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INTRODUCTION

This publication is one of a series of theoretical and experi-
mertal reports of research conducted on the response of cylindrical
conducting cavities to incident electromagnetic radiation from some
distant external source. In these, still the earlier phases of our
studies, attention is focused primarily on perfectly conducting,
thin wall cylindrical cavities containing apertures of relatively
simple ~eometry. The problems to be considered at first assume a
va rant ravity. This choice of the initial configuration to be con-
sidered was made so as to simplify the theoretical problem to be
solved and simultaneously to facilitate simple experimental checks
on the wvalidity of our wvarious methods of analytic solution.

A spectrum of the effects of aperture parameters such as
dimensions, geometry and number, and relative locations of perfor-
ations of the conducting shield are under investigation for the
externally irradiated empty cavity. Included among the character-
istics being studied are the efficiency of energy leakage into the
cavity, the specific field distribution within the cavity and the
external near and far-field distributions. In addition to these
quantities and of obvious special importance are our studies of
the surface currents on the conducting shields and the fields over
the apertures. Particular interest is directed to the behavior of
these quantities in the immediate vicinity of the edges of the
apertures. It is presumed that possession and understanding of
this considerably large body of information will permit us to
develop some degree of control over the leakage into the cavity,
the field distribution within and the division of the incident
energy into that picked up by the target and that portion scattered
away from the cavity.

Reports subsequent to these studies shall present the results
of substantially the same research, again both experimental and
theoretical for the same cylindrical cavities with apertures.

These follow-on papers will be the results of studies wherein a
sequence of configurations of increasing complexity are contained
within the cavities. Among these situations we shall include for
example one or more enclosed longitudinal cables, or concentric
loops or helices. The results of the effects of positioning these
within the aperture containing cavity will be discussed. This

study w:ll be continued to more complicated systems contained
within the cavity to investigate the effects produced. Similar
investigations are proceeding for a variety of simple cavity shapes
with aperture systems. Complementary studies of further complicated
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effects of finite conductivity and, say, dielectric cladding are
underway. These however will not be included in discussions in
this report.

At this point a review of the more pertinent work related to
the specific problem considered in this paper is approgriate. The
earlier reports in this series by Bombardt and Libelo(1).(2) on the
slotted conducting plane can be considered limiting cases of a very
long circular cylinder of very large radius containing a slot
parallel to the cylinder axis. The results were shown to be in
excellent agreement with the early work of Morse and Rubenstein(3),
Seshadri (4) "and Skavlem(5). Next in the series of these reports
were a number by Bombardt and Libelo(6)r(7)v%8) which were studies
of the axially slotted, infinitely long, perfectly conducting,
thin walled circular cylinder for symmetric incidence normal to
the cylinder axis.

Measurements made by Macrakis (9) of the back scattering cross-
section per unit length for large slot angles are in very close
agreement with the analytic results predicted by Bombardt and
Libelo(8). Also in the limit of very large aperture angle which
corresponds to almost a flat strip we obtain back scattering cross-
section results very nearly the same as those of the corresponding
actual flat ribbon. The status of the problem for narrow slots for
the infinite cylinder is not yet completely resolved to everyones
satisfaction. In this case Macrakis has measured the back-scatter-
ing cross-sections for a fixed cylinder with a specific narrow slot
at various frequencies. The data obtained show quite clearly
resonance structures at certain frequencies. His analytic calcula-
tion of this %uantity which coincides basically with that of Morse
and Feshbach(10) and corresponds simply to assuming the static
field distribution across the narrow aperture fails completely to
predict any indication even of the observed structure in his exper-
iments. On the other hand the calculations of Bombardt and Libelo
predict the occurence of these resonances at almost precisely the
experimentally observed frequencies. This total set of analytic
results for the slotted cylinder which apparently agrees with
experimental data, where available, leads us to presume that this
scattering problem has been successfully resolved. It follows then
that one of the scattering problems to be studied next is the per-
fectly conducting infinite circular cylinder with an annular slot
normal to the cylinder axis. This problem will be merely formu-
lated in this paper for normally incident radiation. In subsequent
reports we shall present the results of solution by numerical
techniques and some further analytic results as well.,

Before proceeding to the explicit formulation of the scatter-
ing problem of the normally slotted cylinder we pause to inject
some preliminary remarks which may lead_to some information of con-
siderable consequence. First, Pearson ) has used the Wiener-Hopf
technique to achieve formal solutions for the surface currents on a
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semi-infinite, open ended, circular, conducting, cylinder illumi-
nated by an electromagnetic wave. In the special case of normal
incidence Pearson's solution is seen to be that for E polarlzatlon.
Kao (12) considered the same scattering problem and solved approxi-
mately for both E and for H polarization. It will be interesting
to compare our results with those of Pearson and Kao for a pair of
semi-infinite tubes so as to learn something of the correlation
resulting from two scatterers. The second point relates to the
fact that Kao(13),(14) has succeeded in approximately solving the
problem of electromagnetic scattering by an open ended, perfectly
conducting, circular cylindrical tube of finite length. These
solutions are in numerical form and have been limited thus far to
shor+ cylinders. At present this limit is being removed via a
joir.t program between the authors of this paper and Kao and

R. W. P. King and the extended numerical results and experimental
data will be published at a later date. Nevertheless, the fact
that the results for the short finite tube are available is some-
what intriguing, in the sense that we are tempted to compare these
to our results for the normally slotted infinite cylinder, the
geometric configuration, to see to what extent, if any, the solu-
tion to either problem is related to that of the other problem.
The results obtained and their discussion will be reserved for a
subsequent report.
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GEOMETRY OF THE PROBLEM AND THE BOUNDARY CONDITIONS

Figure 1 illustrates the geometry of the scattering problem
under investigation. An infinite, perfectly conducting thin walled,
right circular cylinder of radius a is aligned so that its axis
coincides with the z-axis of the coordinate system. An aperture of
width 2h is assumed in the cylinder. This aperture is produced by
cutting the cylinder with a pair of parallel planes normal to the
cylinder axis and removing the enclosed portion of the cylinder. For
convenience the center of the aperture is taken coincident with the
origin of the coordinate system. The incident radiation is a plane
wave linearly polarized parallel to the cylinder axis and is assumed
to be propagating along the positive dire-tion of the x-axis and
hence is falling normally on the slotted cylinder. Denoting the free
space impedance by (, the incident electric and magnetic fields are
respectively (suppressing the explicit ei®Wt time dependence)

=i _ ikx—~ _ ikrcosf-
(1) Ez(x) = e e, = e e,

-1 -1 ikx- .=1 ikrcosg-
(2) Hy(x) = <{o e ey ==Co’e ey

Note that we assume unit amplitude for the incident electric field.

Now the Maxwell equations for the scattered fields are in polar
cylindrical coordinates:

(3) 7-B%(z,r,9) =0

(4) vx8%(z,r,0) = uo[ﬁ(z,e) - ieom‘ﬁs(z,r,e)]
(5) V'E (z,r,8) =0

(6) VxE(z,r,8) = iwB (z,r,8)

where y,, €o are the magnetic permeability and electric permitivity
of free space. Utilizing the symmetry property in the variable 8

we can express all surface currents and field quantities in Fourier
series representation. This permits us to consider each Fourier
component separately since they are all decoupled, so to speak. At
the end these components can be reconstituted to give the final re-
sults for the fields and currents. Because we need only to consider
one Fourier component at a time, or equivalently, one value of the
integer index n at a time, we shall not insist on explicitly

4
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Figure 1. Geometry of the Scattering Problem

Infinite circular cylinder of radius a with axis along
z-axis, containing a normal slot of width 2h centered
about z-o and illuminated normally by a unit plane wave
polarized parallel to the cylinder axis.
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displaying this index except when needed for clarity. This is done
merely for convenience. Furthermore, it is easier, as shall become
evident later, to Fourier transform with respect to the z-coordinate
and work with the transformed physical gquantities and at the end to
Fourier invert back to the z-coordinate. Thus in the intermediate
stages of the development of the theory all physical quantities will
be functions of ({,r,n) or more compactly ({,r). In the final stages
they will revert back to dependence on the coordinates (z,r,0).

To aid in clarifying notation we indicate here the Fourier
transform of f(z), some function of z, by:

- Z
(0 FlE() = EQ) = [ aze(aet i
and the inverse Fourier transform of £(() by
1 - =i
(8) £(2) = 37— [ AE(Q "

where ¢ indicates some apropriate contour.

Expressing the Maxwell equations, i.e. egs. (3) through (6)
in cylindrical coordinates and following the prescription above we
readily find that the 9 and r components of the scattered fields can

be expressed in terms of the z-components as follows:

= ~2r . _3Es (L, -1
(9 B, = 8 ~ac2ieletl S ]
(100 ES(C.m) = 87 nr REI (D) - dw aBz( 3Bz(C.0) ]
1y BS(C,D = E‘zinwucaor (¢, 1) - 1QM]

= =2r . 3E,(C,T) -1 =
(12)  BS(C,0) = ¢ z[lmuoeo;;£—~—- - nr B2, 0 ] ?
where we have defined the guantity '
(13) g2 = k22

As a consequence of the expressions in egs. (9) through (12)
we observe that we have only to solve for the z-components of the
scattered fields. From these we can then readily obtain all of the

remaining components.

Next we shall consider the boundary condition relations for the
problem. The conducting cylinder itself corresponds to setting

6
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- r = a and allowing the z-coordinate to range over |2| > h, for all
values of 8, the angular coordinate. Then the aperture is defined
as r = a, all values of |z| < h for all values of 8. If we denote
the scattered electric field inside and outside of the cylindrical

surface r = a by Es(a_,z) and ﬁs(a ,2) respectively we can show
directly that the Fourier transformed tangential components are
also continuous as r = a is crossed upon passing from the inside
to the outside. Thus

(14)  E_(a_.C) = E,(a,,()

(15)  Eg(a_.8) = Eg(a,,0)

Furthermore these conditions hold on the conductor where |z| > h
and over the aperture where |Z| < h. We pause in the development
momentarily to note that we have suppressed the index n corres-
ponding to the particular Fourier series component with respect
to 8. Proceeding in the same notation we have for the scattered
magnetic fields the boundary condition relations:

For lzl > h, i.e. on the conductor,
(16) B (a,,C) - By(a_,¢) = -uJ, (C)

(17)  Bg(a,.0) - Bjla_,0) = ugd,(€)

where Jg (¢) is the Fourier transformed 6-component of the n-th
component in the Fourier series representation of the surface

current density, and J;({) is the corresponding z-component of
the current density.

For |z|] < h, i.e. over the aperture,

=S =s -
(18) B (ak) =3B (a_,Q)
(19)  Bg(a,,0) = Bg(a_,().-

Clearly both components are continuous across the aperture.

LML 0000011 - - .
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THE 2z~COMPONENT OF THE SCATTERED INTERNAL AND EXTERNAL FIELDS

Upon Fourier transforming the Maxwell equations with respect
to the longitudinal coordinate Z we obtain for each value of the

index n the inhomogeneous Bessel differential equations for the
z-components of the fields:

_iz2

2
D 1l 3 2 - -
(20) (25 + T35 + 87 - HEL(C,r) = ==—8(x-a)T,(C)
or r we _r
(@]
and
(21) (——52 21 .2 ngsn __ig? 8 (x-2)T, (C)
2 r ar > T 2"z Crx) = 2 r—a)e ¢
ar r w €or

Before continuing it is helpful to consider the surface current
density components in some detail. For the z-component we have

(22) J,(z) =7 ,(z)[e (z-h) + 6 (~z=h) ]

where 6 (x) is the unit step function

_ J0 ifx <O
(23)  o(x) = gl if x > 0

Fourier transforming eqg. (22) we obtain

(2a) T (0) =] az1,(2)[6(z-h) + 8 (-2-h) Jexp(i(2)

-0

Applying the convolution theorem we can rewrite this as

I 1 0 1 - - —
(25)  T,(0) =57 £f€ T,(CF {8 (z-h) + o (-z-h)}

where for some arbitrary transformable function f(z) we used the

notation in eq. (7)

@

(26)  F_o E@)) =] aze@explifc-chz] = EC-C")

- D

Now if we introduce the function

1 ifx >0

(27) sgn X = |
-1 ifx < 0
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the step function of eq. (23) may also be expressed as

(28) 6 (£x) =-%(1t sgn x)

Then we can write for the Fourier transform of the step functions
in eq. (22)

- )

(29) FC{G(*Z—h)} =3 J dz[ 1l £ sgn(z¥h) Jexp (iCz)

- D

I

With the help of the identities

-]

(30) I(C) EE dz exp(iCz)
and
(31) é% (sgn x) = 268 (x)

we obtain after integration by parts

_ 2Tl = T(repty - 2sin(C=C)h

(25) we get in turn for the z-component

Substituting this into eq.
of the current density

(33) EZ(Q) = 7 (C’) _;le dgn}z(€|) Sin“—C"!h
C

(¢-¢")

In precisely the same manner we find the 6-component of the
current density to be

(34) T () =7

1 T vy Sin(c~-C*)h
L () -3 jcdg T, (¢t

(C=C")

Using the appropriate Green's function we can now solve egs. (20)
and (21) for the scattered fields in terms of the current densi-
ties. The details of the solution are contained in Appendix A.

We merely quote the results here. The scattered z-component of
the electric field is given by
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-1 .o
s m (we ) af (1) -
(35) E_(C,x) = - 5 T\ (r 5)H|p) (xr 8) T, Q) -
-1 = (o sin(c=00h, T (‘”eo’_lg (1)
TT‘chg 72" (¢-¢") ¥- 2 ﬂn1&<§)qn|(r>g) X
—_ l —_— s _r
x Go(0) -5 faC Tolc") sinli=tHi

the larger of the two quantities (r,a) and r«

where r> denotes
The scattered magnetic field

denotes the smaller of the two.
inside the cylinder is

_ o afg 1 — _—
(36)  BIO) = 52— Ipn| EDEG| (a8) T4 () 7] ACT4(€")

. - r ’
sin(C M')h} , r<a

(c-¢*)

Outside the cylinder the scattered magnetic field is

_ my.ag #
(37) B =2 |y @DE[G] @) T ) -

LT sin(¢-C")h
[ acTg @) BEn)

C

, r > a.

=R

In the next section using the poundary condition relations we
derive the current integral equations.

10
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THE INDUCED SURFACE CURRENT INTEGRAL EQUATIONS

On the conducting surface, i.e. for |2| > h and r = a, the
tangential components of the total electric field (which we denote
by using a superscript t) are required to vanish. Thus we have

+ . | . s . _
(38) Ez(z,a,n) = Ez(z,a,n) + EZ(Z.a,n) =0
(39) E(z,arn) = Ef (z,a:n) = 0
or
(40)  E3(z,a;n) = - Ei(z,a;n)
(41) Eg(z,a;n) =0

Also for the Fourier transforms we have

(42)  E3(C,a) = - Ei(¢,a)

(43)  Ej(¢,a) =0

If we divide eq. (35) through by g2 and use the convolution
theorem we obtain with the help of eg. (42) for |z|>h

-]

(44) - Ej:(a)/k2 = j_mdz' M, @E-2"y75,E") -
- ?Hldz'Mz Rzt )p M LA T, (o) SRty
+j fm dz' M,  (z-2') To (2 1)
- 2[ 7 g ar M ac T Snetn,

where we have used the fact that

45) S =73

11
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and where we have also defined the kernel functions

(46) M_(C) [ (28) = F (M, (2)}

- %n(weo)—la J!n!(ag)H'n

(© = - Fwe) ez ) @oa( @)

(47) Eze FC{MZG () 1.

Now we can write the inverse transforms in eq. (44) more explicitly
as

-1 y Ty Sin(C~CtYhy 1 ¢ T
(48) Fg {chg 7" (€-C*) } = ri Jerd6 J(c )chg X

x {exp(i(¢-C*)h-igz] - expl-i(¢-¢')h-i(z]}/(C-C")

where c¢ and ¢' are appropriate contours. It is quite evident from
this that the inverse transform is dependent, in an essential way,
on the values of the exponentials. In Appendix B we present the
details of the calculation of this inverse Fourier transformation.
The results of the inversion will merely be stated here. We find
for the 6 and the z components of current:

1 -1 - h ] J
(a9) & Ft g Teon SRRy L L 2 gz sen(]zt|-n)
Note that we can also write the simple relation
(50) sgn(]z'|-h) = %[sgn(z'-h) + sgn(-2'<h) ]}

Substituting from eq. (49) into eqg. (44) we obtain

(51) - Bi@x® =] M (z-2)7 (z)[1 + 5 son(lz'|-0)] +

- 00

+J. dz'n o (Z-Z'Y Iy (Z')[l+—]2-'sgn(‘z'|-h], | z|>h.

With the help of eq. (28) we can rewrite eg. (51) so that the
integration extends only over the conductor:

. -h "
(52) - E;(a)/"k2 =j‘ dZ'Mz(z—-z ')Jz(z') +j hd‘z'Mz(z—z')Jz(z') +

- D

~-h ©
+J' dz'MZe(z—z')Je(z')-+thz'Mze(z-z“)Je(z'), |z]|>h

- O

12



NOLTR 74-35

This is one of the pair of coupled integral equations for the

8 and z-components of the current density on the slotted conduct-
ing cylinder. The remaining integral equation can be derived
starting from eq. (1l0) for the Fourier transformed 6-component of
the scattered electric field. Substituting into eq. (10) the
transformed macnetic field in eq. (37) setting r = a and using
egs. (42) and 43) we obtain

(53) na~lg? Ei(c.a) = HIF(0) - 2 [ acF, () SinlCh

where we have now defined the additional kernel function

1 TH ra

- _ 1 , (1)
(54) Me(C) = -35"T Jlnl(ag)Hﬁnl(ai)

Fourier inverting eg. (53) we use eqg. (49) and the convolution
theorem to get the following

-1

(55)  nZa) "t el (a) =

= j dz'Me(z-z')Je(z')[l + % sgn(|z*|-h)], |z|>h

Equivalently this can be written as an integration over the con-
ducting cylinder as

. ~-h
2 EL (a) =j dz'Me (z-z')_]e(z') +

(56)
(k“a) 2 -

+ jh dz'M (z-2') 3, (z*), |z|>h.

This is the remaining half of the pair of coupled integral equa-
tions for the components of the current density. Note it is
easily seen in egs. (52) and (56) that the surface currents are
excited by the incident radiation.

Now the incident fields are completely known physical quan-
tities. Then we can find the scattered electric field via eqg. (35)
and z-component of the scattered magnetic field from whichever of
egs. (36) or (37) are appropriate if we first solve the pair of
coupled integral equations (52) and (56) and obtain the surface
current densities Jg (2) and Jz(2). Note that the surface current
densities are of course the only unknowns in egs. (52) and (56).

13
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As a final result in this section we shall derive the
Fourier inverted expressions for the scattered fields Ej and B§
within and outside of the cylinder in terms of the current densi-
ties on the conductor. Analogous to the definitions in egs. (46)
and (47) of the Fourier transformed kernel functions on the
cylinder r = a we introduce the following definitions which are
expressed compactly for both r > a and r < a;

-1

(57) ﬁz(r.Cm) = - —;' ™ (we ) a:ZZJ‘n| (r<€)Hl f(r>§)

i]

nm, -1, (1)
- = (we ) °°C J|n| (r<§)H|n| (r>£)

(58) Mg, (r,{;n) o

when again r< denotes the smaller of (r,a) and r> the larger of
the two. Then by egs. (33), (34) and (35) we can write the
Fourier transformed z-component of the scattered electric field

as follows
(59)  E,(r,(5n) =3, (Cm)M)(x,Crn) + T, (Crn)My, (x,(5n)

Similarly if we define the following Fourier transformed kernel
function

Nl Nl

. iﬁuoang n‘ (rg)Hl n‘ (a§) ’ r<a
(60) Nze (rlgfn)

iﬂuoagJ‘l nl (ag)H'(IJ;)' (rg), r>a

we can write the Fourier transformed z-component of the scattered
magnetic field from egs. (36) and (37) as

(61) Ez(g) = Ee(g:nfﬁge(r,g;n)

The details of Fourier inverting the kernels in egs. (59) and
(61) may be found in Appendix C. We merely state the results
here. For the z-Component of the scattered electric field we

have, using the convolution theorem,
6 " P (z1)MO( z') + rdz- (z")M° (r,z-2")
(62) E (r, 2 =] J, 5 (T2 . J, 5 (To2- +

- 00

-h ©
+ j-mdz'Je (Z')Mzc’9 (r,z-2"') +Jr hd 2 Jg ( Z')Mge (r,z-2z')

14
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where as is shown in Appendix C the inverted kernel functions are

r&

(63) Mg(r,z) =%Cpk2a{ i jodelnl(ka[ l+x2]_%)J|nl(kr[ l+x2];5)(l+x2)exp(-klzlx)-

1
- @) | (ka[l-xzj_%w‘n' (krl 1-x277%) (1-x2) exp (ik|z | x) }
[0}

and
(64) MCZ’9 (r,z) =—;-'nkgosgnz{j c)dx X JH (ka[ l+x2]15):fld (kr[l+x2];5)exp (—k| z| x)+
. l ;‘
+ ) axx Tin| (ka[ l-xzj%)frlnl (kz[ 1-x27 ?)exp (ik| 2] x) )
o

In the same manner inverting the transformed z-component of the
scattered magnetic field in eqg. (61l) we find

.—h n®
(65) Bi (r,2) = | _mdz'J 5 <z-)N‘z°e (r,z-z")+ | hdz-Je (z-)N‘z’e (r,z-2z")

where the Fourier inverted transform of the kernel is given by

il — Y, L
(66) N2 (r,z) =Zau k[ j a/1=x2p (k[ 1-x*19) N} (kal 1-x*17) -

- exp (ikx|z|) - iJr dx/l+x2‘J]n'0¢[ l+x2];§) NL|Oﬁ[l+X2J%) exp (k| z]x)]
o

for r < a

1
(o] __1_. 2 32 [ 2 _ 2 . _
(67) N_o (r,z) =5au k {I ode ~-x J|n|(ka[ 1-x ]%N\nl kr(l-x ];%exp(lklzlx)

- ij dx.\/l+x2J'I'1|(ka[ l+x2];5)N|n| (kx[ l+x2];5) exp (-k| z| %)}
o

for r > a

15
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Using egs. (65), (66) and (67), we wish to verify that the bound-
ary conditions on the cylinder (egs. (16) and (17)) as well as

those off the cylinder (egs. (18) and (19)) are satisfied. We
find

(68) BS (a+,2) - B (a-,2) = J_wdz'Je(z'){Nge (a+,z-2')-Nyg (a-,z-2') }+

- (1 +% sgn(]z'] - h)

where we have explicitly retained the sgn function. The Fourier
inverted transform of the kernel will be evaluated along the real
axis in the ¢ plane, since the function Nge(a+,z) - Nge(a-,Z) will
be shown to be single valued and regular everywhere.

o o) 1l .
(69) Nze(a+,2) - Nze(a-,Z) ==-Z1inp,a-

[ ag ety GanfH] @a)-g,) GaEfl) (B2 1e7

Using the Wronskian relation
(70) J‘nl (v) H‘(ii ' (y) - J]n‘ (Y)H‘(Ilii (y) = 24

eq. (69) becomes

Mo @ s
(71) Ny (a+,? - Npo(a-,2) =-37) dCe ez
= - uO §(z)

and eqg. (68) becomes

[--]

(12)  BS(a+,2)-BS(a,2) ==n | da’ J (2') (L+zson{|z’|-h]) s z-=")

-0

- U J o (2) (1 + 5 san{|z*|-n))

- HoJ g @) , Jz|l >n
0 , lz|l <nh

Thus, we see the boundary conditions for the z component of the
scattered magnetic field are satisfied everywhere.

16
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Using eqgs. (9) through (12), (62) and (65) for generating the n-th
component of the corresponding Fourier series for each scattered
field we can reconstitute the fields to obtain the desired results

o]
E;(r,z,e) T E;(r,z;n)cosne

n=0

-]
3 s
Bp(r,Z,e) T Bp(r,z;n)cosne

n=0

where p represents the indices r,9,z. Note at this point we have
formally determined the scattered fields in terms of the current
densities on the conductor. 1In the next section we derive an
equivalent formal solution for the scattered fields which this

time are expressed in terms of the electric field over the slot
region of the cylinder r=a.

17



NOLTR 74-35

APERTURE FIELD INTEGRAL EQUATIONS

We shall introduce the tangential components of the electric

field over the aperture; Sz(z;n) and Ee(z;n), through the defini-
tions

< -E,(a:n), |z] > n
(73) E (a,2z;n) = i
€ _(z:n) - Ej(a:n), |z| <h

0 , |lz] »>n

(74) Eg(a.zm)
€e(z;n), lz] < h

In this section we shall derive expressions for the current
densities in terms of the aperture fields and also integral equations

forlgz(z;n)_and € (2;n). Using egs. J%O), (59) and (61l) we can solve
for Je and J, in terms of the fields E, and Ee. These relations
are _

= . . -1.=s - 2=s aNze
(75) 3, (C) ==(i/w)[na” "(E; (a,8)-€“E] (a,0) 1/ (527) oy

3n°
(76)  F(© =F;(@ 0/ @0+ bMlnaT ER,0-sFh OV %
—~0 7=O
x (M (a,0) /M, (a,0) ]
Fourier inverting 39 in eqg. (75) we get formally
Ao
" : -1l%s, n_e3gS 28 -iCz
(77) T (2) = 5= fc a¢ (-i/w) [ma "(E (a,0)-8"Ey(a, 01/ 5 by ©
To make the notation more compact let us define the quantities
=0
aN

={(1) _ . " 720

(78) K, (a,0) = -(in/aw)C/==)
=0
3N

=(1 . =2 z6

(790 TP (@) = /e 2R

In the new notation we can, upon application of the convolution
theorem, write the azimuthal current component as

(80) Iy (2) = [ az'[kfy (e-z)E] (@, 241, (2B (a,2) ]

18
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where of course

(1) [

(81) K, (2) = Fgl{xég’(a.c)}
and

(82) LDz +F 1h1”(mcﬁ

The details of the Fourier inversions in egs. (8l) and (82)
are given in Appendix D. We merely write the results obtained
there in what follows. Thus we have more explicitly

1 1kx!2|
(83) K(l)(z)=__2n(sgnz) .rdx X
z9 %y wa o 1-x2 [3'2 (ka[ 1-x21%)+x' 2 (kal 1-- 2] 2)3
o | | qn
+|fmdx < B e-kx]zl
o l+x2 [Jii|(ka[l+x2]%)+Niil(ka[l+x2]%)j}
and
(1) ok 1 eikx|z|
(84) Lyg (2) = - =5~ — 4] ax —— 2% 12 et 27k
mu wa Lo [%n|(ka[l-x ] )+N{n|(ka[l—x 141

® —kX!Z'
- i'f dx — }

G- [Jii!(ka[l+x2]%)+Nf§l(ka[l+x23%)]

Proceeding in the same manner we can Fourier invert eq. (76)
to obtain the longitudinal current component:

(85) - J,(z) = az'[k{2) (z-z1)ES(a,z) + LiZ) (z-2)Ef(a, 2]
where we have introduced the notation ) o
(86) (2)(a g)—[l/M (a,t)]11+(1n/ma)CM (a, g)/( r=a}
and

(2) _ , 3N —o
(87) (a,0)= i/, (2, 0) /(=22 Mo (a,0)]
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and of course the Fourier inverses of these are formally just

2 - —_

@) x{D @ =F N a,0)
(2., _ p=1=(2)

(89) L,y (2) = FC {LZG (a.g)}

The explicit details of the Fourier inversions are given in
Appendix D. We merely state the results here

1 .
(90) Kz(ez) (z2) =~ (Zmeo/nzka) {fodx elkx[z [ C l/(l-xz){J'lrzll(ka[ 1_x23%) .
;’ r
+ len,(katl-x2]2)}+(n2/k2a2)x2/(l_x2)2ﬂ;, (kal 1-x21%) +
) Nl'il(kafl—xz—]l/z)}j ) ifo dx e'lez | [l/(l+x2) {Jlilika[ 1+x2];f) +
* anﬁkam+x2f%} +'(nz/k2a2)x2/(l+x2)z{ﬂéf(ka[l+x2]%) +

+ N|'r21| (ka[ 1+x2]1’2)f2 ]}
and

g L :
(91) LZ(S)('z) =[2n(sgnzy(n2uowa2)j§f dx[x/(l—xz)]elkxlZ%JII"IzG(a[l—XZJ%) +
: o

£ 2 (kall-x2T% 1+ | ax[x/<1+x2)5k"'z'/[J,;j (kal 1+x21%) +
o]

+ N[ 2 Geal 14°7%) J} |

Introducing the definitions of the aperture fields as given in
egs. (73) and (74) into the expressions for the current components,
i.e., egs. (80) and (85) we obtain:

o

(92) Je(z) = - Ei‘(a) f_fz'Kz(el)(z-z“) +J" 1;iz'Kzg')(z--z')élz(z') +

h
(1)
+ dz' L
'r-h

—z1) ¢ 1)
20 (22)86(2,

20
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and

(93) J ( ) ~— E ( d ] (2) [ h ] (2) [ & '
z) = - a)j' 2 K, (z-2 )+I_gz Ko (2-2')&,(2') +

) azL(”(z 2)e (2')

Egs. (92) and (93) can be processed further to yield the
components of the surface current densities more explicitly in
terms of the tangential components of the aperture electric fields.
Further we can simultaneously obtain a pair of integral equations
for the aperture fields themselves. Thus we can combine egs. (16)
and (25) to obtain the relation

(94) 3,(2) = J_(2)[1+3 san (2] - 0]
Similarly we have

(95) 3, (2) = J (2)[1 + 3 sgn (|z] = 1))

Next using the convolution theorem and the definition of the delta
function we can write for j = 1 or 2

Eiwﬂ;va“”(bzw - sl [ & 8K (a,0)e7H
= E (a)K(j)(a o)

If we recall egs. (78) and (60) we observe that

=0
(96) 2 (2,00 = - (in/an) [0/ =28) _ ]
zg ‘2 - in/aw)LC dr ‘r=a-C=0
Similarly by egs. (86), (57), (58) and (60) we obtain at { = 0
2wr
=(2) 1
(97) K (a,0) = —/—————— = ~ e /1T (ka)H (ka) ]
z8 Mg(a,o) TTk a ‘n‘ ‘ ‘
Then by egs. (96) and (97) we can write more compactly
. ® 0 , 5 =1
(98)  EL(a) [ az'x} (z-=) s
- 2 E (a)
- &L LE 2 j = 2
mk2a Jlnl(ka)Hfii(ka)
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Using this and the information in egs. (94) and (95) in the
current equations we obtain for the azimuthal current component on

the metal the relation

h h
(99) Je(z) = {4?2'Ké§)(z-z“)ez( z') +Jl§z'Léé)(z-z')€e(z')'

lz| >n

and for the longitudinal current component on the metal

2we EL (a) h
— Q 2 ] (2) [] ]
(100) JZ(Z) - rrkza JI | (ka)Hl(li (ka) * I—hdZKze (2-2 )&!z(z )
n n
h
7 (2) . '
+J_‘hdz L,s (2-21)€,(2") lz] > n

Note at this point that egs. (99) and (100) give the current
densities on the seminfinite conducting cylinders in terms of the
tangential components of the aperture electric fields. All other
guantities in the pair of equations are known quantities.

For |2| < h i.e. in the gap between the semi-infinite conduct-
ing cylinders we have the very significant pair of simultaneous

integral equations

B (D) R
(101) J‘_hdz-Kze (z-2')€ (z*) +]'_hdZ'Lze (Z—Z")EG(Z') =0
and .

h (2) h (2) 2we E, (a)
(102) f dstze (z-z.*)ez(Z')+‘]‘ dZ'Lze (z-zn)ee(zo:_ 2 1)

~h ~h m’a g 0) Hin' (ka)

This pair of equations represents the heart of the solution to this
problem. Clearly if we solve for the tangential aperture electric
fields these will in turn give us the currents on the conductors as
can be seen in egs. (99) and (100). The scattered fields can also
be determined from these aperture fields as we shall show in the
next section. It should then be obvious that the scattering
problem can be completely solved if we find the aperture fields of

egqs. (101) and (102).
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THE SCATTERED FIELDS EXPRESSZD IN TERMS OF THE APERTURE

FIELDS AS SOQURCES

In this section we shall demonstrate, by explicit derivation
that, similar to the induced currents the scattered fields can be
expressed solely in terms of the tangential components of the
electric field over the gap region between the semi-infinite
conducting cylinders.

Equation (62) gives us EZ for any r value in terms of the
currents on the conductor. Then we can write for the aperture
region

. @ -h
(103) 82(2) = E;(a)+J;d2'Jz(Z')Mg(a.2—2')+IdeLJz(z-)M:(a,z-z') +
® o -h o
+jhdz-19<z-)1~4ze (a,2-21) 4 azJ (2 )M, (a,z-2") s llrzl:g.
With the help of this we can rearrange eq. (76) to obtain
= o -h o
(104) ee(z) = L dz'Jz(z')Pz(a,z-z°) +£c’dzﬂﬁé(z‘)PzXa.z-z') +
© ° -h o
+J‘h az'J (z)p_, (a,z-2") +£moz' I (z')P . (a,z-2"); lz|=<rax:

Where merely for the sake of compactness we have defined the
Fourier transformed furictions

(105)  Bp(a,0) = na”¢z™? W (a, ()
and
=0 - =—2 -1l. 0 L rD =0
(l1o6) Pze(a,g) = g {na g Mze(a,gyl¢[br Nze(r,g)]r=a }

We already know that eq. (62) is valid for arbitrary values
of the varzible r. From egs. (1l0) andgi6.) we can obtain the
following corresponding equation for Ee(r,g) which is valid for
any r

o

(107)  Ej(r,0) = £ nrC M (r,0) - dw 2 RO, (r,0)}F, (C) +

+nrtee”? MO (r, )T, ()

23



NOLTR 74-35

Now if we substitute from egs. (75) and (76) into egs. (62)
and (107) eliminating J, and J_ thereby we obtain the following
relations after some sﬁlple mahipulation

_ _ Mo (r,0)  MJ(r,0) -1
(108)  E,(r,¢) =E§(a.g)5_§ T &) —ma Mo, (3,C) -
‘M0 (a, ) MO(a,0) P [aN,, (x,Q) z
or r—a]

e (r,0)77 0
- MO, (r,0) (i/w)na” ¢ [—Zg—r——-]FJ +
r

O (r,C) (r,0)]"?
+ ES(a,¢ ){ (r,2) -—2—M°_(a,( }(1@ /Ju) [————] :
and — 1
_— — - — (‘N (rlk_a) 3 (rICI
(109)  Ej (r,0) =E§(a,g){[nr l;Mcz)e(r,C)—'.-—-Eg?—-—](i/w)[ B ——ea”

-0 -0 a1

1 Mo(x,0)_ dN_ (x,C

B .~
Mz(a.C) _

-0 i
+ E°(a,) nr_lf;g_z __Mz_(r"i.) +
z =05
Mz(a.C)

L!\I

— -1
©(r,() axC (r,Q)
. 2 -1.2 2 z =0 - z9 _
+ (i/w)n“(ra) ¢ —_——Mz(a,g) ze(a'“)[ =T ]r - a

- -1
. o (£, 03N, (x, )]
- (i/w)na lgg 2 x [nr oo 2o T? ‘.-:)'lur ar ][ zgr }r:af{,

To condense this rather awkward pair of expressions is rather a
simple task. Observation of egs. (57), (58) and (59) reveals the

following simple relations

-0 (1)
(110) illz (x,C) _ JLnl (r )HLnl (r g€)
Mg(a,C,) T n| (ad) H|n| (ag)

24
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. SR, (z,2) n(we )70 ()8R (5.8)
( l) (r C)/*r—— =a = N ,.2J,- ( )H(l).(a )
o8 I (387H[n] (22

With the aid of these identities the coefficient of E, (a,() in
e7. (108) can be abbreviated by introducing some new fiotation,

namely
—_ Hfii(ri)/Hfii(ai) for r > a
(112) Q, (r,()
J‘nl(ri)/J

‘n'(ag) for r < a

The coefficient of E- (a,l) in eq. (108) can be easily shown
to be identically zero. Thus eq. (108) can be rewritten quite
simply as

=S = A\ =S -
(113) Ez(r,C = Qz(rpg)Ez(aos)
In the same manner further introduction of thegfollowing new

notation will 51mply result in the coefficient of E (a,C) in
eg. (109) assuming the form

Tiap (D E{ ] (22)

R_, (r,{)
9 r> - (1)! =
J|n|(a:) H‘ | (a?)

or more explicitly
(1)
e

J|n!(r§)/Jinl(a:) for r < a

(1
|n

(r3)/H

"(ai) for r > a
(114) Rze(r.C =

and the corresponding coefficient of L (a,{) in eq. (109) can be
written

- (1) (1 1
H (re) H (re)
ngi—z L?%Y + | % - for r > a
— H 3 ar (aZ)
(115) R (r.Q) = =) a2 (] 2]
Ty (r2) Jy £)
nce? (Felns 5| <
[ n] '25 & n] 157 ]

In the new notation eq. (109) is thus

(116)  Eg(r,() = R,q(r, )y (a,0) + R, (r,O)E;(a,0)
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If we Fourier invert the scattered z-component of electric
field in eqg. (113) we have

(117) ES (r,z) = j_fzvgz(a,z-)oz(r,z-z')

where

(118a) @, (r,z) 3% [ dge-i
c

(Y

u(d) (r-§)/H(l) (a.€), for r > a
|n] | n ;
i.e. external
to the cylinder

and

(118b) Q, (r,z2) =3 j;dge Jln[(r 5)/J|n|(a ), for r < a
i.e. inside
the cylinder

Recalling eqg. (73) the defining relation for the z-component of
electric field over the aperture, we can rewrite eq. (117) in

the form
® h

(119)  E;(r,z) = - E;(a)f_;ﬂiz“o.z(r.z—z')+‘f-€z'ﬂz(z')O.z(r.Z-Z')
However the first integral in this relation is the Fourier integral
of Qz evaluated at { = 0 i.e.

-}

(120) [ az'g,(r,z-2z') =0, (r,{ = 0)

which according to eq. (1l12) tells us we have for this integral

, Hfli(kr)/Hfi{(ka), for r > a, i.e. external
_ : n to the cylinder
(121) o, (r,0=0) =
z J|nl(kr)/J|n[(ka)' for r < a, i.e. inside
: the cylinder

Combining eqg. (121) with (119) we obtain the following
expressions for the z-component of the scattered electric field

h
(122)  Ej(r.2) =-L (5] Ger) /a4 (ca)+ [ az'e, (2')0, (r,2-2")
for r > a i.e. external to the normally slotted cylinder
and
. h
(123)  Ej(r,z) =-E, ()|, (r) /T (ka)+ [ d2'€, (2') 0, (xr,2-2")

which holds for r < a i.e. within the slotted cylinder.
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It should be brought out here for emphasis that the z-component
of scattered electric field of egs. (122) and (123) contain only the
‘longitudinal aperture electric field as an unknown quantity. Thus
snlving the pair of simultaneous integral egs. (101) and (102) for
the tangential aperture electric fields will also give us the
scatterzd electric field E§(r,z) ever ,where. The kernel function
Qz (r,z) which appears in egs. (122) and (123) has been derived
explicitly in Appendix E and is merely stated here for completeness:

For r > a

1 .
(124) Q,(r,z) =% [if ax eikx| 2|
o}

-l 1w l2y -
- {J|nl(kaJl X )N|n|(krvl x<)

- ﬂnﬁkrjl—x2)N‘nﬁkaJl—xz}/{qilkaJl*xz)+an|kaJl-xz)} +
+ J" dxe_kxlz'{J'!n,kaV’l+x2)N|nl(krwfl+x2)-
o

- qnﬂerl+x2)Nlnﬁerl+x2?}/{qirkaJl+xz)+anrkaJl+xz)}]

Whereas inside the normally slotted cylinder, r < a we have

1 J (kr/1-x2)
(125) Qz(r,Z) = %{Pf dx cos kxz |n| +
o J|n! (kaJl—xz)

+ J‘ dx cos kx 2 ==
1 I!nl (ka,'’x4-1)

ka

——s -
L, T Zcos (kxcz)\/l-xa JLnL(krw l—xg) }
v — 2
a xaqnl(kaJl x< )

where we have used the earlier notation x = {/k. Furthermore in
eqg. (125) we rafer in the first term to the Cau~hy p incipal value,
in the second integral I|n| is the modified Bes:el fu ction and
finally the sum in the last term is over the zeroces xq of

JLn‘ for -1 < x < 1 on the real axis. At this point note that we
have expressed the rather important field ES(r,z) in terms of the
tangential aperture fields.

As a final manipulation in this paper we shall show the
derivation of the scattered field Eg(r,z) for all values of the
radial variable r. Again utilizing the defining relation, eq. (73)
for the tangential aperture fields we can Fourier invert eq. (116)
to the following expression:
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e h
(126)  ES(r,2) = - E:(a)f_odz'Rz(r,z-z') +] az'e, (208, (x,2-21) +

h
t ]
+ f_hdz &, (2")R, (r,2-2")
(120) and (121) we find for the

Similar to the treatment of egs.
first integral

(127) [ az'r,(r,z-2') =R, (r,C =0)

and consequently eqg. (115) tells us quite simply that this first
integral vanishes leaving us with

s h h
(128) Ee (r,2) =£hdz-56(z-)Rze (r,z-2') +Ihdzlgz(z-)Rz(r,z-zv)

for all values of the radius. Thus we have also expressed Ee
completely in terms of the tangential aperture electric fields.

The remaining kernel functions appearing in eq. (128) are completely
known. Their derivations are shown explicitly in Appendix E. For
completeness we merely repeat them here.

Outside the normally slotted cylinder, r > a, the kernel functions

are
(129) RZG (r,z) = _[ I dx & lkX' ZI{J];]'(ka“/l-xz)N‘nl (krk/l-xz) -
- ‘;'I;ferl-xz)NHkm,/l-x?)} /{J[r'll?a(a\/—l_xz)ﬂﬁ (ka/Iow2 )} .
—kx|z|] JJn[&aN/l+x2)NHerl+x2)qJ| L(kr“/“xzmi jkay Trm2
+J‘ dxe f
g (ka/1+x2)+N (ka/1+x2)
In| In|
and
(130) R, (r,z) = MU dx_elkx‘zl{ta]nlmaJle Oer T -

- .J"nlﬂchl—xz)N|n|(ka,\/l—xz)]/rLJi n'ocaJl-xz)+N| l(ka.\/l—x2)] +

+| g eI, lom/l-x% Oy eI Ny Oea T3 o 3, Foea /1D +
o T JJe] ey N [ e o T2 -

= G, Oer/Tr2m ka/Tox3 | /x| 92 ke Tre?) sy ka/ied) |

+ [ﬂﬁlma«/menlmm —q;|mrJMNinlmm]/é[q;fucaJm) +
+ w3 (ka/Texd) 1 - inr e i a0l (ggnz ).
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Within the normally slotted cylinder, r < a, the kernel functions
in the field integral equation (128) are

1 Ty (kry/1-x2
(131) Rze(r.Z) = % PI dx cos kxz Inl V____) +
o Jinl(kaJl-xz)
® Iinl(erkz—l)
+ f<b<coskxz +
1 Iinl(kasz-l)
~Y /1 ! _ 2
N %% cos(kxddvl xg Jln‘(erl Xa)
1] _ 2
- x@Jln|(kaJl X< )
and
. 1 J_(kr/1-x2)  §')ke/1-x2)
(132) R, (r,z) = 2P [ ax(—%) In| 4 ol )sinkxz
o 1-x rqnﬁkaJl—xz aqélkaJl—xz)

@ . /. - ’ 1
) f dﬂ(xx :>(I|n|(krvx2 1) . ILnl(krsz ij)sin e 4
1 2_1 rI‘ n‘(ka',\/x?—l) aIinl(kaV/xz— 1)

. )
sin kx(1 ZJ] n| (kr./1 xa)

. Jsinkz r]nl 1 +
+ i §—=—= =) +"‘"§ : w2 J! )
{ r a kra - xavl X< J‘n'(kaJl xd)

. 1 sinkxnglnL}erl—xg )}
2 /I - " _ 2
ka ‘ xﬁ”l xg J‘nl(kaJl X3 )

B

In eq. (132) Xg is a zero of Jinl(kaJl—XZ) on the real axis for
-1l < x < 1.

In summary we have expressed Jg and J, on the conductor as well as
ES and E§ external to and internal to the normally slotted cylinder
completegy in terms of the tangential components of the electric
fi21ld in the gap between the semi-infinite cylinders. This infor-
mation is contained in egs. (99) and (100) for the current densi-
ties and egs. (122) and (126) for the scattered field E§ and E3,
Finally we have formulated the integral egs. (10l1) and (102) wﬁich
must be solved to obtain the tangential electric fields themselves
over the aperture.

Of course we still must remember to reconstruct the whole
solution of which we have only one general form in the Fourier
series in 6.
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CONCLUSTICNS AND DISCUSSION

In concluding this formal report a number of points require
clarification and others on the other hand need some emphasis.
To begin with we should note that we have formulated the scatter-
ing problem quite rigorously. Not only has the problem been
formulated, as is conventionally done, in terms of the induced
currents on the slotted cylinder so that all the field components
are derivable in terms of these currents, we have also derived the
surface currents themselves. Egs. (52) and (56) are the later
relations referred to. In addition to this conventional approach
to the situation via the induced surface currents we have recast
the problem in a completely equivalent but different representa-
tion. In this case we have formulated the physical guantities of
interest namely, the induced surface currents on the conductor
and the scattered fields inside and outside the conductor in terms
of the tangential components of the electric field over the
aperture or gap between the semi-infinite conducting cylinders. Of
course we have also derived the simultaneous integral equations
which must be solved to yield these aperture fields, i.e. egs.
(101) and (102). It should be clear that this method could be a
more convenient approach when one wishes to check against experi-
mental measurements as only electric field measurements over the

aperture need be made.

It also should be noted that we chose to explicitly display
only the fields ES(r,z) and E§(r,z) in terms of the aperture
fields. There is nothing of special significance about this
choice although it would appear that B3(r,z) would have been a
better candidate in the derivations. We shall be satisfied with
merely pointing out that in a subsecuent report involving the
actual solutions of eas. (101) and (102) we shall explicitly
derive the scattered magnetic field., In that report we shall
also solve for all fields using the solutions obtained for £,(2)
and €g4(z) over the gap. Furthermore all the related problems
alluded to in the introductory remarks in this report will be
elaborated on. in considerable detail in ensuing reports. A prelimi-
nary paper( ) on one experimental aspect has already been pre-
sented namely measurements for circular cylinders for a large
range of radius to wavelength ratio and also a broad range of
length to wavelength ratio. The details of this preliminary paper
will be spelled out more elaborately in a following report in this

series.
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APPENDIX A

DERIVATION OF THE NORMALLY-SLOTTED CYLINDER GREEN FUNCTIONS

Solution of the inhomogeneous differential equation, which
we repeat here for convenience, will be effected by finding the
corresponding appropriate Green's functions. Thus we have

(20) (_§3_+

s 2 a2\ fEs(r.con) -ig28 (r-a) (we_r) T, (¢,m)
(21)  \3.2 3rt5 T3 =

or E;(r,g,n) - -gzb(r-a)(mzeorf_lﬁe (C,n)

R |~

r

W2 consider the solution for the transformed magnetic field first
since this can be carried through more easily. What we are look-
i~g for formally is a Green's function G(y,y') that satisfies the
inhomogeneous

(AL) L G(y,y') = - 8(y-y") /¥

where L is some Sturm-Liouville differential operator. The
> -2en's function we are determining is constrained by the bound-
ary condition on the magnetic field i.e.

(a2) BS (a,,C,n) - B,(a_,(,mn) = - pu T (C,n)

Ncw let ¢ (r,g,n) and {,(r,€,n) be two linearly independent
s~ lutions of Bessel's eJuation:

c, (2 Hfi}'(gr). r<a

I

(a3a) ¥y (z,8,n) )
c;(® ) &, r>a
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c,(g) Jln‘(gr). r < a
(A3b) ¥,(r,8;n)
Cz(g) J"nl (gr)l r>a

where the prime on the Bessel functions denotes differentiation
with respect to the entire argument of the function. These two
functions will be used to construct the desired Green's function.
The quantities Cj(£) and C3(£) shall be determined below from
the boundary condition stated in eq. (A2). From Morse and
Feshbach (I5) "we are then able to write down directly the Green's
function which is identical with the magnetic field itself

(84) Gy (r,a) = Bj(r,gin) = Yy (r,&;n) [lAr 'y, (£, Em) 6 (x ~a)/

[e" =Wy 0p)] + ¥y (r,&in) [7dr 'y (£, 6n) 6 (x'-a) /(£ WY, ,0,) ]

where W(wl,wz) is the Wronskian of v, and LPY
(5) W(hy,b,) = 2i/nga.

In eq. (A4) the first integral vanishes for r < a and the second
integral for r > a. Using egs. (A3) and (A5) we can reduce the
Fourier transformed magnetic field in eq. (A4) to
. 1)
BingC, (8)C,(8) ), (e E(1] (@8), = < a

(AG) _ﬁi(rJCln) = 1
hingCy (8)C,(@)d| | aH{Z] ¢T), 1 > a

Next we evaluate C1(g)C2(E) from eg. (A2). Substituting from
eqg. (a6) for BS (a*,g n) we obtain

5 (a,,C,m) - B3 (a_,C,n) =- Agc, (8)c, (8) (7 (a)H(1] @2)

_Jinl (ag)HfH (ag)} =-&gc, ()¢, (8) {2i/nta}

=+ C,(E)C,(B)/a
(1)

where we have used the Wronskian of Jlnl(ag) and Hlnl(ag).

A-2
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Clearly then we must have
(A7) C;(8)Cy(B) = - nja I, (L,n)

With this result we have the Fourier transformed field Es(r,g;n)
completely determined and the results are given in egs. f%B) and (34).

What remains now is to determine the Fourier transformed
electric field Ez(r,gin). This field must satisfy the boundary
condition

(A8) Es(a,sCin) =E>(a_,(in)

If this were the sole boundary condition to be satisfied we could
proceed just as we did immediately above for BS and write down
the answer at once. In this case however the Situation is some-
what different. This is readily seen if we Fourier transform
Maxwell's equations on circular cylindrical coordinates. One of
the resulting equations of this process is

aﬁi(r,c;n)

-1 —-s .
S - + nr CBz(r,g,n)]

(A9) By (r,gin) = g_z[iwuoe

where this component of magnetic field satisfies the boundary
condition

—s ] —s ' =
(Al0) Bg (a,,Cin) - By(a_,Cin) = I, (Gon) .

Since both B and BS are discontinuous across the boundary at
r = a we conclude that aEg must also be discontinuous as we
or
cross r = a. From egs. (A2), (A9) and (AlO) we obtain for the
discontinuity in the radial component of the Fourier transformed
electric field

—=S8 =S
3E_(a ,{:n) 3E_{(a_,¢:n) 1 —
(All) 2t - 2 = -in(awe )" '(T, (C,n)
~i(ee ) 85T, (¢,m)
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We see from this that as we should have anticipated the discontin-
uity depends on both components of the current densi;g. Now let
us construct the corresponding Green's function for EZ from the

following linearly independent pair of solutions of Béssel's
equation:

(Al2a) ¢3(r.€;n) = C3(§)J|n|(§r)

(Al2D) ¥, (x.8m = ¢, ()8 €D

These give rise to the following Green's function which also is
identical to the field E.

— r
(813)  G,(r,a) = Eg(r,(in) =, (r,8,n) § dr'iy(r, 8,08 (rta)/r Wiy, i, ]

x©
+ y5(r,eim) § arty, (x,8,n) 6(x'-a) /[x'W(H5,¥,) ]
This reduces as in the earlier case to

HingCy (8)C, (5)3) | (B0 H(] (B2), r < a
(A14) E. (r,Cin) =

hingCy (8)C, ()T 1 () E[] (60), r > a

Differentiating with respect to r and substituting the result into

eq. (All) we obtain with the help of the Wronskian for J|n‘ and
(1)
H

|n]

(A15) c,(8)C, (8) = in(meo)_lgg-kfe(g,n) + ia(we ) '€3, (C,n)

With this result E(r,(;n) is completely determined in terms of
the current densities Je(g,n) and Jz(g,n). The final results are

- Zwe )Tl nCT (¢, n)+ag?T, (¢, 007 @0 E( L (Balx<a
(A16) Ej(r,C,n) =

- —TZT- (weo)-l[ ngie(g ,n)+a0§2-'j'-z (¢ ,n)JJlnl(ga) Hl(I];i (Exr) r>a
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APPENDIX B

THE INVERSE FOURIER TRANSFORM
Fotlfe 476" (€=¢) " sin(c-¢n)

We showed in eq. (48) that we needed to evaluate the inverse
Fourier transform

-1 — -1, _
(BL)  F [T 80T(C) (6= Tsin(g=¢h = gy [LA0 TN [ ac
° {expli¢ (h-2)-ir*h] - exp[-i{ (h+z)+iC{'h]}/(C-C")

For the first exponential we have two possible situations to con-
sider namely

(i) z< h
(ii) z>h

Likewise for the second exponential we have the two cases to
consider

(iii) z > ~h
(iv) z < ~h.

Note that cases (i) and (iii) refer to the aperture region whereas
cases (ii) and (iv) correspond to the conductor. Considering

z values over the aperture region we observe that the first exponen-
tial gives rise to damping in the upper half (-plane. For this
situation we must then close the contour in the upper half (-plane.
This is accomplished by choosing the contour C, as shown in

Figure 2(a). Note that in Figure 2, ¢’ is arbitrarily assumed to
be a point in the upper half plane. For this the first exponential
then gives

(B2) Icldg e ic'z

i0(h=2) o=1iC'h (1) = opi o~ 1€

Damping occurs over the lower half {-plane for the second exponen-
tial in eqg. (Bl). Hence we integrate over the contour C5 as shown
in Figure 2(a). This gives no contribution since we have assumed

B-1
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Im( Img

Re(

2(a) Aperture Region; h - z » 0, 2(b) Conductor Region; h - z < 0,
h+ z>0 h+ 2<0

Figure 2. The Contours for the Inverse Fourier
Transform Integrals:

fch eiig (h:FZ) (C,"'Q ,)"l

{' to be a point in the upper half {-plane. Thus
-3 M 1 '
2

since there are no poles in the lower half {-plane. If we had
assumed (' to be a point in the lower half {-plane the first exponen-
tial would have given zero and the second exponential in (Bl) would
yield 2ni e~1s %, This clearly gives the same result. If (' lies on
the real axis the contour for the first exponential would be the real
axis from (' = - to (' = += closed in the upper half plane by a

semi circle of infinite radius. We would then obtain the result from
the Cauchy principal value, i.e.

3

(84)  [odc MMM (c0h) o nieTCT2

The second exponential is taken care of by a contour along the entire
real {-axis from -« to +« closed by a semi-circle of infinite radius

in the lower half-plane. Again the Cauchy principal value gives

B-2



(B85)  -[odg e IE(BFD GICTh o0y o piomiCH

Thus we see that for values of z in the aperture region we obtain
the same result from the integrations in the (-plane for all {°,
namely 2mi exp(-i{'h).

Finally we must consider values of 2z corresponding to the
conductor. This means the remaining two situations i.e. cases (ii)
and (iv). Now the first exponential in eqg. (Bl) possesses damping
in the lower half (-plane and the second expcnential in the upper
half-plane. Thus we use contour C3 for the first exponential and
contour C4 for the second where Figure 2(b) illustrates the con-
tours. The result we obtain is

eig(h-z)e—ig'h e—ig(h+z)e+igh
®e) e A (3 “ e, 8=

-ig'z

= =2nie

Again if ¢' is on the real { axis the same choice of contours as
for z in the aperture will give the same cesult as in eg. (B6).
In summary then we have

(B7) [ag{expli¢ (h-2)-i¢'h] - exp[-i¢ (M+2)+iC'h]}/(¢-C") =
2mi exp (-iC 'z) for |z| <h
|- 2mi exp(-iC'z) for |z| > nh

If we use the relation in eg. (47) we find the result we are seeking,
namely the Fourier inversion

(s8)  F MfcdeIC) (¢-¢*) " sin(g-¢ ) n)=—gsan] z N5 facs T

= - -%'sgn(l z|-"h) 7(2) .
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APPENDIX C

DERIVATION OF THE KERNEL FUNCTIONS
M°z (r, 2z:n), M;e (r,z;n) and N;e (r, z;n)

The scattered field integral equation, i.e., eg. (62) for
E:(r,z;n) and eqg. (65) for B:(rﬁ:;n), in terms of the surface
current densities contain the kernel functions M%(r,z;n), M%e(r,zgn)
and Nze(r,z;n). To obtain egs. (62) and (65) more explicitly then
requires that we find the inverse Fourier transforms of M%(r,g;n),
M;9<r,g;n) and N;e(r,g;n). In this appendix we present the details
of determining these inverse transforms. Consider first the kernel

M;a Formally we have

(Cl) M (r,z:n) = 5[ &7 M (r,{;n)exp(-iCz)

wher= the contour C chosen in the x = (/k plane is illustrated in
Figure 3. Repeating eqg. (54) defining the kernel we have

]

(€2) T = - gnleeg) T agd) ) (e DHG] (50)

where r_(r_) is the lesser (larger) of the two quantities (r,a).

Since the arguments of the Bessel and Hankel func=tions are
multivalued functions of x =(/k we cut the complex X plane so as
to connect the branch points x. = ¥1 as shown in figure 3 where,
for emphasis only, we have placed short slash marks along the cut.
For 2 < 0 we use the integration contour C, and for z > 0 the
integration contour C., as indicated in Figlre 3, First we deal
with the z < 0 case., “Then in the complex x = ({/k plane we can
write eqg. (C2) in more detail as



TIm X ImX

Yy
R

a) Branch Cut and Contour b) Branch Cut and Contour
for 2 < 0 for 2 > 0

Figure 3. Branch Cuts and Integration Contours for ﬁ%, ﬁ%afand ﬁ%e




(c3)

- 4g0(k2a)'lM‘fz (r,z:n) =

I dx J '(+kr<Vl—x2)Hfii(+kr>“l—x2)(l-xz)exp(+ik|z|x)

+im
+ fgimdx T | pf-ke 1-x2) Hl(xﬂ (~kr ¥ 1-x?) (1-x?) exp (+ik|z | x)

S
+ L;ldx Jln‘(+kr<”l-x2)Hfi1(+kr>Vl—x2)(l—xz)exp(+ik|2|x)

+ I?de Jlnl(-kr v )Hfli( ~kr " )(l—x )exp(+1k]2]x)
+

+ ¢ ax J|n‘(kr<Vl-x2)Hfi}(kr>“l—x2)(l-xz)exp(+ik|z|x)

Note that above the cut the negative root has been taken and below
the cut the positive root is used,

The behavior of the integrand in the neighborhood of x = +1

will next be investigated so as to evaluate the last integral in

eq.

tions

(C4)

To do this we need the small argument asymptotic rela-

1 n
%) for |yl << 1

Cc3



n
(©5) {1 (y) = —Hk-l—’—u +2 @ n#o
for |y] << 1

[an¥\+ vyl n=0

where y is the Euler constant
vy = 0.577215 ....

From egs. (C4) and (C5) we can find the asymptotic form of the
product in the integrand, i.e. for |x| = 1

(Co6) Jlnl (kr )Hl ' (kr 1-x ) ~~ - o (-E;) , N#O
kr . V1-x?

21 >
7%[Ln0———jr——)+yj, n=20

Clearly for n # 0 the integrand is analytic along the circular
portion of the contour at x = +1. For n = 0 we have to consider
instead

(1-x?)3) ) O Y 1-x m{ ) (er,V1-x?
. kr .
2i(l-x2) (y + lIn —= + -i(l—xz)ln(l-xz)
” 2 o

which is also analytic over the circular portion of C;. We thus
note that the last integral in eq. (C3) gives zero contribution.

Now consider the first two integrals in eqg. (C3). These run
parallel to and just off the positive half of the imaginary axis.
By simple change of variable these become

iLfdx Jlnl(+kr<”l+x2)Hfii(+kr>Vl+x2)(l+x2)exp(-k‘z|x) +
® I 2
+ i&)dx Jlnﬁ;kr<v1+x2)Hfiiekr>V1+x2)(1+x2)exp(-k|z|x)

c4



(16)

Using the identities

(C7a) J|n| (emﬁiy) = emﬂ|nl i Jlnl (y)
(C7Db) N]nl(em"iy) = e_mﬁ‘n'iNln'(y)4-2i sin(m]nln)cot(lnln)Jlnl(y)

we can reduce this pair of integrals. The case m = 1 represents the
branch of these functions above the cut. Then we have

(c8) T| | (hr Y 1 Hfii(-kr>vl*x =

Va2 Ny a2 Jiza?
“T) ) ke Y1) 3y ) Ger Vi ead) ) (kr Y1 Ny Ger Y L)

|

-J‘n‘(kr<V1tx2)Hf§i(kr>JZ;x2)

Thus with the result of eq. (C8) the two integrals reduce to

L p® v 2 A 2 2
(c9) —le‘o dXJ‘nl (kr_Y1+x )J|nl (kr_V1+x7) (1+x )exp (-k|z|x)

Again using the results in eqg. (C8) the third and fourth integrals
in eq. (C3) can be combined so that we have finally

oy 1.-1,.2 1 Ji_.2 NN
(Cl0) M°z(r,z,n) = 2{.:0 (k a){—‘j‘o dx J‘nl (kr< l-x% )J|n| (kr> 1-x%) .
2 . . p o . 2 N, 2
- (1-x )exp(1k|2‘x)+1£)dx Jlnl(kr< 1+x )J‘n‘(kr> L+x™) -
-(l+x2)exp(—k|2|x)] for z< O
We shall merely note, without going through the details, that

using contour C3 for 2> 0 we obtain precisely the same result in
eqg. (Cl0). This result is eqg. (63) in the body of the text.

C5



[}
. Furthermore the results quoted in eq. (66) and (67) for Nzg (r,z:n)
are calculated in the same manner and again, for brevity, we omit
the details here. The result in eqg. (64) in the text for Mg (r,z;n)
is also determined in the same manner. Note however that a sign
prefix occurs for this kernel function that is related to the sign
of the coordinate variable z . Since the derivation of this kernel
is carried out in the same manner we also omit the details here.,

C6
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APPENDIX D

EVALUATION OF THE KERNELS Kéé)(z), L(l)/z), K(z)and L(z)(‘

29
. -icz
(D1) K?fel) (z) =-2—1T; -uﬁ-‘)j ag — *~2~C .
© (-1 g @l @)
n . e-igz
=2 o ) o —
uova o g Jln‘(a:)H‘nl (a%)

Since the integrand is multivalued, we may use the contours
shown in Figure (3). We see

1 ik?'Z'
(D2) (l)(z) =___E___§ [I dx —X— _

ﬂzuowa o l-x2 ﬂ “ka[l X ]Z)Hflﬁoeul— 2]2)

-‘f dx-—jai e kxlzl/J‘ |(—ka[l+x ]2)Hfli% ka[l+xzj%) +

1+x
_.kx’Zl
+j dx —%5 e 1kx'z|/ﬁ |(-ka[ 1 x2] %)H‘(ii ' (-kal 1-x21%)
1-x
—kxlz\
"fodx 2/J| l(ka[l+x ]z)Hfli'(ka[l+xzj%{] for z<0
® 1+x

Making use of the identities

(1) _., oyl (2
i (-y) = (1) a‘n} (y)
and

_ _ n
Jlnl(-Y) = (-1) J‘n‘(Y)
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we may write (D2) more compactly as

(D3) Kz(él) (z) = 2 [j‘ dx—— elk“lz/{J a<a[1-x2f2)+NHo<a[1-x 2‘}

TT u wa

+ dx—— e.kxl '/{ 2(]m[ l+x2 1/2)+N| I(ka['l+x J’)}] ,» 2<0
l+x :

we get the negative of eq. (D3) for z>0

Thus
(D4) K Hz)=- 202902 dx—x—z- ok 2 {Jl'l (kel1-x277) )+, Joall-x ]2‘}
i uowa l1-x

[ ] ]f !
+-f dx—jL—e]del{J 2(kaD&x2]2)+N Z&aﬂﬁxzfﬁ} for all z.
o lx 2 I In|

For the kernel Lée)(z) we see

(D5) (1) (z) = - ___l_j a: e‘iCZ/J]‘n‘ (&g)Hl(Ill‘ ' (ag)
C

Ll uowa

Using the same contours as in the first case

2
o

l L] - 1,
(D6) Lz(el)(z) -k [f dx e kx'zl/cr'nl(kat_l—xzj%)Hl(rjl'f(ka[ 1-%27%) &+
m uowa

+ if dxe?kxkﬂ/Jin‘(—ka[l+xzj%)Hfii'(—ka[l+x23%) +

O
+ 17 axe lkxM/J o] (-kal1-x jz)Hlli'(—ka[l—xz];i) +
1
+ ij‘odx e_kxlZl/Jin'(kaEl+x2_jl/2)H‘(3'lf“(ka[l+x2];i)] , 2<0

@
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Using the identities following eqg. (D2) we get

1
(D7) L{Me) = 52 [J" dxelkx'zy{J;,'l,z&all—xzj%)+N,’n2p<arl-xzj%)} )
(o]

ki uo'Da
- ii:ax ]dey/ ‘ |(ka[l+x ]%)+N‘ kal 1+x ]2)}]

For 2z>0 we use the other contour in Fig. (3) which yields the
identical result.

Thus, eq. (D7) is valid for all =z.

For the kernel Kég)(z) we may write

in —nw (D az
(2) 1 2we 1 4ua(2uc X qnﬁaDﬁﬂnl :q
(D8) Ko (z) =3 Ta U;dc (= a) (D('a) I+ 1vuoa Jx'
PR - ey e (e
X e—igz
we

. 2 2
=-—"2 dgerlgz[ L +— ( . < - ) ]
a1l 2@ e x%a\e 4 @ Y az)

Using the contours shown in Figure (3) we get

(2) Ve ikxlz| 1
(D9) K \Nz) = - a — +
z8 n%kal o (1-x2)J|nlo<a[1-x2]%)Hl‘rllioca[l—lelz)
2 2
+ —2— . 2 ) +
k%a® (%7 %) ) (kal Zx ]2)H‘(l{'<ka[1-x2]%)
e -kx| z| 1
+ i dx e -
Js [ (1) 3 (-kal 1+x°] D 1] (-kal 14%%7)
.2 2
_ = P4

k2a2 (l+x2)2Jin“—ka[l+x2]%)Hfii'(—ka[l+x2]%)
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+j‘odx oikxlz] 1 .
1 (l_xz)Jln“;kail_xzj%)Hfi%4ka[l—ij%)
n? <2

T2 (1-x%) %3} (~kal1-x 7 1915 (-kal 1-x21%) :
0 -kx|z 1

ral e - <l+x2)J~| | (kal 1] gt |(IJ;i(ka[l+x2]1/2) )
n? «2

Cx%a? (1+X)2ﬂéﬁkail+ 2] ‘n'(ka[l+x 19) Fox =<0

Again using the identities following eg. (D2) we may simplify

the above to

2we 1 .
TR PR — [ axeikxlzl S— S E——
m°kal © (1-x ){J]nl(ka[ l—x2]2)+1\ﬁnl(kall—x ]2)}
. n? <2
k2a2 (1-x ){J ‘(ka[l—x ]2)+Nlnﬁkafl—x jz)}
e -kx| z| 1
- i} dx e 1 2 1
J; (l+x2)'?fn'(ka[l+x2]2)+Nlnl(ka[l+x2]2)}
2 2
n x
+ . ¢ 2<0
k2a?  (1:x2) 2{ Iy I’karlw-x 32)+N] (kal L+x ]2)}

An identical result follows for z>0, eqg. (D1l0) is wvalid

for all =z=.
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We now shall consider the kernel Lz(g) (z)

io_nm
(2) 1 ("'G'waeo) Cemitz, Jnl(a‘-‘)H‘ Ls)
(D11) L2a(® =35 —fmia ac 1225 (ag)H{N@2)
- 20 )(_232 y ¢ 8 Jlnl(a )Hl f(aﬁ S Jn|@8)H|y| @3
- _ n ac e—lsz(_:_C_) l'
m2 uoa2 IC £2 anl (ai)Hlnl (ag)
= (1)
= - K,y (2)

Then we may just write down the negative of eqg. (D4)

-rr waz

(012)  ni2e) ~Zpsanz J’ ax— lkxl/ nl(ka"lx ]2)+1\1 fral-x?1%)} +

lo) 1+x

© ' 1
+ J‘ dx ——3—2 e"kxl ZlA'J'ii,(ka!: l+x2]%)+Nl 121|(ka[ l+x23 2)}
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APPENDIX E

EVALUATION OF THE KERNELS Qz(r,z), Rze(r,z) and Rz(r,z)

The zeroes of the Hankel function are in the interior of
the complex plane so we may use the contours shown in Figure 3.

(1 2.%
1 = (kr[l—x ] )
(E1) @, (r,a) === | [ ax ol

. oikx|z]
o | kal1-x*19)

+

- (1) 2.4 (1) 273
ax HLDL( kr{ 1+x“779) odx Hhﬂx kr(l-x fw

: ~kx| z]| ikx|z|
+ if e + e +
o 81 (-xar 14x2179) 'Fl 1 Di-xa1-x27)
|n| In
(1) F1an2973
N i.J.od}{ H‘Iill (kr|_l+‘. jl) e_kxlz| ) 2 < O' r > a
o i) (kal 14x2 %)
I n] 5
Using the identity
2}y = lnlE

eq. (Dl) may be more compactly expressed as

-
(183) 0, (r,2)= T|if ax kx| z| [ Geal 1-x®TH N ) el 1-x20%) -

- Fu el gl 2] [ 2 ocann P 47, raln?1% ]+

L
f,, _,,X|z|['.Tln|G<a[l+x2]%) Nlnl(kr[l+x2] 2)—Jlnl(kr[1+x2f5) N]gl(ka[l+x23%)]
+| dxe ™ o T
o 3% kal 1+x277%) +u?_ | (kal 1+x21%)
|n] n|
For z > 0 we choose the alternative contour in Figure 3b which, in

this case, yields the same result, so eq. (D3) is valid for all
z and for r > a.

=
i
-
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For the case r < a we must consider the Bessel functions.
Since we know

ey o |n] -
(E4) J|n|(~3r) = (~1) Jlnl(;r)

the integrand in eq. (85), for r < a, is single valued. We may
use as a contour the real x axis but we must take care. The zeroes
of the Bessel function lie along the real axis. We must detour
around all such singularities, thus obtaining the principal value
of the integrand plus mi times the residues at the singular points.
The residues are found by expanding the denominator of the inte-
grand in a Taylor series about its zeroes X,, retaining the linear
term and ignoring the higher order ones, i.e.

2.% K ¥y ' 2
(E5) J (kal{ 1-x°7%) = = —=—== T (kal 1-x_“]
|n| (1-x 2)/2 Inl o
a

172
)(X—Xa)

All such points %X, lie between -1 and +1 on the real x axis
since for x > 1,

1 1
(E6) J (kai[xz-ljz) = ilnII (ka[xz—ljf)
|nl [n]
where I' I is the modified Bessel function which possesses no
zeroes,
2-.%
X 1 J‘nl(kr[l-x 17)
(E7) Qz(r,z) == PJF‘ dx cos kxz 5T +
o J'nl(ka[l—x 172)
I (krrx2 l]%)
[5+} L -
+ j' dx cos kxz |n] - 5L +
1 Ilnl (ka[x“-1]17%)
1 1
i (l—xaz)lenJ(kr[l—xazjé)
+ E% gcos kxaz - - 5.5 r <a
o . ’ 4 _ n
Xd Jlnl (kal 1 X& 14

where P denotes the principal value of the integral.

In the neighborhood of X . X i-%?,the integral
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2%
J|n|(kr[l-x ] )

(E8) P f dx cos kxz

Ax ‘(kafl-xzj%)

Tin

2.k 2,%
J) oy (krl1-x°17) (1-x %)

s iﬁ dx cos kxz N ar 1 21%)( )
X XCL ‘n| ap xq ] x-xq

which is the form of the integral whose principal value must be
calculated.

The kernel Ryg (r,z) differs from Qz(r,z) only slightly. If
we replace J|p| (y) by anl(y and Hlnl(y) by H|n|(y), then

Qz(rlz) - RZQ( ,Z)

Since
(E9) Hp ' ey) = D) Inf+ig(2 )
®10) i v = ol L)

the procedure for simplifying the intecral representat101 of

Rzg (r,z) is identical to that shown f r Qy(r,z) via egs. (El)
throuch (E7), r=placing J: n'(y)aniH( i with their derivatives,
everywhere they appear.

The result is 1

(E11) R, (r,2) = =i jgx lkx‘zl[J‘;ll(ka[l-xzj%)Nin| (kr[ 2-x279) -

® i KX |z [J[:l kall+x % l‘i)N:b|ﬂ~:r[1+x2]1‘5)—J|;1l(kr[l+xz]lv i (ka[l+x23]’)_‘
+ e :
J; Jiﬁl(ka[l+x21%) + Nlil(ka[l_ 2]%)

for r > a ,
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I ke[ 1-x27%)
‘nL r -X

(E12) Rze(r,z) =-% [Fﬂldx cos kxz +

o T| p) kal 1-x217%)

1 2 L L
I, |Gk 179 , mi cos (kxqz)(l-x§)2J 'n,(kr[l—x;] 2)]
ka

+ f dx cos kxz
1

1 ;’ "
Iln'(ka[XZ—l] 9 . thjinl (kal ].—X;l2 ]%)

for r < a.

Next consider the function Ry (r,z) which is a weighted
combination of Qz(r,z) and R,g (r,z).

For the case r > a we look at the singular points of the
integrand . Near the point x = 1, we may use the small argument
expansion of the Bessel function to find

2,1 X 2%, ™!

Lt s e e £
Iy (kal 1-x21%) SN TR

[n] {kal 1-x“121

2

' 2.%

J) gy (kr[ 1-x%77%) Inj- 1
and Inl o~ (g)

) 2 ]/2
J‘n‘ (kal 1-x°17%)
Since the intégrand for r<a is single valued we choose the
real x axis as the integration path. The point x = -1 is also a
singular point of the integrand as well.

The residue, R(l) at x = 1 is

e~ikxz ry nl ; _In|-1 o—ikz _ |n|
(E13) R (1) = Tixil) [;(5 + g(g) = - ﬁg)
x=1
The residue R(~1l) at x = -1 is
-ikxz | n| |n|-1 +ikz | nj
e x{ 1. r 1l r _ e X
x=-1
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There are also the singularities of the 1nte9rand that
correspond to the zeroes of J| |(ka[ 1-x23%) and Jl ‘(ka[ 1-x 2];5)

These are treated in the same way as those associated with the
kernel Q (r,z)

. 1 J Gcr{_-l—xz:l;i) &kril- j;s)
(E15) R, (r,2) =—iﬂ’-‘-[Pj‘ dx "2{ o 5T J [ferB 15—}sinkxz-
o 1l-x rJ,nl(ka._"l-x 17%) aJl ,(ka[ l—x 1%)
. Gkrlx®-11%) 1 (ke x2-11%)
_J‘ dx———-{—in‘ J | F ?} sinkxz +
x°=1 rIl '('ka[x —l] 2) aI' '(ka[x -l]

. 2.%
sin kxaz lnL(krl’ l-xa 17%)

. sin kz.,r lnl 1

+ ni {____..__(_) 4 —— \; +
r a kraE : 2, % 2.%

a xa{l—xa ) Jlnl(ka[l-xcx 12

. klzz sin(ka z)jlrl'xl (kxT l-xszj%) }]
a

T X, (J.-xs 2) %J'l;;l (kal l--xB 23%)

for r < a

Consider the case for r >.a.

The zeroes of the Hankel function are in the interior of the
complex plane; furthermore the integrand in this case is multi=
valued, so we use the integration contours shown in Figure 3, but
we still have the singularities at x = £ 1

1) (1) %
ber (1217 ) e r 1-x217%) .
(E16) R, (r,z) =-5_rl[j‘d e { Pﬂn b }elkxlzl_
i PkallT?) afl (ka-x21%)
2-% g (1% 2.%
) f.dx ) {HLn‘(-kr[l+x _l:) . (5] Ger[1-x217%) }e—kX|Z|
o l+x2 err]{r(-ka[ l+x2] 2) fli( -kal 1+x ];5)
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i ' 1
+ °ax {H(Lrll)L(_kr[ l-xzj 9 + H|(l? (- kr[ l-xzjlz) ikx|z|
e
1 l-x l ‘(—ka[ l-x ]2) aH‘(li(—k [ 1-x ]2)

1) 2 D 2 ;5 .
. {Hlnl kL4 2] 7) . 1 [(kr[l+x ] )} ékxlzl ‘in o ikz (E)lnf
o l+x rHlnl)(ka D.+x2“ %) aH(lI kal1+x 2]% *

for z < 0

Using eq. (E2) we may write eq. (E1l5) compactly as

-ik L 1

1
(E17) R_(r,z) = T’—T‘[l ‘de
1-x

- J'lnl(kr[l—xzjk")Nln,(karl-xz:]%)]/{ El'ln (ka[l—x 2)+]_\1 I(ka[lx j J‘ +

ﬂn[(ka[l—x jz)N]nl(kr[l—X ];5) - g L(kr[l—x ]2)I\E l(ka[l—x2] 2) | 2
aLJ l (karl-x ]2) + N‘ ‘ (kal 1-x ]Z)J

. 0% X ~kx|zl|yr 2.% 2.%
+ :LJ‘ dx -];5 e I I{L\]inl(katl+x ]Z)N'nl(kr[l+x 17%) -

- Jinl(kr[l-fxzj%)Nln|(ka[l+x2];i)V:[Ji§[G<a[1+x2]%)+NlI21|(ka[l+x2]%)] +

l_Jl l(kal'l+x ]L)N‘ l(krl'l+x T) - J] I‘{erL+x ]L)J l(ka[l+x jz)J}]+

[l '(karl+x] + l I(ka[l'*'X] ]
-ikz n
+ in & (if>I |
r a

For z > 0 we choose the alternative contour in Figure (3b) which
in this case yields the negative of the result found for z < 0.
. The result for all z is just the result of eg. (E1l6) times

(- sgn z) .

o
I
(o)}
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