Interaction Notes
Note 299
December 1976

An Application of Symmetrization
to
EMP Penetration Through Apertures

C.H. Papas

California Institute of Technology
Pasadena, California

Abstract

Upper and lower bounds for the transmission coefficient of an electrically~
small planar aperture are established by an application of symmetrization.
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I. INTRODUCTION

Many of the boundary-value problems that arise in EMP shielding theory
involve shield configurations that are difficul%, if not impossible, to handle
analytically. 1In principle, such boundary-value problems can be solved
numerically but they cannot be solved analytically unless the configurations
happen to be simple enough to permit a separation of the variables and a
scalarization of the electromagnetic field. However, from this we should
not infer that if a boundary-value problem cannot be solved analytically, a
numerical method is the only way to obtain a solution. Actually, as a
preferable alternative, one can reformulate a boundary-value problem so that
what would have to be sought would be a set of upper and lower bounds on the
true solution and not the true solution itself. The sandwiching of solutions
between upper and lower bounds is an old device which has yielded important
results in geometry and mathematical physics [1] and has recently started to

play a promising role in EMP shielding theory.

~

As a paradigm, we shall consider in this note the problem of determining
the shielding effectiveness of a plane perfectly conducting thin wall with a
small aperture of arbitrary shape. That is, we shall determine how much of
the electromagnetic energy that exists on one side of the wall will leak through
the aperture to the other side. From the works of Bouwkamp [2] and of Meixner
and Andrejewski [3] we know what the fields and the leakage would be if the
opening in the wall were a circular aperture. Using their analytical solutions
as a point of departure we shall delimit the shielding effectiveness of the wall
as the circular aperture is topologically transformed into differently shaped

apertures.



II. SYMMETRIZATION 0

A transformation of a geometric figure is topological when adjacencies are
not destroyed and ro new adjacencies are created. In other words, under a
topological transformation the parts of the figure that are in contact remain
in contact and the parts that are not in contact remain apart. The distinguishing
feature of a topological transformation is that neither breaks nor fusions can

arise. )

Symmetrization is a topological transformation, and of the several kinds
of symmetrization that have been invented we shall restrict our attention to
the simplest, i.e., symmetrization of a plane figure with respect to a straight

line.

To symmetrize a plane figure with respect to a straight line L , we suppose
the figure to consist of line segments that are parallel to each other and per-
pendicular to L (see Fig. 1). Then we shift each line segment along its own
line until the line segment is bisected by L . The shifted line segments

compose the symmetrized figure. For example, a semicircle of radius R , when

symmetrized with respect to its bounding diameter, changes into an ellipse
with semiaxes R and R/2 .

Symmetrization leaves the area A wunchanged and decreases, or, more
accurately, never increases the perimeter P . Moreover, symmetrization of
a plane conducting plate decreases (never increases) the electrostatic capacity

of the plate.

A plane figure symmetrized infinitely many times yields a circle and, .
consequently, of all conducting plates of a given area the circular plate has

the minimum capacity. .

Accordingly, if C0 denotes the electrostatic capacity of a plane conducting
plate and if Csym denotes the electrostatic capacity of the circular plate that
is obtained by completely symmetrizing the original plate, we get the inequalicy

cC >¢ . (1)




Original figure

Figure after 2nd symmetrization

Figure 1. Symmetrization of a plane figure.



This places a lower bound on Co . To cbtain an upper bound we invoké the

conjecture that of all plates with a given outer radius LI the circular

plate has the maximum capacity. Thus we have the inequality

Cout z Co . (2)

where Cou is the electrostatic capacity of a circular plate whose radius is

t
equal to the outer radius of the original plate. From (1) and (2) it follows

that C is sandwiched between C and C or
o ou s

t ym

Cout z Co g Csym ) (3

If A denotes the area of the original plate and if P denotes its perimeter,

then Csym is the electrostatic capacity of a circular plate whose radius is

given by
Toym VA/w (4)
and Cout is the electrostatic capacity of a circular plate whose radius Yout

lies within the following bounds [4]

j—
VAlm < Tout < P/o2w (5)

Since the electrostatic capacity of a ecircular plate (disk) in MKS units is

given by

C =8¢ (6)

where r 1is the 1adius of the plate and € is the dielectric constant of
free space, it follows from (3), (4), and (5) that the capacitance C0 of a

plate of area A and perimeter P satisfies




8¢ P/2m > C > 8 JA/w D)
(o] Q Q

where e, = 8.854 x 10-12 farads per meter.

Let us now apply (7) to the case of an elliptic plate with semimajor axis

a and semiminor axis b . For an ellipse, we know that

A = qab (8)
and .
2 4 2 .2 6
P=2ﬁa(l-i,,e2-—2—:’)—2—%-——§—'—25——2-%+...) (9)
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where the eccentricity e dis given by
2 2 2.1
e=[(@" -p")/a"1%. (10)

Assuming that the eccentricity is small, we find from (8), (9), and (10) that

- N 3 b _2 6
P =27% vA/nw <l + 6 © 64 © + .. .> . (1)

It then follows from (7) and (11) that

3 4 2 6 -
850 YA/ T (1 + 65 ¢ - e ) > Co > 890 vYAlw . (12)

Professor Smythe, using a different approach, has shown that [5]

4 6

e e
c, = 850 VA/T (1 + 7 + a)for e << 1 . (13)

We see that our result (12) compares favorably with his result (13) when e is

small.



III. TRANSMISSION THROUGH APERTURE IN ELECTRIC WALL

Suppose we have an electric wall with a circular aperture. Orienting a
cartesian coordinate system (x,y,z) so that the center of the aperture is at
(0,0,0) and the wall lies along the plane z = 0 , we consider the question
of how much power is tramsmitted through the aperture into the half-space
z 2 0 when a linearly polarized, time-harmonic, plane electromagnetic wave

is incident on the aperture.

For normal incidence it is known that the transmission coefficient ¢t 1is

given by {2,3]

_ 7312

4322 k) + . . ] (14)

=-————(k ) [l +--(k ) + —===c
27n

(t)

circle

where a = radius of aperture , k = w/c , and ka << 1,

If now the circular aperture is deformed into an ellipse with semimajor

axis a and semiminor axis b , we see from (5), (8), and (9) that

4
P =21 YA/n (l + -6—%-e+ ) for e << 1

and hence

I3
s -
INES LS svYA/T <l + e © ) . (15)
Substituting T out for a 1in (14) we get
64 4 2 64 4 2 3 4
—= k (A/n)" = (v) , = k™ (A/w) (l + = e ) (16)
27“2 ellipse 27ﬁ2 16

The question now arises as to whether or not (t) is sensitive to changes

ellipse
in polarization. We know that if natural light is incident on a very narrow slit,




the transmitted field is polarized perpendicular to the slit. From this we

infer that for polarization parallel to the minor axis is greater

than (t) .
ellipse
that the upper bound in (16) applies to the case of polarization parallel to

(t) .
ellipse
for polarization parallel to the major axis. This suggests

the minor axis.

If the circular aperture is deformed into a square whose area is given by

A ='4a2 , we see from (5) that for the square

YA/T s Tout = @/VValT . @an
Substituting Tout for a in (14) we get
oam?s @ st ermiaae) . (18)
277 ' 4 27T

Similarly, for an equilateral triangle of side a , we see that

3/4

YAjm S r < 3

VA/T = 1.286 YA/T
out

w

and hence

—"352— am? s @)
27w

s 24 1 (arm 2 (2.736) (19)

triangle 27
These examples support the assertion that the transmission through a small
2
aperture (k"A << 1) decreases as the shape of the aperture is changed from
that of an equilateral triangle to that of a square, an ellipse, and finally
a circle. That is, the transmission decreases as the shape of the aperture

approaches a circle. '



IV, FINAL REMARKS

The above calculations are based on an exact solution (the solution for a
circular aperture) and on certain global inequalities.

To generalize the applicability of this method of estimation we must direct
our efforts toward the development of new inequalities and the construction of
new. exact solutions.

Such a generalization of the method would be most useful in the design of

EMP shields and accordingly deserves serious attention.
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