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Introduction

Helical antennas are used in satellite communication sys-
tems because of their narrow beam width. Because of extensive
use of helical antennas in satellite structures, a systematic
development of transient response of this type of antenna to
an incident field is necessary. In this work the natural fre-

quencies and natural modes of a helical antenna are found.

The transient response of such an antenna is obtained by

using Singularity Expansion Method (SEM).1



II. Hallen Type Integral Equation for a Helical Antenna

Analytical calculations of natural frequencies, natural
modes and induced currents of wire antennas are easy to perform
in the Hellen integral equation formulation. If a thin wire of
radius & is bent into an arbitrary shape, if the radius is small
compared to the length, the Hallen integral equation can be

written as2
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where the superscript ~ (tilde) denotes bilateral Laplace trans-
formed quantities, i is the unit vector tangential to the wire

at £ while I is the unit tangent vector to the wire at § = O,

£ the length 8f the wire, s the complex radian frequency, c the

speed of light in free space, ZO the free space impedance and
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with the free space Green's function given by
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R = |7-7'| (2.4)

y = % = complex propagation constant (2.5)

In equation 2.1 the end condition i(0)=0 is automatically
satisfied. If the wire is bent into a helix as shown in
figure 1, then
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where Po is the radius of the helix and o the pitch angle.
If we then ignore the o dependence, i.e., assume the current to
be uniform around the wire,and if we assume that the wire radius
is small compared to the radius of the helix, equation 2.6 can
be rewritten as
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Notice that in equation 2.7 the distance is a function of |¢—¢'|
and az while in equation 2.6 it is a more complicated function of
¢ and ¢'. This type of dependence, i.e., equation 2.7, makes

the integration kernel to be a closed type. As such, in the
moments method formulation, if proper expansion functions are

used, the impedance matrix becomes Toplitz symmetric.

Using equation 2.1 and 2.7, the integral equation for a
helix can be written as



Figure 1. Helix of Finite Wire Radius
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If we set a=m/2 in equations 2.8, 2.9 and 2.10 while keep-
ing the total length of the wire constant, we obtain the integral
equation for a straight thin wire while setting a=0 yields the
equation for an open ended arc antenna. If the pitch angle o is
large, i.e., a loosely wound helix, it can be shown that the
integral in equation 2.9 can be ignored yielding



K(¢-6') = G(¢,6")[cos®(a)cos(4-4')+sinZ(a)]

considerably simplifying equation 2.9.



III. Analytical Calculations of the Natural Frequencies
and Natural Modes

Natural frequencies are the complex frequencies Sh where
the response has pole while natural modes (left or right) are
the solutions of the homogeneous equation. Considering the
case where the pitch angle is large, we can write equation 2.8 as
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Equation 3.1 can be considered to contain the correction terms for
a loop and a straight wire. Since a helix is neither a straight
wire nor a loop, it is logical to expect this integral equation
to contain terms corresponding to both the straight wire and a
loop.

Considering the first integral in equation 3.1, denoting
it by £(¢)
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Since the radius of the wire is very small compared to the radius
of the helix, we can write equations 3.4 and 3.5 as a sum of two

integrals, one a function of a while the other independent of
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We now define the fatness factor Q as

p _sec(a)d
Q = Zln( °— “)z 2210 (%) (3.8)

where & is the total length of the wire with which the helix is
constructed. This definition is consistent with the definition
of the fatness factor5 for linear antennas. Using equation 3.8,

we can evaluate equation 3.6 as6
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where Ci(¢) is the cosine integral while T is the Euler's constant.
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As a consequence of equations 3.9 and 3.10, the equation

for the current on the helix can be written as

-11._



- 4(0. -¢d) 9
I(6) + % sinz(a)lnt——l%?———
8
u

-~

I(9)

+ cos(a){2 zn(Z)-zc+Ci(¢)+Ci(¢u-¢)}i(¢)

- % posec(a)|¢-¢'|

& ~ ~
+f 4 ’I(¢')e ~1(9)
[o-¢" |

o

{sin?(a)+cos2(a)cos(o-¢')} | de

2
- % posec(a){¢'2+E§—sec2(a)}%
) p
s u -~ o
- cosh {3 posec(a)olf  I(¢') =2 5
(o) {¢'2 + Eg secz(a)}%
Po
{sinz(a)+cosz(a)cos(¢—¢')}d¢'
)
47mp ~
= A1 sinh {% posec(a)¢} + ﬁ_Z—gf I&;'ﬁinc( g')
° Y%
sinh {% p sec(a)(¢-¢')}de’ (3.11)

If we impose the end condition I(Qu) = 0 in equation 3.11,

we obtain
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It is possible to eliminate the unknown constant él between
equations 3.11 and 3.12. If the induced current I(¢) is of

interest, this is a necessity.

In order to obtain the natural frequencies, we set the

incident field to be zero in equation 3.12 thus obtaining

S —
A1 sinh LE posec(a)éu} =

b - % posec(a)le —¢ |
%f 1o') &g
o u

{sinz(a)+cosz(a)cos(¢u—¢')}d¢'

2
o ~ % posec(a){¢’2+§§ secz(a)}é
u~ po
- cosh f% posec(a)¢u}[ I(o') £ . > " s
(o) {p'“+ 35 sec”(a)}
Po

{sinz(a)+cosz(a)cos(¢u—¢')}d¢'

—13_

(3.12)

(3.13)



Setting In = A sin{%ﬁ posec(a)¢} in equation 3.13 and
expanding in terms of 1/92, if we neglect terms of order 1/92,
after considerable algebraic manipulations we obtain the

natural frequencies Sh to be

~ nme A E(2nm)
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_ 1 cosT(a)) 2 i u
Q 2 nm {c+2n(¢u) Cl((I)u)} * nmw
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+—F—Ll—- n=+1,2,.... (3.14)

where E(X) is the exponential integral,. Ci(x) the cosine integral.

As should be expected, if we set a = n/2 in equation
3.14 we obtain the natural frequencies of a straight thin wire.
It is interesting to note that in equation 3.14 terms associated
with sinz(a) are the correction terms of a straight thin wire,
while cosz(a) terms are those that are associated with the
correction terms of an openended loop. Hence a helix can be
looked at as a combination of a straight wire along with a multi-
turn loop. Using Ehe natural frequencies given by equation 3.14,

the natural modes In(¢) can be calculated to be
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As can be seen from equation 3.15, the natural modes of a
helix contain terms which are associated with the straight wire
and those that are associated with an open ended loop. From
equation 3.14, even for a loosely wound helix, estimating the
natural frequencies from the total length of the wire is a very
crude approximation. If the helix is tightly wound, the integral
in equation 2.3 can no longer be neglected. Inclusion of this
integral in analytical calculations will be too complicated and
hence will not be treated here.
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IV. Numerical Evaluation of the Natural Frequencies and
Natural Modes

The Hallén type integral equafion derived previously can be
used to calculate the natural frequencies and natural modes of
a helical antenna numerically. However, because of the double
integration involved in equation 2.8, thin representation is not
used for numerical computational purposes. Pocklington form
of integro-differential equation for an arbitrarily bent thin

. , . 7
wire is given by

L 2 ~ 2 ~ ~ ~
9 ' S , , . .
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where G (&, &) is the free space Green's function. If the wire
is bent into a helix and if we assume that it is over a ground

plane, the integro-differential equation for this case can be

written as
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and ¢u is equal to the number of turns of the helix times 2m.
Green's function of the form given by equation 4.3 makes the
kernal a closed type kernal. After considerable algebraic
manipulations, equation 4.2 can be rewritten by the help of

equation 4.3 as
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If we set a=1/2 in equations 4.4 and 4.5 by keeping * posec(a)¢u
constant, we obtain Richmond's expression for a straight thin

. 7
wire.

In moments method formulation8 (MoM), equation 4.4 can be

written as
(Zy )= (I) = (V) (4.6)

Natural frequencies s, are those points in the complex s plane
where the determinant of the matrix (Zm n) is zero while the
natural modes are the solutions of the homogeneous equation at

S=S
n

In table 1, the first layer natural frequencies of a
helix which has 8 turns, is over a perfectly conducting infinite
ground plane, has radius po = 5.5 cm, wire radius a = .635 cm
and pitch angle a = 9.64° are shown. These natural frequencies
have been calculated using the computer program SEARCHg,and the

normalized natural frequency sﬂ is given by

s 2
n

Sﬂ = _FE (4.7)

where 2 is the total length of the wire used in the helix and
its image (= 5.6m), while ¢ is the speed of light in free space
(c * 3 X 10% m/s).
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n sﬂ = sn2/nc

1 —.0084134iJ1.5081822—
2 —.00091777iJ2.757985;_
3 —.0038086iJéi7944657
4 —.0014095;;4.7144142
S5 —.0025202;&éj5;i9009
6 —.0017633iJ6.36;7334
7 —.0021664;J;.14;;109
8 -.0026354+J7 .6904280
9 -.0029516+J8.5641276
10 —.00291;31J9122;1272
11 —.00282757¥;;:70518
12 —.003792013;0.3082632
13 —.0038233;;i11320626
14 -.0037931+J12.1376438

Table 1. First Layer Normalized Natural Frequencies of an
8-Turn Helix Over a Ground Plane
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It has been suggested by some authors that a dipole is

a good approximation for a helix. 1In figure 2 the trajectories
of the natural frequencies are shown és the pitch angle o is
changed. As can be seen the natural frequencies change quite
drastically as the pitch angle is changed. Note that as the
pitch angle'is changed, while keeping the radius of the helix,
number of turns and the wire radius constant, the imaginary part
of the natural frequency drops. At the same time, the real part
(damping) decreases. This implies that the antenna is becoming
a better radiator. However, if the pitch angle is increased be-
yond a certain point, ig the case of the first natural frequency
beyond 450, the damping constant starts to increase and becomes
a constant equal to that of a straight thin wire of wire radius
a and length &. In figure 3 the trajectories of the natural
frequencies are plotted by keeping the total length of the wire,
radius of the wire and the radius of the helix constant, while
changing the number of turns which in turn changes the pitch
angle. This shows how the natural frequencies bhange as a
straight wire becomes a helix,while preserving the total length.

If the aim is to design an optimum helical antenna, one can
plot the trajectories of the natural frequencies of the helix by
changing the pitch angle and by changing the radius of the helix’
and arrive at optimum figures for the radius of the helix and the
pitch angle based on the damping constants. It is also interesting
to note from the natural frequencies shown in table 1 that the
helix is a poor radiator at low frequencies when the pitch angle
is small. If the operating frequency is close to the loop reson-
ance of the helix, it starts to become a better radiator.

Short circuit natural modes for the helix under considera-
tion can be evaluated by solving the homogeneous equation

~

(Z, ) (V) = (B | (4.8)

where Z is the NXN impedance matrix evaluated at the natural

n,m
frequenc§ s The natural mode ﬁn is calculated by converting

n-



Figure 2.

Imaginary Part of s' = si = sIL/wc

1 1 1 1 1
-.05 -.04 -.03 -.02 -.01
SRL
' = 2
Real Part of s'= s'R -

Movement of the Natural Frequencies as the Pitch
Angle of the Helix is Changed. (Length of the
Wire is not Kept Constant, Numbers Shown are
Pitch Angles in Degrees . Sharp Corners are Due
to Insufficient Number of Points).
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Figure 3. Movement of the Natural Frequencies as the Number of

Turns of the Helix are Changed While Keeping the
Total Length of the Wire Constant (Helix is Assumed
to be Over a Ground Plane, Numbers Shown are the
Number of Turns of the Helix).
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equation 4.8 into a NXN-1 inhomogeneous set of equations which
are solved using Householder's triangularization procedure.10
The natural modes have been normalized to have imaginary part
to be zero at the peak value of the natural mode. In figure 4
the real part of the normalized natural modes are plotted for
the first four natural frequencies. Imaginary parts of the
natural frequencies are not shown because they are a strong
function of the accuracy of the impedance matrix.11 In addi-
tion, the peak of the imaginary part of the natural mode is
approximately an order of magnitude below the peak of the real
part. The natural modes shown in figure 4 are only for half
the antenna. For the image part of the antenna, the natural
mode can be obtained by taking the images for odd modes, while
the even modes are obtained by taking the image with a sign re-
versal. Comparing the natural modes of the helix with those
of a straight wire, the real parts are identical. This is the
primary reason why the natural modes have not been calculated

for higher order natural frequencies.
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Figure 4. Normalized Real Parts of the Natural Modes for the
First Layer First Four Natural Frequencies.



V. Transient Response of a Helical Antenna

In this section we calculate the transient response of
the helical antenna. The antenna is assumed to be on a per-
fectly condudting ground plane. The gap in the antenna is as-
sumed to be a delta gap and it is further assumed that the
antenna is terminated in load of Z;=50Q. If we let }SC(S)
represent the short circuit current induced at the short cir-
cuited terminals of~the antenna, Ya(s) the terminal admittance
of the antenna and YL(s) the load admittance, the equivalent
circuit representation at the terminals of the antenna is as

shown in figure 5.

Using the Singularity Expansion Method (SEM), the short
-8

circuit current induced due to an incident field Einc can be

written as

oI E, (5,8 -
SES §: n gr inc :> In(g) (5.1)
n n

ESC(E,S) = -s€_ g (

where the entire function contribution is ignored, sn repre-
sents the nth short circuit natural frequency, In the corre-

sponding short circuit natural mode and

B~ <3,(8) T-tee esreEni, > (5.2)

which can be approximated as

~ n (5.3)

For the purposes of numerical evaluation, the incident
field is assumed to be a planewave, uniform over the length and
circumference of the helix and is assumed to be along the axis
of the helix. Under these assumptions, equation 5.1 can be

rewritten as
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Figure 5. Equivalent Circuit at the Terminals of the Antenna.
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I _ 4me s ~ ~ . -~
Iso(8,8) = nez; & S s-s ) Einc<1n(a)I£,Iz>1n(g) | (5.4)

Using equation 5.1, the terminal admittance is calculated
as discussed in reference 12. An equivalent circuit representa-
tion as shown in figure 5 was constructed with the short circuit
current source, terminal admittance and the load admittance. Using
these admittances, the terminal voltage can be written as

_ 4rmc 1 5
QLZ 3 o n=
o) YL(S)+Ya(S)

V(o,s) odd ans-sn)Einc<In(€)Ig:IZ>IU(O)

(5.5)
Three special cases-of the incident field are considered

for numerical verification purposes. The first involves a rec-

fangular pulse while the other two are triangular pulses incident

on the helix. The incident pulses are assumed to have unit peak

amplitude. In figures 6, 7 and 8 the incident waveform and the

induced terminal voltages are shown. For comparison purposes,

the measured waveforml3 sample points are shown up to about 20 ns.

Points beyond this time are not shown because of the lack of

digitized waveforms.

Comparing the measured and calculated terminal voltages
the general shapes of the waveforms are identical even for a fast
pulse of total duration 1.5 ns. The zero crossings are within
10% of the measured values while the peaks agree to within 10%
up to approximately 80 ns. Considering the approximations used,
the results are very good. Differences in the measured and cal-
culated responses can be attributed to the following points:

(1) The measurements were made in a simulator which is quite
small. As a consequence interaction between multiple images of
the helix may be large. However, this fact was not used in the
numerical evaluation. (2) The incident field has been assumed to
be uniform over the helix. However, this is only true for wave-
lengths large compared to the length of the antenna. For fast
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rise time pulse as has been used in our numerical evaluation,
this condition is not satisfied. Inclusion of the spatially
varying field would have éomplicated the calculations and,

in addition,'does'not seem to influence the terminal voltages
to any large degree. (3) The incident field was assumed to be
a plane wave. However, the simulator used was quite small and
the incident field was probably nearer to a spherical wave than
a plane wave. This would introduce errors in the analytical cal-
culations.  (4) For lack of a better description of the gap re-
rion, the gap was assumed to be a delta gap. This of course
would change the low frequency input impedance which in turn
would change the late time response of the antenna. Even with
the approximations that have been made, the results are quite
good and it is encouraging to see the measured and calculated

values agree so well.
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Conclusions

In this report, two integral equations for a helical antenna
were developed. Using the Hallén type integral equation, natural
frequencies and natural modes of a loosely wound helix were cal-
culated. An integral equation of the Pocklington type was de-
veloped for a helical antenna for numerical purposes. Using this
equation, natural frequencies and natural modes of a given helix

are calculated.

Using the Singularity Expansion Method (SEM), the short
circuit current is calculated. Using this short circuit current,
the load admittance and the terminal admittance, an expression
for the terminal voltage was developed. The induced terminal
voltage was calculated for three different incident pulses and
comparisons were made with the measured values. The numerical
results agree very well with the calculated results. The zero
crossing and the peak values agree to within 10% of the measured

results.
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