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SECTION 1. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

In protection against an EMP [1] (electromagnetic pulse), ferromagnetic
metallic shielding is one of the simplest and most commonly used effective
schemes [2]. The effectiveness of the shileding, measured by the ratio of the
field penetrated across the shield to the incident field, depends of course

on the EM properties and the geometry of the shielding material. = Generally
speaking, the dominant material properties are its conductivity-c and
permeability u, and, if the shielding enclosure has its radius of curvature
much larger than the wave length of the incident field and is free of

seams and cracks, the only important geometrical factor is the thickness

of the shielding plate.

In this report, we investigated the shielding problem for the incident
EMP in the form of a cylindrical TEM wave, such as a wire carrying a
surge'anrestof current terminated at an iron or steel shielding plane [31.
Because of the large strength of the incident field, the nonlinear
ferromagnetic saturation of the plate plays an important role in deter-
mining the peak and the shape of the transmitted field. This problem,
based on and together with its one-dimensional plane-wave-incidence
version, is solved analytically for a comstant u case. The analytical
results are then used to partly predict and to interpret the numerical
results for the one-dimension nonlinear case, obtained by using a finite
difference code DIFUSN, and to help predict the behaviors for the

cylindrical nonlinear case.

In the following, Section 1.2 briefly summarizes the results found in
- this report; Section 2 solves, analytically and numerically, the one-
dimension plane-wave problem; based on this, Section 3 solves the cylin-

drical incidence problem.



As to the system of units in this report, rationalized MKS is used.

1.2 SUMMARY

We briefly summarize here the results obtained in this report. Details of

them are given in the subsequent text.

1. For wavelengths large compared to the shielding's radius of
curvature, high-u conducting plates shield EMP very effectively.
For short pulse and thick slab, the diffused-through transmitted
field varies as =(w_u 02d3)-l. This gives a peak transmitted

field 3 x 10-13 th:trof the incident peak value for a typical

w, = 3 x 106 radian/sec, . %104, 0m107 mho/meter, dv3mm. The

time width of the transmitted field varies as 0=uod2, giving

n3.3 x 10-1 sec for the typical example. This makes the shielding

better for the higher frequencies, and thus substantially shifts

downward the transmitted wave's frequency contents.

2. The non-linear saturation of the ferromagnetic permeability,
which saturates dB/dH to smaller values for stronger field,
slightly reduces the transmitted field but leaves virtually
jntact its time shape. This is caused by the fact that for the

relatively narrow EMP in a relatively thick slab, the saturation

disperses and distributes more evenly the diffused field and
mitigates the build up of its local peak value, in surprising
contrast to the simple intuition, naively extrapolated from the
constant-U case, that a smaller permeability admits more field
in a shorter time, an extrapolation valid only when a wide pulse

saturates the whole thin slab.

3. The cylindrical problem, with a wire carrying a large current,
such as a surge current arrestor, terminated at a shielding
wall, is solved approximately. Its results are simply related

to those of the one-dimensional problem, enabling us to make



use of the one-dimensional results for the cylindrical pre-
dictions. Roughly speaking, the main part of the cylindrical
diffused fields are a/p times that of the one-dimensional
ones for pRa and go to zero for p+o, with minor deviations

being complicated functions of the various parameters of

the problem.

The above results are found either analytically or numerically, or both.
From these, we can safely conclude that for practical EMP shieldings using
the highly effective high-u conducting plates, the ferromagnetic éaturation
only slightly enhances the shielding effectiveness. A side result is that
the presences of holes, cracks, or seams at the shielding plate probably

conscitute more important modes of penetration for the incident EMP.



SECTION 2. THE ONE-DIMENSION SLAB PROBLEM

2.1 ANALYSIS FOR THE CONSTANT u CASE

Consider the one-dimensional problem depicted by Figure 1. A plane electro-

magnetic wave with fields

inc inc 4
= = - £ 1
H (t,z) = Hy (t,z) = H f(c - 2) (1a)
inc inc ‘/MO z
E (t,z) = EX (tyz) = HO e f(t - —C—) (1b)
o}
is incident from z = -~ normally upon a slab of thickness d at position

2 = 0. The medium to the left and to the right of the slab is uniform

and has a dielectric constant €, @ permeability Hgo and a velocity of

light ¢ = (uoeo)_l/2 [4]. The slab itself is also uniform and has a
dielectric constant € = €€, @ permeability u = B Moo and a conductivity
¢ such that
g >> we, We (2)
o
or equivalently
3 3 1
9 g 2
g > e atl, Ieo atl CAD)

where w is the angular frequency of the frequency of interest. Notice

that this condition of high slab conductivity is assumed throughout this
report. In typical cases, we have o ™ lO7 mho/m for steel, e n lO_ll Farad/m,
and w % 107 radian/sec for the incident EMP; thus (2) or (2') is amply
satisfied. The problem is to find the electromagnetic fields everywhere,

especially in and transmitted through the slab.



dH=1«|’J

o

i //////// T

Hog(t + 2/c) // ;

1
c =
\' uOEO
f(t <0) =0

Figure 1. The One-Dimensional Problem



2.1.1 General Solution

Being a one-dimension problem, the only fields are plane waves with a
magnetic field in the y~direction and an electric field in the x-~directiom.

In the region z < 0, the reflected fields, in addition to the incident

ones given by (1), are

nref(e,z) = B g(t + %) (3a)

ref _ . Ho z
E " (t,z) = —HOV-E-; gt + ) (3b)

In z > 0, the transmitted fields are

REFERS (c,5) = B (e - 223 (4a)
u

BT (ea2) = HOY S T(E - {z=d), (4b)
(o]

finally, in the slab 0 < z < d the high conductivity condition (2)

combines with the Maxwell Equations to give a simple diffusion equation

2
3 3 _
-8:2- H(t,z) - uruo o ?E H(t,z) = 0, 0 <2z < d (5)

for the magnetic field H(t,z) to which the electric field is related by

E(t,z) = 7%-%; H(t,z) (6)

Now to find the fields, we merely have to solve (5) and (6), subject
to the boundary conditiomns that require continuous magnetic and electric
fields at both slab surfaces z = 0 and z = d. In terms of the magnetic

field in the slab, these conditions are (Appendix A)



m T ‘
2 u(e,0) -y—ﬂ GH(t,0) = —z\/—°— H o £(t) (7a)
2z € ) o

(o} o
5 ‘/“o - (7b)
a—z' H(t,d) + E— O'H(t,d) =0

o

Thus, the problem reduces to solving (5) and (7).

To express the field in a convenient and simple form, we make use of the

Laplace transform

fi(s,z) = f H(t,z) e St 4t = L[H(t,2)] (8)

o

Then from (5) and (7), the resulting transformed fields in 0 < z < d

are (Appendix B)

H(s,z) = ZHO £(s) [A(s) e YHOS 2 4 g(s) e'/wS z] - (9a)
E(s,z) = -2H_ £(s) 22 [—).(s) e YHOS Z 4 B(g) e'VWOS z] (9b)
where
H € S
r o
1+ 5

UVE 8 -
—(l _ r o ) e 2vucs d

(o) —
B(s) (l + ‘/ureos)z _ (1 _ uraos)2 e—ZVﬁEE d
o )

In particular, this gives the transmitted magnetic field

(9¢)




s N
urgo 2 -vYuos d

4 H f(s) e
) . o o
H T(s) = H(s,d) = W e5)2 W ES _2/——— d (10)
1+ - |-y
g o
U e s
2 H £(s) L U € 8
= , if r0° << 1 (10")
Sh(4/uos d)

and the total magnetic field at the incidence side of the slab

W U € s
ZHO f(s)[ 1+ r r o -2Vuos d]
H [E(s) + g(s)] = H(s,0) =
( ursos 2 ( He & S) —2/ucs d
1+ v S

(11)

U ES

X 1+o( rc°)

=2H0 f(s) l_—-———TuT_

2 + O'd‘/?

u € s
ifs—»O,Vrco , \fnos d << 1 (")
H_E S -2vuos d
=20 £(s) |1 - Y52 L+e

1 - e~2Yuos d

EE

r o "
— << 1, \uos d #< 1 (11'")




From these expressions, various approximate simple formulas can be derived
for fields in the time domain, as will be shown in the following. Such
formulas serve to predict the approximate physical behaviors of the fields
and to give insights and provide cross checks to the numerical results.
{nly response to a delta-incidence, Hinc = §(t - ED, is examined in detail
analytically. Responses to other incidences can be obtained by a convo-
lution. In particular, the response to a 'marrow" incident pulse is
obtained by simply multiplying the time-integrated area under that pulse

by the §-response. The condition for such a "narrowness' is

t lies in {t(a)} and (t >> Ato) (12)

) . .
where {t( )} are the times in which the O6-response expression is valid

and Ato is the time-width of the incident pulse.

2.1.2 Fields Near the Incident Surface in a Thick Slab

First, for incident waves with frequency contents not too large nor too

small

N

Vs #< /ic];—d (13)

or, equivalently, at times not too early nor too late

Ve > Vit

Ve #> wo d (13")



Equation (12) clearly gives H(s,0) = 2H £(s), a total magnetic field at
the incident side of a highly conductive thick slab being twice the
incident value, as it should be. If the incident pulse has its peak
time within (13'), as is usually the case for EMP, then at position

z = 0 the magnetic field has its peak time the same as that of the inci-

dent one, but has its peak value twice that of the incident one.

Second, under a restriction on the frequency or time ranges that differs

slightly from (13),
24 © 1
2= = 5> Yg >> 14
Vureo S Jiuo d (14)

or equivalently

u_e
r O 1
T << /t << \/uc d (141)

and at positions in the slab near but not on the left surface and not

close to the right surface such that

1 <z << VB4 (15)
20 1v}23

<

o]

the field can be obtained from (9) by ignoring terms containing

exp(-/nos d). Such a magnetic field, for a §-incidence, is (Appendix C)

(5) = —uozz/ét ,
H (t,Z) = Yuag /FE urz (16)
t+ 2ct

As a function of time, at a given z satisfying (15), the magnetic field

(16) has its peak value

10



(s) ( g 1
E (t ,Z) = (17a)
pk/z ne3 t(6) (l + ZHy )

pk/z nocz

at the peak-time (with given z as a parameter)

2
(8) uoz

Obviously, the condition (15) on z ensures that téi}z satisfies the
condition (14') on t, and therefore the results (17) are valid under

the sole restriction (15).

Viewed differently as a function of position, at a given t satisfying

(14'), the magnetic field (16) has its maximum value

(8) o J2 1
H (t’zmax/t) = Vﬂe = (18a)
t<l+ —-O—-)
2u_ot
T
at the maximum-position (with given t as a parameter)
&) _ JIE
Znax/t = Yuo (18b)
which diffuses to the right with velocity
(s) _d () _ _1

vV, () = at Zmax/t _ /Zuot (18c)

max/t

Again, the condition (14') on t ensures that zéﬁi/t satisfies the
condition (15) on z, and therefore the results (18) are valid under

the sole restriction (147).

11



2.1.3 Fields at the Shielded Surface of the Slab

For a highly conductive slab satisfying the first inequalities in (14)
and (14'), without any restriction on the slab thickness, the S-response

transmitted magnetic field at z = d is (Appendix C)

— . ~(2n-1)%ugd?
(8) r o 1 _ 2 2 _ 4t
H (t,d) = V-—;E—-:§7§ E [(2n - 1)7 uod 2t] e
n=1
(19)
At times that (19) is valid and converges fast,
vﬁrgolc << /£ & E%i , : (20)
(19) reduces to
-uod2
[ue 2 _ bt
H(G)(t,d) = Tr O (}JO'd 2t) e (21)
T t5/2
This transmitted field has its peak amplitude
(8) 1 - 28y M4
B /a0 d) = = 572 T
™8 uodz od‘/:;-
€
o
- 6.25 x 1072 L (22a)

X AR - IR
-~ Tlax10’ ) \1073

12



at a peak time

2
e L oa2s = poa? « L2213 g 31 w1070 w ()-S5
pk/d 2 T\2x10’ /\10
(22b)
The time-width of the peak at 10 T strength is
(At ) n~ 0.3 pod® = 7.54 x 107° g —9——-2
pk/d’1/10 S M . He 22107/ \1073
(22¢)

Notice that the second inequality of (20) is always satisfied by

(8) . . e ) .
tpk/d’ and the first onme is also satisfied by tpk/d if

- ,
1 << (cd V—9> (23)
€

o}

For real shielding problems, (23) is always amply satisfied. Thus,
results (21) and (22) are valid approximations in the realistic time

interval of interest (20).

Before going into the nonlinear case, we make the side remark that the
transmitted field ﬁ(s,d) for a slab of thickness d is much smaller than
the transmitted field ﬁ(w)(s,d) at a depth d in a semi-infinite (half-space)

slab of the same material. 1In fact, for g >> H.€.Ss their ratio is

H € s
2 _F (o]
H(s,d) o
= 2 n << 1 (24)
H( )(S,d) 1 + e"ZVUOS d

13



Intuitively, this is clearly plausible because the diffused field
reaching z = d will leave the slab surface and propagate into z > d much
faster for the d-thick slab case than it does for the semi-infinite slab
case, and therefore the H(s,d) has less opportunity to pile up than the

H(m)(s,d) does.

2.2 THE NONLINEAR u CASE

For a ferromagnetic material, the permeability depends on the magnetic

field strength,and it is the differential permeability

dB

o - HE) = Hp (H) mg (25)

that enters the field equation [5]. 1In a strict sense, hysteresis makes
dB/dH not a single valued function of H. However, for the transient

field behaviors, not the steady state behavior, that we are investigating,
we can use approximately [6] the magnetization curve B(H) to get uR(H).
Such a uR(H) for a typical iron saturates at a magnetic field strength

Hc of the order of several hundreds of amp/m, from a uR(H<HC) N 104 to

lO3 to a uR(H>HC) n~ 10 to 1, in a range of change in H of the order of

tens of amp/meter.

A very simple expression to approximately fit such a magnetization curve
can be

uRo -1

1+ ea(H—HC)

uR(H) =1+ (26)

al. : ; .

> >> .

where Fro 7 1l and e 1. This fit gives a uR(O) Vg @
uR(H>>HC) ~ 1, and makes the saturation tramsition occur in a range
AH ~ 1/o about H v HC. The no-saturation case is simply represented

by Hc > »,

14



In the following, we first make several theoretical remarks, then solve
the nonlinear y problem numerically, and finally establish the agreement

between the numerical and the analytical results.

2.2.1 Theoretical Remarks

For the linear u case, p being a constant throughout the whole slab and
independent of time, at fixed positions in the slab a smaller u results

in a stronger diffused field (= u_l, see (17a) and (22a)) being diffused

to there in a shorter time (= u, see (17b) and (22b)). Viewed differently at
fixed times, the spatial profile of the field diffuses and reaches its
"equilibrium" shape, peaked and symmétric about the center of the slab

after the incident pulse, faster (diffusion distance and velocity <« U—l/2’
see (18)). As a result, a constant smaller u not only enhances the
diffused and transmitted fields, but also enhances the higher-frequency
part more than it does the lower frequency part. The latter statement

1/2

can be seen for the case of interest (ursos/c) << 1 from (Appendix D)

(ﬁ(s>,d)> (ﬁ(s>,d)> Sh(dvou_s,) Sh(d/ou_s.)
> 1 (27)
u i

i,/ [\BG_,d/, ~ Sh(d/eu_s)) Sh(d/Gus))

>
where p_ > u, and s, > s, or from (16), (17), (21), (22) directly.

Now for a slab with a nonlinear u, which saturates to smaller wvalues
where the field is stronger, the diffusion results are very different
but can still be carefully extrapolated from the linear results. First,

at constant times the spatial profile has its strong-field center part

- diffuse faster than the low-field edge part. Thus the strong-field

spreads out in a wider range and retains a lower value than it does
without saturation, and it overtakes but is "confined” by the low-field
edge part, in a manner somewhat similar to a shock phenomenon. In short,
the saturation makes strong fields diffuse more easily, and thus acts to
distribute the field more evenly and mitigates the build-up of a localized

strong field.

15



Second, if the pulse time-width is long compared with the saturated peak-

diffusion-time through the slab, tpk/d with p = u (see (22b)),

saturated
then the diffused and transmitted fields behave the same as if the whole

slab has the smaller permeability u -with larger peaks and shorter

saturated
times as described above in the beginning paragraph. However, if the pulse

width is short, i.e.,

Ato < tok/d > At < = 22/3 * Hsaturated Gdz
P *Hsaturated
(28)
and the slab is thick relative to the incident wave such that the
transmitted magnetic field is much smaller than the Hc’ i.e.,
-2 Ho Ato
6.25 x 10 ~ x - ( > )2 T3 << H, (29)
™\ 2x10’ (10‘3)

the maximum field at given times and the peak transmitted field at z = d
becomes smaller than they are without saturation, due to the first effect
just mentioned. For a highly conductive slab that has ¢ >> woeouR(H),
saturated or not, the amount of field admitted into the slab, from (a1,

is virtually independent of u. The maximum field at a given time is roughly
inversely proportional to its spatial spread at that time. Thus, approxi-
mately we have the ratio of the maximum transmitted fields with saturation

to that without saturation (Appendix E)

(N.L. sat.) (no sat.)
H(t d)(no sat.) (N.L. sat.)
pk/d’ zmax/tc

where the superscripts N.L. sat. and no sat. denote, respectively, the

case of nonlinear saturation and no saturation, the tc is the time at
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As outputs it gives at each time step the fields at some selected fixed
positions, including of course z = 0 and z = d, the value and the location
of the maximum magnetic field (in O < z < d) at that time, and the two
locations between which the magnetic field at that time exceeds a selected
value such as the HC about which the saturation occurs. A listing of

the code DIFUSN is included in Appendix F.

Numerical results for a number of parameter values of practical interest
are obtained and plotted. In these results, the uR(H) of (26) is taken

to represent the non-linear permeability, and the expression

inc . 2 z zZ i
== < - ¢ -
( Ho sin wo(t c), 0 =3 o

H t,z)

0, otherwise (32)

is used as the incident wave. The resulting plots and their comparisons

with analysis are given in the following.

The results for a typical example of iron shielding with a uR(H) whose

4
=10, H = 400 amp/m, and ¢ = 1/50 m/amp, a thickness d = 3 mm,

u

Ro c

a conductivity o = lO7 mho/m, and an incident Ho = 105 amp/m and

Wy = 3 x 106 rad/sec are plotted in Figure 2 to Figure 5. Corresponding

results for this same case but with constant H. = Hpy = uR(O) and

n. = 1= uR(w), the limiting values of the nonlinear uR(H), are also
computed and plotted together. The plots show the maximum magnetic field
H(t’zmax/t) of the diffusion profile first increases as twice the incident
wave (Figure 2-1) at the incident surface of the slab (Figure 2-2), then
breaks away from the incident wave and decreases (Figures 2-1, 3-1, 4-1)
while diffusing into and toward the center of the slab (Figures 2-2, 3-2,
4-2). TFor the constant u cases, the values and the location of H(t,zmax/t)
agree very well with those given in (18) (in its region of validity (14")
of course) from the previous analysis (labeled curved in Figures 2-1, 3-1,

3-2, 4-1, 4-2).



which the maximum magnetic field for the no-saturation case decreases

through the Hc, and z is the distance the maximum field reaches at

max/te
time tc. From (2-18) and of course under its validity condition (14",

we can express

(no sat.) N

max/tC (31)

2V2 /e - HO Ato 1/2
UROUOG HC

N.L. sat.) (no t.)
The value of z( sat.
max/t. » larger than zmax/t

remark, cannot be obtained analytically in the present analysis, but

as discussed in the first

its numerical value can be used, together with (31), in (30) to relate

the nonlinear maximum transmitted field to the linear one.

Third, the tpk/d and the (Atpk/d)l/lo for the nonlinear case is about the
same as that of the no-saturation case, as long as (28) and (29) are
satisfied. For under such conditions the field is well dispersed below
HC long before it diffuses to z = d, and thus it is the unsaturated Hro

that controls the tpk/d'

Tinally, for the EMP shielding cases of practical interest, (28) and
(29) are satisfied. This is easily seen by substituting typical numbers
into those expressions. Thus, the above observations are practically

applicable.

2.2.2 Numerical Method and Results

The numerical code DIFUSN solves the one-dimensional nonlinear u diffusion
problem by finitely differencing (5) and (7) with uR(H) replacing the
constant jp. An implicit "T" finite difference scheme, stable in the
round-off error and the differencing grid sizes, is used [7]. The code takes
as inputs any nonlinear function uR(H), any incident pulse shape Hof(t),

and the properties Mos €4 of the ambient medium and €, o, d of the slab.
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The value of H(r,z ) for the nonlinear u case must be less than the

ma
larger of those for iéz corresponding limiting constant p cases; it
approaches that for Moo= 1 if the pulse has long duration and strong
amplitude to saturate the whole thin slab (i.e., (28) and (29) inequalities
reversed), and vice versa. But it does not do so monotonically, because

of the competing saturation effect, causing the strong field near the

z = 0 end to diffuse faster both in the +z direction penetrating the slab
and in the -z direction escaping the slab. The location Zax/t of
H(t’zmax/t) for the nonlinear u case, however, always lies between those
for the corresponding constant u cases (Figures 2-2, 3-2, 4-2), as it
should, because the smaller saturated p under the peak permits it to
diffuse faster. Further, the spatialAregion within which the H(t,z)
exceeds the HC of the nonlinear u case is plotted (Figures 2-3, 3-3).
This region is roughly the extent within which the nonlinear saturation
occurs, and its disappearance marks approximately the end of the satura-

tion effect.

The transmitted magnetic fields H(t,d) for various parameters are shown

in Figure 5 to Figure 9. First, the limiting constant p resilts exhibit
excellent agreement with the analytical formulas (21) and (22), for the
typical example (Figure 5) and for other variations of parameters (not
plotted), when the (practical) thick plate condition (23), thus the condition
(20), and the short pulse condition (28) are satisfied. Second, satisfying
the additional but still practical condition (29), the H(t,d) in the
typical nonlinear example has the same time shape as but is slightly
lowered near its peak by a factor 0.8 from the H(t,d) in the same typical
example but with a constant Mo = Mg (Figure 5). This agrees with (30)

as it should. Third, under the restrictive but practical conditions

(23), (28) and (29), the H(t,d)/Ho with different Ho substituted in the

- typical nonlinear problem (Figure 6) decreases slightly near its peak for
larger Ho’ approximately according to (30), but has its time shape
virtually unchanged. This is as expected from Section 2.2.1. Similar
variations in W s in view of the multiplicative factor nHO/(ZwO) to

convert the S-response to the narrow-pulse-response (32), expectedly
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give similar results (Figure 7). Fourth, under these same conditions but
varying the slab thickness d (Figure 8) and the HRo = uR(O) (Figure 9),
respectively, in the typical nonlinear example shows a time scaling
proportional to Hro d2, and an amplitude dependence approximately as

ld3 but slightly less than such a scaled value. Again, this is

expected from (22) and Section 2.2.1.

We conclude this numerical section by stating again that for short pulses
and thick slabs, under condition (23), (28), and (29), the transmitted
magnetic field for the nonlinear u obeys approximately (22), with Moo=

HRo? but becomes slightly smaller as corrected by (30).
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SECTION 3. THE CYLINDRICAL-INCIDENCE SLAB PROBLEM

Consider Figure 10, an incident cylindrical TEM wave

. I
in o zZ
= — - = 3
Hy (t,p52) = 575 f(t c} (33a)
in Io Mo
__o _z 33b
E(e.0,2) = 55 Yoo £ - T) (33b)

carrying a z-flowing current Iof(t - z/c) on the surface of a perfectly
conducting wire of radius a impinging upon a slab as shown. In the
cyiindrical coordinates (p,9,z), the ¢-symmetry makes fields functions
of (t,p,z). The parameters in Figure 10 have the same meanings as in

Figure 1.

Before solving the problem, we must make several rems:ks here. First,

one can, of course, solve the problem numerically eirher by finitely
di’ferencing the field equations subject to the boundary conditioms or

by finitely patching the perfect-conductor mixed surace integral equations
to solve for the surface current density on the wire and then to obtain

the field from the surface current density. Second, with its end surface
present the semi-infinite cylinder does not have its surface as one of

the coordinate surfaces of the eleven coordinate systems that permit the
separation of variables for the Helmholtz equation. Thus in using the
familiar method of solving by the separation of varizbles and summation

of the products of the eigen functions (in this case the Hankel transform
for p or the (2-sided) Laplace transform for z), not only are tae coeffi-
cients mixed by the boundary conditions but also the expansion does not
converge at the edge of the cylindrical end where the electric field goes

. to infinity (although weakly if edge condition of finite energy is imposed).
But to match boundary conditions means that we would have to manipulate

and evaluate the coefficients of a series at precisely the place where the
series representation is not valid. As a result, no consistent solution

can possibly be obtained by such a familiar method. The rigorous analytical
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solution, even to the simplified problem without the presence of the slab,

is therefore still an unanswered question [8].

In the following, we solve the cylindrical-incidence problem by an

approximate method whose validity range is established to be of practical
interest. The resulting formulas, being simply related to those for the
one-dimension problem, enable us to make use of results in Section 2 for

the present cylindrical problem.

3.1 ANALYSIS FOR THE CONSTANT u CASE

To find the diffused fields and the transmitted fields in z > 0, the only
physical quantity we really need from the incident z < 0 side is the
tangential field, either electric or magnetic, at z = 0. Although it

does not matter which one we start with if we can solve the problem exactly,
it does make a difference in solving the problem approkimately depending

on which approximation can be made more easily and more accurately.

Now, for the real problem both the '"wire region" p<a, z < d and the
"surrounding slab region" p > a, 0 < z < d are highly conducting;> The -
magnetic field at the "inside" boundary p g'a-éw, z = 0, where 6W is the
skin depth of the wire region and is << a, is clearly much smaller than
the H¢ at the "outside" boundary o ? a, z = 0, regardless of the existence
of the conducting surrounding slab. In fact, without the slab's presence
this has been used to justify the incident current IO being associated

to a cylindrical TEM wave outside the wire, and with the slab's presence,
and reflection, this is even more pronounced. Moreover, the area of the
"inside'" boundary, %az, is much smaller than the area of the "outside"
boundary, . This makes the diffused and transmitted fields, being the

surface integration of the cross product of the H and the gradient of

e
drP
the Green's function, depend even less on the "inside" magnetic field.

Thus, the H, at the "outside'" boundary alone predominatly determines the

¢

diffused and transmitted fields. However, a similar result does not hold
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for the boundary electric field. Because the ''inside'" boundary electric
field Ep, though negligibly small relative to the "outside" boundary one
when there exists no conducting surrounding slab, is not comparatively
negligibly small when the conducting surrounding slab is present and makes
the "outside" boundary Ep also vanishingly small. Consequently, we

must use the magnetic matching, not the electric matching, if we use the

"outside’ boundary fields only as an approximation.

Finally, for the case of narrow incident pulse and thick slab of practical
interest ((28) & (29)), the approximate "outside" boundary magnetic field
can be found easily. Since the slab makes the H¢ at p > a, z = 0 not
sensitive to the geometry beyond z > d, the H¢ there is wirtually unchanged
if we extend the wire beyond z = d to z = =, Furthermore, since the wire
is itself highly conducting, as far as fields on it are concerned we can
replace it by a perfectly conducting wire. The following analysis follows

such an approximation procedure.

3.1.1 Formulation and Analysis

If the perfectly conducting wire extends to all z, then the incident TEM
wave (33) produces only TEM waves. Their wave forms for a constant u slab
are just the one~dimensional results with H  replaced by Hoa/p where

o
In particular, from (11)

H = Io/(Zﬂa), and with Ex and Hy substituted by Ep and H¢ respectively.

~ (o wire) Iy L 25 [(te) - (1-ape”?HOS 9]
¢ e (1+a) - (1-a)“e
=0,p<a (34)

_ 1/2
where o = (urf—:os/c) .
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Now, for the real problem of a terminated wire with ¢-symmetry, the TEM
wave cannot exist in the region z > O because of its necessarily accompanying

singularity at ¢ = 0. Further, a TE wave, under the condition 3/3¢ = 0,
TE _TE

has only E¢ , Hp , and HEE as the non-vanishing components. But the

boundary conditions, the continuity of tangential fields at z = 0 and z = d,
do not couple this TE mode to the incident TEM wave at all. Thus the TE
wave has its existence independent of the incident wave and can be taken

as identically zero. Finally, a TM wave does exist, with non-vanishing

components g ETM, and EZM' In z > 0, this is the only mode existing, and

d’ 7p

its superscripts are omitted in the following.

Similar to the one-dimension problem, the diffused fields in the highly

conducting slab 0 < z < d satisfy (2) and obey the equations

E ==
o 5 Y H¢ (35a)
15
gE = = — H - (35b)
PRI
3%y B %W 5H
___é‘k_f.l‘.sa_ﬁ _'_2_1-___2&__“0._5_@:0 (350)
3 pap ¢ 0 vz t

In z > d they obey similar equations as (35) but with o replaced by
eoa/at. To solve the problem, in addition to the Laplace transform in time

we make use of the Hankel transform in p [9].

N
Y(p) = A dr J (Ko)y(K), o > O (36)
Now, requiring as usual a + z traveling wave in z > d, finite fields at
p = 0, continuous Ep and H¢ at z = d, and that H¢(s,p,0) = H(m w1re)(s’p,0)

of (34), the magnetic field in 0 < z < d is (Appendix G)

(O3]
2]



I‘:l (s,P ,Z) ='/0- dK Jl(Kp) [g(K’s)e-K>Z + n(K,s)eK>z] (37)

¢
where
( (l+3)eK>d )
q(K,s)
(E(K,S)> _ _(l_B)e"K>d (38)
n(k,s)) sy - %)
and
q(K,s) = IOJO(Ka)f(S) (1a) - (l_a)e—Z/ﬁﬁf_d (39a)
m (l+a)2 _ (l+a)2e—2/uos d
sE K)
B = ; (39b)
o
<
K, = VK2+HGS , Real{Ks} >0 , (39¢)
K. = VK2+11°€OSZ , Real{kJ >0 (39d)

The electric fields in 0 < z < d are given immediately by (37) and (35a,b)
The fields in z > d are (Appendix G)

x

i (s,p,2) = se / dK Kp(K,s)J (Kp)e-Kz(z'd) (40a)
o] o 0 1
ﬁp (s,p,2) =_[ dK KK<p(K,s)J1(Kp)e‘K<(z‘d) (40b)
E_(s,p,2) =f &K K7p(K,5)J_ (Kp)e <=7 (40c)
0
where
p(K,s) = 2&8) 28 (41)

seOK eK>d(l+B) _ e—K>d(l-8)
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3.1.2 Results and Their Relations to the One-Dimension Problem

For a highly conducting (a << 1, condition (13)) thick (Gquo7€O>> 1,
condition (23))slab, £, n, and p reduce to (Appendix G)

(g(x,s)> I 7 (Ka)f(s) <eK>d )
= O 0O

: - (42)
(K, ) 2mSh (K.d) _oKsd
IOJO(Ka)f(s)K> _
p(K,S) = TTGKK<Sh(K>d) (43)
We examine next such cases in detail.
From (40b), (41), and (43), the transmitted radial electric field at
z = d is (Appendix H)
I ® ® , -Kzt'
o , [d ( int')]/ dKJ uo
_ 9o RN - Ka
E (£,0,d) md'[ der e (e 57 6, 017 )]y 4K, (o239, e
- : ~uop? (44a)
1 - . 1 4t
A 0 Ve (p—t! d 9 (6 imt )]. 1-e
——TTO'd 0 dt (- t );dt' 4 lucdz p
tl
if p >> min (a, —) (44b)
uo
2
I o ' -uga
o) d irt uop 4t
N — 1 1y —— )., =k
= dt'f(t-t )[dt' ea(elucdz)] 4ot ©
tl
if p << max(a, EE;) (44¢)

and becomes
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(o=} —K2 t

) _2afd (int)]/d uo
00 (a0 = 555 |57 0, (0155 | ) ek 9, @3 (Rae (452)
- uod
"11002
L2afld (Oiﬂt)] 1-e 4t
od | dt 4 Lod p
if p >> min (a, -JL> (45b)
\ Ha
2
=uGp
2 a [d ( it )] o 4t
N B (1] ELASKY I /=S ,
ocd Ldt ¢4 quZ 4t

if p << max (a,"JL) (45¢)
uo

for a §-incidence Hlnc(t,p,z) = §(t-z/c)a/p. Here 84(v|T) is one of the

Theta functions [10].

Similarly, from (40a) the transmitted magnetic field is

[>4
I ) (46)
H¢(t,p,d) ‘/“o Ep(t,p,d) + H¢’dev(t,p,d)

Here, (t,p,d) is the part of magnetic field which deviates (in its

H
$,dev
relation to Ep) from that of a pure TEM wave (Appendix H)

t t-t'

-1

o d irt"

H (t,p,d) = /dt'f de"f(e-t"-t") [—7 8 (0] 2)]
¢ ,dev Todu 0 0 dat" "4 sod
® —K¢"
Kt' uo

dK KJl (-:::::).JO(Ka)Jl(Kp)e (47a)

0 V“OEO
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I t t_tll
- u n . "
n o'r d_t;'_ de! f(t-t'—t") i" 5 OllTl't
2rd " Jo de" T4 2
0] pod

—uo(p+c’e?) (.Lx_cf_ee;t_)
1

4" 2t"
e
if a << max(p, ct') (47b)
. t-t"
-Io d int"
] ' ettt -
0v0 0 uod
5 cuoa
_ot' (_ug_) o 4t" (4t 2
e () B
Hofo
(47¢c)

if a >> max (p, ct')

and its §-response becomes

t t-t" w
PR, |
H((S?j (t,p,d) = zda /dt"f de’ [3%;_ 64(0|l'—'t5):|/ dK
q), ev g Llo 0 0 d 0 .

uo
&2
—+"
“1(—_——K(t . ))J (Ka)J, (Ko)e MO (482)
z -0 1
Hofo
2
- -uap
o 2 a d imt 4t Hop
-4 — == |= o]="= Hop
¥ uy od [dt 64< Iucd2 )]e 4t
uoczt/4
if p >> a, e >> 1, (48b)
-uoa2
n - ‘/WQ. 22 [jL 6 (Olint )] o 4t uop uca?
u, od dt "4 uodz 4t 4t
if p << a (48¢)
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Thus at large p and small p the total magnetic fields, respectively, are

2
2 Hop
(-uop )/ (4t) Loe )
H;G)(t,p,d) N g% [51 o (Ollwt ]‘l_g 1-e (1 + 4t /
o od Ho e
(uopzt)/4
if p >> a, e >> 1, (49a)

2a [d int o0 uop (-ucoz)/(4t) o (-Hoa 2)/ (4t) poa’
" od [dt ® (0|u0d2]‘l;; 4t [e 4t ]

if p << a (49b)

for a Hlnc(t,p,z) = §(t - %) alp.

Comparing (45) to (49) with the one-dimension results (4) and (19), we

see that

18 (e.0.4) ~ 1

¢ one-D

2
a o (<HOD 2y/ (4t) uop ]
e,0) 21 - (1 + 200,

2
if o >> a, e(uoc e)/4 >> 1 (50a)

2 2
H(G)_ (t d)-% uZi e(-uop )/ (4t)

2 2 2
[1 + glro(a™p Y1/4 uz§ ]

if p << a (50b)
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and

O

E ,0,d)

one -D

2
EC) (e,a) % [1 - e WP /(“t)]

if p >> min (a, &) (51a)
= (8 0 uoa o (-HOP )/(4t)
= Ene- D(t d) a 4t

if p << max(a, ﬁ%) (51b)

The relations (50a) and (51a) for large p >> a are intuitively plausible:
at early times before the effect of the wire region diffuses there,

t << ugpz/a, the fields do not feel the termination of the wire and are
just the diffused cylindrical TEM wave with the one-dimensional fields
multiplied by a/p, and at later time, the fields become smaller than such
a TEM version because they diffuse into the wire region. The normalized
ratios Héa)(t,p,d)/(Hégi p(tsd) a/p) and E( )(t,p d)/(E(G) p(tsd) a/e)

as functions of a normalized time X = t/(UOD ) show (Flgure 11) such
behaviors. The one-dimensional peak diffused-through time X k/d
tpk/d/(uop ) (see (22b))as a function of d/p shows (Figure 11) that for
d/p § 1 the diffused fields are virtually a pure cylindrical TEM wave up

to the peak.

For small p << a, the H(G)(t p,d) and E( )(t,p,d) given respectively by
(50b) and (51b) go to zero at least as fast as p, a consistent behavior
with a finite Ez and a finite total (conducting and displacement) current
‘density near p = 0, and, of course, start from zero at t = 0. The ratios
» Héé)(t,D,d)/Hégi 5(t,d) and E( )(t 0, d)/E(gl D(t,d) show such behaviors
(Figures 12-1, 12-2, plotted 51m11arly to Figure 11 but with p replaced

by a for the normalized time t/(ucaz) and with p as a parameter).
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RATIOS OF FIELDS
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RATIO OF FIELDS

1
—
-1 .
1
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Figure 12-1.

The Ratios H

Y =t/lu 0a?)

(8)
¢

(t, p,

d)/H

Expression (50b) as Functions of Normalized Time t/(uoa

(8)

1-D

(t, d) from the p<<a
2
)

and the Normalized 1-D Peak Time ka|d = tpkld/(uoaz)

as a Function of (d/a)
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RATIO OF FIELDS
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Now consider p ~ a. From (45b), the Ess)(t,p>>a,d) expression is also
valid for E(é)(t<<uoa2,pwa,d). Similarly from (45c¢c), the expression
E(a)(t3p<<a,d) is valid for E(é)(t>>uca2,p%a,d). Thus, for p = a, the

one-D
large p curve (the E-curve, X << 1 part in Figure 11 with p = a) and at

o (8) (8) 2
ratio Ep (t,a,d)/E (t,d) at early times t << poa” is given by the

late times t >> uca2 is given by the small p curve (the Y >> 1 part of
the p = a curve in Figure 12-2). At t »u © a2, they do join smoothly
at V0.2 (the E-curve at X v 1 in Figure 11 and the p/a = 1 curve at

Y ~ 1 in Figure 12-2) which should be the right value. Similar conclu-
sions hold for the Héa)(t,p%a,d)/H(s)

one-D
the par: of magnetic field which diverts (see (46)) from the TEM-like

(t,d). This is because at p v a

behavior is negligible for early times and for late times, respectively,

in the large p expression (50a) and in the small p expression (50b).

We conclude by restating that (50) and (51) (plotted in Figures 11,12)
are valid relations between the cylindrical and the one-dimensional
solutions for highly conducting thick slabs of practical interest. From
these relations, we can multiply the one-dimension fields obtained in
Section 2 by a cylindrical-effect factor to make predictions for the

cylindrical-incidence problem.

3.2 THE NONLINEAR u CASE

The nonlinear saturation effect can only occur in a region

HO
a’\'o’ﬁﬁ— (52)
c

From Section 2.2 we have found that for the practically interesting
cases of highly conducting thick slabs with narrow incident pulses
(conditions (23), (28), (29)), saturation only reduces slightly the
transmitted fields but leaves intact their time shapes. Such are the

effects the cylindrical transmitted fields in region (52) will experience,
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with (50) and (51) still being the formulas to relate to those of the
one~-dimension nonlinear problem which are solved semi-analytically or

numerically.

For p not in the region (52), the constant-p results in Section 3.1 apply

directly.

Finally, we shall conclude with an example. Consider the typical problem

in Section 2.2.2, but with a wire of radius ~0.5 cm carrying an incident

I0 = 27 aHO = 3.14 x 103 amp. The transmitted magnetic field in the
region p § 1.25 m is approximately the H0 = lO5 amp/m curve in Figure 6
multiplied by the cylindrical factors (50) or its plots (Figures 11, 12--1).

For example, at p Vv a, the transmitted field has a peak value

5 -13 1 -8
H¢(tpk/d,pwa,d) A~ 100 x 3.8 x 10 T7x 1.0 x T 3.8 x 10 amp/m

from Xok/d @

with a peak diffusion time ~1.1 x 107! sec and a diffused pulse width
(At)l/lo v 4,0 x 10-1 sec, same as for the one-dimensional case. For

p > a, the peak field is smaller by a factor va/p, but that factor approaches
N(O.S)-la/p as p >> 1.25 m. At p < a, the peak decreases from (53) at

o ~ a to zero at p = o, roughly proportional to p as p X a and according

to (50b) as p<<a.
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APPENDIX A. BOUNDARY CONDITIONS (7)

From the Maxwell equatioms, by ignoring e 3/9t compared with o, we have

in the slab 0 < z < d

OF _ 3 B}

3z -ur uo ot (a-1)
__o

OE = - = (a-2)

which immediately give (5). Now the boundary conditions at z = 0 are

H(t,0) = H_[£(t) + g(t)] (4-3)
3 H(t,o) = -\/-“—3 H o[£ A-4
5z B(E.0) = <Y BolE(®) - g(0)] (a-4)

which immediately give (7a), and the boundary conditions at z = d are

H(t,d) = H T(t) (A-5)
3 _ Mo
5z H(t,d) = - E_o H_oT(t) (A-6)

which immediately give (7b)
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APPENDIX B. DERIVATION OF FIELDS IN THE SLAB, ONE-DIMENSIONAL PROBLEM

In the Laplace domain, (5) reads

2
é_f H(s,z) - uos H(s,z) = 0 (B-1)
9z

where H(t<0,z) = 0 has been used, and (7) reads

2 ﬁ(s o) - V—u—g ol (s Y = =2 —ug H f(s) (B-2)
3z ? £ »© Eo o?

o

m

3 = 0 & _ _
Y H(s,d) + E; gH(s,d) = 0 (B-3)
Thus, the solution of (B-1l) is
fi(s,z) = A(s) e M98 Z 4 B(s) "M% Z? - (B-4)

where A(s) and B(s) are to be determined. Now, :irom (B-2) we have

H 33
(-A + B) yfuos - V—a‘l G(A + B) = =20 V§ i, £(s) (B-5)
(o}

and from (B-3) we have

— u -
(-4 e HOS d 4 g GTHOS d)\[E+‘/—9 o(a e”H0S d 4 g YOS 4y _ g
Ei)
(B-6)

Solving for A(s) and B(s) from (B-5) and (B-6), substituting their values
into (B-4), and using (6) yields (9) and (10).
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APPENDIX C. DERIVATION OF SOME APPROXIMATE FORMULAS

First, under the condition exp[vuos (z-2d)] << 1, the magnetic field

obtained by using only the A(s) term in (9a) for a S-incidence is

—k2/4t 2
e

($) o a“t+ka k-
H (t’Z) N2 ureo ‘/’[ﬁ - ae erfc(a/t_'*' Z/E)

(C-1)

which reduces to (16) if 20z VuO/eo >> 1, Here k = /ﬂg z and

a = Vc7(ureo) .
Second, from (11') the result

UL_€E S
r o
2

-1 o]

L sht/es O

H(G)(t,d)

U €

=9 ro g__[ 1 5 (0|int )]
o dt [y#uo d 4 uch

_ % d 1 pod® ~ —@t-l/Z)zuodz/t
=2 - o z e

g dt /o d

om t5/2

is used in (19)
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APPENDIX D. HIGH FREQUENCY TRANSMITTED FIELD RELATIVE INCREASE

From (11'), for u = u  the ratio of the transmitted magnetic field

at a frequency s = s to that at s = s, < s, is

H(s_,d) (W s )/ (Sh(hvu s,)
R(u,) = " (D-1)
>

H(s_,d)/u,  (n/is_)/(Sh(hATS,)

where h = dv/sc . Now we want to prove that for a smaller u = U, the

R(u<) becomes larger, i.e.

R(u) > R(u,) (0-2)

or rewriting it equivalently

Shix Sh x
Sh(irx) _ Sh(rx) (D-3)

Here x = h/p,s_ > 0, r = ¢s>/s< > 1 and? = Vu</u> < 1. But the fﬁnction
Sh(2x)/Sh(%rx), viewed as a function of %, is monotonically decreasing
since r th y > th(ry) for r > 1 and y > 0. This establishes (D-3) and

completes the proof.
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APPENDIX E. ARGUMENT FOR EQUATION (30)

Since the slab is highly conducting with ¢ >> H WE, whether it be saturated
or not, the "amount' of field admitted into the slab is about the same for
either case (see (11')). Now think of the H field as the density (one-

dimensional in z) of some particles that diffuse in the slab. Then the

total number of them

/Hdz n (Hmax) (Az) ~ H(tc’zmax/tc) zmax/tc

is about the same without and with saturation, if the pulse is narrow and
the slab is thick (see (28) and (29)). After tc’ both cases diffuse in
the same manner and should roughly give a peak transmitted field propor-

tional to H(tc,z ). This makes (30) plausible.

max/tc
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APPENDIX F. THE CODE DIFUSN

PO Al DIFYON (GUTHT)
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whsi Fa
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ACJLYSIMOARTUHACRMUR(PST (1, JL)) «D x22/D0

(a1 Ty 139

ALY MRS IGMARFMURD (S L)) XDl 20T

CHIMTTNUR

x (Jirysy /4 3
y(JuysCLL«PSIC1,Ju)/n
RO 1S5S0 TLeladtiMp
JLs =1L

x (JL)TL/Z 12+ a(d ) mx(Jl+1)) e

v(d|1-x(JL)t(v(J'+1J¢A(1L)saal(1,JL))
IF 12,0k, T0) Go TU 158

§2=g( T2

SPM2e3FM T2

Git T o

S2=

P12 20

CONTINUE

SFRepr( 2t (aluMat 2+EFINSPM2)
951(2;1?-f1f2’+CLL*P=It1.1J+aF2)/(K-x(aJ)
Nt 200 Ip=2d, Ju

PRSI (o, JL)S{dL ) xSl J=1)+Y(JL)
m“MAY=RPST (1,1

JMA =

59

H(y V/n)
iCl

i

AT



DO 228 LAz 2.Jdu
TF (oSIf1 b b ,max) o T 220
MmMAx=Rsl (1, IL™)
Jmax=1L"
S20 CHinTINUE
S8 CUMTIHUE
[Clzel
1C2=z«1
p0opav IL=t,du
CIF LICh G T 0) b T g 30 e e e
1F (eS{l,il) LT, HTRN) GO TU 244
1Ci=1L
G 2
230 IF (PSICL,IL)GT =TRN) GO T 240
(C2=1L

1) T 24N

230 CUNTINMUE
24y CONTIMIIE

ICl=s(l t~1)ris?

JCR=¢ T 2=1)xid)

LPFAxS(]J48xm) ) )
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QPSI(EIJQUTﬁ)JQSTf’oJUUTA)195[(1’Juurij'zpﬁAh'HMAl'LCI'ZCd
5'70 ‘)'.H,w"n:A‘T (12511.5)

pir 2ao Jest1,du
Aann DQI(ngLJ:pSL(C‘l_”—)

Tiz1?

DTanTeCDT
m04 COINTIMUE

v pQI};r 7\)”
700 Fidmmal {(1r11)
200 COnTIYNUE
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APPENDIX G. DERIVATION OF FIELDS, CYLINDRICAL PROBLEM

The ¢—independent cylindrical TM mode in the highly conductive slab

0< z< d, from (35), assumes the form

3, = 8, = / dK Jl(Kp)[E(K,s) KRS 2 gy oK THOS Z]
0

(G-1)

fEo=pM-t2 g oL f dKV & + uos J (K.p)[—g(K,s) e K Huos 2
P 0 gdz ¢ o 1
0
/R 2tnos

+ n(R,s) e < THIS Z] (G-2)
soo g 113 oy -k Zuos 2
E,=E =3 > 3o (qu)) == / dK KJO(KQ)[«S(K,S) e

0
+ (ks o KTHHOS z] (6-3)

where the finiteness of the fields at p = 0 has been used to choose the

Bessel function of first kind. Similarly, the fields in z > d can be

expressed as

z z 2

2
E = ETM = (3__ - szu € ) V(s,p,z)
o0
9z

o

2 ©

3 2 VR 2+pg€0s2 (z-d
={—5 - sTue, '/f & -+ pK,s) J  (Ro) e RHuo€os® (z-d)

3z 0
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~YR2H5e082 (2-d) (G=4)

f dK - K p(K,s) JO(Ko) e
0

A o oaTM _ _ EIE
Hd) = H¢ SEO 3p V(s,p,2)
) ~/x2 2 -
= seg, / dK * K p(K,s) Jl(Kp) e Két+ug€eqss (z=d)
0
(G-5)
2
g =™ 2 G(s,0.2)

o} p 9p oz

~VK24+u0€082 (z-d)

1]

/ dK * K &+ HoEq s2 p(K,s) Jl(Ko) e
0

(G-6)

where the V(s,p,z) is the cylindrical TM Hertz potential, and the require-
ment that the wave be positive-z traveling has been used to choose the
negative exponential expression. In the above, the choices of branch cuts (as

a function of s) are such that

Real { k2 +yuyos } >0 (G=7)

2

Real {\sz + uoeos } >0 (G-8)
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Now at z = d, the continuity of H¢ gives
£(&,s) e %+ n(k,s) X9 = se K p(x,9) (G=9)
and the continuity of Ep gives
K, -K>d K>d
S [-g(X,s) e + n(K,s) e 7] = KK, p(K,s) (G-10)

where K = \/K2+uos and K_ = VK2+UO€OSZ . At z = 0, requiring that the

total magnetic field be the approximate value (34) and using the integration

expression
f dK Jl(Kp) Jo(Ka) ='b]; , p > a (G-11)
0
=0 , p < a (G—lZ)
gives
I £ -2Vuos d
£(X,s) + n(K,s) =.§% 3 (Ka) * 2£(s) [ ; a) - (1 _2a)-§¢”*s _ ]
A+a)=-(1=-a)"e uo

Solving (G-9), (G-10) and (G-13) gives

(1 + 8) eK>d
q(K,s)
E(K,s) -Ksd
) -3 -8e (G-14)
Ksd -K.d
n,s) e (L -8)-e 1 - 8)
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p,s) = L) 28 (G-15)
(l + 8) - e (l B)
where B = ssoK>/(UK<). These give (38), (39) and (41).
If o = (ursos/c)l/2 << 1, thus 8 << 1, and od \’uoleo >> 1, a
practical condition as stated in (23) which implies
a Ch(Vuod s) o _
Shiypod 5) ! (G-16)
and
B Ch(K>d)
———— << 1 (G-17)
Sh(K d)
thean £, n, and p are simplified to
K.d —_—
(E(K’S)) [ @rBe \(K,s)  [p . 9Ch(Vios &) _ BCh(Kd),
- _ 2Sh(K_d) Sh( /woz d)  Su(K,d)
n(X,s) (1 -8) e K.d > v
K.>d[l +8 - BCh(K>d) _ oCh(¥ uos d)
ARS) Sh(K.d) _ Shu NEE D)
ZSh(K>d)
__Kd _ _ BCh(K d) aCh( uos d)
e L Sh(K.d) ~ Shiyfmos 4)
(G-18)
p(K,S) = __,’\(K,S)K> . 1 - aCh(Vuos d) BCh(K>d)] (G_lg)
oK K_Sh(K. d) “Sh(y/nos d)  Sh(K,d)
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where

IOJO(Ka) f(s)

A(K,s) = m (G-20)

These give (42) and (43).
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APPENDIX H. APPROXIMATE EXPRESSIONS FOR CYLINDRICAL PROBLEM

From (40b) and (43), we have

=) T -
-1 o] 2£(s) >
K — @
B, (t,p,d) v L f dK J; (Ro) J,(Ka) 57 = Sh Kod
0

I ® ,\
. _© -1 £(s)K>
= = K

T _/ d Jl(Kp) Jo(Ka) L Sh K,d
0

! N t 2
= ?:;_d- / dK Jl(KO) Jo(Ka) f dc! f(t - t") e(_K t )/(UO’)
0 0
d int!
i
ucd

Io t d i—t'

- L - T —_— "

o f de' f£(t t )[dt' 84<O| 2)]
0 nod

© ) 2.4
f dK Jl(Kp) JO(Ka) e(“K ")/ (uo) (H-1)
0

2
I ® . (-cuo/4t')
o) ' et d int! Ll-e
v / at' f(t - t )[——dt, 64(0| 2)} -
0 uod

. . t'

if p >> min (a’quc) (H-2)
Io ® d imt! uope ( a2u0/4t')
—— ! - ' —— . Y -

. 2 f dt' f(t t ){dt' 64<O| 2)] ic’ e

nod

. t!
if p << max (a, VEO_) (H-3)
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Thus the S-response for an incident g = a §(t - z/c)/p, i.e., Hof(t) =

§(t), is

2 a
od

]
—_—
IQ-

(8)
Ep (t,p,d)

dt 2

nod

(-uopz)/(ht)

" 2 ald_ 9 Oliwt . 1 -e
od {dt 4 2 )
nod

2a |d Ith uoo (—ucaz)/(4t)
od |dt d2

:Tq
Q

if p >> min(a,

3 o

i <<
if o max(a, uc)

Similarly, from (40a) and (43), we have

© seg I o
-1 00 £(s) K>
H¢(t,p,d) L J/ﬂ dk J; (Ro) J,(Ra) —7o K_Sh(K d)

0

-1 ” by *€o
=L / dK J, (Ke) E_(s,K,d) %
0 ° <

/m° dK J. (Ko) ¢ 1HE (s,K,8) 9
1 o 0 sy K<
0
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e4(o| )} / dK I, (Ro) J_(Ka) e
0

(H-4)

(H-5)

(H-6)



[ o B (70 2]
0

@ ")
- / dk I, (Rp) € * [Ep(t,K,d)
0

K Kt 1
oo - 7 L) ]

o}

’Eo © t . K '
= u_o- Ep(tspsd) - ’[ dK Jl(KQ) / dt \fu_—é_-

"2

Rt' o
Jl(/u_—> ?:fp(t t ,K,d)]

€
o 0

--.VE—O"E(t d) - deJ(K) rtdt'7-—-=K
uo 0 P> 1 o] j UOEO

0 0

Re' | To v fremerony o KOEM/ ()
Jl(TU_-) T—\'—O'_a- JO(Ka) t (t-t -t ) e

€
o o
. 0

o Io t t-t'
=% — |E (t,p,d) - ———F——— / dt! / dt" f(t-t'-t")
Mo p ond /ﬁoao A A

8 2
d imt" Kt' (-x"t")/ (uo)
[—dt,. 64(0| 2)} f dx ml(———,.__.u = ) J (Ka) J;(Ko) e «
0

uod oo
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= ‘8‘9 E (t,p,d) - ..__I_O—— ft de" 4 9 <Oli"t”)
VUO p nwod YU €, A dt 4 u0d2

t—t" «© y
14 1 1" Kt
[ de' f(t-t'-t") /(; dK K.Il(/u_oT) Jo(Ka) Jl(KO)

[o}

e(-Kzt")/ (uc)J

€
_"__0 -
= UO Ep(t’p,d) + H¢’dev(t9p’d) (H 7)

I, € -t . d ime"
" ! YO PSS
H¢,dev(t’p’d) ~ 3 / dt f dt' f(t-t'-t") T 64(0[ 2)
o 5 0 uod

from which

. Ho [uo(p2+c2t 2)]/( 4t™) I (udcpt )
2t © 2t"
if £ H-8
if a << , -
maxip TO?O) ( )
-1 t t-t"
o " 1 I B 1 d int"
Ly p— f dt f de' f(t-t'-t )[—dt,. 64(0[—-——2)]
° % 0 uod

. _pt' (y_q_>3 e(—ucaz)/(4t") (4_1;"_ _ az)

[A]
4,/11050 2t HOo
£ £
if a >> H-
. max(o, ,—-——uoso) (H-9)



Thus, the d-response for a B¢ = a §(t - %J/D is

t
(8) __2a W d imte"
H¢,dev(t’p’d) T ody J/ﬂ de {dt” e4<oluo 2
° % d

® " _ 2 "
0

o 0

V(H-IO)

N

In particular, if a << max63;7====) it becomes
Ho%o

t
1 (6) —2 a 1" d i‘n’t" uo
By dev (8004 ™ —5ay e’ Fe 94<°| 2) 7e"
o 0 ucd

o (o2 (e-e )1/ (48" Il(uccg(t-t")>
—ot"

-2 a |d int uo ugep t

< 2 | == )] = == Mep et

" Todn [dt 94((" 2)} 2t 4t f de (e=t")
o nod

0

luo (pPre? (-t 1) 1/ (-48)

b
=
Q
0
e
————
(=8
D
£
———
=)
.
e
t
e

} (-uop?)/ (4e)

/“’ i Te(-uoczr2>/<4c)
0
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o_qlio2afd . oLt e(-ucpz)/(4t) Hop
u_od [dt 4 2 4t
o uod

(H~-11)

Here a condition on the time

2
o (uoc /4 1 (H-12)

has been used to validate the third equality in (H-11). For cases of
practical interest, (H-12) is amply satisfied for times up to the peak

diffusion time tpk/d ~ 10-l uodz at z = d, because usually we have

g d 2

X >> 1
2x10’ 10"3)

le (uccd)2 >> 1+ 1.4 x 1012 X (ul X

(H-13)

On the other hand, if a >> p the H(s) becomes
$,dev

t
(8) -2a " d irt" -0
H@,dev(t’p’d) Y Udu / dt [—dt" 4(0| 2)] <2C)
° J pod

3 [Eg_ wo(a’e? (e ?)/ (~4t") | (uoac(e - &)
ot [2c" © o 2t"

o 2a [d 5 Oliwt e(—ucaz)/(4t) uop uoa2
4 2 4t 4t

(H-14)
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