to those of lower.

Besides the primary production and loss mechanisms of electron
collisjon ionization, charged particle drift and diffusion, some secondary
mechanisms are worth mentioning. Charged particles can also be produced

by ion collision ionization, photo-ionization, and electrode emission.



They are also lost by electrode absorption, recombination (electrons and positive
ions forming neutral molecules), and attachement (electrons attaching themselves

to neutral molecules to form negative ions).

2.3 Mathematical Formulation

It remains to tramnslate the above physical ideas into precise mathematical
formulas. The most powerful analytical tool available to date for achieving
this end is the Boltzmann transport equation, which describes the time development
of a large aggregate of particles in terms of their fundamental microscopic
interactions. This kinetic-theoretical approach will nevertheless not be
adopted in the following calculations. A more coarse-grained formulation will
be employed. It will be a continuum theory based on a set of hydrodynamic
equations, which are the first few moment equations of the Boltzmann equation
closed by truncation. These equations contain a number of transport coefficients
which can either be calculated from first principles in kinetic theory or simply
taken over from laboratory measurements.

The chief constituents of air are oxygen, nitrogen and hydrogen. The
charged particles in air are therefore largely made up of their positive and
negative ions and electrons. In the following an idealized model of ionized
air will be used to make the calculations manageable. Tonized air will be
taken to consist of one representative species of singly-charged positive ions
and one representative species of singly-charged negative ions. They move under
external and mutual forces over a background of neutral air molecules. This
idealization is by no means an oversimplification, since experimentally it is
often the averaged properties of ions of one sign that are directly measured.
Essentially one deals here with a two-charged-fluid model of ionized air. The
neutral molecules actually do not appear directly in the picture. The
field variables are the particle number densities n+(£,t) of the two charged
fluid components, and the total electric field EKE,E). The effect of
magnetic fields on particle motion is negligible. The three variables are

coupled together by three sets of field equations to be described below.

Equations of Motion. These equations express the particle current

or flux densities £ (r,t) in terms of the number densities n, and the

10



electric field E. As mentioned previously, the motion of charged par-
ticles in air consists of a drift and a diffusion. The flux density has

two corresponding components:

£= idrift + £d:lffusion ()

The drift flux is given by

£drift = * Kok (6
showing a direct proportionality of the drift velocity to the field. The
physics behind this formula is that, in a weakly-ionized dense gas con-
taining a large amount of neutral molecules, a charged particle moving in
an electric field does not experience a sustained acceleration. As soon
as enough kinetic energy is accumulated, it is lost through inelastic
collisions with other particles. In fact, most energy is lost in ionizing
collisions with neutral molecules. The effect of these collisions on the
atomic level is the appearance of a macroscopic viscous force dragging the
particle's movement. The drag soon counterbalances the electric field,
and the particle henceforth moves on with a steady velocity proportional
to the field. The constant of proportionality is the ion mobility K in
Eq. (6). The mobility is always defined positive, so that a % sign is
needed in (6) to account for the oppositely directed motions of positive
and negative charges in the field. Actually Eq. (6) is nothing but Ohm's
law in disguise. This drag phenomenon has an analogue in parachute jump.
After an initial gravitational acceleration, the viscous force of air soon
equalizes gravity and the free fall proceeds at a uniform terminal velocity.

The diffusive flux density accounts for the random motion, due to

random atomic collision, that is left out in (6). It is given by

£ diffusion= -V (Dn) &)

where D is the diffusion coefficient. 1In his investigation of Brownian

motion, Einstein showed that, at thermal equilibrium,

D kT (8)

K e

11



where e 1is the electronic charge, T the equilibrium temperature, and
kB the Boltzmann constant. The effect of diffusion is to even out par-
ticle densities, leveling off high concentrations and filling up deple-
tions. In fact the phenomenon is mathematically equivalent to heat con-

duction.

In summary, the flux densities for positive and negative ions are

£, =KnE-V(@Dn), €))
f_=-Kn_ E-V(D n). (10)
Poisson's Equation. The total electric field consists of an external
component due to the electrodes and an internal component due to the ions.
It is determined by the Poisson equation:
VeE=— (n,-n) (11)
—_ € n+ -
o
with appropriate boundary conditions at the electrodes. The permittivity
of air is taken to be essentially the same as that of free space.
Equations of Continuity. These equations express particle conserva-
tion. They balance out particle gain and loss mechanisms, and read
8n+
—B—E_ +v. £+ = S(n+9n_9§_), (12)
on_
gtV £_=8(,,n_,E). (13)

at —--

where S 1is the net rate of particle production dependent on n, and E.
The right-hand sides of (12) and (13) are the same since positiv; and negative
ions are produced or destroyed at the same rate in the same ionization or
recombination processes. The functional form of S for electron collision
ionization will be given below.

Equations (11), (12) and (13) form a set of coupled partial differential
equations in n, and E, with £, defined by (9) and (10). The coefficients

D, and K, are usually regarded constant, with values taken from experiment.
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These equations are nonlinear, The nonlinearities occur in the products
n, E and in S. Strictly speaking, the equations should be supplemented
by another set describing energy comnservation. As it turns out, corona
energy dissipation proceeds mainly by way of ohmic loss4 which is already

implicit in Eq. (6).

Collision Ionization. When an electron moves through a gas under

an electric field, the number of new electrons it produces by collision
ionization along a unit length of its trajectory is experimentally found

to be directly proportional to the local electron density:

dn_ = an d¢ (14)
As is well-known, this type of relation produces exponential multiplication.
The constant of proportionality o is known as Townsend's first ionization
. 5 - . . . .
coefficient. It is a nonlinear function of the local electric field, the
nature of the gas, and the gas pressure. For a d-c field it is given to a

good accuracy by the empirical formula:
a = Ap exp (-Bp/E) (15)

where p is the gas pressure and A and B are empirical parameters. For air,

the latter are found to be

>
1]

15 ion pairs/cm. x mm. Hg (16)

=
1]

365 volts/cm. x mm. Hg (17)
Then the ion production rate S due to collision ionization is given by
s = alf | (18)
In the following sections the above equations will be solved to study

various aspects of the corona discharge from a long wire. It is to be

noted that essentially the same set of equations occurs in the theory of

13



transistor p-n junction operation, the difference being in the relative
magnitudes of the coefficients and parameters and in boundary conditioms.

The corona breakdown has a transistor analogue known as the avalanche

breakdown of the p-n junction.
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SECTION 3

CALCULATION OF BREAKDOWN FIELD

This section contains two calculations to determine the corona breakdown
field in the quasi-static and microwave limits. The calculations involve the
solution of two boundary-value problems for the ion equations (12) and (13).
They will be carried out for the coaxial electrode configuration shown in Fig. 1.
This highly symmetric geometry both simplifies the mathematics and makes possible
comparison with measurements, as it is a favorite choice of the experimentalists.

This type of calculation is substantially simpler than the full-fledged
corona problem. It deals mainly with the pre-breakdown regime when very few
ions are formed. The electric field is not distorted by space charge, and
nonlinearities do not occur. Consequently the Poisson equation i1s not needed.
Furthermore, variations with time can be left aside if one is not concerned with
the temporal development of the breakdown. The problem is mathematically one

of determining the eigenvalues of linear ordinary differential equatioms.

3.1 Quasi-Static Breakdown

Suppose the wire in Fig. 1 is kept at a positive static potential V
relative to the outer cylinder. Before breakdown there are very few ions in the

intervening air, and the electric field is given by the familiar expression

a \'2

E = Eep, E(p) = E(a) o E(a) = aindb/a) (19)
The ionization coefficient o 1in Eq. (15) becomes a function of space:
- _ BE
a(p) = Ap expl| aE(a) el. (20)

Let a free electron be generated by some means at the surface of the outer electrode.

It will travel radially inwards under the field, and on the way produce new
electrons by ionizing collisions with air molecules. Upon reaching the inner

wire it will have, according to (14), multiplied into an avalanche consisting

15
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Figure 1. Coaxial electrode configuration for corona study.




of N electrons, with

b
N = exp[J alp)dp]. (21)
a

At the same time, N-1 positive ions are produced which migrate outwards under
the field, and are eventually neutralized and absorbed at the outer cylinder.
Individual electron-initiated avalanches can actually be observed and photographed
in the laboratory. The avalanche constitutes a discharge current.

If nothing else occurs, a single electron can only trigger a short discharge
pulse this way. For a continuous discharge to take place, there must be some
mechanism to replenish the electron supply at the outer cylinder, which in this

case is the cathode. Townsend5 suggested the following cathode process: upon

impact on the cathode, each of the N-1 positive ions has on the average a probability

Y of liberating an electron from the cathode. Therefore a total of y(N-1)
free electrons will be liberated. It is thus clear that, starting with one free
electron at the cathode, one ends up, after ionization and cathode processes,
with y(N-1) free electrons again at the cathode. If y(N-1) = 1, one ends up
precisely with what one begins. The cycle can repeat itseif endlessly, and the
discharge becomes self-sustaining. A continuous discharge current flows

between the electrodes. This is the point when the corona starts to appear.

By (21), the condition for this occurrence is

b

Y[epr adp - I} = 1. (22)
a

It is known as Townsend's breakdown criterion. The coefficient Yy 1is dependent
on gas, cathode material, and other parameters.
The condition (22), derived above by simple physical arguments, can also
be obtained formally by solving a boundary-value problem of the ion equations (12)
and (13). The time-independent form of these equations for the coaxial geometry
is
2 5 (65,00 = aGilE_ 6], (23)
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S 0] = e@) )] (24)

It is convenient to introduce the total positive and negative ion fluxes F_(p)

per unit length of wire such that

F+(O) F_(p)
f+(0) = 21TD ’ f_(l:‘) = - 270 > Fi(p) >0. (25)

Then (23) and (24) become

35 40 = aF_(), -4 F_() = aF_(o). (26)

The solution is b
F_(r) = F_(Db) exp f adol , (27)

0
F+(p)-+ F_(p) = constant. (28)

The constants of integration are determined by boundary conditions at the electrodes.
At the cathode o = b, one has YF+(b) = F_(b) as discussed above. At the anode

p = a, mnamely the wire, the positive ion flux must be 0 since these ions are
generated in air and migrate towards the cathode. Hence one has F+(a) = 0.
Substitution of (27) and (28) into the boundary conditions yields the following

pair of homogeneous linear algebraic equations:

b

F_(a) = F_(b) exp j adp |, (29)
a

(1+ 2)F_ ) = F_(a). (30)

These equations have the trivial solution (namely zero ion current) unless the
determinant vanishes. This condition is easily seen to be identical to (22).
In other words, the solution describing the breakdown of the air gap between

the electrodes is the eigen-solution of Eqs. (23) and (24).
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At breakdown the field at the wire E(a) 1is by definition the breakdown
field Ec' Substitution of (20) into (22) yields

A B B 1
ax, §[ew (- ) el b)) = (Y. (31)

This relates Ec to the geometric, atmospheric, and other parameters of the
problem. The solution showing the variation of Ec with a 1is plotted in Fig., 2
for A and B given by (16) and (17), p = 760 mm.Hg, vy = 0.025 for a copper
cathode in air6, and b/a = 100 as a typical radii ratio for the electrodes.
Actually the result is totally insensitive to this last ratio, as the second
exponential in (31) is entirely negligible for b only a few times larger
than a. The breakdown data of Peek taken for concentric copper cylinders at
60 Hz7 are also plotted for comparison. The data points follow the theoretical
curve closely, making the same dramatic upturn for a <0.2 cm. The measured
values are about 107 lower than predicted. In view of the crudeness of the theory,
which accounts only for ionization and cathode processes, the agreement between
experiment and theory can be considered satisfactory. Much better agreement
can certainly be achieved by adjusting the parameters in (31) to fit the data.

The above calculations are performed for a positive wire. It can be shown
that exactly the same breakdown criterion is obtained for a negative wire. This
theory therefore cannot account for the small dependence of the breakdown field

on wire polarity.

3.2 Microwave Breakdown

In an applied electric field at microwave frequency, an ion moves quite
differently than in a d-¢ field. The field reverses its direction every half-cycle,
and the ion's motion is predominantly oscillatory. There is very little drifting
motion, the mobility being inversely proportional to the applied frequency.

In this limit the equation of continuity (13) for electrons becomes

on 2

—B-E—- -V (D_n_) = S. (32)
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8
S.C. Brown and coworkers have applied this equation to calculate the breakdown
field in microwave cavities, and verified the results by experiment. In their work
they took for S, the rate of electron production by collision ionization, the

following form equivalent to (18):

S = vi(E,m)n_, v, = aK E (33)

where vy is the ionization frequency, in general field- and frequency-dependent.

With the introduction of a function ¢ such that

v =Dn , (34)
Brown obtained from (32) the time-dependent diffusion equation
2
~- =D Vi + v (35)

Before breakdown, there are very few electrons and ions in air. The electric
field E 1is essentially the same as the externally applied cavity field. Its
spatial dependence is experimentally controllable. Then Eq. (35) is linear and
homogeneous, and can be studied with the method of separation of variables by

setting

v(r,t) =) cmw_m(_r_)e_xmt, t 2 0. (36)
m

Substitution of (36) into (35) yields the equation

2 -
OV + v, + 2 )y =0 (37)

for the eigenfunctions wm. These and the corresponding eigenvalues Am are
determined by the geometry of the microwave cavity and the boundary conditioms.
Brown assumed that the cavity walls were perfectly absorbent to impinging electrons.

In a diffusion process this means that the electron density will stay very low in

21



the vicinity of the wall surface, and will actually extrapolate to zero a short

distance behind the wall. Therefore the boundary condition was taken to be

p_ =0, at cavity walls. ' (38)

This uniquely determines the eigenfunctions and the eigenvalues.

For a general microwave cavity, the breakdown condition can be expressed in
terms of the stability of the solution (36). Before breakdown, ¢ is stable.
This requires that all the eigenvalues Xm be positive. It is clear that as
the breakdown threshold is approached, the eigenvalue spectrum is lowered; and
the lowest eigenvalue (say, Ao) approaches 0. For Ao only slightly negative,
Y in (36) is unstable and grows exponentially with time. The breakdown criterion

is therefore that the lowest eigenvalue be 0 or, equivalently, that the equation
® v+ vy =0 (39)
- i“Yo )

have a non-trivial solution.

Herlin and Brown9 considered Eq. (39) for a coaxial microwave cavity of
finite length. The cavity was excited by a definite cavity eigenmode, with definite
spatial dependence of the electric field. The breakdown field intensity was
measured for the eigenfrequency. Separately, experiments were done to determine
the field- and frequency~dependence of the coefficients D_ and vy - The
data were fed into (39) in the form of empirical formulas. The imposition of the
non-triviality condition on the solution led to a transcendental equation for the
breakdown field. Ref. 9 should be consulted for calculational details. The
calculated breakdown field was found to be in excellent agreement with experiment,
making this theory perhaps.the most successful breakdown calculation to date.

The above calculation of the microwave breakdown field is analogous to the
theoretical determination of the critical mass of a bulk of uranium. Neutrons
in a uranium sample diffuse freely, and are scattered, captured and emitted by
the uranium nuclei. They initiate nuclear reactions with the nuclei, resulting
in the release of huge amounts of energy and daughter neutrons, in much the same
way as collision ionization in a gas releases new electrons. The neutron density

satisfies a diffusion equation similar to (35). For a uranium spherewith boundary
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condition (38), the lowest eigenvalue turns negative when the sphere radius

exceeds a certain critical value.
neutrons multiply exponentially.

sive consequences.

The solution becomes unstable, and the

A nuclear chain reaction is set off with explo-
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SECTION 4

CALCULATION OF CORONA VOLTAGE~-CURRENT CHARACTERISTIC

Consider the coaxial electrode configuration depicted in Fig. 1.

When the voltage difference applied across the gap exceeds the critical
value, the corona appears on the wire surface. The insulation provided
by the air ceases, and a current flows between the wire and the outer
cylinder. For practical applications it is important to know the depen-
dence of this corona current on the applied voltage, or the voltage-
current characteristic. This section is devoted to its calculation in
the quasi-static limit.

As mentioned previously, the corona sheath, which clings to the wire,
is a plasma in which electrons and positive ions coexist in comparable
concentrations. For a positive corona, the electrons are accelerated
towards the wire and the positive ions are repelled towards the cylinder.
Thus one expects to find a layer of electrons bound to the wire and a
stream of positive ions flowing from the wire to the cylinder. The corona
sheath indicates the extent of the electron layer, and the corona current
is mainly carried by positive ions. For a negative corona, one would
expect the electrons and the positive ions to exchange roles. There is,
however, a slight complication: as soon as the electrons leave the sheath
and move towards the cylinder, they attach themselves to neutral molecules
to form negative ions. Therefore, for the negative corona, the corona
current is carried by electrons inside the corona sheath and by negative
ions outside.

An important conclusion can be drawn from the above c¢onsiderations:
in the quasi-static limit the corona current is predominantly carried by
charges of the same sign as the wire. As an approximation, one neglects

the layer of bound charges in the corona current calculations.

4,1 Effect of Ton Mobility

Just as in metallic conduction, the chief determining factor in gaseous
conduction is the mobility of the carriers. Taking only this effect into
account, one can calculate the d-c corona current for, say, the positive

corona from particular cases of Eqs. (9), (11) and (12):
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f.=KnkE (40)

+7 5yl

7.F = S

v E e n+ (41)
o

Ve£,=0 (42)

These equations describe a time-independent conduction model in which
positive jions interact self-consistently with the electric field, but
are neither produced nor destroyed by ionization and recombination pro-
cesses. This model appears to have been first considered by Townsend%

For a cylindrically symmetric geometry, the three equations become

f+ = K+n+E (43)
1 d e
o do (pE) = =, (44)
[8)
1 d ~
5 o (Of+) =0 (45)

The integration of (45) yields

_ i
f+ T 2mep (46)

where i is a constant of integration and has the meaning of the corona
current per unit length of wire. Elimination of f+ between (43) and (46)
gives

R SR
en, = 27K oE (47)

Substitution of this into the right-hand side of (44) results in the

nonlinear differential equation:

d 2 i
3~ 6B R P (48)
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Integration from a to p 1leads to

2.2 2.2 i 2_ 2
p"E"(p) = a"E (a)+——2“€oK+ (" -a"). (49)

Solving for E(p) and integrating across the gap from a to b, one obtains

the voltage difference

— . [.2
Vv = aE(a) \/(7\2—1)¢+1 -1- Y1-¢ n 1o +V O -1x+l (50)

A(V1-¢ +1)

where

_b -1 . 2
A= 2’ ¢ = io , i 2neoK+E (a). (51)

Eq. (50) is a relation between the applied voltage V, the corona current per unit
length of wire i, and the electric field on the wire E(a). In order to arrive

at a unique voltage-current characteristic, the last quantity must be determined

independently. For this purpose one imposes the corona boundary condition:

E(a) = Ec, after breakdown. ‘ (52)

That is to say, the field on the wire does not change with increased applied voltage,
but persists at the breakdown value Ec' The system adjusts itself to the increased

voltage by emitting an appropriate corona current. With this condition, Eq. (50)

becomes

v — 2
v-v =% [ V164 -1+ (/T56 - Damd - Ving !Ln( 1-¢ +V O '1)“1) (53)

¢ fnd /T4 +1

where Vc is the breakdown voltage given by

Vc =.aEcln(b/a) (54)

for the coaxial configuration.

26



The corona voltage-current characteristic (53) is plotted in Fig. 3
for the case A= 100. Typically Ecm 30 kV /em., K+ vl cm.2/volt sec.
From this one has io'h 0.1 A/m. Fig. 3 shows that a typical corona current
is of the order of 1 mA/m. The curve i versus V has a parabolic shape,

and can be fitted closely by the simple form
i=«V (V—Vc) (55)

This was first obtained by Townsend, and has been periodically verified
by experimentalists. Fig. 4 shows some recent data reported by Albrecht,
Wagner and Blossll for the positive corona. The measurements were done in
pure nitrogen for the coaxial electrode geometry at 1 atmosphere. The
current carriers are N+ ions. The corona voltage-current characteristic
is plotted with the current on a logarithmic scale, and compared with the
theoretical expression (53). Excellent agreement is indicated.

Fig. 5 shows the radial variations of the electric field E(p), the
potential V(p), and the ion demnsity n+(p) for the casz V = 2Vc' From
Fig. 3, the corresponding corona current is equal to 0.005 io. The above
three quantities are normalized to their respective boundary values Ec’ \Y

and s respectively, on the wire where

n =-°¢_1 . (56)

The negative corona voltage-current characteristic can be obtained in
a similar fashion. The aforementioned difference in the nature of the
negative charge carriers inside the corona sheath from that outside can

be accounted for by an effective overall negative ion mobility.

4.2 Effect of Ion Diffusion

In Eq. (40), the part of the particle flux due to diffusion is neg-
lected. This subsection studies the voltage-current characteristic when
the diffusion flux is retained. The total flux is therefore given by Eq.
(9). 1In place of Egs. (43), (44) and (45), one now has
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Figure 3. Normalized corona voltage-current characteristic for coaxial electrodes.
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f, = K+n+E-D

+ + +

1d -

o dp (DE) = e n+9
[o]

14 _

o dp (pf+)— o,

where for simplicity the diffusion coefficient D+ is considered constant.

The solution of (59) is again (46). Substitution of (46) into (57) gives

Elimination of n between (58) and (60) leads to

+
o du du,an? |
de dp dp A
where
K iK
+ 2 +
u = pE, A= 5D ° k™ = .
+ 8ne D
o +

Eq. (61) has been studied by Borgnis12 in his investigation on electrolyte
conduction. The following analysis is largely patterned after his. The

equation is equivalent to

2
d du 2 2k
dp [ o] $+2u+Au ] = A p

and hence a first integral is the Riccati equation

2
du 2 _ k& 2
-p do + 2u+Au” = P +C.
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With the nonlinear transformation

d
u = —'% EE-Env, (65)

Eq. (64) goes over to a linear equation for the new unknown v:

2
24 2 2
p? X -0 - ao® +a0)v = 0. (66)
dp e

This is a modified Bessel equation, and the solution is

v = p[C’Iv(ko)+C"Kv(kp)], (67)
where
v = V1+AC. (68)

The electric field is obtainable from (62) and (65) as

d
P tnv. (69)

<]
Il
1
=

The solution contains three unknown constants C', C" and v. Since
only 2&nv appears in (69), it is clear that only the ratio C'/C" matters.
This still leaves one with two constants--one more than E(a) in the
previous subsection. The reason is that the introduction of the diffusion
term in Eq. (60) increases the order of the differential equation by 1.

An extra boundary condition pertinent to the diffusion process must be
stipulated. Instead of seeking such an extra diffusion condition, which

is often difficult to establish, a different approach will be adopted here.
It will be assumed that the correction due to diffusion is small (as is amply
indicated by the good agreement of the results in Subsection 4.1 with
experiment), sc¢ that, in the limit D+ -+ 0, the solution should tend con-

tinuously to the previous diffusion—-free expression. It can be shown that
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for a positive corona, the function I, in (67) should be eliminated. This
essentially gets rid of the extra constant of integration. Therefore one

obtains for the electric field

=

Il

1
=

;,% tnlpK (kp)]. (70)

Integration over p from a to b yields the voltage difference

1 aKv(ka)
V = K n [W] . 71

The surviving unknown constant v 1is determined from the corona boundary

condition (52) which by (70) reads

1
kaKv(ka)

- Wk—a)— = AaEc+1. (72)

Egqs. (71) and (72) together constitute the corona voltage-current characteristic
with diffusion.

It can be shown that, in the limit D+ -+ 0, all three constants A, k
and v diverge. One can therefore use the Debye asymptotic formulas for

large order

1/4
K (vz) ~ [ 1 e , K' (vz) v- [T i]i]_ e (73)
v 2v v 2v z

1/4
(1+22)

where

t =J1+z> + n—32 — . 74)
1+\/1+z2

Substitution of (73) into (72) yields the simple solution

v = J[AaEc+1]2—k2a2 . (75)
In terms of the reduced corona current ¢ = i/io introduced in (51), one finds

(ka)? = (AaEc)2¢ i (76)
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Hence

= ror Ve 2 1
v = AaE_V(1+6)"-¢, 8 RaE_ ° a7

In the Debye asymptotic limit, the voltage difference (71) reduces to

N/ 2 2
V= -1—]\'- vV \)2+(kb)2 -V \)2+(ka)2 - \)R,n(% yi_v_—l—_(_k_b)__):, (78)

v¥\/v2+(ka)2

From Eqs. (75), (76) and (77}, it can be seen that (78) differs from (50) only
by the presence of the quantity &8 in (77). By (62) and (77), one obtains

§ = —v | (79)

In air D+'V0.028 cm.z/sec., K+'b1.36 cm.z/volt sec., and so A = K+/2D+’h24/volt.
It then turns out that 6'h10—6, which is entirely negligible compared to 1

in (77). Therefore it is concluded that the effect of diffusion is infinitesimal
in the present case compared to that of mobility, although the former actually

overtakes the latter in the microwave regime.

The effect of diffusion on the voltage-current characteristic has also

been studied by Chekmarev,13 but with a boundary condition other than (52).

4.3 Effect of Ionization

The two calculations of the corona voltage-current characteristic presented
above are based on the assumption that the current is carried by charges of
one sign emitted by the wire. This is called the unipolar theory. In reality,
since the corona sheath contains charges of both signs created by ionization,
both types of charges must participate in conduction. TFor example, in a
positive corona, some of the electrons in the sheath will be attracted to the
positive wire and migrate towards it, forming a small electron current. A

calculation which takes this aspect into account is a bipolar theory.
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There is as yet no reliable quantitative theory for the state of affairs
inside the corona sheath. The precise ionization and recombination rates and
the detailed field and charge distributions inside the sheath are difficult
to evaluate. In the following calculations the effect of ionization will be
represented by a constant overall ionization rate. Therefore, although the
boundary-value problem so formulated can be solved exactly, the results can be
expected to have only qualitative and methodological wvalues. With the total
neglect of diffusion justifiable from the results of the last subsection, the

basic equations are

£+ = K+n+_E_’ _f__ = —K_n_ _E_’
VeE== (o, - n),
o
v-f, =S5, vef =38

where S is a constant ionization rate. In the case of axial symmetry, these

equations become

f+ = K+n+E, f =-KnE
1.d - & -
5> o (pE) = — (n, n_)
(o]
1 d 1 d
= —— (pf,) =S, —==-(pf) =5S.
> do (p " > do (pf))

The solutions of (83) and (85) are

1 2 i
pK+n+E =5 Sp” + C, K+n+E-+ KnE = 2rep

(80)

(81)

(82)

(83)

(84)

(85)

(86)

where C and 1i are constants of integration, and 1 again has the meaning of

the corona current per unit length of wire. For a positive corona, the negative

charges are created by ionization in the space between the electrodes and migrate

towards the wire. The density of negative charges n_ at the outer cylinder

p = b can be set equal to 0. This boundary condition determines C. Therefore

the solution (86) becomes
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_ i S .2 2 _ S .2 2
PR E = 5= - 5 R PKn E =3 (b™-p"). (87)

Solving for n, and n_ and substituting into (84), one obtains the differential

equation

4 o1 eS (1, 1.2 2
PE 35 OPB) = 250 = 5o (g +g ) (® =0 o. (88)
o+ o + -
Integrating from a to p, one obtains
S(K, + K)
2 _ 2 i 2 20 ST R 2 2 20 1,4 4
(pE)” = (aE )" + _—ZneoK+ (p7-a") - 7¢ KK [b"(p"-a™) ~ 5 (p'-27)] (89)

where one has imposed the corona boundary condition (52), namely, that the
electric field on the wire surface is maintained at the critical value EC
after breakdown. Solving (89) for E, and integrating over p from a to b,

one arrives at the following voltage-current characteristic

b do ‘J p2
V= aEc[ o 1+ ¢(—7—1]—SW(9) (90)
a a
where ¢ = i/iO as in (51), and
e(X, + K))
W) = ——5—5—— [b7(e°=a?) - T (p"-a™)1. (o1)
2¢ a E'K,K
[0/ c + -

For S = 0, Eq. (90) reduces to the ionizationless limit (53). For nonzero S,
the integral can also be worked out analytically. But the result will be very
complicated. Since ionization effects are only very approximately incorporated

in (85), an exhaustive calculation will be quite out of place here. There is,

at any rate, no dependable method to assign an effective value to S. A
qualitative examination of (90) suffices. It is observed that the function W(p)
is positive inside the range of integration. The effect of ionization is therefore

to decrease the expression under the square root. This decrease must be compensated
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by an increase in ¢ (or the corona current i) if the voltage difference
V 1is to remain the same. One therefore arrives at the intuitively obvious

conclusion that ionization augments the corona current.
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SECTION 5

APPLICATION TO A SINGLE LINE ABOVE GROUND

In the previous sections, a number of boundary-value problems in the
study of the electrical coromna on a long wire were solved for the coaxial
electrode configuration illustrated in Fig. 1. This geometry was favored
because its high degree of symmetry facilitates the mathematics, and because
experimental data for it are available for comparison with calculation. 1In
practice there exists another configuration of great importance, consisting of
a long wire parallel to the surface of a ground plane. This is, for example,
the geometry of the high-voltage power line. As is well known, if the ground
plane is perfectly conducting, this geometry is also equivalent to that of two
parallel wires operating in the push-pull mode and far away from other conductors.

This section calculates the corona voltage-current characteristic for
the wire-and-plane counfiguration. The results are applied to study the corona

effect on large signal propagation along a semi~infinite wire above ground.

5.1 Corona Voltage-Current Characteristic

Consider a long straight wire of radius &a whose axis lies at a height
h above a perfectly conducting ground plane, as depicted in Fig. 6. Suppose
the wire is charged to a potential V relative to ground. When V exceeds the
corona onset value Vc’ a current will flow through the air between the wire
and the ground. The critical potential Vc is related to the breakdown field
Ec through Eq. (4). As has been discussed in Section 3, EC is a function of
a and not of h. It is for all practical purposes the same as for the coaxial
geometry.

The coordinate system most suitable for studying the wire—and-ground

configuration in Fig. 6 is that of the bipolar coordinates (£,n,z). The relations

between (x,y) and (£,n) are

d2 csc2 n, (92)

(x -d cot n)2+ y2

x2+ (y -d coth 6)2' d2 cschzg. (93)

The parameter d is a positive constant. The range of & is from - to =,
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Figure 6. Wire-over-plane electrode configuration for corona study.
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and that for n from 0 to 2w. Then these relations describe two families
of orthogonally intersecting circles on the x-y plane as shown in Fig. 7.
Eq. (92) represents a family of circles with centers on the x-axis and passing
through two common points y = *d known as the foci. Each circle is labeled by
a value of n. Eq. (93) represents the orthogonal net. Each of its circles is
labeled by a value of £. The upper focus is the limit & —+-«, and the x-axis
the limit & >0. The circles with £>0 are below the x-axis. Note that n =7
for x =0, -d <y<d, that is, along the interfocal line.

The wire in Fig. 6 can be represented by ome of the circles (93). Let

it be labeled by a wvalue I—;o <0. It can be shown that
g, =-cosn I (), 4 =Va’- aZ, (o)

The coordinate n measures the angle around the wire.
In the following corona current calculations, only the effect of ion

mobility will be considered. The basic equations are the same as Eqs. (40),

(41) and (42) in Subsection 4.1:

£, =KnE, (95)
e

V-E = 'E—- n+, (96)
[o]

vef, K6 = 0. 97)

If the wire is thin, the state of affairs close to the wire may be considered
axially symmetric, so that the family of £-labeled circles are equipotential
surfaces. The corona current flows from wire to ground along circles of constant
n in Fig. 7. This means that £+ and E have only E-components. Writing

out the above equations in bipolar coordinates, one obtains

f_'_eE = K_'_n_'_EeE, (98)
2
(coshg~cosn)” 3 d _ e
2 3 ‘cosh g - cosn ] €, s (99)

d
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2
(cosh& —cosn)” 3 d ~
32 og (coshE -cosn £,) = 0. (100)

The solution of (100) is

_cosh& -cosn
£, = 3 c(n) (101)

where C(n) depends only on n. For a thin-wire the corona current flowing out

from the wire surface is isotropic. This means that

= i =
f+ 2mea’ at & Eo (102)

where, as before, i is the coroma current per unit length of wire. Under this

boundary condition, Egq. (101) becomes

i cosh§ -cosn
+  2mea cosh £, - cos n’ (103)

f

Solving for n, from (98) and (103) and substituting in (99), one obtains

2 2
P d i d d
3E (COSh g -cosn E) 'rreoK+ a(cosh go - cosn) (cosh £ —-cosn ) : (104)

-

Integration from Eo to & vyields

2 2

d d
(cosh £ -cosn B) = (cosh £,—cosn Ec)
i a3 F dg (105)
1T€OK+ a(cosh Eo - cosn) 50 (cosh £ - cos n)2

where one has already imposed the corona boundary condition (52), that is,

E=E at £ =¢& .
c o
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In bipolar coordinates, the E-component of the field is related to the

potential through

_ _coshg —cosn 3V
E = 1 Y (106)

and so the left-hand side of (105) is simply the square of 93V/3f. The voltage
difference can be obtained by integrating this last derivative from the wire
to the ground. The path of integration is most conveniently chosen as the

interfocal line n = w. With this choice the integral in (105) becomes

13 g E
J dg 7 = J ——d—i—— = -]2; [tanh(%_—) - % tanh3(§-)] . (107)
£ (coshg +1) £ 4cosh (£/2) £
o o o
Also, by (94),
d - ‘/ﬂ
cosh Eo+ 1 - 2Vara - (108)

With these simplifications, the voltage difference between wire and ground

becomes

1
o 2 >
- h-a h h-a 2
v = aEcJE ag B2 g (0 1) WEE2 1x(®) -x(e )1 (109)
o a
where ¢ = i/io as in (51), and
x() = tanh(3) - F tamn®(3) . (110)
Just at breakdown, V = Vc and ¢ = 0. Eq. (109) gives
- h-a
Vc B —ganc Jh+a ’ (111)
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or, by (94),
V, = aE Y2 cosh M (2 (112)

which is essentially (4) for h >» a.

The wire-to-ground corona voltage-current characteristic (109) is computed
for the case h/a = 100 and plotted in Fig. 8. It has the same parabolic
appearance as that in Fig. 3 for the coaxial geometry, and can also be fitted
by the simple expression (55). 1In fact, it is obvious from (109) that for a
large current (¢ > «), one has ¢ ~ VZ. Compared to the curve in Fig. 3

with b/a = 100, the present curve lies slightly lower.

5.2 Corona Effect on Large Signal Propagation

Consider a semi-infinite straight wire of radius a hung over a perfectly
conducting ground plane at a height h, as illustrated in Fig. 9. It is taken
to stretch from z = 0 to «. Let the wire be quiescent for t < 0. If,
starting at t = 0, a voltage difference Vg(t) is applied between the free end
of the wire and the ground by a generator, the signal will propagate down the
line to infinity. To a good approximation,‘the propagation is described by the

pair of transmission line equations:

v ar A1 v (113)

=L e

3z ot dz at

where V 1is the shunt voltage, I the seriescurrent, and L and C are,
respectively, the inductance and capacitance per unit length of line. For

h >» a, one has

-1

u
-0 2h, = 2h.
L = i 42n( a), C = 4weo[42n( a)] . (114)

If the signal exceeds the breakdown voltage Vc for the wire, coronas will

be formed along its path. Current will flow from the wire to the ground, forming
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a leakage and a loss. In this event, the transmission line equations (113)

must be corrected by a corona shunt current per unit length 1(V):

v _ 8T AL _ 3V _
oz L at 3z ¢ ot 1. (114)

In the following it will be assumed that 1(V) can be given its d-c value from
Eq. (109). This is a nonlinear function of V. With the introduction of a
corona shunt conductance per unit length G such that i = GV, the equivalent
circuit for Eqs. (114) is fepresented in Fig. 10.

Elimination of I from (114) yields the second-~order nonlinear wave

equation for V:

2 2 .
ag-%—ag—La—t—=o, i = 1(V) (115)
3z ¢ dt
where
e= 2 .1 (116)
YLC Vuoeo

is the velocity of light in free space. For i = 0, as when V < Vc, Eq. (115)

reduces to the standard linear wave equation whose solution is of the form
V=vV(t-z/c). ain

This represents a voltage disturbance propagating undeformed and undamped with

the speed of light in the positive z-direction. For i # 0, this simple form

is no longer adequate. Instead, one must assume

V=V(z, t-z/c). (118)

This added direct dependence on 2z accounts for the distortion of the signal
due to the formation of coronas along the line. It is convenient to change the

independent variables from the set (z,t) to the set (z,t) with
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by nonlinear shunt conductance per unit length G(V).
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T=t-z/c, (119)

whereby

= 9 _19 9 - 9
oz lt Y lT c 9t 'z’ at lz ot 'z’ (120)
Substituting this into (115), one obtains
2 2
3V 2 3V oi
3p2 ~ e drtez L3 =% (121)

In the following analysis, the corona loss will be assumed small. Following
a method of Ilinova and Khokhlovl4, one neglects the second-order derivative with
respect to 2z 1in Eq. (121). This is because if the corona distortion is small,
the solution is approximately of the form (117) and the direct dependence
on z will be weak, so that only the first-order derivative with respect to

z need be retained. Then Eq. (121) becomes

3 2 aVv YL

o (£ 5, +Li) =0, (122)
with the solution

25V .

e +Li = C(z) (123)

where C 1is function of 2z alone. Eq. (123) holds for all +t. If the line is
unexcited for t < 0, one must conclude that C(z) = 0. Introducing the

characteristic impedance Zc of the line, such that

u
e = L - \l—° 1 zn(%*—‘-) , (124)

Zc C e m
o

one can rewrite (123) as
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A A
=+ 5 Z (V) = 0. (125)

For a given functional dependence of i on V, the integration of this equation

is straightforward. One assumes here for simplicity the parabolic form (55):

i(v) = (126)
KV(V-—VC) V>V

The constant x can be adjusted to fit Eq. (109) or Fig. 8. Then the solution

of (125) is

f(1) V<V
V(z,1) = (127)
\'
= V>V
1
].—g(r)exp(—E-ZCKVCz)

where f(tr) and g(r) are some functions of T alone, to be determined by

boundary conditions.
Suppose the generator in Fig. 9 puts out a voltage pulse of the double-

exponential form:
v (o) = v (e - *Ye (0, (128)

and suppose that V0 is sufficiently large that Vg(t) exceeds the breakdown
voltage Vc for t' <t < t", as shown in Fig. 11. The unknown functions

f(r) and g(t) in (127) will be determined by matching the solution V(z,T)
with the boundary wvalue (128) at the driving point =z = 0 of the line. At this

point, T 1is equal to t, and (127) becomes

f(v) V < Vc
vV({0,t) = (129)
Vc
if::;({; V> VC .
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Figure 11. Example of a double-exponential voltage pulse with peak value exceeding the corona onset

voltage Vc.



Equating this with Vg(t) in (128) yields the complete solution for general z

and T:

Vg(r) 0<ts1t',
Vc
V(z,t) = V ' <t 2", (130)
c 1
1 [— v (T)]exp( 3 ZCKVCz)
g

V (T "< < «,

g( ) T <T£
This result is easy to interpret. The portions of the pulse in Fig. 11 below
7' and above 1", being sub-critical, will propagate unaltered and unattenuated

down the line with the speed of light. The portion between t' and 1" will

be distorted by corona, and will be leveled down to Vc at a sufficiently large
distance =z from the voltage input for which the exponential factor in (130)

is small. The velocity of propagation and the width of this portion are unaffected.
This result can readily be extended to any general pulse input other than (128):

all supercritical portions of the pulse will eventually be chopped down by corona
to the critical wvalue.

The order of magnitude of the propagation distance, at which corona
attenuation is appreciable, can be estimated from the damping constant Zc;cVC in
(130). Typically this quantity has a value rb10_6/meter. Thus the pulse has
to travel some 1000 kilometers before corona attenuation becomes severe. The
reason for the smallness of the effect is not hard to find. The corona onset
voltage is usually very high. At this voltage, the seriescurrent in the transmission
line is proportionately large, being normally of the order of 1000 A. The corona
current, on the other hand, is typically of the order of 10—3 A/meter.

Thus, in one meter of line, the current loss is only about one part in a million.
The extreme smallness of the attenuation amply justifies the neglect of the

second-order partial derivative with respect to z in (121).
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SECTION 6

CONCLUSTIONS

This report comprises a study of the physics and the mathematics of the
electrical corona on a long wire. The fundamental physical processes of collision
ionization, ion drift and diffusion, which underlie much of the gas breakdown
phenomena, were discussed at considerable length. They were transcribed into
Precise mathematical language in terms of a set of coupled nonlinear partial
differential equations. A number of boundary-value problems for these basic
equations were worked out. The calculations for the d-c¢ and microwave breakdown
fields, and for the d-c voltage-current characteristic, were found to be in
good agreement with experiment. These successes provided solid support to the
correctness of the basic equations.

With the exception of the transmission-line problem in Section 5, the
boundary-value problems solved in this study are time-independent problems.

This is not to suggest that the time-dependent problems are not of primary
interest, but rather that they are by far harder to tackle. The mathematical
equivalent of a transition from a time-independent corona phenomenon to a
time-dependent one is a passage from nonlinear ordinary differential equations

to nonlinear partial differential equations. The range of mathematical techniques
available today for handling the latter type of equations is severely limited.

And yet the study of many important aspects of the electrical corona will involve
time-dependent problems.

In Subsection 5.2, the d-c corona voltage-current characteristic was
applied to calculate the corona effect on pulse propagation along a transmission
line. It is to be noted that although the problem is time-dependent, the treatment
of the corona itself is quasi-static. This procedure is reasonable only if the
shunt voltage at a fixed point on the line changes but little during the time it
takes for the corona current to establish a steady flow. The latter time is
at least as long as the transit time for an ion to travel from one conductor
to another. An ion in air typically picks up a velocity of 1 cm./sec. in a
field of 1 volt/cm. At breakdown, a representative ion velocity is about
1 km./sec. If the conductor separation is 1 meter, the transit time is about
10_3 second. One can surmise that if the width of a pulse, or the period of

a continuous wave, is smaller than this value, the d-c result will be inapplicable.
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A time-dependent treatment of the corona current must be considered.

Another problem in which time-dependence is essential is that of the
corona effect on the trailing-wire antenna. During operation, the greater part
of this antenna is hung in mid-air, far away from other conductors. There is
no d-c equivalent of this configuration, since the d-c corona current always
flows between two electrodes. The fact is that, under a continuous-wave excitation,
the antenna is alternately anode and cathode. The ions in the corona oscillate in
and out radially near the wire surface, more or less in phase with the wave.
If there is a constant corona ohmic loss per cycle, then the power loss due to
corona is directly proportional to the wave frequency, as was experimentally .
found by Peek in Eq. (3). At high frequencies, the loss is potentially very
large. Obviously a theoretical attempt to deduce Peek's empirical result entails
the solution of a time-dependent problem.

The analysis of the corona effect on aircraft antennas is a challenging
theoretical problem. Its difficulty is enhanced by the scarcity of antenna data
to guide the calculations. This preliminary study has been directed at identifying
the basic physical processes and the basic mathematical problems involved. It
has been concluded that Eqs. (9) through (13) are the basic irreducible equations
for the corona phenomenon. Their essential correctness has been established
by the good agreement between calculation and measurement in the quasi-static
limit. The next stage in the overall corona effort will involve the study of
time-dependent solutions of the basic equations. These will describe both the
EMP and CW excitations of long-wire antennas. The chief quantities to come out
of the calculations will be the corona charge and current densities around the
antennas as a function of space and time, and of the sources of excitation.
From these results one can analyze such corona effects as antenna signal distor-

tion, power loss, and the corona modification of the coupling between aircraft

and antennas.
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