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ABSTRACT

The singularity expansion method is a technique used for
writing the transient response of a structure as a sum of
exponentially damped sinusoids. In order to apply this method,
it is first necessary to obtain the singularities of the sys-
tem being studied. The conventional approach for determining
the singularities of a system  is based on an iterative search
procedure that seeks the zeros of the system determinant in
the complex frequency plane. The alternative approach of
extracting the system singularities directly from the transient
response function dis discussed. The method developed is based
on Prony's algorithm. Some basic problems which are associated
with the use of Prony's algorithm are discussed and solutions
are obtained.

It is demonstrated that Prony's method is applicable to
systems with multiple as well as simple pole singularities.,
Two techniques are presented for systematically determining

the number of poles contained in a transient response.



Several numerical examples are presented to demonstrate these
capabilities. The dependence of Prony's method on the noise
level in the transient response is of great importance if the
method is to be applied to experimental systems. This question
is considered in detail and the results of several statistical
tests are presented in order to get a handle on the problem.

Some of the applications of Prony's method which are dis-
cussed are: svstems analysis, radar target recognition; the
study of spectral characteristics, and data reduction and
extrapolation. Examples are presented that demonstrate the
advantages that this technique has over the conventional
approaches to the above applications. The Padé approximation
is suggested as an altermnative to Prony's method but is

demonstrated to be unsatisfactory.
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1. INTRODUCTION

In circuit theory, the impulse response that characterizes a linear
circuit may be determined from the knowledge of the singularities of the
response function in the complex frequehcy plane and the corresponding
re;idues. The impulse response of the circuit is then simply a summation
of all the residues multiplied by exponentially damped sinusoids. In
recent years a similar approach has been used to characterize the tran-
sient phenomenon of electromagnetic scattering and antenna problems. This
approach is known as the singularity expansion method (SEM) [1], [2].

The development of the singularity expansion method arose from in-
sight into the general characteristics of typical transient response
behavior observed on various electromagnetic structures. The transient
response waveforms of these structures appear to be dominated by a few
exponentially damped sinuscids. This observation is especially apparent
if one looks at the late time response of slender or thin wire structures.
The resonant frequency, damping constant, and current distribution of
some of these resonant modes had been calculated for the thin wire and
prolate spheroid as early as 1930 [3], [4]. However, not until the sin-
gularity expansion method came into being was it possible to determine the
modal resonances and the excitation coefficient of each mode for a
structure with an arbitrary incident wave.

In the singularity expansion method the transient response is written
as a sum of exponentially damped sinusoids. In order to write this sum,
it is necessary to first determine the location of the complex natural
frequencies or pole singularities of the structure being studied. The
conventional approach for determining the singularities of a system is

based on an iterative search procedure that seeks the zeros of the system




determinant in the complex frequency plane. This approach has been used
successfully by many people and has given extremely satisfying results.
A few illustrations are given in References [5] - [7]. Since the iter-
ative search is a slow procedure, it is usually economical to extract
only a few poles. Also in the conventional techniques, the poles cannot
be extracted from the time-domain formulation of the problem.

Recent development of methods for the direct production of both
numerical [8], [9] and experimental [10], [1l] transient electromagnetic
response data has generated considerable interest in the possibility of
direct extraction of the poles and their accompanying residues from
given time-domain system response. This thesis presents a numerical
technique for systematically determining the system singularities from
the transient response data of that system. The approach thatvwill be
developed here is based on Prony's algorithm which was first published
in 1795 [12] and has appeared in a few good numerical analysis texts
[13], [14].

In Chapter 2 the mathematical notation is developed for the impulse
response function for electromagnetic antennas and scatterers. The
assumptions used in reducing the impulse response to a sum of exponentials
are also presented. The necessity of removing the influence of the
driving function from the transient response if the driving function is
not a true delta function is discussed in detail.

Prony's method is developed in detail in Chapter 3. The method is
applicable to systems containing multiple as well as simple poles. Sev-
eral numerical examples are presented and the results are analyzed.
These results are used to establish guidelines for the use of the method

and to bring out some of the problems associated with the method.



A systematic procedure by which the number of poles inherent in the
transient response can be determined is necessary in order to properly
use Prony's method. Chapter 4 presents two techniques for doing this.
The first technique is based on an orthogonalization procedure and the
second technique is based on an eigenvalue approach. Both methods have
advantages and disadvantages inherent in their implementation. These
advantages and disadvantages are presented by showing several numerical
examples.

It is shown in Chapter 5 that noise seriously affects the poles
returned by Prony's method. In some cases the noise level is high enough
to completely corrupt the results. Several statistical studies are pre-
sented which relate the standard deviation of the noise to the quality of
the results obtained from Prony's method.

Chapter 6 discusses several of the applications in which the de-
veloped methods can be implemented. Some of these topics are: system
analysis, radar target recognition, the study of spectral characteristics,
and data reduction and extrapolation. Examples are used to show that
Pron;'s method applied to these problems has definite numerical advan-
tages over the conventional approaches used.

An alternative to Prony's method is presented in Chapter 7. This
approach is the Padé approximation but it is extremely limited in its
usefulness. Chapter 8 presents conclusions and recommendations for

further study.
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2., MATHEMATICAL FORM OF THE TRANSIENT RESPONSE

This chapter introduces the mathematical form of the impulse re-
sponse function for an electromagnetic scatterer or antenna. The impulse
résponse will be written in both the s~plane (Laplace transform) domain
and in the time domain. The assumptions necessary for reducing the impulse
response to a simple sum of exponentials are discussed. It is necessary
to reduce the response to a sum of exponentials so that the methods of
Chapter 3 may be applied. The form of the response functions for an

arbitrary excitation is also studied.

2.1 The Impulse Response

The normalized s-plane impulse or delta function response for a
finite-sized object that has only pole singularities in free space is

generally written [1], [2]

H(r,s) = .Zl n,(s;5P) v () (s -_si)_mi + W(x,s,p) (2.1)
where the above terms are defined as:
s - natural frequency, pole singularity, natural rescnances.
This is a complex frequency for which the system has a re-
sponse when no forcing function is applied. The poles must
appear in complex conjugate pairs or lie on the real axis.
The poles also must lie in the negative half of the s-plane.
v;(F) - natural mode.

This is the response of the system at s which depends on
the position ¥ on the structure and the object parameters

only.
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ni(si,g) - coupling coefficient.
This is the strength of the natural oscillation o in terms ‘)
of the system and the incident wave parameters. It is inde-

pendent of positionm.

Lol ]
{

polarization of incident plane wave. -

T ~ the position vector.
This is the position on the structure at which the transient
response is being measured or observed.
PR .th
m, ~ the multiplicity of the i~ pole.

The term ﬁ(?,s,ﬁ) is an entire function of s and dependent on the form
of the coupling coefficient and the incident wave. In the most general
case this term is required by the Mittag-Leffler Theorem [15] in order
to guarantee convergence of the infinite series. It has been hypothe-

sized that the entire function 1is not needed in most electromagnetics

problems and could normally be neglected.
The impulse response (2.1) can be written in the time domain as

- - ® _ _ s.t
H(r,t) = u(t = tg) | n (s;,p) v, (¥) e ”

(2.2)
i=1 :

where the entire function has been neglected and all poles have been
assumed to be simple. The step function u(t - to) is present so that

the response does not start until ¢ the time at which the response

O,
begins at the particular observation pesition r on the body. Since

the entire function has been neglected, it is necessary to require that

t, be greater than zero because a delta function source applied at T

0

at t = 0 yields a delta function at t = 0 in the impulse response which

cannot be represented by the exponential terms.

|wl
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As an example, consider a perfectly conducting finite dipole driven
at t = 0 by a delta function plane wave with the E field polarized in
the direction of the dipole axis. The impulse response of the induced
current at any position t on the dipole is of the form
s,t

Z Ai(E) e *

I(x,t) =[
i=1

1

+ Bi(f) G(t)] u(t) . (2.3)

If the induced current 1s expressed as a sum of complex expomnentials it
is written as

o s.t
1 a6 e 1] | (2.4)

I(r,t) = u(t - t.)
0 [1=l

. + . ; .
where t, is set equal to O , the time at which the delta function turns

0
off. Note here that for convenience the coupling coefficient and the

natural mode have been combined into one term Ai(;). The s-plane version

of Expression (2.3) is written
=y _ i
I(s,r) = ) T —5 + 3B, (2.5)

where Bi(;) is the inverse Laplace transform of Bi(z) §(t), which is a
constant in s and a function of position r.

In Equations (2.1) - (2.5) the series contains an infinite number
of terms. In general only the first few terms of this series are needed
to adequately represent the late time response of the system [1], [5].
The early time response on the other hand requires a larger number of
poles for reasonable convergence to the true response. This is in-
tuitively reasonable if one realizes that, in general, as the frequency

or the imaginary part of the pole increases so does the damping constant

13



or real part. Thus, for early times both high and low frequency components
are present and as time progresses the higher frequency components damp

out and disappear until only the first few dominant rescnant modes remain.
Moreover, all transient response data that can be generated either ex-
perimentally or numerically are necessarily band limited and thus contain
only a finite number of poles. For these reasons the series is truncated
after N terms, where N is the number of resonant frequencies contained

in the transient response being studied.

2.2 Response Due to an Arbitrary Excitation

Since a true impulse excitation function cannot be realized, it is
of interest to determine the form of the transient response due to an
arbitrary exciting waveform. A general response function R(s,r) is

given in the Laplace transform domain as

R(s,r) = F(s,r) H(s,T) (2.6)

where H(s,r) and F(s,r) are the Laplace transforms of the system's im-
pulse response and the arbitrary driving function, respectively. The
system's impulse response H(s,r) was writtem in (2.1) and, thus, R(s,r)

can be expressed as

N A, ()

R(s,T) = F(s,0){ | —7—— (2.7)
L .

where the possible entire function has been neglected and the coupling
coefficient and natural mode have been combined into one term, Ai(;)'

- . .th
For convenience Ai(r) can be regarded as the residue for the 1t complex

14
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pole. Note that the residue is a function of position on the object.
If the inverse Laplace transform of (2.7) is performed, then the tran-

sient response function R(t,;) is written in general form as

_ N _ s,t _
R(t,z) =) Bi(r) e’ + g(t,1) (2.8)
i=1

where
B, (¥) = F(s,T) A, (1)

and the term g(t,r) is dependent on the form of the driving function.

Equation (2.8) shows that the transient response due to an arbitrary
exciting waveform can, in general, be written as a sum of complex ex-
ponentials plus some added term g(t,r). The desire here is to be able
to express the transient response as a sum of exponentials only. Thus,
the character of the term g(t,;) needs to be studied to determine if it
can be either removed or expressed also as a sum of exponentials.

If the exciting waveform itself has pole singularities, as in the
case of a step function or a sinusoidal function, then g(t,r) can be
expressed as a sum of exponentials. As an example, consider a driving
function which is a simple step function u(t), then, the Laplace trans-
form of the driving function is

F(s) = 1/s .

If the impulse response of the system is

N A,
H(s) = Z —~..__1__._

i=1 ° 7 %4
then the response R(s) is simply

A,

1
— (2.9)
1% 78

I 142

R{s) = F(s) H(s) =-§
i

15



When the inverse Laplace transform is performed on R(s), one obtains

@

-1 P 1 i st
R(t) 2%j c{jw Slél s - s ds (2.10a)
™ N s,t
e 1
= u(t) .Z Ai[ - - S—] (2.10b)
i=1 i i
N Sit
= u(t) 'Zo B, e (2.10c)
l=
where
N
By = -1 &/s;
=1
Ai
B. = e—
i s,
i
" )
s0 =0 .

Thus, since the step driving function has a singularity at the origin
then the response function is written as a simple sum of exponentials.

If the exciting waveform is of finite duratiom, that is, it is
turned off after some time to, then it can be shown that the term g(t,;)
is identically equal to zero for time t greater than to. Consider, for
example, the case where the driving function is a simple pulse

F(t) & u(t) - ut - to) s

then

F(s) =

0 |t

16



Again let the impulse response be

H(s) =
i

I 1
!
'—J
w
-

18 i

then, the response function in the Laplace transform domain is

1 sto N A,
R(s) = F(s) H(s) =<l -e ) ] —— . (2.11)

. s - 8.
i=1 i

The corresponding time domain expression for the response function is

g+je st
R(t) = f R(s) e ds (2.12a)
g=joo
(N A st
) == (et -1), 0<t<t
. s, 0
i=1 i
R(t) = (2.12b)
§ Sit
B, e y L >¢
=1t °
where
1 1%
Bi = ) (1L - e ) .

Expression (2.12b) shows that after time o the response function is
simply a sum of the exponentials which characterize the body while, be-
fore to, the sum of exponentials contains one exponential term which is
dependent on the driving function.

| When the driving function is not finite in time and has no pole
singularities, as in the case of the Gaussian pulse, then the g(t,r)
term never disappears and cannot be writtenm as a sum of exponentials.

However, this difficulty may be circumvented by simply deconvolving the

17



response function R(t,r) in a standard manner to obtain the system's

impulse response H(t,r). Equation (2.6) gives for instance

R(s)
F(s)

H(s) =

Thus, removing the driving function from the response function results
in the impulse response which is assumed to be a sum of exponentials
only. The inevitable presence of experimental and computational noise
limits the upper frequency for which the deconvolved spectrum H(s) is
accurate and, in practice, the computed spectrum must be truncated be-
yvond this frequency. This simply sets a limit on N. Care also must
be taken to exclude the time t = 0 from the deconvolution because of
the presence of the delta function discussed previously.

Numerical examples of the above cases are given in Chapter 3 once

the method by which the poles will be extracted has been developed.

18



3. THE NUMERICAL METHOD FOR EXTRACTING POLES

In the previous chapter it was shown that the impulse response and
for certain cases the general transient response of a system can be ex-
pressed as a sum of a finite number of exponentials. This chapter will
develop the numerical method by which the values of the poles and their
corresponding residues can be obtained if the impulse or transient re-
sponse of the system is given. The numerical method used is based on
Prony's algorithm [12]}, [13], [14] which does not seem to be widely known.
Prony's algorithm has been used in the fields of automatic control [16]
and biological signal processing [17], but only to represent or synthesize
a signal in terms of a set of exponentials which do not necessarily have
any physical relationship to the system which produced the signal. The
desire here, however, is to extract from a system's transient response a
set of complex exponentials which are in fact the characteristic reso-
nances of the system being studied.

In this chapter Prony's method is developed for a system with simple
poles only. Prony's method is then extended to systems containing multi-
ple poles. The derivation of Prony's method is presented in detail in
several different ways so that the reader will get a good feeling for
the method and the problems associated with it. An abbreviated treatment
is presented in [18]. Several numerical examples are presented in order
to establish some guidelines for the use of the method and to illustrate

some of the problems associated with the method.
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3.1 Prony's Method for Simple Poles

3.1.1 The classical derivation

Thus far it has been assumed that for a system with only simple poles

the system's transient response could be expressed as

N sit
R(t) =) A, e
=1 *

(3.1)

where the s; are the pole singularities in the complex frequency plane

and the Ai are their corresponding residues. These residues will be a
function of the position of observation or measurement on the body being
considered and a function of the excitation function. That is, the residues
contain both the coupling coefficients and the natural modes. It should
also be noted that the s, must be in complex conjugate pairs or lie on

the negative real axis in order to ensure that the response R(t) is real.
Since, in practice, one almost always deals with a discrete set of sampled

transient data, Equation (3.1) should be rewritten as

N sinAt
R(t)) = R =‘2 A e 5 n=0,1, ..., M=-1 (3.2)

where At is the size of the time-stepping interval used in obtaining
the sampled data and tn = nAt. Equation (3.2) consists of M nonlinear
equations in 2N unknowns. Another way of writing this set of equations

is
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RO = Al <+ A2 + ... + AN

Rl = Alzl + AZZZ + . .. + ANZN

R2 = AlZl2 + A,Zz2 + ... + ANZN2

R, = Az At Az M (3.3a)
where

Zi = esiAt . (3.3b)

In this set of equations it is necessary to solve for both the N values

of Zi and the N values of the A,. This solution requires that the value
L

of M be at least equal to 2N ; however, the solution to this set of

equations is nontrivial since they are nonlinear in the Zi's.

Let Zl, N ZN be the roots of the algebraic equation

1 2 N _
% + alZ + azz + .. .+0.2 =20 (3.4a)

so that the left-hand side of (3.4) is equal to the product

@ -2 @Z-2) ... @-2)
that is,
N n N
mZO oz =0, (2Z-2)=0 . (3.4b)
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The coefficients o, may be determined as follows. Multiply the first

equation in (3.3) by ao, the second by al, ¢« « oy the N+ 1 by aN and

add the results. Since each of the Zi satisfies Equation (3.43),7then
the result is of the form

aORO + alRl + . . .+ aNRN = 0

A set of M - N - 1 additional equations is obtained in the same manner
by starting successively with the second, third, . . ., (M - N)th

equations. Thus, it is possible to obtain the M - N linear difference

equations

GORO + alRl + .. . GNRN =

aoRl + ale + ... aNRN+l =0

aORM—N—l + GZRM—N + ... GNRM—l = Q (3.5a)

which can be more simply written as

N
zapRP+k=O;p+k=n=0,l,...,M—l . (3.5b)
p=0 '

Thus, the sampled values Ri satisfy an Nth order linear difference equation.

This difference equation will be referred to as Prony's difference equation.
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In Equations (3.5) the R, are known, hence, this set can be solved

i
to obtain the N + 1 coefficients, o. If M = 2N then the system of equa-
tions may be solved directly by matrix inversion, and if M > 2N the system
may be solved approximately by the method of least squares. Equations

(3.5) are most conveniently solved by defining a,, equal to one; then,

N

the ap's may be obtained by solving the equations

N=-1

pzo “pRptk T TRkt P F k=n=0,1,..., XM -71 . (3.6)
If M= 2N this set of equations is written in matrix form as
AR = € (3.7a)
where
~ R0 Rl R2 . e RN—l -
Ry Ry Ry .e
A= R2 R3 R4 ,
Ry Ry s
I R N 1 (3.7b)
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F(y,O T
B = ay s
(3.7¢)
u.aN-l -

L 2N-1_ (3.7d)

Matrix A is a square symmetric circulant matrix and thus is readily in-

vertible. If M is greater than 2N , then the set of Equations (3.6)

can be solved using a least-squares approach. This is most conveniently

done by performing a pseudo-inverse to write Equations (3.6) in matrix
form as '
T T

AT AB= A" C (3.8a)

where A is now a rectangular matrix of the form

24




(3.8b)

and

Ry-1 (3.8¢)

The square matrix formed by multiplying matrix A by its transpose AT is
simply a Gramian matrix and is also symmetric and circulant.

Once the a's have been determined by either of the above approaches,
the next step is to solve for the N values of Zi. These Zi are ob-
tained by finding the roots of the polynomial (3.4a). The N roots are
complex numbers and appear in complex conjugate pairs. The roots of
(3.4a) may be found by using any of the several polynomial root—finding
methods. The most accurate and quickest of these methods is a routine
based on Muller's method [19], [20].

It is now a trivial matter to obtain the poles s, Since the roots

of (3.4a) were defined by (3.3b) as
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z =" RESEEE |)

then the poles are simply

in Z,
1
s, =

i _ At (3.9)

The final step in Prony's method is to determine the values of the
residues Ai' To do this one simply solves the matrix equation embodied

in Equations (3.32). In matrix form this set of equations is written as

DE = F s (3.10a)
where
— -
1 1 . . 1
D = Zl 22 P ZN ;
7 2 7 2 7 2 ‘.]’
1 2 . e N
N-1 N-1 N-1
8 Zl 22 . e ZN 4 (3.10b)

-T
[ 4,
E = AZ s
a AN B (3.10¢)

o
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r~ =
Ro
F = Rl .
RN (3.104)
- -1

Note that the matrix D is in the form of a Vandermonde matrix which has
an inverse which can be computed in closed form. If, however, one wishes
to solve Equation (3.3a) by using a least-squares approach then the re-
sultant matrix equation has a matrix which is only symmetric and cannot

be inverted as simply as the Vandermonde matrix D.

3.1.2 Relationship to the Z-transform

The method presented in the above subsection for finding the simple
poles and residues from a set of disgrete transient data is Promny's
method as it is usually derived and used. However, Weiss and McDonough
[21] have demonstrated that Prony's method may be regarded as a Padé
approximation in the Z-transform domain.

Consider the Z-transform of R(t) to be

_ -1 -2 -(2N-1)
R(Z) = RO + Rlz + R, Z + .. .+ RZN—lz E . (3.11)

In the Padé approximation one seeks to equate the first 2N terms of (3.11)

with a function of the form

F(2) = = T : (3.12)
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Note that the denominator in (3.12) is the same as the polynomial in 0
(3.4a). Carrying out the Padé procedure by equating (3.11) and (3.12)

and multiplying through by the denominator of (3.12) yield

a.NZN + a.N_lZN-l + .. . F alz = (ZN + ocN_lZN_l I alZ + cxo)

© (R + Rlz'l + RZZ-Z + ...+ RZN_lz"(ZN"l) .. ay) . (3.13)

Equating the coefficients of like powers of Z in (3.13) yields the fol-

lowing set of equatioms.

_ N
a =R
-1 = Ro %1 T By
ane2 " Ro yop PR TRy > @
= . 14
al ROal+Rla2+...+RN_l y (3.14a)
\
R0a0+Rlal+...RN_loLN__l+RN =0
RlaO+R2al+...RNaN_l+RN+l = Q0
= .14b
Rep % t Ry ap + - - « Rowip Ogoq * Royg OJ (3.14b)
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Equations (3.14b) are the same as Equations (3.5a) of the previous

‘ section.

If the Z-transform of Equation (3.1) is taken, the result is

N ,
R(Z) = ] A, =2

LA TE] (-1
i=1 i

S, nAt
where Zi =e " . Hence, the oy and the Zi of the Padé approximation

in the Z-transform domain are the same as the oy and the Zi of the pre-
vious section. This method allows one to solve for the Ai by a somewhat
simpler method. Rather than solving the matrix Equation (3.3a), one

can simply solve for the a; in (3.14a) and perform the partial fraction

expansion of Réz) to yield
1 TN
A R(Z) = z E"—_—z—l . : (3.16)

i=1
‘ 1

3.1.3 Relationship to Corrington's difference equation

In 1965 Corrington derived a difference equation from which it is
possible to extrapolate the time response of a linear lumped-constant
time-invariant network to late time by kqowing only discrete values of
the early-time response [22]. His difference equation can be shown to
be Prony's difference equation in a somewhat camouflaged form. His
derivation is interesting and is presented here in a similar form.
This derivation is useful when the development of the derivation for
multiple poles 1s presented in the following section.

Equation (3.2) may be rewritten in an alternate form as

N sinAt —sirAt
R[( - 1) at] =) A e e ; r=0,1, . . ., N . (3.17)
i=1
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s.,nAt

The term Ale can be eliminated from the above N + 1 linear equations
by subtracting each equation in turn from the preceding one after multi-
s, At
plication by e . This gives the set of N linear equations
s, At

R[(m - r) At] ~e * Rl -1 - 1) At]

slAt N-1 —rAtSi+l 1 —skAt -sk+lAt
= e Z e I e -e
. k=1
i=]1
5., ,DAt
i+l © i+l ; r=0,1, . . ., N-1 (3.18)
s.nAt
from which the term A2 e can be eliminated by the same procedure.
The result is
slAt SzAt
Rf(n - r) Aat] - R[(n -~ r - 1) At] (e + e ) + R{(n - ¢ - 2) At]
( slAt szAt) szAt N-2 —rAtsi+2 2
+ le e = e e I
. k=1
i=1
. —skAt _e—sk+2ﬁt - esi+2nAt
. i+2 ’
r=0,1,2, . . ., N-2 . (3.19)
s,nAt
If this process is continued until all N of the Ai e b are
eliminated, the result is
N
R - = .
pzo Gyop R(R = 2] 20) = 0 (3.20)

where the N + 1 wvalues of up are the exact same ap appearing in the

algebraic Equation (3.4b). Since the Zi are defined as
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s, At
then the up are sums and products of the e * . For example if N = 3,

then (3.4b) is written

and, thus the a's are

ay = 1
B slAt szAt s3At
0, = =€ - e - e
2
B slAt szAt slAt s3At szAt s3At
al = e e + e e + e e

Hence, Equation (3.20) is an alternative way of writing Prony's difference

Equation (3.5b). Corrington writes the difference equation as

- oy R(at) =
p

it o~12=

) aN—p R[(m - p) 4tl; n > N (3.21)

which, if the a's are known, expresses the repsonse at some time n in

terms of N previous time sampled values of the response,

3.2 Prony's Method for Multiple Poles

For the most part electromagnetic antennas and scatterers possess
only simple poles. However, Tesche [23] has shown that a dipole can be
resistively loaded in such a way as to make it critically damped, that
is, to have a double pole on the negative real axis. Multiple poles
also result in the transient response of a system if the system is
driven by a signal which itself has a multiple pole. The most common

example of this would be a system excited by a ramp waveform. The
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ramp waveform has a double pole located at the origin. It is shown in ‘)
this section that Prony's method can be used to extract these multiple
poles without knowing a priori that they are present.

The general form of the transient response for a system containing

both multiple and simple poles can be written as
M

N i .1 s.t
R(t) =F (1+ ) 375 B,. PM)IVA, e (3.22)
i=1 j=2 S
where
P(Mi) = 0, if Mi < 2
P(M) = 1, if M > 2

and where Mi is the multiplicity of the ith pole. For example, if the

ith pole is a double pecle, then Mi = 2 and P(Mi) = 1. In discrete data

|

form, Equation (3.22) can be written

M,

N i -1 si(n—r)At
Rl(n - 1) At] =izl 1 +j£2 [(n - ) At] Bji P(Mi) Ai e :
r=0,1,2, . . ., L
(3.23)

where L is the total number of poles if each pole is taken Mi times.

If as for the simple pole case

then an algebraic equation can be written
M
m

N i L
I (Z-2,) =) o Z2 =0 . (3.24)
1 m
i=1 m=0
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It is shown that the L Equations (3.23) can be reduced to give Prony's

difference equation

L

! a_ Rl@-m sl =0 . (3.25)
m=0

This difference equation is derived in the same manner as in Section 3.1.3

except for one small difference. As before, each equation in turn is

s, At
subtracted from the previous one after multiplying it by e * . This
Si4 At

step is repeated Mi times and then e is used. This can be best
demonstrated in the following example.

Let the response be

2 Mi -1 si(n-r) At
R[(n - 1) 8t] =) {1+) [(-r)ac)’ By POL) A e ;

i=1 j=2

r=0,1,2,3

and if At = 1, M. = 2, M, = 1, then,

1 2
sl(n—r) sz(n—r)
Rln - r] = (A + Bt) e + Ce ;
r= 0,1,2,3 . (3.26)
Note here that the constant B is simply the product B, A If one uses

21710
the method of Section 3.1.3, the four Equations (3.26) are reduced to

the three

sy s.n  -rs s, -TS
R(n - r) - e Rn-r-1)=Be e +Ce e
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S s, -Trs -8 s, —~Irs

R(n_r_'l)—elR(n"r‘Z)=Bele lel+Ce2e ’ ‘)
- ( e'Sz - en282 esl) ,

R -t~ 2) - esl R -3 =B esln e—rsl e—Zsl
. c eszn e-r82 ) (6—252 ) e—3s2 dsl).

(3.27)
Since the pole s; was a double pole, the step is repeated by multiplying
S
by e again. The two resulting equations are
sl Sy 251
R(n - r) — e Rn -1 ~-1) - e Rin-r-1) +e R(n - r - 2)
s, -rs s s -2s 2s
=C e 2 e 2 (L -2e 2 e 1 + e 2 e l) , (3.28a)
S S 2s
R(n—r—l)—elR(n—r—Z)—elR(n—r—2)+elR(n—r—3) 0
s, -IrS -S -2s s -3s 2s
=Ce 2 e 2 (e 2 _ 2 e 2 e 1 + e 2 e ’l) . (3.28b)

Finally, the difference equation is obtained by multiplying (3.28b) by

s
e 2 and subtracting from (3.28a). The difference equation is thus

s s s 2s s.s
R(n - r) - (e L + e l’+ e 2) Rn-r -1) + (e 1 + 2 e 1 2) R(n -1 - 2)

2s s
e YeH Rm-r-3)=0 . (3.29)

From (3.29) the a's of (3.25) are

ay = 1
_ esl _ esl _ esz
)
2sl SISZ
al = e + 2 e "]’
2sl s,
a, = —e e .
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This example shows that although there were only two distinct poles the
difference equation for the response was of order three producing four
coefficients.

In the above example, it was shown that Prony's difference equation
is also valid for tranmsient responses containing multiple poles. The
order of the difference equation does increase from N to L thus requiring
L + 1 values of o to be solved for. Once the L + 1 values of a have
been determined, then the next step is to find the L roots of the poly-
nomial (3.24). If Muller's method is used for finding the L roots of
the polynomial, it does indeed return an individual root as many times
as its multiplicity requires. Therefore, after finding the roots of
the polynomial, the roots are scanned to see if any appear more than
once, indicating the presence of a multiple pole. Hence, it is possible
to proceed with Prony's method to the point of finding the poles with-
out knowing if there are multiple poles present or not. After the poles
and their multiplicity have been determined, then the problem is to
calculate the values of the residues.

The calculation of the residues is done by solving the equation

M,
N i o1 sinAt
R(nat) = ) (1 + ) (aac)? Big POL) ) e n=0,1, . .. (3.30)
i=1 j=2

which differs from Equation (3.2) because of the presence of the terms
(nAt)J_l. This fact causes the matrix Equation (3.10) to be changed by
multiplying certain columns by multiples of (nAt). For example, if

from the previous example,
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_ 1
Zl = e
s, At
_ 1
Z2 = e
s, At
2
23 = e s

then the resulting matrix equation to be solved in order to find the

coefficients A, B, and C of (3.26) is

~— b r— b -
1 0 1 A [ﬁ R(0AL)
Zl lAtZ2 Z3 B = R(1At)
2,2 aez,? ozt |G R(20t)
where column 2 has been changed because of the presence of the term Bt ‘)

in (3.26). The next example shows that this necessity to alter certain
columns of the matrix leads to instabilities in the solution process.
As a more complicated example of a system with a double pole con-

sider the transient response

R(t) = 3.0 + 7.0 t + 6.0 o3t cos(4t - 1/6) + 4.0 o3t cos (6t + w/3)

(3.31)
which is plotted in Figure 3.1. Note that the second term in (3.31) is
a ramp response which is very dominant in the plotted transient response.
This ramp term gives rise to a double pole at the origin. When Prony's
method was applied to these data, the extracted poles and residues in

Table 3.1 were obtained. Note that the extracted poles are all within
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SAMPLE VALUES

142.3

119.3

96.2

73.2

50.2

27.1

4.|

] l l | | |

25

50 75 100 125 150 175 200

TIME SAMPLES (At =0. sec.)

Figure 3.1.

Response containing a double pole at the origin.
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TABLE 3.1

EXTRACTED POLES AND RESIDUES FOR THE DOUBLE PQOLE CASE

8¢t

True Poles Extracted Poles True Residues Extracted Residues

0.0 0.00028 3.0 3.7758

0.0 0.00028 7.0 6.8978

Real Part -3.0 ~3.0040 2.598 3.8069
-3.0 ~-3.0040 2.598 1.2561

-1.0 -1.0004 1.0 1.1117

-1.0 -1.0004 1.0 0.5614

0.0 0.0 0.0 -0.5906

0.0 0.0 0.0 0.0575

Imaginary 4.0 4.0011 +1.5 0.1919

Part

~4.0 -4.0011 -1.5 ~0.1052

6.0 6.0009 +1.732 1.4987

-6.0 -6.0009 -1.732 -1.2444




0.08 percent of the original poles and that the double pole was indeed
found. However, the residues that were recovered do not compare with the
true residues at all. The residues do not even fall in complex conjugate
pairs as is required. This is undoubtedly due to the fact that the first
matrix was altered, asg discussed in the previous example, in such a way
as to make it ill-~conditioned. The important point in this example is,

however, that the double pole was extracted from the transient response.

3.3 Numerical Examples

In using Prony's method, as in the use of any numerical routine,
several guidelines should be followed in order for the method to work
accurately and quickly. For the most part, these guidelines were ob-
tained after running several examples on the computer and studying the
results. Therefore, this section presents several numerical examples
which point out the probleﬁé.and guidelines which one must follow for
the successful use of Prony's method.

In this section, for all but one example, the data analyzed are
from the transient response of the current on a 1.0 m long dipole with
a half-length-to-radius ratio of 100. The data were obtained using a
numerical time-domain computer code [24]. The antenna was modeled
using sixty equal-length segments and the exciting field was a Gaussian
pulse which was applied across the center two segments of the antenna
model. The Gaussian-pulse-time variation was exp(—az(t - tmax)z) with

a, the Gaussian spread parameter, equal to 5 x 109 s--1 and tmax equal

to 5.556 x lO—lo s. The induced current at the center of each of the

sixty segments was calculated for 500 time steps, where the time step

size was At = 5.556 x lO“ll s. Note that

bt = 60 x C
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where L is the length of the structure, 1 m, and C is the speed of light.
In order to calculate the complex rescnances of the structure, the cur-
rent on one of the center or source segments is used. This current is
plotted in Figure 3.2.

The study of Figure 3.2 reveals several facts about the dipole re-
sponse. The most apparent is the damped oscillatory behavior of the cur-
rent. The initial spike, which is a maximum at tmax = 10At, is the
Gaussian driving function being applied. This spike is followed by an
immediate negative spike which decays toward zero until time equals 60At.
The response from time 0 to 60At is very similar to the response of an
infinite long dipole. This response is expected since the current which
propagates down the antenna and gets reflected back from the end is not
seen at the center of the antenna until 60At. Thus, the current at the
center of the antenna is not affected by the length of the antenna until
the current has propagated to the end and back.

Example 1

The first example of the application of Prony's method is shown in
Figure 3.3. Of the 500 current samples available, only eighty sampled
values were actually used. These eighty samples were taken from the
first 160 current samples at every second time step. Figure 3.3a shows
the range of the current which was used to fill the matrix of Prony's
difference equation. Prony's method was solved using the standard in-
version technique. Thus, since eighty sampled values were used, forty
poles and residues were obtained. Figure 3.3b shows the left half of
the s-plane in which the forty extracted poles have been plotted.

Figure 3.4 shows a comparison of the extracted poles with the true even

poles of the dipole as calculated by Tesche [5]. As can be seen only
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Figure 3.2. Source current on 1.0 m dipole. .
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Figure 3.3. (a) Data window used in Example 1.
(b) Locations of extracted poles in Example 1.
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Figure 3.4. Comparison of extracted poles of Example 1 with those
of Tesche.
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eleven pole pairs correspond to the true poles of the system leaving
eighteen poles which have no relationship to the system. The fact that ‘)
only the first ten even poles were generated is not surprising if one
considers the original model. The original model was a thin-wire
approximation and was driven with even symmetry by a Gaussian pulse.
Because of the thin-wire model and the width of the Gaussian pulse, the
expected spectral response has an upper frequency limit of about 10 L/X
[25], where L equals the antenna length. The resonances for a dipole
occur at approximately A/L = 1/2, 3/2, 5/2, . . ., thus, with the upper
frequency limit of 10 L/X not many more than the first ten even reso-
nances can be expected. The extra eighteen poles appear for two reasons.
In Prony's method, if the least squares approach is not used, when 2N
sampled values are used the method returns N poles. Thus, Prony's
method is forced to return more poles than are present in the system. ‘)
Also, since the Gaussian-pulse driving function is only a model of a
delta function,then the response function is not a true impulse response
but is a response of the form of (2.8). Since the g(t) term of (2.8)
was not removed, the extra poles present are needed to represent it.
Figure 3.5 demonstrates how well the transient response was modeled with
these forty poles and their associated residues. Note that 1000 time
steps were generated when only the first 160 of the original time steps
were used to generate the poles. This shows how Prony's method can be
used to extrapolate late time data from a small set of early time data.
Figure 3.6 is a three~dimensional plot of the second quadrant of the
s-plane showing both the position and the amplitude of the poles. The

length of the vertical lines represents the amplitude of the poles on

a logarithmic scale. The amplitude of the true poles tapers off as the ‘)
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Figure 3.5. Reconstructed transient response using extracted poles
of Example 1.
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Figure 3.6.

Position and amplitude of poles in the second quadrant
of the s-plane for Example 1.
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frequency increases because the amplitude of the Gaussian driving function
in the spectral domain also tapers off as frequency increases. It should
be noted that the amplitudes of some of the extra poles are equal to or
greater in magnitude than those of the true poles. These extra poles with
the large amplitude are the poles which are predominantly representing
the driving function.
Example 2

As a second example only the first sixty samples of the response
are used. This sampling interval is only large enough to contain the
response resembling the infinite wire, Figure 3.7a. The resulting poles
are plotted in Figure 3.7b. Note that none of these poles are the true
poles of the system but that the sampled portion of the response is
accurately reproduced using these poles, Figure 3.8. Also, note that
only twenty-five poles are plotted in Figure 3.7b when thirty were ex-
pected. This is due to the fact that the program was written so as to
eliminate any right-half-plane poles that appear. In this case, five
poles with positive real parts were removed before the residues were
calculated. This example points out the necessity to include some por-
tion of the oscillatory part of the response. It was found that at
least one cycle of the lowest frequency present must be used. Thus,
the sample interval of example 1 is the minimum which can be used to
obtain the true poles of the system.

Example 3

This example also takes sixty samples but the time step size is now
3At thus giving a sampling interval of the required size, Figure 3.9a,
and requiring the return of only thirty poles as opposed to forty in the

first example. The twenty-eight poles that were found are plotted in
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(a) Data window used in Example 2.

(b) Locations of extracted poles in Example 2.
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Figure 3.9b. ©Note that the true poles appear while the extraneous poles
have been reduced in number. The extra poles still must appear because
of the presence of the driving function in the transient response.
Figure 3.10 points out another problem inherent in the solution of the
matrix equations without the use of a least squares technique. Since
twenty—-eight poles were found, it was necessary to solve for twenty-
'eight residues using the matrix Equation (3.10). Only the first twenty-
eight samples of the current were needed to fill the vector F of (3.10a).
Thus, the resulting response is expected to be accurate at only ;he first
twenty-eight time steps. This is represented in the plot of Figure 3.10.
' The obvious correction to this problem is to use more samples to fill
the vector F by using the least squares method. An example of this
approach will be presented later in this section.
Example 4

The Nyquist criterion [26] states that the sampling rate of a tran-
sient response must be at least twice as fast as the highest frequency
present in the data in order to be able to resolve that frequency. That

is, the sampling rate AtN is

1
At > =5
N =26,

where 6H is the highest frequency desired. 1In the previous example the

time step size was 3At = 1.6668 x 10_10 s, Hence, the highest frequency

which could be expected was 6H = 2.9998 x 109 Hz or %% = 19.9984 which
is indeed just higher than the highest frequency pole obtained. Figures

3.11 and 3.12 also demonstrate this phenomenon. In Figure 3,1la the

time step size is 4At = 2.2224 x 10—10 s and the resulting frequency
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limit is wL/cm = 14.99. The highest pole frequency obtained is 14.80.
Likewise in Figure 3.12a the time step is 5At = 2.778 x lO_lO s giving
a frequency limit of 11.999 and the highest frequency pole obtained is
11.4. Thus, in order to obtain the highest frequency pole that is con-
tained in the data one must sample the transient response at at least
the Nyquist rate.

In all of the previous examples no attempt was made to remove the
influence of the driving function, the Gaussian pulse, from the response
function. Thus, poles have been present which were required to fit the
g(t) term of Expression (2.8). Since the driving function is a Gaussian
pulse, it cannot be modeled exactly with a finite number of poles but
can be assumed to go to approximately zero for some value of time to.
Hence, if the response function is sampled after time tys the g(t) term
should be zero. Also, since the analytical form of the spectrum of the
Gaussian pulse is known, it can be easily removed by deconvolution.

The followiné examples demonstrate the result of using the above two
approaches for removing the influence of the driving function from the
response function.

Example 5

Figure 3.13a shows the response function starting at time step number
sixty-one and taking sixty samples at every third time step. The start-

ing point of t, = 61At was selected for two reasons. First of all, by

0
the sixty-first time step the Gaussian driving function value is well
below the zero value of the computer. Also, as was mentioned earlier,
the true oscillatory response of the structure does not begin until the

current has propagated to the end of the structure and returned to the

center at time t.. The sampling interval of 3At was chosen so as to

0
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satisfy the Nyquist criterion. Since sixty samples were used, the method
attempted to return thirty poles. As can be seen from Figure 3.13b, only
twenty-six poles were actually recovered, four, in the right half plane,
were thrown away. Of the twenty-six returned, only twenty-two are the
true poles of the system. Thus, even though the driving function was
removed, extraneous poles are still present due to the fact that more
than the twenty-two true poles were required from the matrix inversion
process. This would suggest that the best procedure would be to use a
least squares approach and search for only twenty-two poles.
Example 6

The deconvolution approach is demonstrated in Figure 3.14. The 512
samples of the transient response have been transformed to the spectral
domain using a fast Fourier transform routine. This spectral response
was then divided by the spectral response of the Gaussian pulse and
the result was transformed back to the time domain. Figure 3.l4a shows
the first eighty samples of the deconvolved response taken at a time step
size of 2At. Several things can be noticed from this figure. First of
all, the very large spike at about t = 0 is the delta function which is
always present in the impulse response. Also, high frequency ringing is
present in the response which is not in the original transient response.
This high frequency ringing is due to Gibbs' phenomenon which is inherent
in the deconvolution process. The forty poles that resulted from these
eighty time samples are plotted in Figure 3.14b. This pole pattern is
very similar to that of Figure 3.4. The one major difference is apparent
in Figure 3.15, which is a three~dimensional plot of the pole pattern show-
ing the amplitude. ©Note that the amplitude of the true poles does not taper

off with high frequency as it does in Figure 3.6 because the dependence
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Figure 3.15.

Position and amplitude of poles in the second quadrant of
the s-plane for Example 6.



on the driving function has been removed by the deconvolution process. ‘}
The extraneous poles still have fairly large amplitudes because the delta
function at the origin was included. There are several disadvantages
to performing a deconvolution to remove the dependence of the driving
function. The main disadvantage is the large amount of computation time
needed. Several stages of calculations must be performed which cost
time and accuracy and cause errors such as the Gibb's phenomenon. In
general, the deconvolution process should be avoided if at all possible.

In all of the above examples the extraneous poles were present be-
cause the number of time samples that were used dictated the number of
poles to be determined. Also in the above examples, errors in the re-
produced signals resulted because in calculating the N residues only N
time samples were used. These two problems can be overcome by using the
least-squares error approach described in Section 3.1. This approach ‘)
allows one to use many time samples to determine just a few poles thus
permitting one to select beforehand the number of poles to be determined.
Examples 7 and 8 demonstrate the advantages of the least-squares or
pseudo-inverse solution over the conventional procedure.

Example 7

Figure 3.16a is a plot of the sampling interval which is used in
this example. Note that 120 samples were used at a sampling rate equal
to the Nyquist rate for the problem, 34t. The first twenty samples in
the interval include the driving function so the resulting poles must
be expected to include poles representing the driving function. For this
example only twenty-six poles were asked for, thus allowing for thé

twenty-two poles which were known to be the true poles of the system and
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for the four extra poles needed to represent the driving function's con-
tribution. Figure 3.16b is a plot of these poles and, indeed, the eleven
true pele pairs, which were expected, appeared along with two extra pole
pairs. The interesting point here is that although only twenty-six poles
and residues were extracted they were determined using a total of 120
samples as opposed to fifty-two samples which would have been used if
the conventional approach had been employed. Figure 3.17 demonstrates
how the error is equally distributed over the entire range of the 120
samples as compared to the error of Figure 3.10 which is near zero for the
first twenty-eight samples aﬁd then increases for later time.
Example 8

In this example, Figure 3.18, the first sixty time samples have been
neglected. Thus, the g(t) term is eliminated from the response function
and only the true poles are expected. A total of 150 samples were taken
at a rate of 3At and only twenty poles were sought. Figure 3.18a shows
that the resulting poles are the true poles of the system. Note from
Figure 3.18a that as frequency increases the pole pattern divergés from
a sweeping curve. This indicates that there is more error in the higher
frequency poles due to the lower signal level at those frequencies.
Note that the frequency w stays stable and that the real part of the

pole ¢ is most sensitive to the noise.

Example 9

In all of the previous examples transient data, which were generated
using a time—-domain computer, were used. In this example actual experi-
mental data are studied. The experimental data were generated on the
transient electromagnetic measurement range at Lawrence Livermore

Laboratory [11]}. The response is that of a 1.0 m monopole located on
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a ground plane and excited by an approximation to a Gaussian-pulse plane
wave. The diameter of the monopole is 0.3175 cm. The antenna is loaded
at its base with a 50 Q load and the voltage across this load was measured
with a sampling oscilloscope. A total of 512 samples were measured at a
time interval of At = 0.4 x 10—10 s. Of the 512 measured values only 100
samples at every fifth-time step were used, Figure 3.19 shows this
measured response in terms of the current through the load. The 100 cur-
rent samples were used with Prony's method and forty—oné poléé and residues
were produced. Nine poles, which were in the right half plane, were
ignored. Figure 3.20 is a plot of the generated poles found in the second
quadrant of the complex plane. The first thing that is apparent about
these poles is that they fall along a curve running parallel to the imag-
inary axis. This is typical of the pole locations for a dipole as seen
from the previous examples. The frequencies of the first nine poles in
this layer correspond to the first nine complex resonant frequencies of

a 1 m monopole. The real parts of these poles seem to oscillate around
the correct value because of the sensitivity of the real part to the
noisein the data. Even though the response was measured on a sampling
scope, the data were very noisy and no attempt was made at smoothing.

The fact that the remaining poles d§ not correspond to physical poles
again relates to the fact that the pulse used did not contain frequency
components higher than that of the ninth resonance. Also, since no
attempt was made to remove the contribution of the driving function,
these extra poles are needed to model that portion of the respomnse. The
pole sitting on the real axis close to the origin is probably due to the
fact that there was a late time dc level present due to the pulser used

in the measurement system.
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3.4 Guidelines

The previous section presented nine examples which demonstrate many
of the aspects of Prony's method. Contained in those examples are guide-
lines which should be carefully followed when using the method. Since
the guidelines were somewhat obscured by the numerous examples, they

will be repeated in this section as a summary for ready reference.

3.4.1 Sampling interval

The width of the sampling interval should be selected so that it
is wide enough to contain all of the characteristics of the response.
For the most part, the interval should be at least as long as one period
of the lowest frequency present. If a least squares method is employed,
then the length of the sampling interval should be as long as is ecc~-

nomically feasible.

3.4.2 Sampling rate

All physically obtainable transient responses will be bandlimited
and thus the upper frequency limit should be determinable. The sampling
rate should then be, by the Nyquist criterion, slightly more than twice

the highest frequency expected.

3.4.3 Removal of the influence of the driving function

The influence of the driving function on the response function should
be removed or accounted for by using one of the processes described in
Section 2.2. The two easiest processes to use are to either use a driv-
ing function that can be represented by known poles or to use a driving
function which is time limited. If a time-limited driving function is

used, sufficient response samples must occur after the turnoff time of
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the driving function so that the required number of poles may be determined.
In an experimental system where this may not be practical, the driving
function should be representable by a sum of sinusoids. Deconvolution
should be avoided because of the expense and the increase in the error

level.

3.4.4 Least squares versus conventional matrix inversion

The least-squared error or pseudo-inverse approach should always be
used. This allows as many samples to be used as one desires and allows
for the selection of the number of poles without being dependent on the
number of samples used. This method gives better results in calculating

the residues since more input samples can be used.

3.5 Problems Associated with Prony's Method

There are two major problems associated with Prony's method which
need to be overcome in order for the method to be practical. The first
problem is the fact that it is necessary to know the number of poles N
which are contained in the transient data before Pfony's algorithm can
be applied. The second problem is that Prony's method is extremely
sensitive to noise of any kind. These problems are discussed here and
solutions to these problems are presented in the next two chapters.

The numerical examples of Section 3.3 indicate that if one asks
for more poles than are effectively contained in the data then the
algorithm generates a number of extraneous poles in addition to the ones
that compare to the true poles. The presence of the extraneous pcles
causes the residues of the true poles to be inaccurate and results in
unnecessary computation time. Similarly, if one underestimates the

number of poles, then many of the returned poles may substantially
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deviate from the true poles and,in most cases, the true poles will not
be returned at all. Thus, a systematic approach for an a priori deter-
mination of N would be extremely benefiecial. The examples showed that
if the upper frequency limit is known and if the approximate values of
the poles are known then one can make a good estimate of the value of N.
Also N could be determined by trial and error but that would be very
expensive. The next chapter presents two straightforward and systematic
schemes for determining N.

The other problem with Prony's method is the sensitivity of the
poles to a noisy set of data. The real part of the poles is extremely
sensitive to noise. If the noise is too bad, then Prony's method will
not return any of the true poles and will attempt to curve-fit to the
noise. Therefore, it is necessary to determine the noise limitations
for Prony's algorithm and to determine ways of preventing and reducing

noise. This problem is handled extensively in Chapter 5.
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4. THE DETERMINATION OF THE NUMBER OF POLES (N)

In the last chapter it became obvious that in order to use Prony's
method optimally a systematic approach must be developed for determining
the number of poles contained in the transient response. This chapter
develops two techniques by which the number of poles inherent in the
system can be analytically determined. The first approach discussed
was developed by Householder [27]. His derivation is presented here ex~—
cept that it is applied to the least squares solution. The second ap-
proach is new and is shown to have several advantages over Householder's

method.

4.1 Householder Orthogonalization Method

It was shown in Chapter 3 that if a set of discrete transient re-
sponse data could be represented as a sum of N complex exponentials then
the discrete samples Ii must satisfy a difference equation of order N.
Consider now the following vectors which are filled with the data

samples Ii

~ ~ ~ - f R
IO Il Il
5 I, Liv1
lo = 12 3 ll = 13 s ¢ e ey ll = (4'1)
[ 1 T,
Loy L v+l L_ y+i
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where the ith vector is the i - lth colum of matrix (3.8b) in Chapter 3.

o

Since the Ii satisfy Prony's difference equation of order N, (3.5b),
then so must the vectors ii' Now if y > N, then any N, or fewer, of the
vectors ii will be linearly independent and any N + 1 of the vectors will

be linearly dependent. Hence, the difference equation can be written

i ao + 1

0 o

+ . ..+ iN ay = 0 . (4.2)

171

The next step is to apply the Gram Schmidt or Choleski orthogonalization
process to the vectors ii.

The orthogonalization process consists of replacing each vector ii

by a linear combination of the vectors iO’il’ e e ey ii' The new ortho-
gonal vectors are denoted as agrdys + ¢ ey 4. The steps are then

ag = i,

a, =i

1= % " M0 % )

where Hig is chosen so as to make a; and a, orthogonal. That is,

where aoT is the transpose of vector ag Then proceeding to the second

vector

a, = 1

2 2 " Ha1 31 T Hyg ¥

where again “21 and “20 are selected so that a2 1s orthogonal te both ao

and a5 which means that
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_ %0 h
Moo T N
0o
a Ti
8
Ho1 T T ¥
ll ll

Continuing this process, one finally obtains

Ae1 oo T Myerwe2 Bn-2 T T Hc1,0 %0
where
T
_ %n-2 w1
MN-1,N-2 T
aN-2 @n-2
2T
_ %0 w1
My-1,0 T
a8y 4o

Vi = (lO’il’ e . ey ii) (4.3)
Ai = (ao,al, e e ey ai) (4.4)
Fl B
"10 H20 M50
0 1 Ho1 Mi1
M, = 1 ) (4.5)
0 1
k—- —
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Then,
Vo= A M (4.6)

which is the Gram-Schmidt procedure in matrix form. Since Mi is a

triangular matrix, it is easily inverted so that

Ay =V, M . 4.7)

VN_l og = —iN (4.8)
where
Pao —
a
' 0
oy =| - . (4.9)
_oN-1

Equation (4.9) is equivalent to Equation (3.6) of Chapter 3. Now if a

pseudo-inverse approach is used to solve Equation (4.8} then the re=-

sulting expression is

T T

VN_l VN_1 oy < VN_l(—in) . (4.10)
From (4.6)
V-1 T Ay Myer (4.11a)

T

V-1 T M;fr-l Ay (4.11b) 0
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so that (4.10) can be written as

M1 At Aven M O T Myer A Gl (4.12)
Let
T
, = 4,13
Ay-1 Ax-1 = D1 (4.13)
. . . . . T
where the matrix DN_l is a simple diagonal matrix because AN_1 and AN—l
are made up of orthogonal vectors. Now define the vector
ﬂ
(Yi,0
Hi,1
By = (4.14)
LM, i-1
so that the orthogonalization process can be written
i T 2t A M (4.15)
or by multiplying both sides by Ai
T, _ T T
By lign = Ay 3g4p T AL Ay My, (4.16)
Since all columns of A, are orthogonal to a., ., then
i i+l
AT =D (4.17)
it T Y1 i ‘
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where Di has replaced the product Ai Ai' If Equations (4.17) and (4.13)

are substituted in (4.12), then

[MITq-l DN—l] My-1 9% = [MI?I-I DN—l:l Do (4.18)

Since the bracketed terms on each side of (4.18) are nonsingular matrices,
they can be removed by multiplying both sides by their inverse. Hence,

(4.18) reduces to

Mg = "oy (4.19)

and a,

141 are calculated sequentially by using

o s ri h ,
T ummarize, the Ur+l

the Gram—Schmidt procedure, Equations (4.15)and (4.17). The vector

a is adjoined to Ai to obtain Ai+ and matrix Mi is bordered by u

i+l 1 i+l

Note that each vector a, is

and a unit row vector to obtain M.
i+ i+l

1°

the component of ii that is orthogonal to the space of the previous

+1

i's. Since the vectors ii must satisfy a difference equation of order

N, then iN is a linear combination of the preceding i's and ay should
vanish. Thus, in order to determine the value of N, the above process
should be continued until one of the vectors a vanishes. However,
since the time samples are subject to measurement errors and roundoff
errors, it should not be expected that any vector a will vanish entirely
but for some N there will be an ay which will be negligibly small.

Once a negligibly small vector ay has been found, it is a simple
procedure to find the coefficients a of the difference equation. The
coefficients o are found from (4.19). Note that the matrix MN-l is a

triangular matrix so that the vector ¢_ may be found by back substitution,

N
eliminating a matrix inversion. Thus, this process not only gives a

method for determining the number of poles N in the system but also
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allows one to actually find the N poles without having to invert a
matrix. Note also that this method can use as many time samples as de-
sired by selecting the appropriate value of v in (4.1).

As an example of this procedure, a set of test transient data was
produced using the set of six pole pairs listed in Table 4.1. For all
the poles the accompanying regidues were taken to be one. The resulting
transient response is plotted in Figure 4.1. Householder's method was
carried out exactly as outlined above. The value of y which was used
was 100. Figure 4.2a is a plot of the average of the absolute value
of the first thirteen vectors ii and the resulting orthogonal vectors
a,. Note that while the average of the first thirteen vectors ii stays
constant the first twelve values of a; drop off slightly until at the
thirteenth vector the value drops by four orders of magnitude. While
this thirteenth vector did not go to zero, it did drop low enough to
indicate that the thirteenth vector was linearly dependent on the pre-
ceding twelve vectors. The difference equation coefficients were calcu-
lated as per Equation (4.19) and the resulting poles are listed in
Column Two of Table 4.1. Note that the resulting poles are essentially
the same as the original.

As another test of the above procedure, the same transient response
was used but normally distributed noise with a standard deviation of
0.005 was added to the response. Again y was set equal to 100 and the
resulting vectors a; and ii are plotted in Figure 4.2b.7 Notice now
that at the thirteenth vector the average value does not drop off. This
indicates that the Householder procedure is not applicable to systems

with significant noise. When the poles were found for the nocise case,
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TABLE 4.1

SIX POLE PAIRS AND THE RECOVERED POLES USING HOUSEHOLDER'S ORTHOGONALIZATION METHOD

817

True Poles Recovered Pole Recovered Poles

No Noise o = 0,005 Noise
~ 0.082 + j 0.926 - 0.0819 + j 0.9259 - 0.4953 + j 2.0169
- 0.082 - j 0.926 - 0.0819 - j 0.9259 - 0.4953 - 3 2.0169
- 0.147 + 3 2.874 ~ 0.1469 + 5 2.8739 - 0.5029 + j 0.88538
- 0.147 - 3 2.874 ~ 0.1469 - § 2.8739 - 0.5029 - j 0.8858
- 0.188 + j 4.835 ~ 0.1879 + j 4.8350 - 0.4834 + 3 1.3269
- 0.188 - j 4.835 ~ 0.1879 ~ j 4.8350 - 0.4834 - 3 1.3269
- 0.220 + j 6.800 ~ 0.2200 + j 6.8000 - 0.3817 + j 3.5100
- 0.220 - j 6.800 ~ 0.2200 - j 6.8000 - 0.3817 - j 3.5100
- 0.247 + j 8.767 - 0.2470 + j 8.7669 - 0.2915 + j 10.7418
- 0.247 - 7 8.767 ~ 0.2470 - j 8.7669 - 0.2915 - j 10.7418
- 0.270 + j 10.733 ~ 0.2699 + j 10.7330 - 0.4918 + j 0.0
- 0.270 - j 10.733 - 0.2699 - j 10.7330 - 7.8833 + j 15.7079
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Figure 4.1. Transient response resulting from the six pole pairs

of Table 4.1.
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they were not associated with the true poles at all, as indicated by the
third column of Table 4.1. Chapter 5 shows that the alternate procedure
for finding the poles, which is presented in the next section, does in-
deed work in the presence of noise.

As a further example the numerically generated transient response
of the current on the one meter dipole discussed in Section 3.3 is used.
The samples were taken at every third time step starting with time step
sixty-one. Figure 4.3a shows a plot of both vectors i and the resulting
orthogonal vector a. ©Note that while vector i has an average which is
somewhat constant vector a drops off until vector number twenty-three
where it stays level for a while. This is interesting since in the ex-
amples of Section 3.3 it was shown that eleven pole pairs appeared to
be the optimal solution to this example. Indeed, when the process of
(4.19) was applied using the twenty-third orthogonal vector the first
eleven poles in Figure 3.4 were obtained. ©Note that the twenty-third
vector a is four orders of magnitude below the twenty-third vector i.

In Figure 4.2a of the previous example the thirteenth vector a was also
four orders of magnitude below the thirteenth vector i. This implies
that when the average of the orthogonal vector drops four orders of
magnitude below its accompanying response vector then that vector is
the first depeﬁdent vector.

In Figure 4.3b the vectors a and i are plotted for the dipole case
considered above but since the samples start at time step one, the
driving function is included. ©Note that none of the twenty-nine a
vectors are more than one order of magnitude below the vector i. This
is expected since the Gaussian pulse included in the first sixty samples

cannot be written as a finite sum of exponentials.
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4.2 The Eigenvalue Method for Determining N

To start this development, it is again necessary to form the vectors

v, of Section 4.1. Note that the v, can be written as

N s,nAt :
v, =) A, el no=i,itl, . . ., i+ (4.20)

or by separating terms

N s, iAt s.nAt
v, = 2 (A. e J ) e j n = 0,1, PR Y . (4‘21)
1 ot J
j=1
Expression (4.21) can be written as
N
v, = C. . 4,22
i jzl 1Y (4.22)
where
sjiAt
C, . = A, .
3,i . e (4.23)

is the coefficient for the jth mode vector wj starting at the ith time

step. Remembering that

7 =3 (4.24)

r~ - ~ -
Z(.J 1
J
1
A Z.
h| h|
2 2
. = Z, = Z, . 4,25
wJ P 3 ( )
zY z!
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If there are N poles in the system, then there will be N mode vectors

ij-

The next step is to solve the difference equation

N
zo Vo & =0 . (4.26)

If a pseudo-inverse solution is used, then (4.26) would appear in matrix

form as
~ e WP b -—
VO V1 . e VY VO Vl o . . VN (&0
Vi Vi %
. . . . . =0 ., (4.26)
\ Y Vv v o
_ N Nty oLy N+ | s_Nd

Matrix ¢ is defined as the product of the above two matrices.

the ith, jth element of the ¢ matrix is

Note that

. . . . 4.27
1,7 1 J ¢ )

where viT is the transpose of vector v, Substituting (4.23) into (4.27)

gives

N N
* T*
o, . =) ZE: . C ,]w ¥ (4.28)
i, ] 2=1 m=1 L1 TR,3 2 m
where the * indicates complex conjugate. Since & is a matrix of order
N+ 1 by N+ 1, it will have one eigenvector which will be orthogonal

to the N mode vectors. That is, there will be one eigenvector such that

) EN+l =0 (4.29)
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where EN+l is the eigenvector orthogonal to all of the modal vectors.
The eigenvalue corresponding to this eigenvector is zero. If matrix
¢ was made to be 2N there would be N eigenvectors orthogonal to the N
modal vectors and there would be N eigenvalues equal to zero. Hence,
the process for determining the N of the system is to fill matrix ¢
to some dimension M by M. The corresponding M eigenvalues of the
system are found and checked to see if one or more is equal to zero.
If there are L eigenvalues equal to zero, then N would be equal to M - L.
If L is not equal to one, then the matrix ¢ is recomputed to order
N+ 1 by N+ 1 and the eigenvalues régenerated. Equations (4.26) and
(4.29) show that the eigenvector corresponding to the one zero eigen-
value is the vector of the coefficients of the difference equation.
Thus, not only are the number of poles found, but the poles are found
at the same time.

As the first example of this procedure, consider again the tran-
sient response of Figure 4.1 which was generated using the six pole
pairs of Column One of Table 4.2, The thirteen eigenvalues of this
system, which were generated using a value of y = 100, are plotted in
Figure 4.4, Notice the very sharp drop between the number twelve and
the number thirteen eigenvalue. The twelve poles that resulted from
the eigenvector corresponding to the thirteenth eigenvalue are listed
in Column Two of Table 4.2. The resulting poles are in good agreement
with the original.

As a further test of the above procedure, the same transient data
were used but normally distributed noise with a standard deviation of
0.005 was added. The value of vy was set to 100 and the resulting

thirteen eigenvalues are plotted in Figure 4.4. Note that the drop
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98

SIX POLE PAIRS AND THE

TABLE 4.2

RECOVERED POLES USING THE EIGENVALUE METHOD

True Poles

Recovered Poles

Recovered Poles

No Noise o = 0.005 Noise
- 0.082 + 3 0.926 - 0.0819 + j 0.9259 - 0.,0964 + 3 0,9319
- 0.082 - j 0.926 - 0.0819 ~ j 0.9259 - 0.0964 - j 0.9319
- 0.147 + j 2.874 - 0.1469 + j 2.8739 - 0.1805 + 3 2.8705
- 0.147 - 5 2.874 - 0.1469 - j 2.8739 - 0,1805 - j 2.8705
- 0.188 + § 4.835 - 0.1879 + j 4.8350 - 0.1930 4+ j 4.8085
- 0,188 - j 4.835 - 0,1879 - j 4.8350 - 0.1930 - 7 4.8085
- 0.220 + j 6.800 - 0.2200 + j 6.8000 - 0.2103 +j 6.8001
~ 0.220 -~ j 6.800 - 0,2200 - § 6.8000 ~ 0.2103 -~ j 6.8001
- 0.247 + j 8.767 ~ 0.2470 + j 8.7669 - 0,2485 + j 8.7701
- 0.247 - j 8.767 - 0.2470 - j 8.7669 - 0.2485 - 3 8.7701
- 0.270 + j 10.733 - 0.2699 + j 10.7330 - 0.2706 + j 10.7334
- 0.270 - j 10.733 - 0.2699 - j 10.7330 - 0.2706 - j 10.7334

—
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between the twelfth and thirteenth eigenvalues is only ‘)
one order of magnitude, indicating that the noise has a gross effect on
this procedure. The poles that were recovered from this noisy case are
listed in Column Three of Table 4.2. Although the values of these poles
are not precisely the true poles, the maximum percent error is omnly 1.5.
When this fact is compared to the fact that some of the poles of Column
Three of Table 4.1 are not even in complex conjugate pairs, the conclusion
indicates that this procedure will work with noisy data. The next chapter
will show that the eigenvalues are also a function of the noise
level.

As a final example of this procedure again consider the transient
response data of Figure 4.1. Samples were taken at every third time
step starting at time step sixty-one. Tests were run in which twenty-
one, twenty-three, and twenty-five eigenvalues were determinegl and the ‘)
corresponding poles were extracted. Figure 4.5 shows plots of the
twenty-three eigenvalues and twenty-five eigenvalues and Figure 4.6
plots the poles for the twenty, twenty-two, and twenty-four pole cases.
For the case of twenty-two poles the poles correspond to the first
eleven poles plotted in Figure 3.4, while for the case of twenty poles
the upper frequency poles vary significantly. The case where twenty-
four poles were evaluated gives two poles that do not form complex con-
jugate pairs and the eleventh pole pair does not correspond to the
eleventh pole pair of the twenty-two pole example. This indicates that
the case where twenty-three eigenvalues were generated is the proper
solution and should be studied. Notice that in the plot of the twenty-

three eigenvalues the eigenvalues drop off continuously until the
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twenty~third without any significant jump, except possibly between
twenty-two and twenty-three. This is probably due to the fact that the
residues of these eleven pole pairs drop off significantly as frequency
increases. Because of this lack of a significant breakpoint, it appears
that this technique is not as well suited to determining the value of N
for systems which have transient responses similar to the response of

this example.
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5. NOISE AND ITS RELATIONSHIP TO PRONY'S METHOD ‘)

In the preceding chapters several allusions were made to the fact
that noise seriously affects the values of the poles extracted by Prony's
method. In Chapter 3 it was pointed out that if the noise level is high
enough Prony's method will return poles that are not even remotely as-—
sociated with the true poles being sought. This effect can be understood
if the noise is thought of as being several arbitrary frequency com-
ponents added to the signal. Thus, the true exponential nature of the
signal has been corrupted. Since Prony's method is an interpolation pro-
cess, it will give a set of poles which fit the noisy transient response
but will not necessarily be the natural resonances. The least squares
approach is used to reduce some of the error and to allow more data
samples to be used. This chapter shows that the least squares approach
when applied to Prony's method does not strictly give a least squares .)
fit. If the noise level is known, it can be used to aid in the deter-
mination of the number of poles N using the eigenvalue process of

Chapter 4. Statistical studies are presented which relate the noise

levels to the quality of the results cbtained.

5.1 Least Mean Squared Error Approach

Up to this point the least squares approach has been applied blindly
by simply performing a pseudo-inverse solution. This was done primarily
to allow for more transient data points to be used when solving for a
set number of poles. This section studies the way in which the least
mean squared error process reduces the errors that are present in the

transient data.
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Consider a set of transient response data which has been sampled

.

at M equally spaced intervals At. These M sampled values éO’ él’ . e ey RM

are assumed to be estimates of the true response of the system

_RO’ Rl’ o o ey RM where
N sinAt
R_ = R(nit) =izl A e n=20,1, .. ., M . (5.1)

The measured sampled values Rn differ from the true values Rn because
of errors in measurements, noise, etc. It is known that the Rn satisfy

Prony's difference equation of order N which may be written

Rn+N + 0N Rn+N—l + . . .+ o Rn+l + %y Rn =0; n=20,1, ..., M.

(5.2)
In Chapter 3 it was shown that the pseudo-inverse or least squares solution

to (5.2) could be written in matrix form as (3.8a)

AT as=4aTc (5.3)
or
$ B=1D (5.4a)
where
~ =
R R, R, Coe R,
520 3 §=0 i i+l 520 j T j+N-1
o i .. .2 § ..
?=A A= 350 j+1 73 ) i+1 Tt .j=0 Rj+1 J+N-1
Jéo Rien-1 & Jéo Rian-1 Bye1 - 'Jéo Rim-1 Ry
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f—ao N
B = al
o4

L N1

The v of (5.4b) and (5.4d) must be greater than 2N - 1 and less than
M - N - 1. Even though Equations (5.4) are formed in accordance with
the usual least squares approach, the usual assumptions do not hold.
Since the én are subject to errors, both the left side and the right
side of (5.4a) are formed by noisy elements. In the normal least
squares approach only the unknown quantities o, are assumed subject to
error. Thus, when the pseudo-inverse procedure is applied to Prony's
method, it does not yield an optimum least squares approximation since

the M samples éh do not represent exactly a sum of N exponentials;

that is,
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N siAt
R =R + €, = E Ai e + ¢ (5.5)

n n is1

where € is the error in the nth measured time sample. If €l equals

zero, then the pseudo-inverse is the optimum least squares approximation.
Householder [27] developed a method by which the N parameters oy

could be determined such that the sum of the squared error
s=17 v (R - R) (5.6)

is minimized subject to the fulfillment of the side condition (5.2).
The multipliers w  are the statistical weights associated with the
measured values Rn' Householder's procedure is an iterative procedure
involving Lagrange multipliers. The method is repeated several times
until the results are within the accepted tolerance level. The method
is very laborious and if more than just a few poles are sought it is
totally unwieldy. In 1966 McBride, Schaefgen and Steighlitz [28] and
in 1968 McDonough and Huggins [16] developed two different linear iter-—
ative schemes which appear quite successful for determining the poles
even for large N. The methods, however, were developed for synthesizing
a prescribed transient response using a sum of N complex exponentials.
It was not required that the poles found be the true waveform poles or
indeed it was not required that the waveform even have N poles. Hence,
these methods are also not satisfactory for the requirements here, that
is, finding the N true poles from a set of noisy transient response data
of a system having precisely N poles.

The next section presents a method by which the poles of a system
can be extracted from noisy data usinglan eigenvalue approach similar

to that presented in Section 4.2.
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5.2 Determination of the Poles from Noisy Data

In this section the approach in Section 4.2 is applied to tran-

sient responses containing noisy data. Consider the transient response

vector \ of (4.23) to include noise such that

N
, + 1. 5.7
Zl il (5.7)

. . ) th |
where n,; is the noise vector starting at the i time step.

ng = €141 . (5.8)

v+i

Assume that the values £ of noise vector n; are due to a random process
and are normally distributed with zero mean and variance 02. The
definitions of wj’ the jth mode vector, and the coefficients C.,. are
precisely those of (4.253) and (4.24), respectively. As before, if

there are N poles in the system then there will be N mode vectors ¥,.

The next step, as in Section 4.2, is to solve the difference equation
I v =0 . (5.9)

If a pseudo-inverse solution of (5.9) is attempted, the set of Equations

(4.26) is obtained. If the noisy transient response vectors are
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substituted into the matrix & of (4.27), the following result is obtained
. .th . . .
for the l,Jt element of matrix &', where the prime indicates that the

matrix was formed using the noise vector

Po= oyt v, (5.10a)
1,3 1 ]
N N N
* T* T*
of =171 I Ic, ¢, 1w, v 4+ v o olc, . n.l
1,1 021 m=1 L,1 8,3 PN =1 2 2,1 ]
q T T
. 5.10b
+221 [Cg,j ngl v, + [0} nj] ( )

Since the term [ni nj] is the product of the transpose of the ith noise

. .th . . .
vector times the j  noise vector and since any two noise vectors are

uncorrelated, then

[ni nj] =0 , 1i# j: | (5.11a)

, 1= : : - (5.11b)

where y is the length of the response vector v, and the length of the
noise vector ng. Hence, this term gives rise to a matrix which is zero

everywhere and has a value of ¥ 02 on the diagonal, or more precisely
written,
H=+vy o I (5.12)

where I represents the identity matrix. The second and third terms on
the right side of (5.10b) are each zero since they are the product of

the noise vector and the natural mode vector which are uncorrelated and
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of zero mean. The first term is left which is precisely the ¢ of (4.28). 0

This term is the product of the & and mth natural mode vectors. Thus,
' =9 +H (5.13)

where &' is of order N + 1 by N + 1. Matrix ¢' will have N + 1 real
eigenvectors of which one eigenvector will be orthogonal to the N mode

vectors wm. That is,

T
Eiwm#o,l—l,N
=0, ¢ >N (5.14)

T .
where E2 is the transpose of the {th eigenvector. Hence,

' E_,. =y o E (5.15)

since ¢ EN+l = 0 and matrix H can be thought of as the constant ¥y 02.
Thus, (5.15) implies that the eigenvalue associated with the N + lth
eigenvector is just vy 02 which is vy times the variance of the noise.
This is similar to the result of Section 4.2 where the eigenvalue
associated with the N + 1th eigenvector is zero for the noise-free case.
The procedure for determining the value of N is then the same as that
outlined in Section 4.2 except that matrix ¢' is filled until it has an
eigenvalue equal to ¥y 02 instead of zero. Likewise the N + lth eigen—
value, which is orthogonal to all the mode vectors, is the vector con-
taining the N + 1 coefficients oy of Prony's difference equation. Thus,

once the eigenvalue equal to ¥y 02 is found, the poles can be found from

its corresponding eigenvector.

0
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The next section applies this procedure to several examples.
Different noise levels are used in order to statistically determine the

poles' sensitivities to various noise variances.

5.3 Numerical Examples

Example 1

As the first example of the method developed in Section 5.2, a
single undamped sinusoid is used. The transient data were produced at

200 time steps using the relation
R(it) = sin(mAt); n = 0,1, . . ., 199

where At = 0.1 s. Noise of different levels was added to the data samples
R(nAt). The noise was produced by using a pseudo-random number geﬁerator
on a digital computer to produce uniformly distributed noise. The uni-
formly distributed noise was then transformed into normally distributed
noise with zero mean and a standard deviation of 0. TFor each different
value of o, the entire pole extracting process was repeateé twenty times
with twenty different sets of random numbers. That is, twenty Monte Carlo
trials were performed for each standard deviation of the nbise. From
these twenty trials expected values of the polés were calculaﬁed along
with the variance of the poles. The expected value of the N + 1 eigen-
value and its variance were also calculated. Table 5.1 shows}the percent
error of both the real and imaginary parts of the poles produced for

different values of ¢. The percent error was calculated as

' RlST - SEI
Percent error (real part) = =

St

I‘ST-— SE'
Percent error (imaginary part) = 5
ST
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TABLE 5.1

RESULTS FOR EXAMPLE 1: R(t) = SIN(Iit), y = 150, At = 0.1 S

Standard Percent Error of Pole Standard Deviation of Pole | Theoretical N + 1| Mean Value of N + 1| Signal to
Deviation Figenvalue Eigenvalue Noise Level
of Noise Real Part | Imaginary | Real Part Imaginary dB
g part Part
0.5 3.3 3.4 0.395 0.796 37.5 38.6 2.0
0.1 0.33 0.027 0.034 0.031 1.50 1.54 16.0
0.07 0.21 0.011 0.026 0.016 0.735 0.757 19.1
0.05 0.14 0.003 0.020 0.009 0.375 0.386 22.0
0.01 0.024 0.001 0.004 0.001 0.015 0.0154 36.0

00T




where ST is the true value of the complex pole (in this case ST = 0+ jm)

and SE is the calculated expected value of the extracted poles for a

particular noise level. Also tabulated in Table 5.1 are the standard
deviation of the extracted poles, the theoretical value of the N + lth
eigenvalue (i.e., ¥y 02), the mean value of the calculated N + lth eigen-
value, and the signal-to-noise level in decibels. The signal-~to-noise
level was calculated by taking the log of the square of the average of
the absolute value of the signal over the fime window of length YAt
and dividing by the variance of the noise 02. That is
(Yil R(iAt)[)z

; Y

i=0

S/N(dB) = 10 log >
(0]

For this first example the average of the absolute value'o} the signal

is 0.63137 for all time because the signal is undamped. The values of ¢
for the noise used ranged from 0.5 to 0.0l or in terms ofvéigﬁal—to—noise
level from 2.0 dB to 36.0 dB. Note that the percent error of the real
part of the poles is more sensitive to noise than is the iﬁagipary part.
Note also that the theoretically predicted value of the N f‘lth eigen—
value is extremely close to the calculated value of thatﬂeigenvalue.

This example indicates that the poles can be extracted fromvdata when

the signal—to—noise level is as low as 2.0 dB. If the standard deviation
of the extracted poles is studied for the 2.0 dB case,>£he fesults do

not look very good. ©Note that for the imaginary part of the pocle the
standard deviation is 0.796 which is extremely high when it is remembered
the value of the pole is just m. The standard deviation of the pole at

the 16.0 dB level, however, is much smaller indicating that the chance of
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Figure 5.1. Transient waveform used in Example 2.
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TABLE 5.2

-2
RESULTS FOR EXAMPLE 2: R(t) = e = SIN(mt), Y = 50, At = 0.1 S

€01

Standard Percent Error of Pole Standard Deviation of Pole| Theoretical N + 1| Mean Value of N + 1} Signal to
Deviation Eigenvalue Eigenvalue Noise Level
of Noise Real Part | Imaginary Real Part Imaginary dB
o Part Part

0.04 1.80 5.90 0.800 0.566 0.08 0.0836 3.3
06.03 2.55 2.10 0.566 0.311 0.045 0.047 5.8
0.02 2.20 0.48 0.371 0.179 0.02 0.021 9.4
0.01 1.27 0.12 0.187 0.085 0.005 0.0052 15.4
0.009 1.16 0.14 0.167 0.077 0.00405 0.00423 16.3
0.005 0.67 0.14 0.094 0.043 0.00125 0.00131 21.4
0.001 0.14 0.04 0.017 0.009 0.5 x 1074 0.52 x 107% 35.4




extracting the true pole is much higher at 16.0 dB than at 2.0 dB. This
result will be further substantiated in the next example.
Example 2
For the second example the same sinusoid as in Example 1 was used

but now it is exponentially damped. That is,

-2.0nAt
e

R(nAt) = sin (mnAt) n=0,1, . . ., 199

where again At = 0.1 s. This waveform is plotted in Figure 5.1. A value

of vy = 50 was used in this example since after fifty time steps the
waveform has essentially damped to zero. Table 5.2 shows the results
of several statistical tests on these data using a standard deviation
of the noise ranging from 0.04 down to 0.001. It was found that if o
is greater than 0.04, a signal-to-noise level of 3.3 dB, the expected
values of the two returned poles were not even complex conjugates of
each other. Thus, when the signal-to-noise level was worse than 3.3 dB
Prony's method was completely corrupted by the noise. Note in Table 5.2
that as the signal-to-noise level gets better the standard deviation
of the poles lowers. It appears that at around 15.0 to 20.0 dB the per-
cent error and the standard deviation of the poles are at a tolerable
level, which is,of course, subject to the requirements of the problem
being studied. Notice in this example, as in Example 1, that the
theoretical value of the N + lth eigenvalue compares closely to the cal-
culated mean value. In all cases the theoretical value is slightly
lower than the calculated mean value.
Example 3
For this example the transient response of Figure 4.1 in Chapter 4

was used. The six pole pairs and their associated smplitudes are
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AMPLITUDE OF

TABLE 5.3

EACH POLE COMPONENT FOR EXAMPLES 3 AND 4

Pole Amplitude Amplitude
Example 3 Example 4
-0.082 + 7 0.926 1.0 1.0
~0.147 = j 2.874 1.0 0.5
-0.188 = j 4.835 1.0 0.25
-0.220 = j 6.800 1.0 0.125
-0.247 + i 8.767 1.0 0.0625
-0.270 £ j 10.733 1.0 0.03125
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901

VALUES OF EXTRACTED POLES AND THEIR PERCENT ERROR AS A

TABLE 5.4

FUNCTION OF THE SIGNAL TO NOISE RATIO FOR EXAMPLE 3

S/N 27.4 dB 29.4 dB 33.4 dB 37.9 dB 47.4 dB
Standard Original
Deviation |[g = 0.01 o = 0.008 o = 0.005 ¢ = 0.003 o = 0.001 |Foles
~0.1245 -0.0734 -0.0774 -0.0799 -0.0815 -0.082
-0.1238 -0.1612 -0.1479 ~0.1455 -0.1456 ~0.147
Real Part |-0.1467 -0.1625 -0.1785 -0.1836 -0.1868 -0.188
of Poles -0.1943 -0.2019 -0.2122 -0.2170 -0.2197 -0.220
~0.2592 -0.2555 ~0.2512 ~0.2492 -0.2476 -0.247
-0.2722 -0.2717 ~0.2710 -0.2706 -0.2702 -0.270
0.9550 0.9214 0.9225 0.9238 0.9252 0.926
2.7886 2.8557 2.8702 2.8724 2.8735 2.874
Imaginary 4,7921 4.8044 4.8233 4.8315 4,8350 4.835
Part of 6.8140 6.8110 6.8064 6.8037 6.8012 6.800
Poles 8.7725 8.7712 8.7692 8.7681 8.7673 8.767
10.7302 10.7311 10.7321 10.7326 10.7329 10.733
4.57 0.92 0.49 0.22 0.05
0.81 0.49 0.03 0.05 0.05
Percent 0.85 0.53 0.19 0.09 0.02
Error 0.38 0.27 0.11 0.04 0.004
Real Part 0.14 0.09 0.05 0.02 0.007
0.02 0.02 0.009 0.005 0.002
3.12 0.49 0.37 0.24 0.08
2.96 0.63 0.13 0.13 0.0
Percent 0.89 0.63 0.24 0.07 0.0
Error 0.20 0.16 0.09 0.05 0.02
Imaginary 0.06 0.05 0.02 0.01 0.003
Part 0.02 0.02 0.008 0.004 0.0
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SIGNAL TO NOISE RATIO OF THE DIFFERENT COMPONENTS

TABLE 5.5

OF THE SIGNAL IN EXAMPLE 3 AS A FUNCTION
OF THE STANDARD DEVIATION OF THE NOISE

Standard c = 0.01 o = 0.008 o= 0.005 g = 0.003 o = 0.001

Deviation

of Noise

Signal to Noise Ratio dB

Sum of Below 27 .4 29.4 33.4 37.9 47.4
Portion | -0.082 % j 0.926 24.9 26.8 30.9 35.4 44.9
of
Signal -0.147 + § 2.874 20.1 22.0 26.1 30.6 40.1
Due to
Particu-| -0.188 £ j 4.835 17.9 19.9 23.9 28.4 37.9
lar Pole

-0.220 + j 6.800 16.6 18.5 22.6 27.1 36.6

-0.247 + j 8.767 15.6 17.5 21.6 26.1 35.6

-0.270 £ § 10.733 14.8 16.7 20.8 25.2 34.8




TABLE 5.6

THE THEORETICAL AND EXPERIMENTAL VALUES OF THE
N + 1 EIGENVALUE FOR EXAMPLE 3 AND EXAMPLE &4

Standard Theoretical | Mean Value of Standard Deviation
Deviation of Value of N+ 1 of N+ 1
Noise o N+1 Eigenvalue Eigenvalue
Eigenvalue
0.01 0.02 0.0218 4.92 x 1073
Example 0.008 0.0128 0.0139 3.15 x 1073
3
0.005 0.0050 0.00546 1.23 x 103
0.003 0.0018 0.00197 4.43 x 1074
0.001 0.2 x 10-3 0.22 x 10-3 4.92 x 107>
Fxample 0.002 0.8 x 1072 0.871 x 1073 1.96 x 1077
4 -3 -3 -5
0.001 0.2 x 10 0.218 x 10 4.93 x 10
0.0005 0.5 x 107% 0.546 x 10~ 1.23 x 107°
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tabulated in Table 5.3. Note that for this example the amplitude of

each pole is the same. Noise with standard deviation from 0.01 to 0.001,
giving a signal-to-noise level from 27.4 dB to 47.4 dB, was added to the
signal and statistical tests were run on the data. For all cases a value
of vy = 200 was used and the number of Monte Carlo trials was twenty.
Table 5.4 shows the results of these tests. For this particular signal,
poles could not be extracted for levels of noise greater than ¢ = 0.01.
That is, for noise levels greater than ¢ = 0.01, poles were produced

but they did not appear in complex conjugate pairs and had no apparent
relationship to the original poles.

Since the total waveform was made up of the sum of six damped
sinusoids, it is useful to study the signal-to-noise ratio for each of
the six individual components. Table 5.5 shows that for the case of
g = 0.01 with a total signal—tq—noise ratio of 27.4 dB the highest
frequency component has a signal-to-noise ratio of only 14.8 dB. This
level is about the same as the level in Examples 1 and 2 where the poles
could be extracted at a signal-to-noise level of about 2 to 3 dB, but
in this example the highest signal-to-noise level of an individual com-
ponent is, as stated above, 14.8 dB. Hence, indications are that sum-—
ming several signals together in effect makes it necessary to have a
better signal~to-noise ratio to allow extraction of the poles. This
point is further demonstrated in Example 4.

Thé values of the N + 1th eigenvalues calculated in Example 3 are
tabulated in Table 5.6. Note here, as in the previous two examples,
that the mean value of the eigenvalues is very close but always slightly
higher than the theoretically predicted values. In all cases it was

found that the Nth eigenvalue was sufficiently distinct from the N + lth
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eigenvalue so that proper identification of the cutoff point could be
made. For example in the worst case, that of ¢ = 0.01, the N + lth
eigenvalue has a mean value of 0.0218 and the Nth eigenvalue has a mean
value of 0.070. Thus, if the standard deviation of the noise is
known in advance, there should be no problem in detecting the cutoff
point which gives the wvalue of N.
Example 4

For the final example the same six pole pairs of the previous example
were used but the amplitudes of the poles were reduced as indicated in
Table 5.3. The resulting transient response curve is shown in Figure 5.2.
Here again a value of y = 200 was used and twenty Monte Carle trials were
performed. Table 5.7 shows the results of noise with ¢ = 0.002, 0.001,
and 0.0005. The noise level at which the true poles could be first de-
tected for this example is ¢ = 0.002 which corresponds to a signal-to-
noise level of 39.7 dB. This level is far higher than any needed in the
previous examples, and is due to the fact that some of the components
of the signal have very small signal levels. Table 5.8 gives the signal-
to-noise level for each of the six components in this example. Note
that the highest frequency has a signal-to-noise level of -1.3 dB which
indicates that the noise level is higher than the average signal level.
However, the signal must have been above the noise level for a significant
portion of the data window in order for it to be detected. The standard
deviations of the extracted poles for the o = .002 noise level indicate
that the method is not accurate enough at this level and indeed does not

appear to be accurate until a noise level of ¢ = 0.0005 is reached. At

this level the highest signal-to-noilse level for any single component
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Figure 5.2. Transient waveform used in Example 4.
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TABLE 5.7

VALUES OF EXTRACTED POLES WITH THEIR PERCENT ERROR AND
STANDARD DEVIATION AS A FUNCTION OF
SIGNAL TO NOISE RATIO FOR EXAMPLE 4

Signal to Noise Ratio 39.7 dB 45,7 dB 51.7 4B .
Original
Standard Deviation 0.002 0.001 0.0005 Poles
of Noise o
-0.0809 -0.0814 -0.0817 -0.082
-0.1493 ~0.1452 -0.1459 -0.147
Real Part of Poles -0.3629 -0.1793 -0.1848 -0.188
-0.1483 -0.2036 -0,2159 -0.220
-0.3109 -0.2823 -0.,2565 -0.247
-0.2315 -0.2700 -0.2719 -0.270
0.9220 0.9251 0.9256 0.926
2,8675 2.8726 2.8734 2.874
Imaginary Part of Poles 4.9708 4.8293 4.8342 4.835
6.7206 6.8173 6.8065 6.800
8.6936 8.7688 8§.7686 8.767
10.6593 10.7108 10.7271 10.733
0.12 0.06 0.03
0.08 0.06 0.04
Percent Error 3.61 0.18 0.07
Real Part 1.05 0.24 0.06
0.73 0.40 0.11
0.36 0.0 0.02
0.43 0.09 0.04
0.22 0.05 0.02
Percent Error 2.80 0.12 0.02
Imaginary Part ~1.16 0.25 0.09
0.84 0.02 0.02
0.68 0.21 0.05
0.0113 0.0054 0.0026
0.1034 0.0415 0.0200
Standard Deviation of 0.8509 0.0600 0.0300
Real Part of Poles 0.1000 0.0371 0.0175
0.4254 0.1871 0.0785
0.0834 0.0470 0.0231
0.0310 0.0120 0.0057
0.0382 0.0120 0.0055
Standard Deviation of 0.7797 0.0585 0.0283
Imaginary Part of 0.4604 0.1237 0.0616
Poles 0.3860 0.0632 0.0211
0.2846 0.1225 0.0535
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TABLE 5.8

SIGNAL TO NOISE RATIO OF THE DIFFERENT COMPONENTS

OF THE SIGNAL IN EXAMPLE 4 AS A FUNCTION
. OF THE STANDARD DEVIATION OF THE NOISE

Standard 0.002 0.001 0.0005
Deviation of
Noise o
Signal to Noise Ratio dB
Sum of Below 39.7 45,7 51.7
-0.082 .3 0.926 38.9 44 .9 50,9
Portion of Signal -0.147 + 3 2.874 28.1 34,1 40,1
Due to Particular
Pole -0.188 £.j 4.835 19.9 25.9 31.9
-0.220 + j  6.800 17.9 23.9 29.9
-0.247 = j 8.767 5.5 11.5 17.5
-0.270 = j 10.733 -1.3 4.7 10.7
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is better than 10 dB. Table 5.6 shows that here again the mean value
of the lowest eigenvalue is always slightly higher than the theoretical
value.

Summary of Numerical Examples

Four different numerical examples were studied to determine the
effects which noise has on Prony's method and to see if the value of N

could be found from the eigenvalues. In all cases the mean value of

the ‘calculated N + lSt eigenvalue was slightly higher tham the theoretical

value of ¥ 02. It was also found that the N + 1°° eigenvalue was suf-

ficiently different from all others of lower order so that it is possible

to identify it. For all four examples a different highest
tolerable signal-to-noise level was obtained. However, in all the
examples the best results were obtained when the signal-to-noise level
was between 10 and 20 dB for the lowest level component of the signal.
The examples indicate that different tolerable noise levels will
be found for different shaped waveforms. One definite conclusion is
that if the noise level is higher than the signal level over the entire
data window then that signal or its accompanying pole will not be de-
tectable. These examples also indicate that further study should be

done with experimentally obtained signals containing truly random noise.
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6. APPLICATIONS

Now that the techniques for properly applying Prony's method have
been developed it is of interest to study some of the electromagnetic
applications of this method. There are four major areas to which the
extraction of poles from a transient electromagnetic signal can be of
great benefit. These are: system analysis, radar target recognitionm,
the study of spectral characteristics, and data reduction and extrapolation.

These four applications are discussed in some detail in this chapter.

6.1 System Analysis

6.1.1 Response to various exciting waveforms

In circuit theory after the impulse response is known, the response
of the circuit to any given driving function can be determined by mul-
tiplying the Laplace transform of the driving function by the sum of

poles and thelr corresponding residues of the impulse response. That is,

N Ai
R(s) = F(s) z P
i=1 i

(6.1)

where R(s) is the resulting response function and F(s) is the Laplace
transform of the driving function. In Chapter 2 it was shown that a
similar relation is true for electromagnetic structures. The differences
are that since antennas and scatterers are distributed systems the im-
pulse response is a function of position on the structure and a function

of the incident angle of the driving function. Note that the pole portion
of the impulse response is independent of position but that the natural
modes are functions of position and the coupling coefficients are functions
of the incident angle. Thus, the general response function for an antenna

or scatterer can be expressed as
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N Ai.(r,p)

S — 8.,
1

E(Ss;sﬁ) = F(s’;sﬁ) (6.2)

i=1
where the coupling coefficients ni(si,ﬁ) and the natural modes vi(f)
have been combined into the one term, Ai(;,g). Since the poles s, are
invariant of position, they may be determined by studying the impulse
response at any position on the structure. After the poles have been
evaluated, the residues Ai must be determined at every desired point
on the structure. This however is not a difficult problem. Thus, the
poles of a structure need only be extracted once and the residues must
be determined at each position that the response is desired and for
each angle of incidence that the driving function will be applied. As
an illustration consider the following example.

Consider that the induced current at several positions, e.g., M,
on a dipole due to several different time-—varying broadside incident
plane waves is desired. The first step is to determine the induced
current at all M desired positions on the structure resulting from a
broadside incident impulse plane wave. It will actually be necessary
to use a narrow Gaussian plane wave as an approximation to the impulse.
The true impulse response can then be obtained by using one of the
methods outlined in Section 2.2. After the impulse response of the
induced current is obtained, then the poles of the structure can be ob-
tained by applying Prony's method to the current at one of the M points
on the structure. Now that the poles have been determined then the M

sets of residues are calculated for the M positions on the antemna,
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thus giving one set of N poles and M sets of N residues Ai(E,E). The
induced current for an arbitrary broadside incident waveform is then
obtained by applying (6.2). If an incident angle other than broadside
is required, then it is necessary to recalculate the M sets of residues
for an incident impulse plane wave at the new incidence angle. This
seems a horrendous amount of calculations but when compared with the
amouﬁt required to completely resolve the problem for each incident wave

shape it is really a very small amount.

6.1.2 Compatibility with circuit theory

In practice antennas are almost always coupled to some sort of
circuit or ﬁetwork. This present; a problem té the circuit designer
because the antenna port is not classified as a lumped element. This
problem is usually not severe since the network and antemna ére'gen—
erailyldesignéd to operafe at oné éiven fréquenéy. In this case the
antenna port can be characterized by a lumped impedance at that one
frequency. If, however, the antenna is to be operated over a broad band
of frequencies the circuit designer must kndwithe'antenna's terminal
characteristics over that entire band. The characteristics are normally
obtained from a set of graﬁhs relating the real and imaginary parts of
the input admittance to the frequency. Obviously, this is not an ideal
situation. The circuit designer would like to have the antenna's input
impedance given to him in the Laplace transform domain. This is a pos-
sibility if Prony's method is used. All that is necessary is to apply
a time-varying voltage to the antenna terminals and to measure the re-
sulting current as a function of time. If Prony's method is applied to
thé current and a set of poles and residues is obtained, then the input

admittance can be expressed as
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(6.3)

where V(s) is the Laplace transform of the applied voltage. Expression
(6.3) is obviously much easier for a circuit designer to use than a

set of complicated graphs or tables.

6.1.3 Study of system parameters

It is quite useful to know what effect the loading of a structure
has on the positions of its poles in the complex plane. Likewise it
is beneficial to know what effect the positions of the poles have on
the behavior of the transient response. If trajectories of the poles
could be determined from a few experimental cases, it would be possible
to predict pole locations as a function of loading. Once the pole lo~-
cations are known then the transient waveforms can be constructed. One
practical example of this problem is the resistive loading of a linear
antenna in order to produce a transmitted field which simulates an
electromagnetic pulse. Tesche [23] has approached this problem by de-
termining the pole locations of a dipole which is loaded with uniform
resistive loading along the antenna. He produced the trajectories of
the poles by the "classical" frequency domain search procedure. An
alternative approach is to obtain the time-domain solutions for the
induced currents on and the scattered fields from several uniformly
resistively loaded dipoles. Prony's method is applied to either the
transient response of the induced currents or the scattered fields in
order to determine the location of the poles. The results of such a

procedure are given in the following example.
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A 1.0 m dipole with a half-length-to-radius ratio of 100 was
numerically modeled and excited by a broadside incident Gaussian pulse.
The induced current at the center of the antenna and the back scattered
electric field was calculated as a function of time for uniform resistive
loading of 0, 125, 250, 500, 750 and 1683 Q/m. These currents and fields
are shown in Figures 6.1 and 6.2, respectively. The time step size used
was At = 6.9444 x 10—11 s. The loading value of 1683 Q/m was chosen
because Tesche [23] calculéted that 1683 Q/m is the value:at ﬁhich the
dipole would become critically damped, giving a double pole on the neg-
ative real axis. The poles that were extracted using Prony's method are
plotted in Figure 6.3. The trajectories of the first seven even poles
are shown. Note that for the value of 1683 Q/m the first pole has split
and moved toward the origin and toward infinity, which indicates that this
value of loading does not give a critically damped dipole but produces
an overdamped situation., This does not imply that Tesche's calculated
value of 1683 @/m is incorrect. All that is indicated is that this nu~
merical modeling procedure and Tesche's numerical modeling procedure
differ. It should be noted, however, that the point at which the pre-
dicted trajectory of the first pole in Figure 6.3 splits is approximately
the same wvalue which Tesche indicates in his paper.

One very interesting point in the above example is that for even
the overdamped transient response Prony's method was capable of ex-

tracting the first five poles of the system. This is a very important

point since if the 1683 /m case in Figure 6.1 is studied it appears that no
oscillations occur. Yet Prony's method was capable of determining the

first five modes including the splitting of the first pole. This example
then indicates that Prony's method will work with‘heavily loaded structures

and with fat or thick structures.
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6.2 Radar Target Recognition

The problem of electromagnetic recognition of a radar target has
received a great deal of attention in recent years. To recognize a
target with a single-frequency radar requires, in principle, bistatic
scattering cross-section information for a single transmitter aspect
angle and for 47 steradiamns. In practice, with a priori informatiom
about the body, it is feasible to match a body to one of a known group
of bodies using a somewhat smaller angular range. With multiple-frequency
monostatic radar cross—section informatioﬁ available over a limited
angular range, it is possible to identify a body as well [29]. Theoret-
ically, the monostatic reconstruction requires information over &4
steradians and an infinite frequency range.

Recent work indicates the feasibility of using short-pulse (impulse
response) excitation in a monostatic configuration for purposes of target
recognition from a class of bodies [30] - [31].

In the first of these schemes, reported by Sperry Research Center,
information about the body is contained in the time-history of the
backscattered waveform, i.e., a time signature. This technique is com-
plicated by the fact that the time signature is dependent on the aspect
angle of the target. The result is the requirement of a rather large
catalog of known signatures.

Mains and Moffatt [31] introduced the concept of using the complex
natural resonances of a target as a basis for target recognition. They
make use of the fact that a few natural resonances of a body are adequate
to distinguish the body within a finite collection of bodies. They also
make use of the fact that the natural resonances of a body as manifested

in a scattered waveform are aspect independent: they do not depend omn
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the angular orientation of the target. They justify this fact empirically 0
in [31]. Baum, who introduced the Singularity Expansion Method (SEM)

[1] - [2], has rigorously demonstrated this aspect independence in the

context of the SEM method.

Thus, this method provides a convenient means of 1) characterizing
a transient scattered waveform in terms of a few coefficients and complex
resonant frequencies in a series of decaying sinusoids, and 2) separating
aspect-dependent characteristics of the waveform from characteristics .
intrinsic to the body. In particular, the complex frequencies of the
sinusoids in the series are intrinsic to the body while the amplitude
of the sinusoids depends on the wave shape of the excitation and on the
aspect angle.

Two significant practical features accrue from the use of the SEM
representation with primary attention directed to the complex frequency 0
qualities: 1) aspect dependence is suppressed and 2) the incident
wave shape need not be impulse - it needs only to have sufficient spectral
content to excite several of the complex sinusoidal modes.

Since Prony's method can be used to numerically extract the weighting
coefficients and the complex frequencies from a’digitized backscattered
time-signature, Pearson, Van Blaricum and Mittra [32] suggested that
the method be used to aid in the target recognition problem. The ex-
tracted frequencies (rather than the complete time-signature) would
serve as the input to a pattern-recognition algorithm. This method is
believed to represent a significant improvement over direct time-history
pattern recognition because the aspect-dependence is suppressed and
because the frequencies comprise a smaller set of numbers than the

0

entire sampled time-signature.
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A block diagram for the recognition procedure is given in Figure
6.4. The system consists of a transmitter, a receiver capable of
digitizing the transient return, and a digital processor with some con-
venient operator communications device such as a CRT. Of course, a
tracking system and an antenna/duplexer are present.

The waveform generator must produce a transient waveform with
reasonably broad spectral content. The power and frequency requirements
are, of course, dictated by the application. In particular, target
range requirements and receiver performance determine a power specifi-
cation, while the body size determines frequency. The frequency must
be such that f = ¢/D with D a characteristic dimension of the class of
targets and c¢ the velocity of light. An alternative to a transient
source and receiver is a multiple~frequency pulsed carrier scheme such
as Mains and Moffatt suggest [31]. This scheme uses CW scattering re-
turns to synthesize the transient response of the body.

The transient digitizer provides a means of detecting, sampling,
and digitally expressing the tramsient return signal. 1In its simplest
form, this element might be a storage oscilloscope with A-D converters
on its vertical and horizontal drive signals. There are other more
sophisticated systems available commercially.

The digital processor must be able to perform the following
operations: a) extract the poles of the waveform by using Prony's
method; b) identify (based on data designed into the system) poles due
to the transmitted wave shape and to the RF system; and c¢) conduct a
pattern recognition procedure to provide a set of "likelihood votes"
associating the target with a catalog of expected targets. The first

item above is self-explanatory.

125



DUPLEXOR

' ITRANSIENT
SOURCE
-
ANTENNA
SYSTEM .
TRANSIENT TRACKING
DIGITIZER DATA
WAVEFORM
SAMPLES
Y DIGITAL PROCESSOR L
POLE E)C()T%ANEOUS PATTERN\ _l;gngéngTlvE
EXTRACTION L TION
SUPPRESSION RECOGNITIO LIBRARY
OUTPUT
DISPLAY
Figure 6.4. Schematic representation of the radar target recognition

system.

126




Any waveform that can be radiated is oscillatory in character
and will accordingly have associated with it at least one "waveform
pole." TFor example, a sinusoidal segment will possess a polg at s = jwo,
where @ is the radian frequency of the sinusoidal signal. 1In addition,
it is conceivable though undesirable that the receiving antenna and RF
hardware might introduce poles into the waveform representation. All
of these "system'" poles are known during system design, however, and
it is a straightforward algorithm to locate and delete them from the
set of poles extracted from the signal. An alternative approach is to
numerically deconvolve the waveform spectrum and system transfer function
from the received waveform.

The final process is to compare, by means of some pattern analysis
algorithm, the observed pole set with a data base of known targets'
poles. This algorithm would display, as its output, a "vote" or prob-
ability for a known target or targets. This information could be sup-
plemented by an indication of recognition confidence, for example, the
number of poles successfully used in the identification. A second sup-
plementary output might be tracking data on the target.

For this method to be successful as a target identification scheme,
a few poles (say less than ten) must characterize a given target among
all potential targets. Mains and Moffatt [31] discuss this problem in
some detail and present the pole configuration for several thin-wire
geometries to indicate that a few poles do distinguish among similar
objects. Also, another criterion for this system to be successful is
a satisfactory signal-to-noise level of the returned time-signature so

that Prony's method can properly extract the poles. Berni [33] has
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suggested an identification technique, which is also based on Prony's
algorithm, although Prony's method, as such, is not mentioned in his
paper. His approach is to use a series of exciting pulses which then
produces a series of response functions which are correlated to produce

' His correlation matrix

what he calls a "'target correlation matrix.'
is similar to the ¢ matrix of Prony's method of Section 4.2. The dif-
ference is that his correlation matrix is filled with samples from
several different sets of transient response data while that of Prony's
method uses just one set of transient response data. Berni's approach
may thus prove useful in reducing the noise level and some of the signal-
to-noise ratio problems outlined in Section 6.3. It appears that the

use of Prony's method as a tool for radar target recognition may be of

great importance but more study of the problem is needed in order to

satisfy many of the unanswered questions.

6.3 Study of Spectral Characteristics

It has been pointed out already that after the poles and residues
of a system have been determined it is then possible to write the fre-

quency domain version of the system's response as

A,

N
. = i ]
R(jw) 121 S, T3l = wp (6.4)

where the poles 85 have been written in terms of their real and imaginary

parts as

s; = Oi + 3 Wy . (6.5)

Thus, the frequency domain response can be obtained directly from the

time domain response without having to perform a Fourier transform.
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The real advantage is that in order to perform a Fourier transform
accurately it is necessary to have a very long time history of the
transient response. That is, it is usually necessary to have enough
time samples so that the transient response has decayed to zero or to
its steady-state value. The examples of Section 3.3 showed that Prony's
method is capable of extracting the poles from a time window that is
extremely short when compared tb the whole response. Thus, if it is
too expensive to calculate or measure more than just a few transient
data samples,it is generally impossible to perform an accurate Fourier
transform, but if Prony's algorithm is used, it is then possible to
extract the spectral characteristics from this narrow time window.

If the transient response is not the impulse response and the im-
pulse response or the frequency domain transfer function is desired,
it is possible to perform the deconvolution after the poles have been
found. For example, if Prony's method gives a frequency domain response
function of the form of (6.4) and if the frequency domain response of
the driving function F(s) is known, it is possible to obtain the fre-

quency domain transfer function:

N Ai
Zl ST, - -

H(s) = 1= (6.5)

F(s)

Note the similarities between (6.5) and (6.3), the expression for the
input admittance of an antenna. If F(s) is the applied voltage at the
driving point and the Ai and the s, are the residues and poles for the
induced current at the driving point, then H(s) is just the driving-

point admittance. Figures 6.5a and 6.5b show the imaginary and real
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Figure 6.5. (a) Imaginary part of input admittance for
1.0 m dipele.
(b) Real part of input admittance for 1.0 m
dipole.
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parts, respectively, of the input admittance of the 1.0 m dipole discussed
in Section 3.3. The solid line represents the admittance obtained by
using the conventional Fast Fourier Transform, and the dotted line is
the admittance obtained using Expression (6.3). Since the driving
function was a Gaussian pulse, it was possible to express its Laplace
transform F(s) analytically. Note that the two methods give results
that compare closely for all but the higher frequencies.

Similarly, if the normalized radar cross section of a scatterer
is desired, it can be obtained by using the expression
w2 r2 ‘Erad(w)i2

S

Kz ﬂCz v!EA(w)’z

(6.6)

where the dependence on the incidence and observation angles and polar-
ization has been suppressed. The EA(w) term is simply the frequency
domain response of ;he applied incident field and Erad(w) is the frequency
domain response of the scattered field measured at distance r from the
scatterer. Erad(w) can be obtained using Prony's method on the calculated
or measured scattered transient response data.

When a conventional Fourier transform routine is used, the result
is always a set of frequency domain data points at a specified frequency
interval which is dependent on the time step size of the transient data
used. Many times the study of the spectral characteristics at just a
few select frequencies is of interest. If any of the analytical
Expressions (6.3), (6.4), (6.5), or (6.6) are used, it is possible to
calculate the spectral characteristics at any frequency desired.
Thus, if Prony's method is used, it is possible to obtain as few or as
many frequency domain samples at any frequency of interest, within the

bandwidth of the system.
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6.4 Data Reduction and Extrapoclation

From the discussions and examples mentioned earlier, it is obvious
that Prony's method takes a set of transient response data and reduces
it to a small set of poles and residues, These poles and residues can
then be used to reconstruct the transient response for all time, in-
cluding those time steps past the end of the data window used. Hence,
Prony's method is & valuable method for data reduction and extrapolation.
Anyone who has ever generated transient response waveforms by numerical
or experimental procedures soon learns that the storage problem required
in keeping all of the data is very large. If Prony's method is used,
it is not only possible to reduce the amount of data storage required
but it is also possible to reduce the amount of transient data produced
in the first place. The following example will demonstrate this adequately.

Consider again the experimentally produced data which were discussed
in Section 3.3, Example 9. The experimental transient range produced
512 data samples over the time window shown in Figure 3,18. Prony's
method was then applied to only 100 of these time samples at every fifth
time step to produce the forty-one poles shown in Figure 3.19. The forty-
one poles and residues were then used to reproduce the measured tran-
sient response and to extrapolate the measured response to very late
time, 100 ns. This reproduced response is shown in Figure 6.6. Thus,
using only e&ghty—two complex numbers, the original measured response
was reproduced and extrapolated to add additional information. Remember
also that only 100 of the original measured samples were needed.

Hence, a response can be measured for a fairly short period of time;
then,Prony's method can be applied to the response to reduce it to a

set of poles and residues. The poles and residues can then be used to
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reconstruct the original data, extrapolate the original data to later
time values, and produce the spectral content by using the methods of

Section 6.3.

6.5 Other Applications of Prony's Method

This chapter dealt with applications of Prony's method for extracting

the singularities of a system from its transient response. There are

many other uses for Prony's method which have been developed in the past.
These uses range from representation of electrocardiograms [17] to the
measuring of the vertical angles of arrival of HF sky-wave signals [34].
These applications are very interesting and for that reason an additional
bibliography is provided which lists many of the papers in which Prony's
method has been used. The techniques developed in this thesis could be

used to eliminate many of the problems discussed in the papers.
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7. AN ALTERNATIVE TO PRONY'S METHOD

In previous chapters, Prony's method has been the only technique
discussed for extracting the poles from a set of transient response
data. However, another approach, known as the Padé approximation method
[35], can be used. The Padé method will be discussed in this chapter

and will be shown to be extremely limited in its usefulness.

7.1 Padé Approximation Method

If the Laplace transform R(s) of the transient response function
R(t) is analytic at the origin, then R(s) can be represented in a Taylor's

series expansion about the origin. The Taylor's series can be denoted
by

R(s) =r.+r,s+r 32 + ...+ sk + Z r.s= . (7.1
0 1 2 k .
i=k+1
A rational function in s can always be found such that its Taylor's
expansion has the same leading terms as those of (7.1). This rational

function is known as the Padé approximant of R(s). The Padé approximant

is usually written in the form

2 m
P (s) ~ aO + als + azs + .. .+ ams
N .

Q(s)

(7.2)

2
bo + bls + bzs + . . .+ sz

Note that if the transient response contains exactly N poles then
Expression (7.2) is an analytical expression for the Laplace transform

of the sum of exponentials

N sit
R(t) =) A, e . (7.3)
i=1 *
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Note also that.if the coefficients bi of the denominator of (7.2) can be
obtained then it is a simple procedure to find the poles of the system.
A1l that would need to be done is to find the roots of the Nth order

polynomial

N

2 N
=H — ——
b0 + bls + bzs + . . . F sz {21 (s Si) Q . (7.4)

The coefficients bi of (7.3) can be obtained in the Padé approximant
sense by setting the first k + 1 terms of (7.1) equal to (7.2). That

is, let

2 m
k aO + als + azs + . . .+ ams

S =
k 2 N (7.5)
b0 + bls + bZS + . . .+ sz

2
r0 + rls + rzs + . . .+

where the value of k must be equal to m + N. If the denominator of the
right side of (7.5) is multiplied by the left term and like powers of

s are equated, the following set of equations is obtained.

~N

a, =r, b,.+r.b (7.6a)

b )

Tox+2 Pn-1 Tl P

=
o
]
H
o
+
+

r b.=r1 b, + . . . + . (7.6b)

rm—N+3 bN-l + T n-N+2 bN

N-1 ¥ Tn Py

mN 20~ FmN-1 Tkl
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If in (7.6b) the b0 terms are set equal to one, the N remaining bi may
be solved in terms of the r,. Then the a; in (7.6a) can be solved in
terms of the bi and the r,.

The remaining problem is the determination of the r, which are the
coefficients of the Taylor's expansion of the transient response. These
can be obtained if the transient waveform is modeled with a set of step
functions u(t - ti) and a set of ramp functions, u_l(t - ti). The step
function and the ramp function have Laplace transforms which are known.

These are

n =
hd

Llue - )] = Ce ' (7.7a)

L[u_l(t - ti)] y e (7.7b)

where the time ti is the turn-on time for the step and the ramp functions.
Hence, if the transient response can be modeled with a set of step and
ramp functions, then its Laplace transform can be expressed as a sum of
the terms (7.7a) and (7.7b). As a simple example of the modeling pro-
cedure comnsider the portion of a transient response shown as a dotted
line in Figure 7.1. This response has been modeled as a sum of step

and ramp functions as indicated by the solid lines. The analytical time

domain expression for the model can then be written for this example as
R(t) = 13 u_l(t) - 13 u_l(t - 1) + 13 u(t - 1)

F3u (-1 -3u (-2 -8u_ (=-2)+... . (7.8
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Figure 7.1. Model of a transient waveform using step and
ramp functions.
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Expression (7.8) then has a Laplace transform of

_13_13 -s 13 -s 3 _-s
R(s) = > 5 e + e + 5 e )
s s s
- QE_E—ZS - §§_e—2s + . . .+ (7.9a)
s s
which reduces to
J13, s[o10, 13}, s 1L
R(S)—Sz+e ( 32+S'+e (-sz)+...+ . (7.9b)

The exponential terms in (7.9) which result from the time shift have a

Taylor series expansion of

e =1ty 9+ L + .+ (7.10)

If this expansion is substituted into the expression for the Laplace
transform of the pulse and ramp models of the transient respomnse, then
the response can be written in the form of (7.1). This expansion should
then be truncated to include only k + 1 terms as needed to solve the
set of Equations (7.6b). It is now a simple procedure to obtain the
unknown coefficients bi by solving (7.6b). The poles are then obtained
as the roots of the polynomial (7.4) which has the coefficients bi'
After the a; have been solved for from (7.6a), residues of the poles
can be obtained by performing a partial fraction expansion on the rational
function (7.2).

The above approach for finding the poles appears to be a simple
procedure but it will be shown in the next section that because of the
approximations made this technique is only useful for systems contain-

ing a couple of poles.
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7.2 Examples of the Padé Procedure

Example 1

As the first example of the Padé procedure consider the response

function
-2
R{(t) = e t sin wt (7.11)

which has been discussed previously as Example 2 of Section 5.3 and
plotted as Figure 5.1. A total of 200 samples were generated and thc
response was modeled for 20, 40, 80, 100, 150, and 200 of these samples
using the pulse and ramp approximations discussed in Section 7.1. The
results of applying the Padé approximation to determine the poles are
presented in Table 7.1. Note that the results are not satisfactory
until eighty samples were used. Figure 5.1 shows that the response
does not damp to nearly zero until after time step forty. In order to
get valid results all of the transient response must be used until the
time at which the response is mnearly equal to zero. The results for
eighty through 200 samples are promising however.
Example 2
Here a transient response was generated using two sets of complex

pole pairs. The response used is

r(t) = e—zt sin wt -+ e_3t sin 1.5 7wt . (7.12)

The results of the Padé approximation procedure for this transient
response are tabulated in Table 7.2. Note that in this case satisfactory
results were not obtained until 200 samples were used even though the
response has damped to zero at around the fiftieth time step. This in-

dicates that a larger number of samples is needed to resolve the presence
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TABLE 7.1

THE RESULTING POLES USING THE PADE APPROXIMATION ON THE TRANSIENT

RESPONSE OF EXAMPLE 1:

R(r) = e™2t gsin 7t

Number of Percent Error
Samples Used Poles Extracted Real Part Imaginary Part
20 -1.5009 + j 2.1523 13.40 26.56
40 -1.9076 + j 2.8563 2.48 7.66
80 -1.9998 + i 3.1405 0.004 0.004
100 -2.0001 7 j 3.1414 0.002 (}.004
150 -2.0001 F j 3.1414 0.002 0.003
200 ~2.0001 }+ 3 3.1414 0.002 0.0U7
TABLE 7.2

THE RESULTING POLES USING THE PADE APPROXIMATION ON_THE TRANSIENT

RESPONSE OF EXAMPLE 2: R(t) = 27%% sin nt + e > sin 1.5 nt
Number of Percent Error
Samples Used Poles Extracted Real Part Imaginary Part

-1.5734 = 3 3.2773 11.45 3.64
100

-2.1637 + 3 3.8707 14.97 15.06

-1.9994 *+ j 3.1408 0.017 0.078
200

-2.9970 1 j 3.7016 0.053 0.192
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of two pole pairs than for only one pole pair. The accuracy, however, 0
for 200 samples is still very satisfactory.
Example 3 o
As a final example consider the transient response made up of three

pole pairs such that

R(t) = e—2t sin nt + e—3t sin 1.5 nt + e_4t sin 27t . (7.13)

This signal is similar to those of Examples 1 and 2 in that it decays :
to very near zero at about the fiftieth time step. The results of

applying the Padé approximation te this response are tabulated in

Table .7.3. Note that satisfactory results are never really obtained

for the imaginary parts of the second and third pole pairs, because

the approximations used in the procedure cause the Padé method to have

difficulty in extracting more than two sets of poles. This, of course, ‘l)
is a very limiting factor since in almost all cases one would desire to

obtain at least six pole pairs.

7.3 Conclusions Regarding the Padé Approximation

It has been shown that the Padé approximation performed satisfactorily
when only one or two pole pairs were desired but failed to give satis-
factory poles when three pole pairs were sought. The method was also
applied to signals with more than three pole pairs and which did not damp
out so0 quickly, but again the results were unsatisfactory. For the cases
of one and two pole pairs it was necessary to include essentially all of
the waveform until it damped to zero. This in itself is a limiting
factor. Thus, the conclusion would then be that the Padé approximation, as
it was used here, is not a satisfactory method for extracting the true ‘)

poles from a set of transient response data.
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TABLE 7.3

THE RESULTING POLES USING THE PADE APPROXIMATION ON THE TRANSIENT

t

RESPONSE OF EXAMPLE 3: R(t) = e~4% sin nt + e~3t gin 1.5 7t + et sin 2 nwt
Percent Error
Number of
Samples Used Poles Extracted Real Part Imaginary Part
~-0.9671 = j 0.2879 27.73 76.62
100 -2.0313 * j 3.1523 17.34 27.93
-3.5884 + j 5.3760 5.53 12.18
-1.9991 £ j 3.1404 0.023 0.032
250 -2.9915 £ j 4.5577 0.152 2.768
-4.0244 +* j 6,0014 0.328 3.783
-1.9991 % j 3.1404 0.023 0.032
400 ~2.9915 * j 4.5577 0.153 2.768
~4.0244 = 3 6.0014 0.327 3.782
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8. CONCLUSIONS

The numerical methods described in this thesis provide a technique
by which the true complex natural resonances of a system may be extracted
from a set of discrete transient response data of that system. The
numerical procedure, known as Prony's algorithm, is applicable to systems
possessing multiple poles as well as simple poles. There are two ef-
ficient and systematic methods by which it is possible to determine the
number of poles inherent in the transient response. In employing both of
these schemes the poles are obtained as a by-product of the calculations.
The Householder orthogonalization method, which is the most systematic
of the two procedures for determining the number of poles, breaks down
if any significant noise is added. The eigenvalue procedure on the other
hand uses the known standard deviation of the noise to aid in determining
the number of poles but is not quite as systematic as the orthogonalization
procedure.

The problem of noise in the transient response is a critical point.
As mentioned above, the standard deviation of the noise is used to aid
in determining the number of poles. However, Prony's method will not
extract the true poles if the signal-to-noise ratio is below a certain
level. This level appears to be in the 10 to 20 dB range for the in-
dividual signal components comprising the entire signal. The signal-to-
noise level for the total signal needs to be as good as 30 dB. This
fact causes Prony's method to be limited to use with extremely clean
data systems. However, if several sets of noisy transient responses are
measured and averaged together, the standard deviation of the noise

decreases as one over the square root of the number of trials run.
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This approach could be applied to laboratory test systems where a test
can be repeated as many times as desired. More work should be done with
actual noisy experimental data where the data are measured specifically
for the application of Prony's method. The results would then allow

for firm conclusions to be made about the influence of experimental
noise on Prony's method.

There are several applications of Prony's method including system
analysis, radar target recognition, the study of spectral characteristics,
and data reduction and extrapolation. Prony's method is an invaluable
tool in data reduction and in the determination of the spectral charac-
teristics of a system. The applicaticn of the method to radar target
recognition is also very exciting but seems to be limited by the noise level
problem. More work should be done in applying Prony's method to the
areas mentioned as well as to new areas.

The Padé approximation is an alternative to Prony's method. The
study of this method shows that the Padé approximation is not applicable
to systems containing more than one or two pole pairs. This restricts its
usefulness for SEM related problems. No other alternatives to Prony's
method were found.

The whole field of SEM is new and is growing so fast that the outlook
for use of the techniques presented and developed in this thesis is very
promising. Tt is hoped that these techniques will help simplify the

study and the analysis of the more complicated electromagnetic structures.
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