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Abstract

The equivalent capacitance of a bend in a two-wire transmission line is
calculated from a variational principle. The capacitance of an abrupt bend
is obtained explicitly in simple form. The capacitance of a circular beﬁd is
expressed in terms of one-dimensional integrals to be computed numerically.

It is concluded that the bend capacitance is strongly dependent on the bend
radius. ' ' '
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I. INTRODUCTION L

The aircraft EMP internal-coupling study is concerned with the propagation. .
of EMP energy along cable systems in an aircrafr's interior. An important area
of this study is the determination of the propagation characteristics of generic
cable configurations. One very common type of aircraft internal cable geometry

- is that of a line parallel to a conducting ground. Due to the formation of

the electrical image this cable is equivalent to a two-wire transmission line.
Even though the propagation characteristics of the straight uniform two-wire line
are well kﬁown,rthe presence of bends in the line may bring about significant
corrections. This is because an electromagnetic signal in the cable incident

on a bend is partially reflected by the bend. The reflection can be simulated

at 1oﬁ frequencies by loading a lumped network circuit onto the uniform line

at the location of the bend. The lumped network elements are related to the
inductance and capacitance of the bend, and are calculable from the bend geometry

by solving certain appropriate electromagnetic boundary-value problems.

O
- Figure 1 shows a bend in a two-wire transmission line and its equivalent

lumped network circuit. The two parallel wires are bent identically through .

an angle & . The bent section in each wire can be modeled by a circular arc
of radius R and angle a connecting two semi-infinite straight sectionms.
The geometry of the model is shown in Figure 2. The two wires are made up of

two parallel, perfectly-conducting, solid cylinders of radius a and at a

T W R

separation‘Zb .

The objective of the present study is to calculate the lumped inductance

i
!
y -
3
N
*

Ld and the capacitance Cd in the equivalent circuit representation of the

circular bend in Figures 1 and 2. The inductance calculation has been fully
presented in Part I of this report [1l]. Part II here deals with the capacitancé
calculation. The mathematical method empleyed will be based on the calculus
of variations. 1In Section II the electrostatic boundary-value problem for the
bend is formulated by means of an integral equation. From this equation a

_ variational representation of the reéiprocal of the capacitance is constructed
in Section III. It is then applied to calculate the capac1tances of an abrupt

-bend and of a circular bend in Sections IV and V.




-~ Figure 1. A bend in a parallel-wire transmission line

and its equivalent circuit representation.
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i ) Figure 2. Geometry of a bend in a two-wire transmission line. The bend is modeled by a

circular arc of radius R and angle a .
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II. INTEGRAL-EQUATION FORMULATION

Consider the bent two-~wire transmission line in the coordinate system in
Figure 2. Let the upper wire at z = b be charged to a potential VO/Z , and
the lower ﬁire at z = -b to a potential —VO/Z . The potential difference
‘between the two wires is therefore V° . The charge densities per unit length
on the upper and lower wires will be denoted by #*o , respectively. It will .
/be assumed that the two wires are thin, so that the wire radius is much smaller
than the wire separation. One can then consider the charges on the wires as s
being concentrated on the center lines of the wires; and ¢ can be expressed
as a function of the y-coordinate alone. ’
At a general point (x,y,z) exterior to the two wires the total electrostatic
potential due to the wires is obtained by summing up the centributions from all

the charge elements along the center lines:

rdy, ds' 1 »

- /(x-x')?' + (y—:y")2 + (z-b)z

1
’ V(x,y,z) = >
o

| - L | @)
/Q%—x')z + (y—y')2 + (z+b)2

In the formula s' is the arc length measured along the center line of a wire, -

2
ds' _ dx' .
4 " \/% * (‘a‘y—) @

‘Strictly spesking, the charge density o(y') 1is to be determined by requiring

that V reduce to iV°/2 on the entire surfaces of the upper and lower wires,

so that

respectively. However, to be consistent with the thin-wire assumption inherent



C in formula (1), one can apply the boundary condition only along a line on the

surface of each wire. This line will be chosen to be at z =b-a on the

upper wire, and at =z = -(b-a) on the lower wire. An integral equation for

o(y') results:

1 [Toaast 1
Vo Zm:o J dy dy' ") - 5 5 5
’ . v/(x-x') + (y-y")" +a

- L e <y <e (3

Jx=x")? + (g=y") % + (2b-a)>

The integral equation (3) is to be sclved under a specified funectional
relation between x and y , and similarly between x' and y' . This relation

takes the form
C x = f(y) , x' = f(y") ' )

and describes the center line of a wire. , Three forms of f£(y) will be considered‘

in the following sections. For the line with a circular bend shown in Figure 2,

one has
: R sec(%) - »’Rz—y2 Iyl < v,
A '
S x = fl(}’) = : (5)
; a
|y|tan (5) Iyl >y,
' where '
a
Yo = R sin (-2—) . (6)

" - One also considers the abrupt V—shap_ed bend obtained in the limit as R tends

. to zero. The functional relation for this case is




. a
x = £,(y) = lyltan(—z-)
Finally, for a straight uniform line with no bend, one has

x=£,(y9) =0

()

(8)
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ITI. VARIATIONAL REPRESENTATION OF THE CAPACITANCE

[

It is possible to calculate the capacitance of the two-wire transmission ‘
line without solving explicitly the integral equation (3). The way to gn abont

this is to phrase the capacitance calculation as an eigenvalue problem. From

well-known results in the calculus of variations, a variational principle for

the eigenvalue can be established. It can be applied to obtain an estimate

of the capacitance with a judicious choice of the trial function.

Let Q denote the total charge on the upper wire. It is an infinite
quantity and can be expressed as. a line integral of the line charge density
o: '

© L
Q= J ay' -6y 9

dy'

-

Q 1is directly proportional to the potential difference Vo , the constant of

proportionality being the capacitance C :

0=, a @

Using equations (9) and (10), one can eliminate Vo from the integral equation

(3), which then becomes .
1 . ds’ _ ® ds'
p j dy ay© o(y') = J dy' E;T'U(Y')K(Y:Y') ~® < y<® - @an
-0 -—00

The kernel K(y,y') 1s defined by

1 1 _ 1 - (125

Rly,y") = 5=
O \ Vix-x")? + (312 + a2 Voex")% + (y-y") + (2b-2)°

where x and x' are related to vy and y' through equation (4).

s °



Equation (11) is linear and homogeneous, with the reciprocal of the capaci-
ance 1/C playing the role of an eigenvalue. A variational representation of
he elgenvalue for an integral equation of the type (11) is well known [2] and

akes the form

f dy ‘[ dy’ ds ds_ o (Y)K(y,y")o(y")

dy dy'
l - —00 -0 (13)
¢ ® %, . ds ds'
=22 e 4
I dy J dy' gy qyv 0ol

By "variational representation' is meant that 1/C is a functional on the space
of trial charge density functions o , and that "its value attains an absolute
minimym at the exact solution of (11). This minimum corresponds to the exact
value of the capacitance. If a trial charge density function differing from

the exact solution by a small amount 6&¢ is inserted in (13), the error
incurred in the approximate value of the capacitance so obtained 1s only of
order (60)2 . Consequently an evaluation of expression (13), even with a '

very crude trial function, can yield a good estimate of the capacitance.

On physical grounds the charge denéity per unit length of the two-wire.
transmission line is uniform except in the vicinity of the bend. For a very
long line with a length greatly exceeding the bend dimensions a good trial

function i§ therefore
ag(y) = constant (14)

With this simple choice expression (13) becomes

1 -0 -
1. T T ao (15)
as 1 4SS
J dy dy f d iy

11

e e e e



which depends only on the geometry of the bend. By applying to the kernel
K(y,y') in (12) the three functional relations £, f2 and f3 defiﬁéd'in
equations (5), (7) and (8), one obtains three kernels Kl . Kz and K3 . '

These, when inserted into formula (15), generate three capacitances 'Cl s CZ .

and 03 . They are, respectively, the total capacitance of a two-wire

transmission line with a circular bend, an abrupt bend and no bend.

In the following two sections the equivalent capacitances of an abrupt
bend and a circular bend are calculated from formula (15). In.Section IV the

equivalent capacitance of an abrupt bend, denoted by C& and defined as the

diffgrence

c'=¢C,~-¢C (16)

is evaluated in closed form. In Section V the difference Cg between the

circular bend capacitance and the abrupt bend capacitance, given by

cy=c, -c i(iy)

is expressed in the form of one-dimensional integrals ready for computation.

The equivalent capacitance Cd of the circular bend is then obtained as

= - = f 1" '
Cy=C; Cy = Cy+CY , _(18>

12




IV. CAPACITANCE OF AN ABRUPT CABLE BEND

Consider a two-wire transmission line with an abrupt bend through an angle
@ . This bend can be regarded as the limit of the circular bend in Figure 2
when the bend radius R . tends to zero. Let the transmission line be of finite
length initially and stretch from y = p’ to y = -D . Eventually the coustant
D will be allowed to tend to infinity. The total capacitance C2 of this line

1s calculable from formula (15):

D D ds_. ds! .

Al _ 1 v 2 2 ' ;

c, = ) dy j dy’ & ay! Kz(y,y ) . a9
2-Dp <D

The subscript 2 will everywhere refer to the line with an abrupt bend. The

kernel K, is given by

2

1 1

me . 2
°\AZyl-1y P+ -y? + &

? .
Kz(}”y ) = 2

T3 - | (20)
“ii(lYl-IY'I)z F -y + (2b-a)?

with

A = tan (%) _ (21)

S2 is the total length of the line between y =D and y = ~D :

D ds! a
2 / 2
'SZ=de"d—y~,—=2Dvl+>\ (22)
-D

since, by (2) and (7),

[= 9
[
N =~

"y

- = Y1 + xz ' ' (23)

A,
¢
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Now consider a straight two-wire transmission line of the same total length.

That 1s, its length S3 is given by Co

g, =5, =20/1 + A% (24) .

where the subscript 3 refers to the straight transmission line. This line can
be taken to lie parallel to the y-axis in Figure 2, and to stretch between
-D¥1 + 27 . According to formula (15), its total capa-

y=D/1+3% and v
citance C3 is

nf_ o2

-51— -—lz— dy' K, (y,y") - (25)
3 3 -D 1+X2 —D/1+x2 '

where

' 1. 1 1
K3(Y’y') = z.n.e - (26)

/(y-'y')z + a’ /(Y-y")z + (Zb--!':t)2

A simple change of variables reduces (25) to the form

2 (D
_1__=1“j IdyK(/ y , 1% yh (27)

2
3 S3 D
Substituting formulas (19) and (27) into the identity

11 '
€, - C, =C_C - = . (28)
27 73 23(3 Cz) Y

and making use of relations (23)_and (24), one obtains an expression for the.

equivalent capacitance Cé of an abrupt cable bend defined in (16):

B |



L .
C.C.(L+A") D D
ey = 25— oy [er [/l 5y, /ia® ) - x00n] @
S .
3 -D ~-D

When the total length of the line is allowed to increase, the effect of the bend
on the total capacitance of the line becomes negligible. The total capacitance
approaches the product of the line length and the constant capacitance per unit

1eng£h of the uniform line. In mathematical terms, one has

Lim C2 = C3 = KS3 . (30)

D+
where

wE
¢]

K = ————r—
n (%E)
a

is the well-known capacitance per unit length of the uniform two—wire_tranSmissiqn

b > a (3L

line. Therefore in the limit D-+«, formula (29) goes over to the desired expres-
sion for the equivalent capacitance of an abrupt bend in an infinite two-wire

transmission line:

d

¢! = k(1% J dy J dy'[:K3(/l+k2 y , /1%y - Kz(y,y')] (32)

-00 —c0 .

It is easy to see from (20) and (26) that the integrand in (32) vanishes
identically whenever y and y' are of the same sign. The nonzero contributions
to Ca can be rearranged as follows:

cy = F(0) - F{Q) ' (33)

where

15



2 fa 0 1 .
FO\) = E_i%gﬁ_l I dy J dy! - 2 >
° 0 - /Az(yﬂr')z + (y-y') +a ‘

- 1 (34)
/§52y+y‘)2 + (y-y')z + (2b-a)2 C

The integral is the same as that appearing in expression (18) of Part I [1],
4 " and can be evaluated analytically by the method described therein. The result is

2¢? (b-a) 142°

TE A
o

FQ\) = tan TA (35)

Combining expressions (21), (31), (33) and (35), one obtains the equivalent

capacitance of an abrupt bend in the simple formula

2ﬂeo(b—a)

C! = —————=— (1L - a csc o) (36)
‘ [in(zh)]z '.I'

a

For completeness one quotes here the associated equivalent inductance Lé of

the abrupf bend derived in equation (22) of Part I:

Zuo(b-a)

t -0 -
Ld - (¢ cot o - 1) a7

The expression (36) for the bend capacitance Cé is evaluated for the case
b = 10a , and plotted versus the bend angle o in Figure 3. The equivalent
capacitance of an abrupt cable bend has previously been calculated by Tomiyasu
{3] and King (4] using a different approximate method. Expression (36) agrees
with theif'result to within a_few'ﬁercent. It is, however, simpler in form and

4 " applies to a wider range of the bend angle a .

16 @
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Figure 3. Plot of the equivalent capacitance Cé of an abrupt cable bend

versus the bend angle a .
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<f\ V. CAPACITANCE OF A CIRCULAR CABLE BEND

[y

The equivalent capacitance Cd of a circular cable bend is the sum of the

equivalent capacitance C& of an abrupt - bend calculated in Section IV and the

defined in .equation (17). The evaluation of Cg is under-

correction term Cg

taken in tuis section.

N Applying formula (15) successively to the two transmission lines with the

circular and abrupt bends and taking the difference of the two resulting

r expressions, one obtains

2 5
R (38) ..
2 1 .

On thé left-hand side, Sl and S2 are the total lengths of the two transmission

lines:

§ : N e | _[ 2

They are both linearly divergent quantities. The right-hand side of (38) is a

t
8
!
8

PO S

two~dimensional integral:

- : 2 e Jds, ds) ds; ds}
. N | 952 955 |
' , W= J_@y J A e R OY SO AN il el wrl S 4 o)

-0 -0

The kernel Kz(y,y') has been written out explicitly in equation (20). The

PN SR AT AN At e e

kernel X,(y,y') is given by

. | ' 1
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- L ' (41)
v/[fl(y) - fl(y')]2 + -y + @b-a)”

with £ (y) definﬂd by (5) The two quantities sy and S, “in’ (40) are ar:

1engths along the transmission lines. By (2) one obtains

d ds

o= L+ o RN | (42)

The left-hand side of (38) is the difference of two infinite quantities.
Its value is nevertheless finite, and is related to the capacitance differgnce

N = - . .
Cd C1 C2 . Introducing the relations

where CS and AS are finite and C; and §, are infinite, one finds that.

s2 52 s\ . (s,
o o CH + 2157 )8s (44)
2 1 \1 1 - .

.The ratio C /S in (44) is simply the capacitance per unit length of the

infinite benc transmission line. It is equal to «x defined in (31) for the
uniform line., Furthermore AS is the Qifferénce in the arc length between
an abrupt bend and a circular bend. From Figure 2 one can immediately write

dowm

; R(2XA - a) (45)

Substituting (44) and (45) into (38), one flnally obtains an expressxon for
the capacitance correction term:

2

c:i' = kW - 2«kR(2X - a) (46)

19
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It remains to evaluate the two-dimensional integral W appearing in (45)

and defined in (40). One easily sees from the definition of fl(y) 1n (5)

that the integrand in (40) vanishes identically whenever both ¥y and 'y' lie ‘
This result is a reflection of the fact that

outside the interval '(-—yo,yo) .
the two differently~bent transmission lines coincide outside the bent sections.

Consequently the nonzero contributions to the integral W come only from a
certain cross-shaped region on the y-y' plane, as shown in Figure 4. The
total contributions consist of a part .from the central square of the cross,

and a part from the four semi-infinite strips forming the four limbs:
W = W(square) + W(strips) (47)
Each of the two parts can be further subdivided as follows:

W(square) = G1 - G2

(48)
W(strips) = G3 - Gl, .
The four G's are two~dimensional integrals defined explicitly as follows: ‘
_ Y Yy
Y T 1+A2 ° ° ' l 1
6y = 2ne dy | dy
o o] 2 2 2 2
vy Yy \Ayl-lyh 4 G-y 4 a
1 _
- > (49)
' 2 2
A dyl-ly'h? + -y"? + (@b-a)?
2 ra/2 (af2
GZ = 2}: 4o d(P' 1
“o ' 2 2 2 -
-af2 -af2 v/ZR + a” ~ 2R"cos (p-9"')
_ 1 - : : '
- (50)

/or? + 2b-2)2 - 2rR%cos (o-9")

20



Figufe 4. Domain of integration for caleculating the two-dimensional

integral W defined in equation (40). Nonzero contri-

butions to W ‘come from the undotted cross—shaped region.
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G,

. N
. < 23R 2o | avrf — 1 -
3w I Ve Z 2 . 2
Yo o A o-ly' DT+ -y +a .
1

- - (51)
AZ-ly' D% + (3y)2 + (2b-2)> '

/L2 [*. (*/2 1
= Tge. | 9¥| 4
0 Y, -a/2 ﬂxy - RY1+A" + R cos cp')2 + (y - R sin <p')2 + a2

_/{iy - R¢1+12 + R cos w‘)z + (y - R sin @')2 + (2b—a)2

1

(52)

- These four integrals are similar to those encountered in the inductance calculation.

Usinérthe method outlined in Section V of Part I, one can reduce the G's to one-
dimensional integrals. The result of the reduction is

Gy

G

2

=

2 o .
2%4-;\ ) fdu(y - ) 1 _ 1
€o ° 2,2, 2 [ .2 2 2
0 (I+2)u” + a (Q4+2")u” + (2b-3a)
2 fo ' :
14X ' :
+ fdv[d’(Zyo - v, V)= ¥(v, v)] . (53)
o .
0
Rl e
%— J du(a ~u) 1,
° 0 ¢£R2 + a2 - 2R2cos_u
1 \
= . (54)
v/2;12 + (Zb-a)2 - 2R2cos u ' .

8 ®
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.‘ 1.
_ 214’ I
-y

G5 e dy'v(Ay'ly" ‘ . (55)
0 ‘ ] }
o
c/2
€ = éiR J dop'¥ (RY1+ - R cos @' , R sin ") (56)
o
-a/2
‘with
2
" e(u,v) = n S S (57)
u+ A2+ o 4 (2b-a)?
and 7 ] |
./&+12 /Qxyo_x)Z + (yo_y)Z + (2b~a)2 + (l+k2)yo -y
¥(x,y) = n — o . 58)

/
V1422 Oy 0% + (yo—y)z + a% & (1+x2)y° -x -~y

For numerical purposes there is no advantage in trying to further reduce the

Integrals. They will therefore be left in the present form.

In summary the equivalent capacitance C, of a circular cable bend of

d
radius R and angle a is given by

| .2
= ' — - — -—
Cd = Cd 2kR(2X = a) + x (Gl G2 + G3 GQ)

(59)

The G's are evaluated numerically for the typical cases b ='10a and R = 2b
and 4b . The values of Cd are plotted versus o in Figure 5. The capacitance
C& of an abrupt bend (R = 0) is also shown for comparison. It is obvious from °
the figure that the abrupt bend is not a good approximation to the smooth bend.

The same conclusion was drawn from inductance comnsideration in Part I.

23



K&

i "\ R0 |
\ _ :
\.
\
\
- \\. .
Cd \.
4megh \\
_ -
\
\ .
n a - |
\
|
\
- l ] l

: ]
0° | 60° o 120° 180°

Figure 5. Plot of the equi&hlent capacitance Cd of a circular cable bend of

radius R versus the-bend angle « . The broken line is the capacitance:

Cé of an abrupt bend (R=0) .




. VI. SUMMARY AND CONCLUSIONS .

A'calculatioﬁ.of_ﬁhe equivalent capacitenee of a bend in an otherwise '
straight two-wire transmission line has been carried out based on the variatiomal
'representation (13). The bend is modeled by a circular arc of radius R and
angle o ‘adjoining two semi-infinite stralght sections. The detailed geometry

is shown in Figures l and 2.

The bend eapac1tance is a function of four geometrical parameters R,ca,
a and b, where . a and b are respectively the radius and one-half the separa-
tion of the two wires making up the transmission line. In Section IV the
capacitance Cé of an abrupt bend (R = Q) is obtained in the simple formula
"(36). In Section V the capacitance Cq of a circular bend is given in formula
(59). The four quantities G1 y G2 s G3 and G4 appearing therein are one- -
dimensionel integrals defined in expressions (53) through (56), and are meant
to be evaluated on the computer. In the formulas quoted the three parametcrs

Yo l and k are defined in terms of R , & ,a and b by equations (6),

. (21) and (31) respectively.

u'

. The bend capacitance Cd' is found to be strongly dependent on the'bend
radius’' R , being directly proportional to R for 1large R . When R is
comparable to the w1re separation, the use of the simpler expression (36) for
the abrupt bend capac1tance to approximate the smooth bend capacitance is

strongly dlscouraged.
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