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ABSTRACT

An approach to modeling of complex multiconductor cables is
developed, based on measuring a set of parameters for the cable to be
modeled, and then manipulating these to obtain the required model
parameters. The theoretical foundation for the approach is based on
the assumption of pure TEM~-mode propagation on the cable, and this
is shown not to impose any significant limitation for practical cables.
The approach is then applied to a series of actual cables of varying
complexity up to 15 wires and five internal shields within an overail
shield. The results for 85 transfer functions taken on these cables
show that ~70% of them exhibit agreement of ~6 dB between analysis
and experiment. Also included is an analysis of the errors to be ex-
pected from the use of a lumped approximation as a function of the

section length.

(Distribution Limitation Statement B)
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1, INTRODUCTION

This report will present the theoretical foundation for an approach
to the analytical modeling of multiconductor cables and document the prob-
lems and results of a program of practical application of the technique to
real cables.

The requirement for modeling of such cables arises because they
form one link in the coupling chain between the electromagnetic pulse
resulting from a nuclear detamation and the noise signals which finally
reach the critical circuits. The complete coupling chain may be broken
down as follows.

1. Field generation by detonation

2. Interaction of field with structure

3. Energy penetration through points of entry

4. Excitation of cables by points of entry

5. Coupling of signals to critical circuits

6. Critical circuit response
In order to accomplish an analytical assessment program, each of these
links must be modeled analytically, and this report addresses the model-

"ing of link No. 5.

In addition to its application to detailed modeling of this link in a
given coupling chain, the technique has an application of even greater
potential usefulness. This is in contributing to the understanding of how
signals distribute on complex cables, what parameters are imporvtant in
determining this distribution, how these parameters vary with cable con~
struction, etc. Any program directed at studying this problem will re-
quire the modeling of complex real cables, and the techniques described

in this report are applicable for such modeling,



Three methods of determining the L and C parameters for cables
will be presented. The first of the methods developed is based on making
capacitance measurements on the cable to be modeled and then manipu-
lating these to obtain actual model L and C parameters. This method is
straightforward in application and yields good results, but unfortunately
is not capable of handling branched cables. This limitation prompted
the development of two additional methods based on the measurement of
characteristic impedances on the cable rather than capacitances. The
advantage of these methods is that the impedance measurements can be
made using high-resolution time-domain reflectometry (TDR) techniques,
allowing one branch to be distinguished from the others,

The development of the technique will proceed in the following
manner. First, the general transmission line equations and solutions
for an N+1 conductor cable will be developed, based on the assumption
of pure TEM-mode propagation, which will be shown to impose no serious
limitation for practical cables. Second, the worst-case errors resulting
from the use of a lumped approximation to the distributed line will be cal-
culated, Finally, the three methods of determining the distributed L and
C parameters and one method for determining distrilbuted R will be devel=~
oped, based on the transmission line solutions,

The various methods will then be applied to modeling of real cables
of varying complexity {3 to 20 conductors). The problems of applying the
methods and the results obtained will be discussed in detail. Finally, a
number of miscellaneous topics will be discussed.

The analytical results for the cable models were obtained by use of
the TRAFFIC (TRAnsfer Functions For Internal Coupling) computer code
developed by the Boeing Company. This code was especially developed for
frequency-domain analysis of very large, passive, reciprocal, linear net-
works, of which lumped-parameter cable models are a good example. The

code is presently operational on the AFWL CDC-6600 computers.
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2. DERIVATION OF TRANSMISSION LINE EQUATIONS

In this section, the transmission line equations for an N+1 conductor
transmission line will be derived, preceded by derivation of the same equa-
tions for a two-conductor line to illustrate the method. Assuming TEM-
mode propagation, these equations can be derived either from a circuit
theory approach or by use of Maxwell's electromagnetic field equations.
Examples of the application of both ﬁnethods to the two-wire case appear in
many texts on the subject.(1_4) Until recently, however, the case of more
than two conductors in a transmission system has been almost completely
neglected, particularly the derivation of the transmission line equations. A
derivation of these equations for multiconductor transmission lines (MTL)
based on Maxwell' s equations has recently appeared in a paper by Kajfez,(s)
and the reader is referred to that paper for the field theory approach. The
derivations which follow will be based on circuit theory.

Before proceeding to the derivations, a word should be said about
the assumption of pure TEM wave propagation and the limitations such an
assumption imposes on the results. As is well known, several modes of
signal propagation are possible for perfectly conducting transmission lines,
depending on the conductor geometry. These modes are, of course, trans-
verse electric (TE), transverse magnetic (TM), and transverse electromag-
netic {TEM), where the word transverse refers to the direction of the field(s)
with respect to the direction of propagation. TEM waves are sustained along

(1)

open-wire or coaxial transmission lines only and are, therefore, some-
times called "transmission line'' or ''principal' waves. The term ''principal’
arises from the fact that, while TEM waves are the principal mode of signal

propagation on open-wire or coaxial lines, they are not the only mode. But



even though TE and/or TM modes will be sustained on these lines, for prac-

tical dimensions these modes will be subject to severe attenuation at fre~

10
quencies below about 10"~ Hz. For example, the lowest cutoff frequency

(1)

for a complementary mode in a coax is for a TE mode, and is given by -

_3x10"%mg

I
(ri + ro)

For even a relatively large coax cable such as RG-213, r, + ro = 0.97 cm,
and then f = 1010 Hz. As the dimensions of the coax decrease, the cutoff
frequency becomes even higher.

Another characteristic of real transmission lines which differs from
the ideal and which affects the validity of the pure TEM assumption is finite
conductivity of the conductors. Due to the resistance of the conductors and
the current which must flow in them to propagate a wave, there will be a
finite voltage drop and resulting electric field along the axial dimension of

the conductors. Since this drop is in the same direction as the propagation

of the wave, and since by definition the electric field must be always trans-
verse to the direction of propagation for TEM waves, it is clear that thé
resulting waves are not pure TEM. But again, for practical cables the
variation from perfect conductivity is not great enough for this to be a ser-
ious problem. For example, assume a piece of RG-8 coax is terminated
in its 50-ohm characteristic impedance and is driven by a 50-volt, 108-Hz
source. The resulting current flow is 1 amp neglecting losses, and for the
nominal ac resistance of 0.8 ohm/m at ‘108 Hz, the axial drop is then ~0.8
V/m. But the radial drop across the ~0.1-in, thickness of dielectric between
the center conductor and shield is ;i'-e—afetz ‘than 20 kV/m, which 1s so much
larger than the axial drop that it is perfectly reasonable to ignore the axial ‘
component of field and assume pure TEM propagation.

The preceding discussion shows clearly that the assumption of pure -
TEM-mode propagation is not a significant limitation for practical trans- j

mission lines so long as (1) the geometry and maximum applied signal

4




frequency are such that complementary modes (TE and TM) cannot be effi-
ciently transmitted and (2) the lines are relatively low-loss. The example
for the first condition showed that for even a large coax cable, frequencies
up to 108 Hz are still a factor of ~4100 below the TE-mode cutoff frequency,
and so the complementary modes will indeed not be efficiently transmitted.
(A frequency of 108 Hz is considered an acceptable upper limit on the useful
frequency range of the models to be developed in this report.) The example
for the second condition suggests that for cables as much as 4100 times as
lossy as an RG-8 coax (2 dB/100 ft nominal attenuation at 108 Hz), the devi-
ation from pure TEM mode is acceptably small, being on the order of 1%.
With the assurance that the assumption of pure TEM-mode propaga-
tion on the transmission lines of interest is not a limitation of any signifi-
cance, we are ready to proceed to the derivation of the transmission line

equations.

2.1 TWO-CONDUCTOR TRANSMISSION LINE EQUATIONS

A "transmission line' formed by two conductors of completely arbi-
trary geometry is shown in Fig. 2.4. This transmission line can be repre-
sented schematically as shown in Fig. 2.2, which also defines the direction
of x, the measure of distance along the line from a reference point — i, e.,
the receiving end. The properties of this line can be described in terms of
the distributed parameters of series resistance R, inductance L, shunt con-
ductance G, and capacitance C, with units of ohms, henrys, mhos, and farads
per unit length, respectively, An incremental section of this line may then
be drawn as shown in the equivalent circuit of Fig. 2.3, where the per-unit-
length parameters have been multiplied by the increment length Ax. (A "T"
section has been used here, but the derivations that follow could be just as
easily accomplished for other configurations, e, g., '"n' or "L" sections.)(z)

Now, it is clear from the arbitrary shape of the line shown in Fig, 2.1 that

the distributed parameters will not be uniform over the full length of the
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Fig. 2.4. General two-conductor transmission line
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Fig. 2.2. Schematic representation of transmission line
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Fig. 2.3, Equivalent circuit for incremental section of
two-conductor transmission line
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line, but rather will be functions of x. For these derivations, the param-
eters are, of course, constrained to be uniform over the increment Ax.
But then, as Ax = 0, this constraint vanishes and, as a result, there are no
limitations on the variation of the parameters with x.

Proceeding now to the derivation of the equations, let us write a
Kirchoff's Voltage Law equation around the outer loop of the incremental
section. This results in

x LbAx 3(i + ai)
2 a3t

(e+Ae)-(1+A)RA

Collecting terms and dividing through by Ax gives

fe _ R, L3 3(i+ai)
o = (214 4i) 3 Ry (at+—-————at )

Then, as Ax = 0, Ai - 0 also, and we have

I

de 91 :
Pl Ri + LF . (1)

In a similar fashion, applying Kirchoff's Current Law to node@ results in

(1+0i) = 1+ (e +ne) - (1 + o0 BEX - 202 2000 G
+ (e he) - (14 a1) BoX_ Zx 2L Ai)]CAx :
Collecting terms and dividing through by Ax as before results in
%_i: - [(e +he) - (i + A RAx Léx a(iatm)] G
+éa't' [(e + he) - (i+ i )RAX- LAZX a(iai Ai)]c .

And once again, as Ax = 0, Ae -~ 0 also, and we have



91 de (2)

For sinusoidal excitation, the instantaneous values of e and i as functions of

distance and time can be written as -
e(x,t) = E(x) expljut) (3)

and
i(x,t) = I(x) exp(jux) , (4)

where E(x) and I(x) are functions only of distance. Substituting Eqs. 3 and

4 into Eqs. 1 and 2 and differentiating as required gives

%=RI+ijI=(R+ij)I=zI (5)
and ‘

dl . .

&=GE+3wCE=(G+3wC)E=yE. (6) .
Note that in Egs. 5 and 6, the notation f(x) has been dropped, but remember
that each quantity in these equations is still a function of x, including the f
transmission line distributed parameters R, L, G, and C. Note also that .

the signs of both sides of these equations are positive, whereas they fre-
quently appear in other literature with the right-hand side of the equation
negative. This seeming discrepancy results merely from different choices
of x = 0, and simple physical reasoning shows that for x = 0 at the receiving
or load end, the signs of Eqs. 5 and 6 are correct.
Taking the derivative of Egs. 5 and 6 with respect to x yields
2

2.8 (7)
Cdx
and
dZI dy dE 4
dx

Substituting Eqs. 5 and 6 into Eqs. 7 and 8 gives
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+4

and

and we have

and

yz are equal.

.
d E dz (1 dE

2 & (— ‘“dx) +2lyE)
a%1 dy <1 dI)

£ = =2 ) + y(z1)
dxz dx \y dx

dz _dy _

dx ~ dx ’

2

d E )

—-—é-=zyE (9)
dx

2

2 =y, (10)
dx

where we have taken advantage of the fact that the scalar products zy and

These are second~order, linear, homogeneous differential

equations, and their solutions will be of the form

and

E=A exp(\,fi x)+ B exp(\,/2 x)

I =¢C exp(\,/i x)+ D exp(y2 x) »

where Yy and Y, are roots of the auxiliary equation

yz-zy=0.

These roots are found to be

v = /2y,

and the solutions for E and I are then

E = A exp(/zy x) + B exp(-/zy x) (11)



and |
I = C expl/zy x) + D exp(~/2y x} . (12)

To facilitate evaluation of the constants, we can express C and D in terms
of A and B, respectively, by first differentiating Eq. 11, which then becomes
equal to zI according to Eq. 5, then multiplying both sides of Eq., 42 by 2z,

and finally equating coefficients of like powers of the exponential. The re-

sults are

Cc = AJy/=z
and

D = -B.J/y/z .

Substituting these back into Eq. 12 and using the boundary conditions E(0) =

E_ and I(0)=I_ atx =0, we have

L L
E, = A+B .
and
I. = AJy/z - BJy/z .

L
Solving for A, B, C, and D, and substituting these constants into Eqgs. 11

and 12, the equations for E and I are

E = 3 (B +1 J2Ty) expb/zy %)
+(E -1 J/zly) exp(-yzy x)] (13)
and
1= 2 (B, Tz + 1)) explay %)

- (B Wylz - 1) exp (w/zy x]] . (14)

The dimensionless quantity 42y is defined as the propagation constant (vy),
and the term Jm which has dimensions of impedance is defined as the
characteristic impedance (ZO).

With the propagation constant defined as vy = Jzy and since z and y

are complex numbers, it is clear that y is a complex number also. That is,

10




v = Jzy = o+ jB .,
where o is defined as the attenuation constant and B is the phase constant.

For a lossless transmission line, R = G = ¢ = 0; then,

V¥ = (jul)(uwC) = (8)°

or

wZLC = BZ .

But the velocity of propagation of waves on the transmission line, also known

(1)

as phase velocity, is defined as

_ wi{radians/unit time)
p  B{radians/unit length) ’

v

therefore,

LC = (15)

51
2 2
(03] v
P

If we know any two of the transmission line parameters, L, C, or vp, we

know the third also.

At this point, it i8 important to review the conditions we have im-
posed on the various equations we have developed. The equations and corres-

ponding conditions are summarized as follows.

dE
dx 2l Pure TEM-mode propagation
and sinusoidal excitation
a o
dx =Y
dZE
> - zyE = 0 Pure TEM-mode propagation,
dx sinusoidal excitation, and
5 uniform parameters
d’l
— - zyl =0
dx

11



1
E = B [(EL + IL Zo) exp(yx)

+(E. -1 2 )exp(-yx)]
L L0 Pure TEM=-mode,

E sinusoidal excitation, T
1 L .
I ==/l =— + L. ] exp(yx) uniform parameters
2\ Z L
0
ZL 1 Y exp(ovs)
“\Z L/ E*P\-Y¥x
0
1 Pure TEM-mode, sinusoidal
LC = — s -
2 excitation, uniform parameters,
Vp lossless

We will now proceed to the derivations for multiconductor trans-

mission lines.

2.2 N+1 CONDUCTOR TRANSMISSION LINE EQUATIONS

In the same fashion as for the two-conductor line, the equivalent

circuit for an incremental section of an N+l conductor transmission line

can be drawn, as shown in Fig. 2.4, The N conductors are designated 1
through N (including k), and the '"+1'" conductor is the return. (The use of
N+1 conductors to describe the complete transmission line system, includ-
ing return, is for later convenience in indexing summations., It would have
been just as correct, of course, to include t;he rrerturn in the N conduétbrs
and then run the indices to only N-1,} Although not shown for clarity, each
of the other conductors consists of complete ""T' sections, the same as
shown for the kth wire. And, of course, each of the other N conductors
has a shunt admittance and mutual inductance to every other conductor
{except the return), which are also omitted for clarity. Again, we are
making no.assumptions regarding uniformity of R,\ L, G, and C on this

line, except that they be uniform over Ax, a constraint which vanishes as

Ax = 0,

12
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Fig. 2.4.

Incremental section of N+4 conductor transmission line
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th
First, writing a KVL equation around the outer loop of the k= wire

section shown in Fig, 2.4 gives

Rkk Ax ka Ax a(i + Al)k

(e + Ae)k - {i+ A1)k > - > Y -

Lik Ax a(i + A1)i Rkk Ax '

This is the same equation as was previously written for the two-conductor
transmission line, except for the addition of the two voltage drops due to

mutual inductance between the kth wire and all other wires. These two

terms are the two summations, of course. Note that the term immediately
preceding each summation could have been .conveniently included in the sum- |
mations merely by allowing the index i to pass through k. But that would .

obscure the fact that these drops result from different causes ~ i, e., circuit

. th . .
inductance of the k~ wire versus mutual inductances; and in any case, they

will have to be separated later on. Combining terms and dividing through

by Ax gives
Ae - i) Rkk . ka 8(2i + Al)k
Ax T2 2 at
\ ; Lik 3(2i + A1)i
. 2 Jt )
i=1
itk
Then, as Ax = 0, Al - 0 also, and we have p
de di N i
k . k i
3% —Rkk1k+ka—at_+§1 Lik 3¢ - -
itk
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. For sinusoidal excitation, this equation becomes

dE, N
G = (Ryg tely )L+ 1‘;1 jwbyy Lo
itk

For the system of N+1 conductors, there are N of these equations since k

varies from 4 to N, and the final result is

By [Ryg tiebyy)  Galyp) e R TINU
E, (Jwk, ) (Ryp +jwlyy) s m s s s (uly ) I
R I " ;
dx . - . - .
EN_ L(ijNi) Gulpgd =or s (R # ijNN)_ INJ

This result, of course, can be written more conveniently as
. d Y Y
— E = Z .
ax Z1 (16)

Now, writing a KCL equation at node 1 of Fig. 2.3 results in

N N
(1+A1)k =i 4 Z Ali =i, + b 4 E Ali
i=14 i=1
itk
de
_ . kk
—1k+ekkakAx+CkkAx Y
N N (e, . - e,.)
kk il
+ Z (ekk - eii) Gik Ax + Z Cik Ax ——-gt————
i=1 i=1
itk ik
where
e.. = the voltage with respect to return of the center node of

ii
. . h . .
the incremental section of the kt wire (i =1 to N, ex-

cluding k)

15



Rii Ax Lii bx ofi + .'f\i.)i
= |(e + Ac)i - (i+ Al).1 > - > on

N Li' Ax a(i + Ai)J.

-y
i=1 2 at
j#k
and
ey = the voltage with respect to return of the center node

th
of the incremental section of the k' wire

I P Rkk Ax ka Ax (i + Al)k
- Sl k2 2 at
) g Lik Ax (i + A].)i
i1 2 at
ik

Combining terms and dividing through by Ax results in

/_\ik de N
_ Kk
Tx - %k ke T Crk T3t T iz;i (epx = €11) G
ik
X }15 o 3leyy = &)
ik 3t

i=1
itk
Then, letting Ax = 0, Ae = 0 also, and we have

k. ~ °k

and
e,.. = e, ,
11 1

which results in
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aik aei N
3% - %k Ok T Gk Bt +i§1 (e) = &) Gy
itk
N 3(e, = e.)
k i
+.z: c1k at
i=4
itk

For sinusoidal excitation, this becomes

o

N
T - B O P E WGy t iE_:i (B - E;) Gy
i#k

N
* Z jwC,;, (B, - E).
i=14
ik

N . . sl
Rearranging and combining some terms gives”

e

N N
el iz_:i Ey (G tiwCyy) - ?;1

itk

Ei (Gki + jw Cki) .

Once again, there are N of these equations as k varies from 4 to N, and

these N equations can be written in matrix form as

j N
I1 . (Gy; +jw Cyy) ‘(Glz+jwclz) *
i=4
N

I, (G gyt jw Cyy) .E (Gy; +JwCy) + + + =(Gyp
d ) ) i=4 .
&= T :

. : « N

In L-'(GNI+JwCNl) (Gyg Hiw Cpg) e+ 0 =

+ jw C

-(Gyn + Jw Cp)

2N

-

2 (Gpy T Jw Cpy)

*Note that the order of the subscripts has been reversed also. This

does not alter the basic equations, but is necessary to make the matrix

equation correct,
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or more conveniently as

E . (17) .

d =
—I=Y
dx —
Reiterating these results, we have developed the transmission line equations .

for an N+1 conductor transmission line which can be written in matrix form

as
S gozT (16)
dx _—
and
d = "
—T=XE (17)

so long as the matrices Z and Y are defined as shown above in their fully
expanded form. As we did for the two-conductor line, we can take the de=-
rivatives of Egs. 16 and 17 with respect to x and then substitute Eqgs. 16 \

and 17 into the derivative equations to obtain

2 -
d ~_d_7=(-1dE) i
ZE_dx _Z_._ dx +£1E
and
¢ o ay [.-1dl
— 1==|Y "=}+Y2ZT.
2 dx(— dx) _—
dx

Then, if the transmission line is assumed to be uniform,

[o N

Y

gé—_—— 0

dx ~ dx ~ 7’
and we have

dz — -—

—ZE =ZYE (18)

dx ,

[ 4

and

dZ

—TI=y2T. (19) .

dx

18
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These equations are quite similar, of course, to the equivalent equations
for the two-conductor line, i.e., Eqs. 9 and 10, but the manner of obtain- .
ing solutions will be different.

By analogy to the two-conductor case, it m1ght be anticipated that

the solutlons will be of the form

-—h

E = exp(yx) E+ + exp(-yx) E_ _ (20)
and ‘ o

nd " nd / -
I = exp(y %) I+ + exp(-yx) I , (21)
and, indeed, many authors simply assume this form of solution without

proof. Also by this analogy we have

Y =4Z2Y
and

Y =y¥Z .
It is clear that y and _Y' are the propagation constant matrices for voltage
and current waves, respectively. These will be general NxN matrices,
with no special properties, and are not even necessarily equal to each
other since, in general ZY # YZ, Under these conditions, we do not know
how to define the elements of y.

One approach to obtaining more useful solutions to Eqs. 18 and 19

is to introduce a change of coordinates so as to diagonalize ZY and YZ.
To do this for Eq. 18, for example, we find the eigenvalues and eigen-

vectors of ZY = A and let

E'=Q ' E
or
E =QE’

where Q is the square matrix made up of the N eigenvectors of ZY placed

side by side, and E’ is a new variable. We then have .

19



= éf = AQE . (22)

The diagonalized or canonical form of A is given by
-1
A=Q AQ,

from which we have

-1
A=QAQ
and then
d2 = -1 = —
<5 =QE=QAQ QE=QAE",
dx
or finally,
d2 -
—ZE'=AE' . (23)
dx

Since A is a diagonal matrix, this can be written as N independent equations;

i. e.,

— E’= Ai Ei' (i=1toN) (24)

and each of these will have a solution of the form

¢ _ ’ ' 5 =
Ei exp(yix) Ei-{- + exp( yix) Ei- (i=1to N)

where Y; = \hi . The N solutions can be written more compactly as
B’ = exp(yx) E‘_; + exp(-yx) ﬁ: (25)

where now Y is also a diagonal matrix. In general, however, each Ei' will
now be a linear combination of some or all of the original Eis as determined
by the eigenvectors of ZY. Thus, we have simplified ¥ at the expense of
complicating E.

The N waves described by Eq. 25 may have N distinct propagation
constants \7e Consider the special case, however, of all propagation con-

stants equal; i, e.,

20
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_ 3 _ B .2
)\1—)\2—...—)\N—)\E—YE.
We then have :
_/l = XE 1. (26)
Substituting into
A=QAQ7, @7)
we obtain
- -1
_— T -1 -— T
—xEI (QQ )—XEI (28)
or
72v =2 1 (29)
LT YE . )

One form of the eigenvector matrix Q which will satisfy Eq. 27 for this case
isQ = 1 from which we have Ei'= Ei fori=1toN, or E = E Thus, we
have not only simplified Y to the very simple form of a scalar times the

unit matrix, but have also not complicated E as before. For Eq. 19, we

have a similar solution:

vz =v; T . | (30)

Finally, since for this case ZY and YZ are diagonal matrices, it is appar-
ent from the fundamental theorem

T
)

ap) T =8TAT,

and the fact that Z = _Z_T and Y = }’_T, that ZY = YZ. Therefore,

Reiterating these results, we have the solutions to Eqs. 18 and 19

as shown by Egs. 20 and 21, where ¥y = v" and
(31)

v ezy =T
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If the line is assumed lossless, R = G = ¢ = 0, and then

Z = jul,
X:jwﬁ’ -
vy =j8,
and
2
(jw) LK =(j8) I
or

Equation 32 is analogous to Eq. 15 for the two-conductor line and shows
again that if we know any two quantities, we know the third also. The Y ,
matrix has been replaced here by a matrix designated K to emphasize the
fact that the imaginary parts of Y are not truly capacitances. '

In the foregoing solution, we had to assume equal propagation con-

stants for all conductor pairs to be able to treat the system as a set of
independent equations. An interesting solution results if, rather than
forcing the independence, we simply assume it; i, e.,, we neglect the inter-

action between wires., The solution is then of the form

zY = ¥° , ‘ (33)

where Y is a diagonal matrix with N distinct propagation constants Yi (i=
1 to N) along the diagonal. Again, for the lossless case, this becomes

LK = (zpz)'l | (34)

where now Y‘P is made up of N different phase velocities Vo, (i=1toN)on
i

the diagonal. This form of solution is more representative of practical

multiconductor transmission lines since it accounts at least partially for

22




the variation in phase velocity which will always occur on such lines. It
is not completely representative, however, since it still requires all off-
diagonal terms to be zero. So long as the individual phase velocities do
not vary significantly from the mean value on a practical line, either Eq.
32 or Eq. 34 may be expected to give acceptable results,

Summarizing the developments for the multiconductor transmissidn

line, we have the following results subject to the stated assumptions.

d =» _ _=
™2l Pure TEM-mode
propagation and
_c_i_ _f - v f: sinusoidal excitation
dx -
2 .
4 E=2ZYE ‘
2 Z =
dx
2
£3f=léd
dx " All of the above and
- . . uniform parameters
E = exp(y x) E+ + exp(-y x) E_
T = exp(l x)f++ exp(-:{_ x)I_ J
LK =([v 2\-1 All of the above and a
—— -p lossless line
LK = 1 All of the above and
- 2 uniform phase velocity
P

These results are essentially the same as those listed previously for the

- -

- -
two-conductor line, except that the constants, E+, E, I+, and I have not

been determined. However, for the work which follows, these constants

will not be required.

23



One final point which should be mentioned is the conclusion that .

y = \_/_'. For a lossless line, the propagation constants are determined by
the phase velocities. Equal propagation constants for the voltage and cur-
rent waves then simply imply that they travel with equal velocity. This is
a reasonable conclusion from physical considerations and tends to verify

the mathematical results,
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3, COMPARISON OF THE DISTRIBUTED AND LUMPED SECTION"
MODEL SOLUTIONS FOR THE TRANSMISSION LINE EQUATIONS

The transmission line equations develope'd in Section 2 are for a
distributed parameter model of the line, such as that shown in Fig. 3.1.
For such a line, the transmission line equations can be solved directly
for the exact solution. However, direct solutions may not always be
possible.

A solution can also be obtained by representing the line as a series
of sections made up of lumped circuit elements, and then applying circuit
analysis techniques. Such a solution will be approximate, with the accu-
racy increasing as the number of sections used to repfesent a given length
of line increases. This portion of the report will calculate the worst-case
error of the lumped approximation as a function of the line length repre-

sented by each section.

3.1 DISTRIBUTED PARAMETER MODEL

Figure 3.1 shbws the distributed model of a single-wire transmis-
sion line over a ground plane; the line is modeled by an admittance to
ground per unit length, y, and by an impedance pex; unit length of the con-
ductor, z. This configuration is solved by writing the partial differential
equations that describe the propagation of currents and voltages along the
line. The solution is shown in detail in Section 2 and in standard texts on
transmission lines. The solution is in the form of forward- and backward-
traveling waves that satisfy the boundary or terminal values of impedances
and sources.

Figure 3.2 shows a unit section of transmission line to be solved

for the ratio of output to input voltage. This could be any section of the
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Fig. 3.1. Distributed model of transmission line
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Fig. 3.2. Unit length section of transmission line
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(. cable; i. e., Zs could represent the impedance of the cable to the left and
ZL the impedance of the cable looking to the right. It could also represent
the entire length of the cable where Zs is a source impedance and ZL is a
v termination impedance.
For the distributed model, the transmission line equations must be
solved. Call the position of Ei’ x = -1; cal(liik;e position of EZ’ x = 0. Then

following the solution given by Ramo et al.,

E+ exp(+y4) + E- exp(-y4)

Ei =
+ -

E2 =E + E
+ -

Ii = 1 exp(+yL) -1 exp(-vi)
+ -

IZ =1 -1

Y = 42Y (exp(+jwt) understood]

. where E+ and E_ refer to forward- (towards the load) and reverse-traveling

+ -
voltage waves and 1 and 1 refer to forward- and reverse-traveling current

waves.,

At the load end, the terminal condition exists that EZ/I2 = Z_, and

L
from the characteristic impedance of the line, E+/I+ =E /I = Zo.* Com-

bining these gives

E, E' 4+ E
T % %L T3 - ’
2 (E /Zo) - (E /ZO)
E A%
E+ ZL + Z0
. Then the transfer function between EZ and E:l is

*This can be verified readily using the constants E+, E-, 1t, and
‘, I" from Egs. 13 and 14 in Section 2.
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2 Lt %o
E Z, -2
+ +
Y g expive) + <E L 0) exp(-v4)
Z_ + Z
Lt %o
2 ZL

= ZL lexp(+vL) + exp(-vy4)] + Zo Cexp(y4) - exp(-vL)] (35)

for the distributed parameter model.

3.2 LUMPED ELEMENT MODEL

Figure 3.3 shows the lumped element model for modeling this sec-
tion of cable by only one lump; the distributed parameters, z and y, per
meter have been multiplied by the length of the cable section, £, to give

the lumped element values. This is solved by ac circuit theory as follows.

Q

(. C* Z.i - \+
g

i S y2/2 ix\' yL/2 Z, ,
|
AN TR AT HIRITIITIITHIMmy

RT-00364

—— m+
™~

Fig. 3.3. Lumped element model of transmission line
Using the loop current, ix, gives

()
—_—1 Z
E, = |z4+ yi/e L

1 1 X
(yz/Z) taL
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E, = - e
yi/2 L
EZ ZL )
_— = (36)
Ei yZJZ2
ZL(i +——2—-') + 22

for the lumped element model.

3.3 COMPARISON OF MODELS

It is now desired to show that Eqs. 35 and 36 are the same within
some error bound for a lumped section that is sufficiently short; that is,
it is necessary to show that:

1. For a lumped section that is sufficiently short, the error in

the transfer function EZ/E will be less than some desired

number, e.g., £10%. '

2. As the lumped sections get smaller, Eqgs. 35 and 36 approach
each other; i. e., the lumped section becomes a distributed
section.

Substituting into Eq. 35 with the relations Z,= Jzly and y =./zy

gives
32_ ) 22,
Ei ZL[eXP(‘W‘YZJZ) + exp(=/yz2)] +/z/y Lexp(+/yzl) -~ exp(~-Jyz1)]
(37)
Using the trig identities
2 x3
exp(x) = 1 +x+>2<—'+3—|+- .
XZ x4
exp(x) + exp(-x) =2 (4 Ll I )
x> %0
exp(x) - exp(-x) = 2 (x + 5+ + )
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in Eq. 35 gives

E— ZL

2 22 2 22
1 yzl° | (yzt°) ] [ yz4 | {yzi") ]
ZL[1+ St gt +agft+ o My .

[\M)

I

=

This is the power series expansion of Eq. 35, the solution to the transmis~
sion line equations for the distributed parameter model,

The expansion is in terms of yzﬂ,z or in terms of (yf,)z. The quan-
tity z is usually of the formz=r + jwﬂ,i, where r is the resistance per unit
length of the transmission line and 2,.1 is the self-inductance per unit length
of the transmission line. The quantity y is usually of the form y = g + jwc,
where g is the conductance per unit length between the transmission line
and ground and c is the capacitance per unit length between the transmis-
sion line and ground. These are finite quantities, and for a f{inite fre-
quency, w is finite, which in turn makes both y and z finite.

For convenience, Eq. 35 can be rewritten as a series expansion in }

x where x = yzﬂ,2 = (Y,ﬂ)z. Then

7

2 2
1 X X X X
SRS TR MRS ThE AR

DISTRIBUTED
MODEL

. (38)

thth

Equation 36 can be written in this form also to show the comparison.

o]

z
LUMPED 2 L (39)

MODEL E ;
12 (4 +3)+ 24(4)

If the lumped section length, £, approaches 0, (Y.&’,)2 also approaches
0, and then Eq., 38 equals Eq. 39; that is, as the section length approaches
zero, the lumped and distributed solutions become the same. This is ex-
pected since both describe the same model as 4 -~ 0.

It can be seen also that if x is small compared to 1, the lumped

approximation will give good results per section; that is, the extra terms
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2
in the denominator of Eg. 38 (e.g., x2/4! +eee and x/3! +x /50 +...)

will be negligibly small compared to 1.

3.4 ERROR ANALYSIS

The quantity y, the propagation constant, is in general complex; it

can be written as

y=a+j8
where

@ = attenuation constant, a real number, and

B = phase velocity, a real number.

In terms of the distributed element values, y=o + jB = Jtz—y , and
z =1+ jwl, yv=g+ juc; for parameters such that r/wg << 1, g/wc << 1, it

can be shown that

:

— +
2/4/c 2

2 2
8= w/ic {1 = rzg + gz + r2> s
4w 4c 8w c 8w 4

o =

4

2 2

= [T r .. 3 ._r® \.._g __Tr

Zo“chiJ’ 2 2 > 2772 )7 35Tz
8w 4 8w ¢ 40y 4c

For most real cables and frequencies up to 30 MHz, |o| < |g]|, and
2
B = 2n/A. Then the quantity x = (yz)z can be written as x = (yw) = (v +jB)2

* £ and, since o << 8, this can be expressed as
e D 2,2 2 2
x = (jBL) =-8 £ =-H4n (&/X) .

Suppose £ =)\ /10; i, e., each lumped section of cable is 1/40 of a

wavelength long. Then,

x =-0, 3947841760 ,

31



4 +== 0,80261
X x2
1+E+Z!—+ <+« = (,80919
) xz 1 =1.0
1+§?+g!—+--- = (0.93289

This shows an error of 0.81% 'n the coefficient of ZL and an error
of 6.7% in the coefficient of z4 for Eq. 39 compared to Eq. 38.
This calculation has been done for several values of £ in units of

fractions of a wavelength. The results are shown in Table 3.1,

Table 3.1
ERROR IN COEFFICIENTS OF ZL and z{

Error in Coefficient Error in
2IN of Z Coefficient of z4 -
1/40 0.002% 0. 4%
1/20 0. 04% 1. 6%
1/40 0.81% 6. 7%
1/8 2.2% . 14, 0%

The effect of the error in the coefficients of ZL and z4 of Eq. 39 as com-
pared to Eq. 38 can be evaluated as follows.

From Table 3.4, it can be seen that the error in the coeifficient of
z{ is always greater than the error in the coefficient of ZL; therefore, a
worst-case error in the magnitude of EZ/Ei would occur if lz}?,| is much
greater than [ZLl; then the error in the magnitude of E2/Ei will be just
the error in the coefficient of z4. It should be noted that this is a

theoretical worst-case analysis and represents a greater error than

expected in real cables where ZL is equal or greater than zj.
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. The effect of the error in the coefficients of z4 and ZL upon the
phase angle of EZ/Ei can be considered by rewriting Eq. 35 as:

E z
, E?:= Z. a(1+ )I; 28 (1 +€_) (40)
4 LQ/ €A z EB
where
[0

= coefficient of ZL ’
B = coefficient of z£ ,

€\ = error in the coefficient of ZL , and

'B = error in the coefficient of 24 .

A worst-case phase angle error occurs when the complex numbers

Z, o and z£B are of equal magnitude and differ in angle by 90°; i. e., they

a::a perpendicular. Considering only an error in the coefficient of g (i. e.,
. € = 0), Table 3.2 can be constructed to show the effect upon the phase
angle of EZ/Ei for an error in the coefficient of z 4.
Table 3, 2
ERROR IN PHASE ANGLE OF EZ/Ei
Error in Coefficient Error in Phase
of z4 Angle of E,/Ey
(eg) (€)
0.1% 0.0286°
0.2% 0. 057°
0. 5% 0. 143°
1% 0. 295°
‘ 2% 0.567°
5% 1.40°
: 10% 2,73°
. 20% 5.20°
50% 11, 3°
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Using Tables 3.1 and 3.2, it is possible to determine the maximum
amplitude and phase angle error per lumped section; this is shown in .

Table 3.3.

Table 3.3
MAXIMUM AMPLITUDE AND PHASE ERROR PER SECTION

Length of Lumped

Sections in Fractions Maximum Magnitude Maximum Phase
of a Wavelength Error in [EZ/Ei‘ Error in E,/Ey
1/40 <0, 4% (0. 035 dB) <0, 114°
1/20 <1.6% (0.138 dB) < 0. 45°
1/40 <1.6% (0.563 dB) <14,86°
1/8 <11.0% (0,906 dB) $2,98°

3.5 MULTIPLE-SECTION MODELING

In general, a cable of interest is modeled by more than one lumped

section. For example, consider the error analysis applied to a 10-m-long
8

cable; suppose the velocity of propagation for the cable is 2.0 x 10™ m/sec;

suppose also the highest frequency of interest is 20 MHz., Then,

A.=ifp_=2x1081z1/sec=“)m' ‘ (41)
20 x 10" Hz
This cable is one wavelength long; it can be modeled by ten 1/40-
wavelength-long sections. As a worst-case error analysis, the phase
error will add for each section and the amplitude error will multiply.
(Multiplying amplitude errors per section is the same as adding dB errors.)
The total magnitude error for ten 1/410-wavelength-long sections can

be determined from Table 3,3 as follows,
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Magnitude error = (1. 06'1'):10 =10 x 0,563 dB =5.63 dB
Phase error = 10 x 1. 86° = 18, 6°

Then the total error for the cable will be 5.63 dB error in the mag-
nitude of EZ/Ei and 48.6° in the phase of EZ/Ei' This analysis has been
performed on sections of 1/8, 1/40, 1/20, and 1/40 of a wavelength and is

summarized in Table 3.4.

Table 3.4
TOTAL AMPLITUDE AND PHASE ERROR

Maximum Maximum
Length of Total Amplitude Total Phase
Section (£/A) Error \EZ/Ei\ Error (°)
1/40 < 18% (4.40 dB) < 4,4°
1/20 < 36% (2.76 dB) < 9.0°
1/8 < 232% (7.25 dB) < 23,8°

The improvement by using more sections that are smaller fractions
of a wavelength can be seen in Table 3.4; i.e., 40 secfions of 1/40 wave~
length give an amplitude error of 1.4 dB and phase error of 4.4° compared
to 8 sections of 1/8 wavelength which gives an amplitude error of 7.25 dB
and a phase error of 23.8°,

It can be seen that Table 3.3 can be used to bound the error caused
by the lumped model approximation. It should also be noted that these are

worst-case estimates of the error.
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4, METHODS FOR DETERMINING PARAMETER VALUES

The previously developed transmission line equations and solutions
for an N+1 conductor line will now be used to develop methods for deter-
mining a line's distributed parameters from those parameters that can be
measured in the laboratory. The distributed parameters for an MTL can-
not be measured directly because of the numerous interactions between
conductors, thus necessitating this indirect approach.
The question may be asked, of course, '""Why not calculate the re-
quired parameters directly from the conductor geometry?' An example of .
such a calculation and the results will be presented in the section on mis-
cellaneous topics, Section 6. This direct approach can, in fact, be used o

quite effectively if the conductor configuration is very simple. Unfortu-

nately, this will seldom be the case for practical cont rol and communica-
tion cables, with the possible exception of simple coaxial cables used for
rf transmission. And in large installations, even these cables may be
bundled together so that their interactions must be considered. Examina-~
tion of the equations for determining the various parameters for a config-
uration no more complex than four unshielded wires in an overall Shield(g)
reveal the extreme complexity of the required calculations. Further,
these equations still assume a certain degree of wire symmetry which
simply will not occur in randomly configured cables. Thus, an approach
based on laboratory measurements of actual cable parameters is required.
The direct calculation technique does have application to the prob-
lem of modeling the cable to structure interactions. Separate modeling of

the cable proper and the cable-structure pair will be the subject of a later

section,
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We have previously mentioned four parameters which are required
for the cable characterization, namely, R, L, G, and C. The parameters
R and G will be those which account for losses or attenuation. In parti-

cular, the attenuation constant in dB/400 ft of a two-conductor line at

(6)

ultra-high frequencies is given by

4.34 R
t

= —— 'Y 4 2.78¢fF
o Z, “*¥p

R CONTRIBUTION G CONTRIBUTION

where

Rt =0.1 (-é + -1]5—) f% (for copper coaxial conductors) ,
Rt = 0.2 (-é) f% (for parallel copper wires) ,
D = inside diameter of outer coaxial conductor (inches) ,
d = diameter of parallel wires or center coaxial conductor
(inches) ,
f = frequency in MHz ,
¢ = relative dielectric constant at f ,
FP = power factor of dielectric at f .

Calculation of several numerical examples for typical conductor
dimensions and dielectric materials shows that, at frequencies of 108 Hz
or less, the attenuation due to R is a factor of 10 or more greater than
that due to G. Therefore, little error will be introduced by neglecting the
shunt conductance G, leaving only R, L, and C to be determined. *

Methods of determining L and C will be presented first, assuming

a lossless line; then a method for determining R will be presented.

*This will be true for the MTL also since, in the limit, a wire sur-
rounded by a number of other wires merely becomes the coaxial case dis-
cussed above.
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4.1 CAPACITANCE-BASED L AND C PARAMETERS

This section presents a method for determining the L. and C param-
eters of an MTL based on capacitance measurements made on the cable to
be modeled. This method is based on the assumption of pure TEM-mode
waves on the MTL despite the obvious imperfections of real cables which
prevent this from being true. However, as pointed out earlier, the
assumption of pure TEM propagation is a reasonable approximation for
mos\,t practical cases, and the simplifications which result from the as-
sumption make it well worthwhile.

With the assumption of TEM propagation, the coefficients of poten-
tial, induction, and capacitance for a set of conductors can be determined
from static fields.(s) The relationship between potentials and charges on
a system of N Stra.ight conductors of arbitrary shape over a ground plane
can be found in many textbooks on field theory. Using Kajfez's notation,

the charges are related to potentials by

q = Ky By K, By b A KB4

ee + K fori=14,2,---N (42)

N EN
where

line charge on the ith conductor (C/m),

a]
i

potential of the ith conductor with respect to
ground (V) .

0
1]

The coefficients of Kij are coefficients of proportionality between voltage
and charge and have units of coulombs/volt-meter or farads/meter, the
units of capacitance. However, Maxwell calls only the diagonal terms
K,1i of the K matrix coefficients of capacitance, and the off-diagonal terms
Kij he calls coefficients of electrostatic induction.(4)

In Section 2, we derived the transmission line equations of the MTL,

based on the previously stated conditions of single-velocity pure-TEM waves
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on the MTL. The important result for the purposes of this development

is Eq. 32 of that section, namely,

{1 -
LK=—T.
v

P
In this equation, the terms of the L matrix represent actual inductances
of the MTL; i.e., the Lii terms are the actual inductances of the closed
circuit formed by the ith conductor and ground, and the Lij terms are the
mutual inductances between the ith and jth conductors. Solving for L in
Eq. 34 gives
L = —1—2'1'1_(1 : (43)

v
P

Thus, if we can determine K for the cable, we can determine the cable
inductance parameters. The next consideration, then, is how we can
determine K, and whether we can then also calculate the cable capacitance
parameters.

In a system of conductors, there will be a capacitance from each
conductor to all other conductors which we may call the partial capacitance,
denoted Cp, and it is these that we must determine for the cable model. ¥
The manner in which the coefficients Kij are related to these partial capa-
citances ij is determined as follows,

Consider the partial capacitances of the ith conductor, shown in
Flg 4.1. The total charge on this conductor is the sum of the charges on

its partial capacitances, given by

N
- P |
9 Z cij By (44)
j=1
where
E.. = E. - E- H
1) 1 J

¥*These are the same capacitances as shown in Section 2. The
superscript p is used merely to prevent confusing these capacitances
with the measured capacitances (superscript m) to be introduced later.
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RT-00369

th

Fig. 4.4. Partial capacitances of the i" conductor

cP = capacitance from wire i to wire j ,

and

cP = capacitance from wire i to ground .

Expanding this expression gives

- ~P - P - P
9 = Cyy (B - B+ Co (B, - E )+ TCG BT

P -
+ G (B, - By . (45)

N

Grouping the Ei terms yields

N
= - p - p - v e p - ' e 0
4 = -Cy By -G By * J?i Ci5 By
P
- : 4
C:n Ex (46)

Comparing Egs. 42 and 46, we see that™

K.. = -cP (47)
1] 1]

*Note that, since the K;; terms are the negative of real capacitances
which will always be positive, the Kij will always be negative. Thus, the
Ki; cannot be legitimately called capacitances as indicated by Maxwell.
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and

N
- p
K, = Ei cij . (48)

Comparison of Egs. 47 and 48 to the expanded form of Eq. 17 in Section 2
shows that, With G no longer considered, Eq. 48 gives the diagonal terms
of Eq. 17 and Eq. 47 gives the off-diagonal terms. Thus, the K matrix
has been derived by an alternate method.

' Now the Kii or diagonal terms will be simple to measure on a cable
since they are the sum of all partial capacitances to wire i from the other
wires. That is, by merely shorting all but the ith wire to the ground and
then measuring the capacitance C:_:? (using an impedance bridge) from i to
ground, Kii is determined directly since all of the appropriate partial

capacitances are then in parallel. Thus, we have the diagonal terms of

the K matrix as determined by N measurements of Cii (i=1,2,:-+N)
Some manipulation is necessary to obtain the off-diagonal terms,
Kij' Consider the partial capacitances of the ith and jth conductors, as

shown in Fig. 4. 2. If we try to measure Cij directly with an impedance
bridge as we previously measured Kii’ we would actually get the parallel

combination of Cij and a complex series-parallel combination of other

N o N\ &

jN
i } - J
ij
Cii ,Q‘l

RT-00370

Fig. 4. 2. Partial capacitances of the ith and jth conductors
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partial capacitances. In measuring Cii and ij , however, observe that

we can take C?j out of the summation and have

N
m o) P .
C.. =C .+ ) C: (49)
ii N I ik
k#j
and
m N
cr=ch+ ¥ cb o, (50)
JJ SRR ey
k#1
Solving for ij by making use of ij = C_Ijj'i gives the result
p _1fm_ <« op m_ . P
cfl. == [c,. -3 Cc +C.. -3 Ci . (51)
ij 2 i 7 ik i3 jk
k#j k#i
This is still not quite the desired result due to the presence of t_he two par- [
tial capacitance summations. However, these summations can be very .

conveniently disposed of by the following.
If we short conductors i and j together and also short all other con-
ductors to ground and then measure the capacitance between these two

conductor sets, which we designate C;l, we find that

m al P N P
C,, =2, Cl +3 Ci . (52)
ij Koq ik o4 jk

k#j 1#i

The ij and C_Ijji terms drop out of these summations, of course, because

ij is shorted. Combining Eqs. 51 and 52 gives the result

1
cP =3 (c.rr.1 +C - cfr.l) , (53)
ij 2 ii JJj ij

and by merely changing sign we have the off-diagonal terms Kij of the K

matrix,
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K =4 (c.rr.1 -c - cf’.‘) . (54)
ij 2 ij ii JJ ‘

We can now fill the K matrix based on a series of capacitance measure-
ments on the cable whose parameters we wish to determine. With the K
matrix available, we can solve for the inductance parameters, All that is
left to complete the model then is to determine the elements of the partial
Capacitance matrixip_ from K.

The off-diagonal terms of the _(_33 matrix have already been deter-

mined above in Eq. 53. The diagonal terms can be found from

N
m
K. =C,, =2 _p
ii ii =4 Cik . (55)

By removing Cfi from the summation,

m P N
C..=C .+ )Y C;

ii ii =1 ik ’ (56)
k#i
which when rearranged gives
P m > P
C, =Cy - kz_:i Cik (57)

k#i

Unfortunately, there is no clever way of grouping conductors and making
capacitance measurements which will dispose of the summation in Eq. 56,
as we were able to do previously with Eq. 54. However, the C.1k will all
be available for making the summation; therefore, the Cfi can be calculated
from Eq. 57.

In summary, we have developed a technique for determining the
capacitance and inductance parameters for a cable model, based on capa-

citance measurements on the cable to be modeled. To reiterate the pro-

cedure, the steps are as follows.
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First, a matrix of measured capacitances C  is created by mak-

ing the following measurements.

m . th .
Cii = measured capacitance from the i wire to all .
other wires shorted to ground,
m . .th .th |
C.. = measured capacitance from thei and ] wires

1 shorted together to all other wires shorted to
ground (i # j).
2 3

This amounts to somewhat more than 1/2 N~ measurements” on an N4l
conductor cable (including ground). The elements of the K matrix are

determined from
K.. =C
ii ii

and

1 m m m ) .
K =3 (cij - ¢ -cjj)(lm).

Remember that the Kij terms will always be negative. The inductance

matrix L can then be determined from K and vp by use of Eq. 32,

Note that on practical cables, Vp will not be uniform but will have
different values for each conductor pair. An average value of vp will have
to be used for the calculation. Of course, this will introduce some error
in the parameters for wires whose Vp is different from this average. If
improved accuracy is necessary, the solution shown in Eq. 34 may give
better results.

The elements of the L matrix are the actual inductance parameters

for the cable, as has been mentioned before. That is,

il

the inductance of closed circuit formed by the it
wire and ground,

L.,
ii

L, mutual inductance between ith and jth wires (i # jh

ij

*In fact, exactly 1/2 N{(N+1) measurements.
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The final parameters to be determined are the partial capacitances
from each wire to all other wires and from each wire to ground. These

are given by

cP = Ko £ 3)

ij
and ; - N ; N
Cj; = Cy - 2 Ci = By * 2 Kij
j=1 i=1
j#i j#i

The elements of the L and_(_JE matrices then are the final inductance and
capacitance parameters for the MTL., These can be used to create a
lumped-parameter equivalent circuit model of the cable for which they

have been determined.

4.2 OPEN-CIRCUIT IMPEDANCE-BASED L. AND C PARAMETERS

In Section 2, we developed the differential equation for an MTL
(Eq. 16) and solved the equation for the case of arbitrary velocities of
propagation for each wire-reference pair (Eq. 20). For a lossless line,

I d E * 'wLI . (58)
i J

Equation 20 is
E = exp(yx) f_!_ + exp(-vyx) E .
By substituting Eq. 20 into Eq. 58, we obtain

Y exp(yx) §+- y exp(-yx) E =j wL I
or

7= Zo-i EeXP(_\_(_X) E+ - exp(-ix) E_] s (59)

where Zy is defined as the characteristic impedance matrix and is equal

to (t/v ) KL
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It is observed that the matrix Z_ is a function of MTL parameters .
only and is not affected by terminations at either end of the cable. Let us

rewrite Eq. 59 into the following form.

exp(lx) f}+ - exp(-ix) ﬁ_ = ZOY . (60)

Since we know that Z0 is not a function of external loading, let us terminate
the ith conductor into its characteristic impedance Z, with all other con-

i
ductors left open. By making such a termination, the left-traveling wave in

the ith conductor will be zero, and Eq. 60 becomes

: +
exp(yix) Ei = Zii Ii+ZiZ IZ+--- +Ziili +oees

+ ZiN IN ' (61)

and for x = 0,

+
E, = Zi I +Zizlz+"- +Zi'1' + +ZiNIN. (62)

i 171 i
. .th : | + A
iIf we are exciting the i conductor with a voltage E, then Ei = E, and .
E=Ziili+ZiZIZ+~--+Ziili+"'+ZiNIN. (63)

It is known that if a lossless transmission line is excited by an
ideal voltage source at one end and terminated in its characteristic im-

pedance at the other, the source voltage and current are related by

E =21 . (64)

Assuming that 11, I are much smaller than Ii at x = 0, Eq. 63 can be

2’ “ e
reduced to

E=2z 1. (65)

On comparison of Eqs. 64 and 65, we see that

Z. =7 . (66)
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Therefore, we conclude that the diagonal terms of the Z0 matrix approx-
imately represent the characteristic impedance of an individual conductor
with respect to the reference node.

Now let us terminate both the ith and jth conductors in their char-
acteristic impedances Zoi and Z, , respectively, with all other conductors
open. As before, the magnitude of the left-traveling wave in each conduc-

tor will be zero. Then from Egq. 60 we have, at x = 0,

+

Bf = 2, L 42,1, 4 2 L 42 L
2N In (67)
and
E: R SR A IR
P2 In (68)

If the magnitude and phase relationships of the excitation voltages

for the ith and jth conductors are chosen such that Ii = -Ij, then

E . =E - E,
1-J] 1 J

+ +-o-+ +vo.+ . )
Zyht 2,0 2 b 2354t

+ - e o + 4 v ee
Z. In (zj1 I+ 2,14 Z, Y

+Z, 1, +00 +2Z, 1
Jid JN N)

(Z;y

- Zj'i)I'i + (ZiZ - ZjZ)IZ + o0+ (Zii - ZJ.i)Ii

e +(Z2,.~ 2, )], 0 +(Zi, - Z I 69
(2, - 2,) L, (zi ) (69)

N JNTN T
Again, if all other wire currents are small compared to Ii and Ij’

E. -E e = .e I.+ s = .o . o 70
i-j (Zu Z_]l) 1 (ZIJ zJJ)IJ (70)
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But since we required that Ii = -IJ.,

By = (20 Z) L+ (2 - 20 (L)

~(Z2,.+2,.-~2,.-2.)1 . (71)
11 Ji ij jiv i

Since for a linear network Zij = Zji' the relationship between differential

voltage applied to a conductor pair and the current is approximately

E .=(z2..+2..-22Z2,)1. . (72)
i-j it i) ij" i

Comparison once again with Eq. 64 leads us to conclude that the charac-

teristic impedance between any wire pair is given by

Z = 2Z..+v2,.-22Z,, . (73)
0,. ii JJ ij

1]
From the relationships in Eqs. 66 and 73, it should now be possible

to generate the Z_ matrix from measured characteristic impedances. The

terms of the Zo—n?—xa.trix are given by
Z, =z, (74)
and
z7 + er.? - zgl
Zij = > R (75)

where superscript m indicates measured impedances. Z?; is the measured
characteristic impedance of the ith conductor and reference node. ZI..I? is
the measured characteristic impedance of the jth conductor and refergnce
node. ZS is the measured characteristic impedance of the ith and jth con-
ductor pair.

It is interesting to note the results for a symmetrical* cable. Ina
symmetrical configuration, the characteristic impedance matrix is of the

form

*This refers to mathematical rather than physical symmetry, and
is also called 'the completely transposed' line in Dr. L. A, Pipes's paper,
"Matrix Theory of Multiconductor Transmission Lines,' Philosophical
Magazine, July 1937,

o
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where all diagonal terms equal Z, and the off-diagonal terms equal Zm

d
Looking now at Eq. 69, we see that all terms are exactly zero except

those related to Ii and Ij' Therefore,

E .=(2,.+2 ,-22,)1I .
i-j ii i3 ij’ i
But since Z,,. = Z.,. = Z ., and Z..=Z , we obtain
ii i d ij m
Eij = Z(Zd- Zm)Ii R

and the characteristic impedance of a wire pair in a symmetrical cable is

given by

This agrees with the results presented in Hiroshi Kogo's paper entitled
"A Study of Multielement Transmission Lines.“(7)
We have thus far developed a method for determining the elements
of the charactéristic impedance matrix ZO of an MTL based on impedance
measurements. These measurements can be made using a time-domain
reflectometer. Note that, although the derivation called for terminating
the pair being measured in its characteristic impedance to eliminate re-
flection§, with a TDR that is not necessary since the characteristic im-
pedance can be determined before any reflection occurs. The character-

istic impedance matrix is related to the previously mentioned K matrix by

1 -1
E - v ZO

p —
Once the K matrix is available, the L and Cp matrices can be determined

as before. The only change is that another technique has been used to
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determine the elements of K. If the individual phase velocities are

assumed equal, then

-1

T
K=3 %

o

can be used.
In summary, then, we have developed a technique for determining
I_( for cable branches based on TDR measurements of characteristic im-

pedance. To reiterate, the procedure is to fill out the Z0 matrix by the

—

expressions
o=z
ii ii
and
1
Z,. =3 (zfr.l+zr.r.‘- zf’.‘) ,
ij 2 ii 1 ij
where
m e s .th .
Zii = the characteristic impedance of the i wire to
ground with all other wires open at both ends,
and m th
Zij = the characteristic impedance of the i wire to

the jth wire with all other wires open at both ends.

Then the I_{ matrix is determined from

P . .k
ij ij
and , _ N
Cn - Kii * Z Kij
j=1
j#Fi
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The £ matrix is determined from

z
L= =2
-_— v
—P
or _
I
L=32
p —2

for uniform phase velocity, vp.

4.3 SHORT-CIRCUIT IMPEDANCE-BASED L AND C PARAMETERS

Reiterating the results of Section 2, we derived one differential
equation for a lossless multiconductor transmission line to be Eq. 58,

which is
< E=jwll,
and the solution is Eq. 20, i, e.,
£ = exp(lx) E-i- + exp(-lx) E_ .
Substituting Eq. 20 into Eq., 58, we have
Y exp(lx) E—2:+- Y exp(-lx) E_ = jwkL r. (76)

Let the ith conductor be driven and all other conductors be grounded

at both ends. Then, atx =0, E, = 0 for k # i. Furthermore, let the ith

k
conductor be terminated with its characteristic impedance to ground., Then

E =0 and E: = E_, the driving voltage, and at x = 0 Eq. 76 becomes

o
E =—‘9-§ L, I (77)
07y, &, Tikk
=-¢—°-<L I+§L 1). (77)
v \ i & Tk k

By definition,
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E

7= -2 (78)
ii Ii

m ., c s .th
where Zi' is the measured characteristic impedance between the i  con-
ductor and all other conductors tied to ground.

Thus, from Eq. 77,

N
zt = 2L, + X L x (79)
Ty i g ik L)

If it is assumed that the return current splits equally in the N-1 return

conductors plus ground (shield), then

I, :
= . 80
I < (80)

m w 1 N . |
Z.. =5 L. -3 3 L, }. (81)

m
i1
Li =< *'%m Z. D (82)
i k#i
where
W
v, = —
iy

Now let 1 and j be shorted together, let all other conductors be
shorted to ground, and let the line formed by (i + j} as one conductor and
ground as the other be terminated in its characteristic impedance. Then,

with driving voltage EO, at x = 0,

Yij . }1_\13 N
— E_ = L, L +X L. 1 . (83)
w 0 K7 ik "k iFi jk 'k
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Dividing Eq. 83 by I, yields

v.. E N I N 1
_;J._I_E = Y L-k<1—k‘>+ L, Ii : (84)
i k# TN k# i
Once again, by definition,
m 0 .
Zo T T (85)

ij
m ., C s .th
where Zij is the measured characteristic impedance between the i and

jth conductors tied together, with all other conductors shorted to ground.

Equation 84 now becomes

Y I I
k k

_-w = 2; L <> + 2, Lo <1) (86)
ij k#j ij

If it is assumed that currents split equally in the ith and jth con-

ductors, then Ii = Ij = Iij/z’ and Eq. 86 can be written as

y I N I
_ k k
w Z ij(l..) ¥ E. . Lik(l. >
k#i,j ij k#1,]j ij

1 1
t=L.+5 L. . (87)

From Eq. 79, we know that
Y; N I

- m K

i 5% 2 - Z. Lik<1 )

Vi m N <Ik>
=—2Z . -2 L, . (88)
w KA1 ik IJ

|

Substituting Eq. 88 into Eq. 87 gives
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w 1 K#1,j ij/ k#i,j
Fy N I
R L.k<_k)
H k# T\

Equation 89 reduces to

i ,.m
+=— Z.
2w jj

but since it was assumed that Ii = Ij = Iij/z’ Eq. 90 becomes

Mmoo T i, Yiom % om
w ij 2 2 2w il 2w i)

For a linear network, Lij = Lji’ and so

z?; Jr? z;‘

L, = + - ,
ij 2v, 2v, v,.
b J 1)

where Vi Vj’ and Vij are velocities of propagation.

The other differential equation for a lossless line is

3 =, >
B—XI-J.wEE’
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and its solution is Eq. 21, i.e.,

—

1= exp(yx) Y+ + exp(~yx) I

Substituting Eq. 21 into Eq. 94 gives
yexp(yx) I - l,exp(-lx)i‘ = ~wkK E. (95)

t .

Let the i B conductor be driven and all other conductors be shorted
' .th . i s

to ground. Also let the i conductor be terminated in its characteristic

impedance. ‘From Eq. 95, at x = 0, we obtain
N
v, L = w}f\;i K. B (96)

but since Ei = 0 for the i # k, Eq. 96 reduces to

A T (97)
or
B wKy,
T " 5 (98)
i i
By definition,
m Ei Yi
24 T T T RK. (99)
1 11
or
1
K. = , (100)
1 v, 4.,
11
where
LW
Vi - -
i

From the definition of Kii’ we have

N 1
K, =C,,+2, C. = . (101)
ii ii Ri ik Vi Z’?;
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Solving for Cii yields

1
C.. = — - ) C, - (102)

ii
Now short together the itP and jth conductors, and let all other con-
ductors be shorted to ground. Also let the line formed by (i + j} and ground

be terminated in its characteristic impedance. For the case of (i + j) being

driven against all other conductors shorted to ground, Eq. 95 at x = G re-~

duces to
L1, = .. + K.. K.. . 3
Yi_] Il_] w (Kll KJJ + 2 1_]) El (103)
or
E. v..
. _u 1
I, <K T K, + zx,,) . (104)
) 1] 11 jj ij
Since by definition
m Ei
2y 710 (105)
1}
1)
m 1 1
%5 T v, <K + K, + ZK,,) ’ (106)
ij ii i3 ij
where
. W
Vi =T
J Yij
Solving for Kij in Eq. 106 gives
1 1
K=zl 7= % &) - (107)
! v, z&® o)
ij Tij

From Eq. 100, we know that
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Kii - m '
v, Z,.
i Tii
therefore,
K, . =-12- 1m- 1m- 1 — (108)
1 v.,. Z v, Z., v, Z
ij Tij i 7 AN
Since KiJ is defined as -C, .,
1 1 1 1
C,. == + - . (109)
ij 2

In summary, we have shown that model L and C values can be ob-
tained directly f{rom measured values of characteristic impedance and
velocities of propagation. The equations relating model values to meas-
ured values are

zz? , N
L.. = + T z L. ’
ii vi N KFi ik

zi‘ z;? z;.‘
Ly sz, T2 "%,
i i ij
. N
C,. = - Z C s
oz K7 K
and
1 1 1 1
€y %2 * -

il il ij i

4,4 DETERMINATION OF R

This section describes a method for determining the resistance R

for pairs of conductors. The method is based on measurement of transfer
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N for a pair of conductors at the quarter-wavelength reso~

nant point with the receiving end "'open-circuited," i.e., ZL = ®, The

function EO/ EI

theoretical basis for determining Rac* in this manner is as follows.
Solving the differential equations for a transmission line with
TEM propagation resulted in the following equation for the voltage at a

distance x back toward the generator from the load end (Section 2, Eq. 13).

E(x) = 1 [(E +1 Jz?y) expl/zy x
2 L L
+ (EL - IL,,fz7y) exp(=/zVy x] s
where
EL = load end voltage,
IL = load end current,

E(x) = voltage at distance x from load end,
z = series impedance/unit length,
y = shunt admittance/unit length.

For Z_ =, [

L i, = 0, and Eq. 13 reduces to

E(x) = % [EL exp(yx) + EL exp(-yx)} . (110)

where /2y = y (the propagation constant) has also be used. This can be

expressed in hyperbolic form as

E(x) = EL cosh yx . (111)
At x =4, B(x) = EIN’ and solving for EL/EIN gives
E
L 1
= . (112)
EIN cosh v £

*Since the measurements are made at high frequency, the calcu-
lated resistance will necessarily be an ac resistance.
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Of course, y = o + jB; therefore,

E
B o i (143)
IN cosh (o + jf

which can be written as

E

L _ 1
EIN " (cosh af)(cos B4) + (j sinh of)(sin B4) (114)

by use of fundamental identities, At the \/4 resonant point, Bf = n/2;

then cos 4 = 0 and sin B4 = 1, and the equation reduces to

‘L ] 1
EIN 4=) /4 0+ j (sinh og)(1)
_ 1
" j sinh a4 (115)
For small values of the argument (o4 < 0.8},
sinh of =~ o (116)
to within 10% accuracy. Then,
E
L -t ofz : (117)
IN|g=p/4 7

(8)

The attenuation constant ¢ is given exactly by

o

(b wer s b4 (e ae) ) o

In most practical transmission lines, the major contributor to @ is R

rather than G, as noted before; therefore, we assume G =0, Then,

a:(% WI)(-%——R;-E) (149)

40 L

If the transmission line is assumed to have low losses, then
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and 2
R -0 -
8 wz L2 .
therefore,*
am-é-R./‘TCL=%Rzi. (120)

0
Now, substituting Eq. 120 into Eq. 117 and dropping the j gives the result

Fr 4ot _t% (121)
Enlganse 4 B2, RE
2Z
0
Solving for R,
2z [E -
R 5_20 T:':'IE , (122)
L lg=x/4

Thus, from Eq. 122, the ac resistance can be determined from four

laboratory-measured parameters.

The voltages EIN and EL can be measured with any appropriate

instrument, but care must be exercized in using an instrument with
acceptably high input impedance for the EL measurement, to avoid nul-

lifying the approximation ZL > ®, Equation 13 can be rewritten as

z
E(x) = % [EL <1 +Z—°> exp(/zy x)

L

+ E - — | exp(=-/2zy x)] .
L ZL

Typical values of Z_ for wire pairs are in the range of 100 £50 ohms, and

0
for acceptable accuracy, Z;, should then be at least 410 times and preferably .

*Chipman(g) indicates that this expression is valid above a few hun-
dred kHz for coaxial lines. Actually, the error is less than 1% for wL/R>5.
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100 times this value. At the high frequencies at which short cables reso-
nate, few instruments will have even moderately high input impedance.
The characteristic impedance Z_  can be conveniently measured with a

TDR.

0

As noted, this procedure results in a value of Rac at one frequency
which is generally quite high (a few MHz), Now it is well known that Rac
is a function of frequency for frequencies high enough that skin depth ()
is comparable to conductor radius (r), and for all higher frequencies. At
very high frequencies where § is very small compared to radius (say, 0=
0.1 r), then Ra.c varies simply as ﬁ However, Chipman(s) states that
there is a frequency interval of three or four decades below this Rac = K/
region where Ra.c variation obeys a very complicated law, For a No. 22
copper wire, the frequency at which § = 0.4 r is 4.2 MHz. Thus, for prac-
tical cable conductors, it is considered reasonable to assume that Rac
varies as /T for frequencies of the order of 1 MHz and above. Below
about 41 MHz, it must be recognized that the variation may be more
complex.

This procedure determines the Rac for a pair of wires. The ques-
tion then arises as to how to apportion the measured Ra.c between the two
wires of the pair, since in general the loss per wire will not be equal.

One possible technique is to introduce a third conductor. The three pos-
sible conductor pairings can then be measured individually and the three
resulting simultaneous equations solved to obtain the individual wire resis-
tances. Since this technique cé.n be a.bi:)lied to N conductors, and since the
cables to be modeled will usually have three or more conductors already,
this is a generally applicable technique. However, as N becomes large,
the solutions become difficult,

A simpler approach is to introduce a third conductor in the form of

a low-loss ground plane. A pair or pairs® of conductors can be selected

¥The use of several pairs to help determine R, of the ground plane
will give a more accurate value.
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at random from the cable to be modeled and the ground plane Rac deter-
mined by the approach outlined above for three conductors. Then all the
remaining wires can be paired one at a time with the ground plane, and
the wire resistance is then simply the pair resistance less the calculated

ground plane resistance.

4.5 SUMMARY OF STEP-BY-STEP PROCEDURES

The various methods for determining cable parameters are sum-
marized in the step-by-step procedures shown in Tables 4.1 through 4.4.
Note that the three methods for determining L and_(__"f give these param-
eters for the total length of cable upon which the measurements are made.
To obtain the parameters on a per-meter basis, simply divide by the cable
physical length in meters. The Rac parameter is already given in terms
of ohms/meter. The measured phase velocities must be expressed in

meters/second to ensure consistency of units.
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Table 4.1

CAPACITANCE METHOD FOR DETERMINING L AND C

Step

Determine

By Measuring or Calculating

Cm

o

-

Cm

ii

m

C..
1]

ii

K
K

o~

/::"\
o) l-—x

h
ii  velocity of it

. .th |
measured capacitance from the i~ wire to
all others shorted to ground

. .th .th
measured capacitance from the i and j
wires shorted together to all other wires

shorted to ground
m
ii

_1 m m m . g s
ij ‘Z(Cij Ci 'ij) i #J)

= reciprocal of square of measured phase
wire to ground (nonuniform

v_)

P

) =0 fori#;
ij

{(nonuniform vp)

(uniform v_)
P
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Table 4.2

OPEN-Z METHOD FOR DETERMINING L. AND C

Step Determine By Measuring or Calculating
1 z™ Z?‘; = measured impedance of the ith wire to ground
with all other wires open at both ends
m . .th . .th
Zij = measured impedance of the i~ wire to the j
wire with all others open at both ends
2 z 2, =2
_0 ii ii
1 m m) s 4o
2y =3 (R v 2y - 25) e
1 1 . .
3 pr ) = reciprocal of measured phase velocity of
P P ith wire to ground
(—1) =0 fori#]
v_ /..
p’1)
1 -1 .
4 K K=|—|2 (nonuniform v }
- - \'s 0 P
p S r———
or
k=(L)z ! (unit )
K=1\3 0 uniform v
p —————
5 P P .. g
c* Cij=-Ky G # )
b N
C.. = K
PR TR IR
j=1
J#i
6 L (nonuniform vp)

{uniform v )
P




Table 4.3

SHORTED-Z METHOD FOR DETERMINING L AND C

Step Determine By Measuring or Calculating
m m . .th .

1 Z Zii = measured impedance of the i wire to ground
with all other wires connected to ground at
both ends

Zz? = measured impedance of the ith and jth wires
connected together at both ends to ground with
all other wires connected to ground at both ends

2 Vp.. Vp.. = measured phase velocity of the ith wire to

ii ii
v ground with all other wires connected to
P
) ground at both ends
vpij = A/vpi vpj
z;; z;‘ zg‘
3 L Ll_] -va+2v Tv (i #3)
i Py Pyj
z; , N
L. = += YL
ii vpi N =1 ij
j#
4 -c-:-I-J Cf’ =_§.- i m * i m i rn)
) Vp Z v, 2 v Z

1 N
cP = - cP
ii m ij
Vp Zii j=1
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Table 4.4
METHOD FOR DETERMINING Rac FOR WIRE PAIR

Step Determine By Measuring or Calculating
1 EL Monitor EL and EIN with appropriate instruments,
and while exciting the wire pair of interest with a vari-
EIN able frequency generator. Sweep frequency from

low end of generator to point of first EL peak and

E null. Record values of E_. and E___.

IN L IN
2 4 Measure physical length in meters
3 ZO Measure pair characteristic impedance with a time-
domain reflectometer
27Z E
4 R_ _ at R =—O<—I—N~atz=}\/4)
ac ac £ E
¢ N
A4
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5. MODELING OF SOME EXAMPLE CABLES

5.1 INTRODUCTION

The methods presented in Section 4 were used to determine the
parameters for a number of actual cables of varying complexity, from
three unshielded wires in an overall shield to a combination of 15 wires
and five internal shields within an overall shield. Lumped-element
models of these cables were then created and analytical solutions obtained.
Experimental transfer functions were also measured on the actual cables
for the same™ drive and termination schemes, and these were compared
to the analytically determined transfer functions. The resulting agree=~
ment between analysis and experiment then serves as a measure of the
accuracy and usefulness of this modeling technique.

Five cables in six configurations were treated in this manner, and
they were constructed as described in Table 5.1 and as shown in Fig. 5.1.
The cross-section views of the random cables are approximate only, of
course, since no effort was made to control the conductor lay. The sixth
configuration shown in Fig. 5.1 is a modification of Cable 2 where the
groups designated A, B, and C were treated as single conductors for the
modeling effort. The rationale for selecting these six configurations is
as follows.

Cable 1: This cable was selected because its simplicity and uni-
formity make it easy to model and test, yet it is complex enough to test

the three methods.

“Same in the sense that the load and source resistor values were the
same. However, the stray couplings and instrumentation loadings which
will always occur in practical experiments were not included in the analyt-
ical model, Omission of these effects is one source of disagreement between

analytical and experimental results.
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Table 5.1
PHYSICAL DESCRIPTION OF TEST CABLES

Length Internal Conductor Uniform
Cable (m) Conductors™ Lay with X Construction
No. 1 2.48 3IW Controlled, Yes 3 AWG-22 (7x30) wires
(Belden 8771) twisted Foil overall shield, vinyl jacket
No. 2 3.10 20 W Controlled Yes 20 AWG-16 (26x30) Belden 8521
(3 layers), Braid overall shield, no jacket
straight
No. 3 3.10 15 W Random No 4 AWG-20 (10x30) Belden 8523
585 2 AWG-14 (41x30) Belden 8520
2 RG-174 coax, Belden 8216
2 twisted shielded pairs,
Belden 8737
1 twisted shielded trio,
Belden 8771
Braid overall shield, no jacket
No. 4 7.0 8 W Random Yes 2 AWG-20 (10x30) Belden 8523
38 1 RG-174 coax, Belden 8216
1 twisted shielded pair,
Belden 8761
1 twisted shielded trio,
Belden 8771
Braid overall shield, polyolefin
jacket
No. 5 1,52 6 W Random No Branch A, 6 AWG-16, Belden 8521
each 4 W Random No Branch B, 4 AWG-16, Belden 8521
branch 2 W Random No Branch C, 2 AWG-16, Belden 8521

Braid overall shield, no jacket

*W = Wire, S = Shield

4
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RT-00402

a.

d.

CABLE NO. 1
TWISTED TRIO

CABLE NO. 4
11-CONDUCTOR,
RANDOM LAY,
UNIFORM CABLE

Fig. 5.1.

b. CABLE NO. 2
20-CONDUCTOR,

CONTROLLED LAY,
UNTFORM CABLE

@es

BRANCH A BRANCH B BRANCH C GROUP

e. CABLE NO. 5
6-CONDUCTOR , 3-BRANCH
RANDOM LAY,
NON-UN1FORM CABLE

Cross-section drawings of the test cables

c. CABLE HO. 3
20-CONDUCTOR,
RANDOM LAY.
NON-UNI FORM CABLE

GROUP C

UNLUMPED

GROUP A
B

f. CABLE NO. 2

9-CONDUCTOR,
GROUPED, CONTROLLED LAY,
UNIFORM CABLE




Cable 2: A cable with at least three layers was desired in order to

verify that the technique can handle the shielding effect of intermediate
layers, and 20 conductors is the minimum required to produce threc fay-
ers. Uniformity was maintained in order to simplify the modeling effort,

Cable 3: This cable was designed to be most nearly representative
of real system cables and is, in fact, of the same order of complexity as
many branches of a typical missile racéway cable. It has a combination
of unshielded and shielded wires, three different types of internal shields
(wire braid, spiral wire wrap, and foil), nonuniform phase velocity, and
random nonuniform conductor lay.

Cable 4: This longer cable was designed to test the ability of the
technique to handle longer cables with their lower-frequency resonances.

Cable 5: This 3-branch cable was designed to test the ability of the
two characteristic impedance methods to distinguish between branches,
i.e., to verify that the branches can actually be modeled without having-

to cut up the cable.

Cable 2, Special Grouped Configuration: This configuration was

designed to provide a quick test of the concept of grouping, for purposes
of analysis, ''uninteresting" conductors. By '"uninteresting" is meant
conductors for which the actual signals are ‘not of interest, but whose
effect on other conductoz:s is important from a modeling standpoint. If
this is a valid technique, it has the potential to greatly simplify many

analytical problems.

5.2 SUMMARY OF RESULTS

The results of the analytical modeling efforts are compared to the
experimental results in Table 5.2, The designations "Good," "Fair,'" and
"Poor'" in this table are necessarily somewhat subjective, especially for

the more complex cables where rigid rules for making judgments were
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Table 5.2
AGREEMENT BETWEEN ANALYTICAL AND EXPERIMENTAL
RESULTS FOR SIX EXAMPLE CABLES

Results by Method™

Cable C Open-Z Shorted-Z
No. 1 Shielded Trio G F F
No. 2 20-Conductor, Controlled F.G
No. 3 20~Conductor, Random

5-Section Model F-G

15-Section Model F.G
No. 4 11-Conductor, Controlled F F-P F-P
No., 5 3-Branch Cable G G
No. 6 9-Conductor, Grouped G G

G = Good F = Fair P = Poor

*These results are for the initial set of parameters determined by
each method; i. e., no attempt was made to improve the agreement
by altering parameter values.
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impossible to establish. In general, "Good' means agreement within 3 .
dB or better over a significant portion (a decade or more) of the frequency
band examined, but with occasional divergence at the ends of the band. In
particular, slight shifts in resonances at the high-frequency end some-
times resulted in large errors at selected frequencies. "Fair' implies
agreement within 6 to 14 dB, frequently including a general shift of the
analytical result with respect to the experimental result. '"Poor'" means
the analytical and experimental results were 14 dB or more apart over
most of the frequency range examined. The comparisons summarized in
Table 5.2 were made over the frequency range 0.3 MHz to the frequency
at which the maximum error due to the lumped approximation was 1 dB.
This upper-frequency limit was ~20 MHz for all but Cable 4, which was
12 MHz, and the 15-section model of Cable 3, which was 29 MHz,

It is important to note that the analytical results were obtained
from initial sets of model parameters only; i.e., the parameters derived

from the measurements were in no way altered to improve the agreement

between analysis and experiment. Since nearly all of the results were
"Fair' or better, it can be concluded that measured but unverified model
parameters will generally give results within at worst 14 dB (factor of 5),
which in many cases will be adequate. If better accuracy is required,
the model parameters should be verified a;nd then altered as necessary

to provide the required agreement.

5.3 DETAILED RESULTS FOR INDIVIDUAL CABLES

The actual analytical versus experimental data plots will now be
presented for all of the cables. Examination of these will provide a bet=-
ter picture of the results than the summary in Table 5.2. A detailed
example of the modeling methods will also be presented for the shielded .
trio, in order to fully illustrate the approach. Problems encountered

with the various methods will be discussed as they occurred.
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Cable 1, Shielded Trio, Capacitance Method

This cable is a 2.48-m length of a commercial twisted, shielded,
3-wire cable (i.e., Belden 8771). It has a very uniform phase velocity of
1.98 x 108 m/sec for all conductor pairings, as measured with a TDR.
The detailed steps in determining the model parameters using the capa~
citance method proceed as follows.

The measured capacitances for the full cable length are

I

Cl} = 340 pF
'crf; = 627 pF
0?3 = 614 pF
c’zn2 = 350 pF
cr2n3 = 637 pF
0?3 = 339 pF

where the measurements were made as specified in Table 4.1 using an
EST 251-C1 impedance bridge with a 1-kHz generator frequency. The

shield was taken as reference or ground. On a per-meter length basis,

then,
137.1 252, 8 247.6
c = | 252.8 141.1 256.9| pF/m .
247.6 256. 9 136.17

The elements of K are determined as shown in the following example

calculations.

K. =C. ,

ii ii
m

Kll = C11 = 137.1 pF/m ,
1 m m m

K = - - -

ij 2 (cij Cii ij) ?

73



1 m m m -

Kia = 3(C1p - € - G

= -;-(252.8 - 137.1 - 141, 1)

= -12.7 pF/m ; )

thenEis

137.1 -12, 7 «13,1
_1_{_ = [ «12,7 141.1 ~10.5 pF/m .

-13.1 -10.5 136.7

The partial capacitance matrix elements are determined from

cP =K,

ij ij

Po_ . = (= =

Cl‘2 = Kzz (-12. 7 pF/m) 12,7 pF/m ,

N
cP =K.+ Y K.,

ii ii i=1 ij
j#i
P =K. _+K. _+K
11 11 12 13

= 137.1 + (-12.7) + (-13.1)

= 111, 3 pF/m ;

andgﬁis
111.3 12,7 13,1
P = | 12,7 117.9 10.5| pF/m .
13.1 10.5 113.1

The K matrix can be inverted by ordinary methods to give

7.435 0.726 0.768
-1 -
K “ = 10.726 7.199 0.623] x 10 3m/pF .
0.768 0.623 7.437
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Then from K-}L and the measured phase velocity, we can determine L to be

L- 12K-1= ] ZK-l;
v (1,98 x 10%)
p
0.1889 0.0184 0.0195

L =|o0.0184 0.1829 0.0158| uH/m .
0.0195 0.0158 0.1889

The elements ofC_pa.nd L are the distributed cable parameters for the

conductor pairs indicated by their subscripts.

The distributed ac resistance, Rac’ is determined as follows. The

measured data, taken as specified in Table 4.4, are

E E

T V2R o 0 ;
Pair (2) (MHz) (mV) (V) (m)
1-2 61.3 18.9 88 1.032 2.48
1-3 61.8 ° 19.0 92 1.018 2.48
2-3 61.5. 19.1 88 1.046 2.48
l1-5 38.5 17. 8 46 0.566 2.48

The Rac of pair 1-2 is calculated to be
R . 2ZO EIN
- 2
ac j EO } £=)/4

R _2(61.3)(0.088
ac(l-2) = 2.48 \1.032

) Q/m at 18.9 MHz
= 4,22 Q/m at 18.9 MHz ,
In a similar fashion, the remaining pair Rac values are calculated to be

R = 4.50 Q/m at 19.0 MHz ,

ac(l-3)
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= B
Rac(2-3) = 4,17 Q/m at 19.1 MHz , .

R = 2,52 Q/m at 17.8 MHz . .
ac(l=-s)

In order to apportion the resistances for the most general case, the calcu-
lated values must be normalized to a common frequency using the assump-

tion of J?f- variation. In fact, it is convenient to extrapolate to dc and define

R at f
K . _ac A/4’
f
JA/‘L
-%
K =422Q/m _ o.971x1o'3s—2'—iz— .

12 J18.9 MRz

Then Rac at any frequency is simply
R_.at f=K./F.

Similarly,

-%
-3 Q-Hz
K13-1.032x10 — , ]

-3 Q-Hz'é
= 3 —
K23 0.954 x 10 ,

-3 Q-Hz-%
Kl =0.597 x 10 39_5.2__.
-S m

It will also be necessary, in general, to apportion the resistances
between conductors by solving simultaneous equations as discussed pre-
viously., However, for this simple case, it is apparent that the three
internal wires must have nearly equal resistances since the pair resis-
tances for these wires are so nearly equal. Thus, an acceptably accurate
apportionment of resistance factors can be obtained by simply taking 1/2

of the average pair resistance factor, i.e.,

ave K/pair _ 0,986 x 1'0"3

2 2
-3 0-Hz %
0 3 QR-Hz

K/wire

'0.493x 1
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(
. The shield ac resistance factor is then given approximately by

K =K - K
A\

s l=s
- = (0.597 - 0.493) x 1073
-%
- 0.104 x 107> =Hz &
Im

All of the distributed parameters are now available for completing a
lumped-~-element model.

To create the lumped-element model, we must first multiply the
distributed parameters by the required section length, and then assign
values to the elements according to the section configuration used. For
this cable, the sections are to be 0.1 X or less in length up to 30 MHz.

The number of sections required is given by

5 10(2.48 m)(3 x lO'7 Hz)

8 2 3. 75 *
1,98 x 10 m/sec

The next highest integer is 4, and this is the number of sections which
will be used. The section length will then be 0,62 m. Then _C_p, L, and

KW, on a per-section basis, are

69 7.9 8.1
cP =] 1.9 73 6.5 | pF/section ,
8.1 6.5 70

0.117 0.011 0.012
L = 0,011 0.113 0.010| pH/section , T~
0.012 0.010 0.117

and
1
= 0.3 X 10"3 Q=Hz §/section .

~
s
!
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The selected section configuration is a ''7' section, and each inductance

or series resistance will, therefore, be represented by a single discrete

inductor or resistor and each capacitance by two equal-value discrete
capacitors., The complete model section is shown in Fig. 5.2. Note that N
the resistance factor Ks has been left out of the return (shield) conductor.

It is small enough compared to the value of Kw that its omission will not

significantly alter the resulits.,

GO 117 0.3 x 1073

1 o ®- *- Y Y I AAA—@ 1
h.o_I_h.o 7 k.0 |u.o
0.011 =
\5 0.113 0.3 x 1073 i
0 2
35 / 0.012 35 T 3.2

= 0.010 ST
0.117# 0.3 x 10

3 O <i \Ng’\’\f‘("\__a\/\pv ¢ 3
35] |37 : 37 I35

RET [ ! |
(SHIELD) A *— ?

-1/2

(]
w
™
it
LR
11

RET
(SHIELD)

L in uH, C in pF, K in Q-Hz
RT-00403

Fig, 5.2. Model section of shielded trio based on the
capacitance method

The transfer functions for the 4-section model of this cable were
determined analytically for the drive and termination scheme shown in
Fig., 5.3. These transfer functions are plotted in Figs. 5.4a through 5.4e
along with the experimentally determined transfer functions, using the
same drive and termination schemes. (It should be noted that in the
experimental setup, the cable was laid directly on a ground plane to
which the equipment could be grounded, as necessary, to achieve mini-

mum sensitivity to hand capacitance and other stray coupling effects.,)
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Fig. 5.3. Shielded trio model termination and drive scheme
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The agreement between analytical and experimental results is clearly
very good over the range 0.3 to 10 MHz. Between 10 and 30 MHz, con~-
siderable divergence occurs due to the shift in resonance points. This
shift is believed to result from the capa\citance of the oscilloscope differ~
ential input, which was not included in the analytical model.

A second set of transfer functions was determined for an altered
termination scheme where the 1~k terminating resistor on the driven
wire (R4) was shorted out. This scheme provides a better test of the
mutual inductance parameters, as will be discussed in a later section.

The agreement is still good, although there is a distinct skew between

the analytical and experimental results (see Figs. 5,5a through 5.5¢c).

Cable 1, Shielded Trio, Open-Z Method

The detailed steps for determining the model L and C parameters
using the open=-Z method proceed in a similar fashion as described below.

The measured Z matrix is

38.5 61.3 61.8

m

z70= |61.3 37.0 61.5| @,
61.8 61.5 38.5

where the measurements were made as specified in Table 4.2 using a
Hewlett=Packard 140 oscilloscope with a 1415A TDR plug~-in. The cable
shield was again taken as reference or ground. The elements of the char-~
acteristic impedance matrix ZO are calculated as shown in step 2 of Table

4,2 to be

38.5 7.1 7.6
2o = 7.1 37.0 7.0 2.
7.6 7.0 38.5

The inverted K matrix can be determined from Z_ and the phase velocity

0

to be
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N
1
<

8
i) = (1.98 x 10 'm/sec) ZO ,

7.638 1.408 1,508
1.408  7.341  1.389| x-10° =

secC
1.508 1.389 7.638

~1 ; Lo
Then K = can be inverted by ordinary means to give”

139.7 -22.3 -23.5
K = -22.3 144.6 -21.9| pF/m .
-23-5 -21.9 l39c6

The elements of _g_li can be calculated as shown in step 5 of Table 4.2,

and then
93.9 22,3  23.5
cP = 22,3 100.4  21.9 [pF/m .
23,5 21,9  94.2

From Z_ and v_, we can calculate L as shown in step é of Table 4.2 and

0
obtain
L= %o = : 8 %o
Vp —_— (1.98 x 10 m/sec) —
0.1940 0.0358 0.0383
= |0.0358 0.1865 0.0353| uH/m .
0.0383 0.0353 0.1941

Using the same 0,62-m section length as used previously, the per-section

parameters are

58. 2 13.8 14.6
‘C_P.= 13.8 62, 2 13.6 | pF/section
14.6 13.6 58.4

*Note that the last two steps were not as specified in Table 4.2.
However, this is a perfectly valid alternate approach for determining

the I_{_ matrix.
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and
0.1203 0.0222 0.0237
L = |0.0222 0.1156 0.0219| uH/section .
0.0237 0.0219 0.1203 .

Using these parameters and the previously determined KW values, the T
section model shown in Fig. 5.6 was created. This model was also solved
analytically using the termination and drive scheme shown in Fig. 5.3.

and the results as compared to experimental results are plotted in Figs.

5.7a through 5.7e.
1O . 4
6.9 _17.3

- . - .
20 /' My —1—o }—oz
6.8 29 1 & 019 29 6.8

T 3T
30—@ *- \W‘/ - 3 <0 & }-03
29

29 131 314

RET O——0—@- *- I I—-QRET

L in uH, C in pF, K in a-Hz /%"

&0:1203 0.3 x 10~
Y Y\

L]

IL

1t
)

RT-00405
Fig. 5.6. Model section of shielded trio based on the
open=Z method

A second set of transfer functions for the case of R4 shorted out
were determined as before also, These are shown in Figs. 5.8a through
5.8c,

It is apparent that the agreement f!or this set of parameters is not .
as good as was obtained before for the capacitance parameters. By the
criteria previously discussed, these results can be considered only fair, .
since the analytical results are consistently on the order of 6 dB above

the experimental results.
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Cable 1, Shielded Trio, Shorted-Z Method

The detailed steps for determining the L and C parametersv by the
third (shorted-Z) method are as follows. The new set of measured imped-

ances, taken as specified in Table 4.3, are

37.0 19.5 21.5

- z™ - l19.5 37.0 "17.5]| @ .

21.5 17.5 37.8

The elements of _gf are calculated directly as shown in these examples:

CP = ‘;—( ! m + m - 1 m) ’
1) v Z0 v Z., v Z, .
p. i1 P. 1 P.. 1)

P .1
Cl2 * 2 7 Zzm zm.
pl “11 Vp2 “22 Vp12 “12

l(__.__.l.___ LJ,_I-__I__)
2\ 8/\37 37 19.5

1.98 x 10
= 7pF/m ,
P 1 X P
C = - E C s
ii v Z?ia i=1 ij
p; j#i
p __1 (P, P
= Z/ (C12+ 613)
Ypl “11
1

= : - (7.0 + 17.6)
(1.98 x 10°)(37)

111.7 pF/m .
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These example calculations give quite reasonable results, However,

repeating the ij calculation for C1;3 gives the result that Cg3 = =92

pEF/m. This very interesting result illustrates the biggest disadvantage

of this method, one which was observed repeatedly throughout the model- -
ing program. The obviously incorrect negative sign results from the fact

that differences of reciprocal impedances must be taken, combined with

the fact that the measured impedances are inherently lower for this

method and are, therefore, more difficult to measure accurately. That

is, using a TDR with the universally accepted 50-ohm standard, meas-~

uring irrpedances as small as 20 ochms requires the use of a larger p

scale which reduces the resolution and accuracy significantly. Then

when the impedances are inverted and differences taken, small errors

in Z™ become potentially very large, even to the point of giving negative ,

results, as occurred with C12)3. Thus, while based on sound theoretical
background, practical considerations make this method subject to possible )
error.

In order to continue with the use of this method, the decision was
made to simply take the absolute value of the calculated ij and ignore

sign problems. Using this approach, we have

111.7 7.0 - 17,6
cP =] 1.0 138.5 9.2| pF/m .
17.6 9.2 125.0

Calculating the elements of L from

ym ,m  .m
- i b _ij

Lij v TE v '
P, P. P,

i J ij .
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Using these parameters and the previously calculated Kw values, the ''n"
model section shown in Fig. 5.9 results. As was done previously, two
gsets of analytical and experimental transfer functions were taken for the
two termination schemes discussed previously. The results are shown
in Figs, 5.10a through 5.11c, The results for this method are still con-
sidered only fair, since nearly all of the curves have on the order of a

6-dB general shift between analytical and experimental results.

Cable 2, 20-Conductor Controlled-Lay Cable

The next cable to be considered will be the 20~conductor controlled-

lay cable which was described earlier. The following termination resistors

were connected from the wire indicated to the overall shield as reference

on both sending and receiving ends of the cable.

Conductor Terminating Resistance {(ohms)
1 1000
2 1000
3 1000
4 1000
5 1000
6 1000
7 100
8 100
9 100

10 100
11 100
12 100
13 1000
14 1000
15 1000
16 1000
17 1000
18 1000
19 1000

This termination scheme was used throughout all subsequent analysis and

testing.
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Two drive schemes were used, with conductor 20, the center con-

ductor, driven against the shield at the sending end for both. The differ-

ence was in the fermination of conductor 20 at the receiving end, being

open-circuited for one case and shorted to the shield for the other. “
Before proceeding to presentation of the results, a discussion of

the parameter value determination is in order. Only the capacitance

method was applied to this cable, and sign problems of the sort encoun-

tered with the shorted~Z method on the shielded trio were observed in

this application. The capacitance measurements were made in the same

manner and using the same equipment as before. A 20 x 20 _Cimatrix

resulted, which, due to its size, will not be presented here. However,

the measured capacitances were in the following ranges for the indicated

conductor pairings.

cﬁ‘ = 529 to 611 pF ,
C;? = 813 to 998 pF , i and j adjacent conductors ,
Cz? = 1027 to 1216 pF , i and j separated by one or

more conductors .

The diagonal elements of K are, of course, simply the C;Iil, but the off-
diagonal terms must be calculated from
K, =+(C-c®.dT,
1j 2" i) ii 1

and are supposed to be always negative. However, it is clear from the
ranges of C?; and C;? noted above that it is entirely possible for some
Kij to come out positive, and this in fact occurred in 43 of 190 Kij cal-
culations, These positive values were all in the range 0.5 to 7.5 pF and
are associated with the very small partial capacitances between conduc~

tors that are shielded from each other by intermediate conductors,

12
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The source of this problem is error in the capacitance measure-
ments resulting from basic equipment inaccuracy, unavoidable stray
capacitance, operator bias, etc. Considering equipment error alone, if
the bridge accuracy is £0.5%, then the errors in C?il could be ~2.5 to 3.0
pF, and in Cz.l they could be ~4 to 6 pF. If these errors are cumulative,
they can easily account for the appearance of positive Kij terms of the
small size encountered in this application. Thus, even small measure-
ment errors become significant fpr those Kij which are inherently small.

These errors in Ki' will have an effect on the _(;I_) calculations also.
In particular, the Cfi calculations will be very sensitive to Kij error since
these require the summation of a large number of Kij terms, each of
which contributes error. If the errors are cumulative, they can even
result in the'appearance of negative Cfi terms, which should always be
positive, of course, Again, this effect was observed in this application.
In fact, five of eight Cfi calculations for conductors 13 through 20 re-
sulted in negative values. These particular Cfi are inherently small due
to the shielding effect of the layer of conductors 1 through 12, and the
errors were large enough compared to Cfi to cause the negative values.

The errors in Kij also appear to have affected even the larger
Cfi of conductors 1 through 12, Because these conductors are in the
outer layer and in very close proximity to the shield, it would be ex-
pected that their partial capacitances to the shield would be relatively
large and reasonably uniform. In fact, however, the range of Cfi for
this outer layer was from 53 to 214 pF, a variation of £60% from the
mean value of 133 pF, This lack of uniformity apparently resulted from
the errors in Kij'

For this and subsequent cables with such sign problems, the prob-
lems were handled in the following manner. All Kij were forced to be
negative by simply taking the absolute value of each calculated value and

changing the sign to minus, These Kij were then used for all C_P
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calculations. Where negative Cfi values occurred, the Cfi were set to
zero for purposes of modeling, since they were inherently small to
begin with.™

The parameters derived by this method were used to create a
model consisting of five ""n" sections, each of 0.62 m length. For the
2.015 x 108 m/sec mean phase velocity, these sections are less than
0.1 X\ up to 32,5 MHz, (Phase velocity was still relatively uniform for
this cable, the 3 ¢ limits being 8.5%. The results for the case of the
driven wire terminated in an open circuit are presented in Figs., 5.12a
through 5.12g. By the criteria defined in Section 5.2, the results for
the seven transfer functions taken are five "Fair" .a.nd two "Good." (The
notation used to designate the transfer functions are the same as used

before; i.e., V means voltage from wire 1 to reference at the receiv~

1R

20S
reference at the sending end.) The results for the case of the driven

ing end, and V means the drive voltage applied between wire 20 and
wire shorted to the shield at the receiving end are presented in Figs.,
5.13a through 5.13g. The results for all seven transfer functions taken
are "Fair,"

Considering the problems.encountered in deriving the parameters
for this cable and its relative complexity, these results are very encour=-
aging indeed. In particular, the results show very clearly that the mod-
eling technique adequately accounts for the shielding effect of intermediate
wire layers as evidenced by the ~20~dB shift in both analytical and exper-
imental results between wires 13 and 14 which are adjacent to the driven

wire, and wires 1, 2, and 3 which are two layers away.

*Since the positive Kj; terms are also inherently small, the ques-
tion could well be raised as to why they were not set to zero also. In
retrospect, this is probably a better approach, but early in the modeling
effort, this was not recognized.
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Cable 3, 20-Conductor, Random-~Lay Cable

This is the most complex cable, in terms of conductor configura-
tion, that was modeled during this effort. Only the capacitance method
was used for the determination of parameter values, and the calculations
proceeded without difficulty using a computer program to be discussed in
an appendix.

The termination scheme used for this cable is shown in Fig. 5,14,
This scheme ié quite complex also, and was carefully chosen to be repre-
sentative of a typical termination scheme which might occur in real sys-
tem cables. For example, the shield grounding scheme is one which is
known to be used in a particular missile., The use of a signal ground
wire for common-mode signals is standard practice, as is the use of
ungrounded differential-mode circuits. The 100- and 1000-ohm resis~
tances were selected to be representative of typical driver and receiver
circuit impedances, respectively,

Two different models of this cable were analyzed, one having
five sections of 0.62 m length and the other having 15 sections of 0.207
m length, The same set of distributed parameter values and the same
termination scheme were used for both, with only the section length
changed. The mean phase velocity for this cable was 1.711 x lO8 m/sec
with 3 ¢ limits of 28%. For this value of v_, the 5~section model has
sections of less than 0,1 )\ up to 27.6 MHz 1ej.nd the 15~section model up
to 82.8 MHz, lHowever, the upper frequency limits for which the lumped
approximation produces at worst 1-dB error are 16.4 and 28,9 MHz,
respectively, based on the error analysis of Section 3.

The results for the 5-section model are presented in Figs. 5,15a
through 5.15e. The designations are as before; i.e., VZR means the
voltage from wire 2 to reference (wire 16, in this case) at.the receiving

end, and V. means the drive voltage applied between wire 8 and refer-

85
ence (wire 16) at the sending end. By the previously defined criteria,
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the results for three of the transfer functions are "Good'" and the other

two are "Fair.," The results for the l15-section model are presented in
Figs. 5.16a through 5.16e. The results are not significantly different
since most of the disagreement between analysis and experiment occurred
in the low-frequency end of the two "Fair" results, and these will not be
affected by the use of smaller section lengths., Even at the high end,
however, the results are not greatly improved.

The results of this modeling effort are again very encouraging.
The technique seems quite capable of modeling cables of the complexity
to be found in real system cables, which it must do if it is to be gene~-

rally useful.

Cable 4, 11-Conductor Controlled Cable .

This cable is a simplified version of cable 3, but at 7 m in length
is more than two times as long as any other cable tested. The increased

length requires more sections, of course, and even though the section

length was maintained short enough to still be less than 0.1 X up to 30
MHz, the frequency at which the maximum error due to lumping is 1 dB
dropped to just 12 MHz. In order to maintain the same 20-MHz 1-dB
error frequency that was used for the other cables would require 32
sections to model this 7-m cable. This very clearly points out the prob=~
lem of obtaining adequate high-frequency models for cables of even mod-~
erate length, and that caution must be exercized when applying the fre=~
quently used rule-of~-thumb that 0.1-) sections will give good accuracy.

All three methods for determining L and C parameters were
applied to this cable, and some discussion of the problems encountered
is in order, since they are very typical.

The capacitance method calculations resulted in three positive
Ki' values out of 55 calculated. These positive Kij’ of course, resulted

in the corresponding three Cipj being negative and, in addition, three Cfi
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values came out negative as well, These are indicated in Table 5.3,

The open~Z method calculations resulted in 15 positive Kij out of 55

calculated and two negative Cfi, as noted in Table 5.3, Finally,
the shorted-Z method calculations resulted in nine positive Kij out of

55 calculated and six negative Cﬁ, as noted in Table 5.3.

Table 5.3

BREAKDOWN, BY METHOD, OF ERRONEOUS SIGNS
OBSERVED IN PARAMETER CALCULATIONS FOR
THE 11~-CONDUCTOR CABLE

; P
th
Category of i~j Negative Cii by Method

Conductor Pair C Open-2 Shorted-Z
1. Shielded wire to 1-7, 1-9, 2«7, 4-5, 4-6,
another internal 2-9, 3-7, 3-9, 4-8
shield 4-5, 4-6, 4-8,
5-9, 6-9, 7-8 ;

2. Shielded wire to

2-5, 5-8, )
another shielded 6=-8 .

wire
3. Shielded wire to an 8-11 1-10, 1-11,
unshielded wire 8-10, 8-11
4, Shielded wire to 2-2, 3-3, 222, 3-3
overall shield 8-8
reference

5. Internal shield to 7-10, 4-11
an unshielded wire

6. Internal shield to 4-7
another internal
shield

7. Unshielded wire to 10-11
another unshielded
wire
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Table 5.3 was created to show as clearly as possible just where
the sign problems occurred and why. Observe that 28 of the 32 ij and
Cfi calculations which resulted in negative values fall in categories 1
through 4, where conductors i and j are separated by at least one in=-
ternal shield. Since these internal shields are usually very effective,
the C]i‘)j are expected to be quite small and then tolerance buildup on the
measurements simply overwhelms the small ij and results in negative
values, The important point is that by recognizing the problem, judgment
can be used to correct it; i, e., realizing that these small ij will not
seriously affect the analytical results, we can arbitrarily set small pos-~
itive values for these ij, and this was done on the final model of this
cable,

The four remaining negative partial capacitances are somewhat
more difficult to explain, since there are no shields completely enclosing
any of the conductors involved. However, unintentional shielding may be
occurring., Consider, for example, conductors 4 and 11 as shown in Fig,
5.1d, Note that the two shields designated 7 and 9 are physically between
11 and 4, thus providing a shielding effect which results in a small Cz-ll
value and the subsequent sign reversal. The same argument applies to
pairs 7-10 and 10-11, and the corrections previously mentioned can be
applied to all three of these pairs; i.e., small positive values are arbi-

trarily set.

b
4=-7
by shielding. These two conductors are adjacent to one another and of

The negative partial C is the only one which cannot be explained
large size; therefore, the capacitance between them is expected to be
large. The problem is still one of measurement accuracy, however,

The impedances measured in the shorted-Z method are inherently lower
than those measured in the open-Z method, being less than 10 ohms in
some cases. Unfortunately, using a 50-ohm TDR system, the resolution

for impedances that small is only about an ohm at best, and a reading of

143



10 £1 ohm is only 10% accurate. Thus, when measuring very low imped- )

ances, tolerance buildup can be significant enough Lo cause even larger

C?. values to be erroneous. For the case of conductors 4 and 7 in this

m
= Z

244 77 4

values are all small enough to be subject to considerable error. Recog-

= 17 ohms, and Z

10.5 ohms, 7= 6.5 ohms. These

cable,

nizing, then, that the calculated Ci,r value is not reasonable, judgment

can be used to adjust the value. The other shield~to-shield capacitances
are Cl,:;_g = 41.6 pF/m and Cz_g: 52,7 pF/m; since conductor 7 is larger

in diameter than conductor 9, CZ..?

arbitrarily set Cz 2 = 60 pF/m. This is the value used to determine

the model parameters.

should be larger than ng, and we

The sets of distributed parameters, calculated and adjusted as
discussed above, were used to create models consisting of 12 sections
of 0,583 m length each. Analytical tranéfer functions were obtained for ' -
the termination scheme shown in Fig. 5.17. These are compared to the
experimentally determined transfer functions in Figs. 5.18a through

5.20e. The results for the capacitance method are considered "Fair"

by the established criteria up to the 12-MHz 1-dB frequency. The re-
sults for the open=-Z method are "Fair'" with one exception, which is

considered '"Poor.! The results for the shorted=Z method are "EFair"

with two exceptions, which are considered '"Poor."

The poorer quality of agreement obtained for this particular cable
may be explained at least in part by experimental difficulties which make
the experimental results somewhat suspect. Note from Fig. 5.17 that
the cable was driven through a 1000-ohm resistor. This resulted in
very low signal levels at the receiving end of the cablé, especially at
the higher frequencies. For the other cables tested, the resonant point
generally produced levels in the range of ~15 to 0 dB. For this cable,
the maximum levels were =43 dB, and these very low levels resulted in
extreme sensitivity to hand and other stray capacitance effects. Thus, '
the confidence in the experimental results for this cable are lower than

for any other cable tested.
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Cable 5, 3-Branch Cable

The impetus for developing the two impedance methods for deter-

mining L and C parameters was to model branched cables where the
capacitance method is not applicable, It is anticipated that the time and
distance resolution of the TDR used for making impedance méasurements
will allow the operator to distinguish between branches, something he
could not do with a capacitance bridge. The impedance methods have
already been verified as valid. The modeling of this cable is intended

to verify that the ne cessdry resolution is possible.

' The cable is rather simple in terms of internal makeup, consisting
of only 6, 4, and 2 unshielded wires in branches A, B, and C, respectively.
as shown in Fig., 5.21. The overall shield is a copper braid joined atthe
junction by very careful soldering, The branches are not uniform with
respect to distance; i, e., the conductor lay varies with distance.

The determination of model parameters by both open-Z and
shorted-Z methods proceeded without difficulty, The measured imped-

ances were in the following ranges.

Shorted-Z zir? = 37 to 40 ohms
Zli? = 19 to 25 ohms
Open-Z zgl = 40 to 45 ohms
z?j‘ = 61 to 68 ohms

The open~Z method measured values are very close to the 50-ohm TDR
standard, where good resolution is possible, The shorted-Z measured
values are somewhat further from the 50~ohm standard, with resulting
poorer resolution, but are still in an acceptable range. As a result,
the distributed parameters were calculated with no negative signs or

unreasonable values appearing in any case.
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The distributed parameters were used to create a model consist-
ing of three 0.508-m-<-long sections for each branch of the cable. The
termination and drive scheme shown in Fig, 5.21 was used for analysis
and experiment, The results for all possible transfer functions are
shown in Figé. 5.22a through 5.22f for the open-Z method parameters
and in Figs, 5.23a through 5.23f for the shorted-Z method parameters.
Wire 4 or 5 was used, as appropriate, for the reference in branches B
and C, and wires 4 and 5 together as the reference in branch A,

Examination of these results shows that they are very good for
both methods, with the open~Z results having a slight edge over the
shorted=Z results. Thus, the methods are clearly capable of modeling

cables with multiple branches of at least this complexity.

Cable 2, Special 9-Conductor Grouped Configuration

The 20~conductor controlled cable was modeled a second time,
but with 14 of the 20 conductors divided into three groups of 5, 5, and 4
conductors, These groups were then treated as three single conductors
and, with the remaining six ungrouped conductors, the resultis a 9=
conductor cable. The purpose of this effort was to determine if the
analytical results for the five ungrouped and undriven conductors would
remain correct with the altered modeling of the other 14 conductors,
i.e., to determine if grouping is a potentially valid technique for simpli-

fying a cable model.

The termination scheme used for the analysis is shown in Fig. 5.24.

The terminati‘on resistors on the ungrouped conductors (1, 2, 3, 13, 14)
are the same as were used for the previous analysis, The values of the
termination resistors on groups A, B, and C were determined by simply
taking the parallel values of the previously used termination resistors,
This was done in order to maintain the same impedance levels on the

groups.
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Two methods of determining parameter values were applied to
this cable. In both, the conductors in each group were shorted together
at both ends of the cable. These shorted groups were then simply treated
as another conductor for all required measurements and calculations, in=
cluding new Rac values, The model which was created from the calcu-
lated parameters consisted of the same number and length of sections as
was used for the 20~conductor model.
The results for the capacitance method parameters are shown in

Figs. 5.25a through 5.25e and for the open~Z method parameters in Figs.
5.26a through 5.26e. The results for both methods are quite good and, in
fact, are actﬁally better than the results obtained using the full 20-conductor
model. This better agreement is probably a result of summing over fewer
elements, combined with the increased experience of the personnel in mak-
ing measurements.,

. It is very important to note that the experimental results to which
the 9-conductor analytical results are compared were not taken on a
grouped configuration. These results are the same ones taken previously
on the full 20~-conductor cable., Thus, the 9-conductor grouped model is
an accurate representation of the six ungrouped conductors of the full 20~
conductor cable. The quality of the results obtained for this modeling
effort shows clearly that the technique of grouping is a potentially useful

one.

5.4 CONCLUSIONS FROM MODELING PROGRAM

The modeling and experimental program on actual cables has pro-
duced a total of 85 transfer functions taken on six cable configurations,
using three different methods of determining the L and cP parameters.

A breakdown of the resulting agreement by method is shown in Table 5.4.
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Table 5.4
BREAKDOWN OF RESULTS BY METHOD

Results
Method Good Fair Poor Total ‘
Capacitance 20 22 0 42
(48%) (52%)
Open-Z 10 13 1 24
(42%) {54%) (4%)
Shorted-2Z 6 11 2 19

(32%) (58%) (10%)

Total 36 46 3 85
(42%) (54%) (4%)

Table 5.4 shows that the results were '"Good' for >40% of the
sample, "Fair' for >50%, and that "Poor" results occurred for a very .
small (only 4%) part of the sample. It should also be noted that, of the
"Fair' results, about half were very near the 6-dB limit, so that over-
all, ~70% of the results were within ~6~dB agreement between analysis
and experiment. Thus, the methods which have been presented in this
report are clearly useful for modeling of coxlnplex cables.

A point which must be emphasized again is that these results were
obtained with absolutely no attempt made to alter the calculated param-=-
eters to obtain better agreement between analysis and experiment. The
originally calculated parameters, altered only as necessary to eliminate
obviously unreasonable values, were used for all analytical calculations.

Table 5.4 also shows rather clearly that no one method stands out -
as being the best from the standpoint of results obtained. Thus, there is
not a ''method of choice' based on results. There is, however, a sub-
jective order of preference based on difficulties encountered while meas-

uring parameters on the cables and calculating the model parameters,
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This order of preference is (1) capacitance method, (2) open~Z method,
and (3) shorted-=Z method.

The capacitance method is preferred for the following principal
reasons: (1) the measurements require the least operator interpretation
and are, therefore, less subjective; (2) accuracy is essentially uniform
over the range of values to be measﬁred; and (3) connection problems are
minimized.

Considering reason (1), with the impedance methods, the imped-
ance mismatéh at the transition between the known standard and the un-
known pair being measured, combined with nonuniformity of the actual
unknown impedance, makes the waveforms very difficult to interpret.
This is not the case with the capacitance method, where all that is re-
quired is to obtain a null on the capacitance bridge and make direct read=-
ings of the dial.

Considering reason (2), we have noted previously that, as the
measured impedances range further from the value of the standard, reso-
lution and accuracy are severely affected. This is not the case with capa-
citance bridges, as they have nearly equal accuracy over all their ranges,

Considering reason'(3), the impedance mis:hatch problem men-
tioned above greé.tly complicates the préblem of having a convenient
method of connecting to the unknown, and convenience is required when
SO0 many measurements are necessary. Again, the capacitance bridge
does not suffer from this problem.

The open-Z method is preferred over the shorted=Z method due
to the fact that the Z?; values are much closer to the 50 -ohm standard
with the open-Z method, resulting in better accuracy. The use of stan-
dards nearer the unknown impedance has the potential to solve this prob-
lem, but such standards are not generally available.

The conclusions from this effort are, then, that (1) the modeling
techniques are useful for complex cables, yielding results within ~6 dB
in ~70% of the cases and (2) the capacitance method of determining L and

C parameters is the preferred one where applicable,
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6. MISCELLANEOUS TOPICS

During the course of the analytical and experimental investigations,
a number of somewhat unrelated but very important observations were

made. These are discussed in this section.

6.1 VERIFICATION OF PARAMETER VALUES

The ultimate use of the measured cable parameters is, of course,
in an analytical model of that cable. In order to verify that the analytical
mc'>del accurately represents the real cable, results of analytical solutions
for the model can be compared to cable experimental results for similar
excitation and termination schemes. But it is important to note that the

termination scheme will have a strong effect on whether the coupling be~

tween wires is predominantly electric field or magnetic field, or some
combination of both. This effect will, in turn, determine whether or not
the accuracy of both mutual L and C parameters are ‘being tested, or
whether only one of them is tested by a given configuration.

Analysis of the analytical and experimental results for the shielded
twisted trio demonstrates the problem very nicely. The model param-
eters for the cable, as determined by three different methods, are pre-
sented in Table 6.1. A summary comparison of the analytical and exper=~
imental results over the frequency range 0.3 to 10 MHz is presented in
Table 6.2. Examination of Table 6.2 and the actual transfer function
plots in Section 5.3 shows that by far the best agreement between anal-
ysis and experiment occurred for the model using parameters determined

by the capacitance method. Therefore, using these capacitance method
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Table 6.1
MODEL PARAMETERS FOR SHIELDED TRIO

Capacitance Open-Z2 Shorted-2
cPorLP cP LP cP LP cP LP
Element .(pF/m) (uH/m) (pF/m) (uH/m) (pF/m) (LH /m)

11 111 0.189 94 0.194 112 0.458

12 12.7 0.018 22,3 0.036 7.0 0.137

13 13.1 0.020 23.5 0.038 17.6 0.134

22 118 0.183 100 0.187 139 0.468

23 10.5 0.016 21.9 0.035 9.2 . 0.144

33 113 0.189 94 0.194 125 0.469
Table 6.2

COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS FOR
SHIELDED TRIO FOR FREQUENCIES FROM 0,3 TO 10 MHz

(Driven Wire Terminated in 1000 ohms)

Analytical Amplitude Error in dB

Transfer

Function Capacitance Open-2Z Shorted-2
V3S/VS ~0.3 to +2 +5 to +7 +3 to +5
VZS/VS 0 to+3 +5 to +7.5 -4 to -6
Vir/Vs 0 to+2¥ 0 to +2* 0 to +2%
V2R/VS +0. 3 to +2 +5 to +7 0 to -6
V3R/VS +0.5 to +1.5 +5.5 to +7 +3 to +4.5

£ /4% 24 MHz 24 MHz 21,5 MHz

*This figure applies up to 8 MHz only. At 10 MHz, the error increased
to +5 dB due to the shift in frequency between experiment and analysis
of the sharp resonant peak at one~quarter wavelength. This is the
receiving end of the driven wire.

**The experimental value is 17 MHz.
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parameters as the reference, the shift in mutual L and C parameters

determined by the other two methods were expressed in dB. These
parameter shifts in dB are then compared to the crosstalk response

curve shifts in dB in Table 6.3.

Table 6. 3

COMPARISON OF CROSSTALK SHIFT TO
MUTUAL PARAMETER SHIFT

(Driven Wire Terminated in 1000 ohms)

Open-4Z vs Capacitance Shorted~Z vs Capacitance
Crosstalk Mutual C° Mutual L | Crosstalk Mutual CP Mutual L
Wire Shift Shift Shift Shift Shift Shift
Pair (dB) (dB) (dB) (dB) (dB) (dB)
1-2 4.5to 5 +4.9 +6.0 |=0.3to09 ~5.2 +17.6 )
1-3 5to 5.5 +5,1 +5.6 2.5 to 3 +2. 6 +16.5

Table 6.3 shows very clearly that the shift in crosstalk response ‘
agrees very well with the shift in mutual capacitance parameters, but
very poorly with the shift in mutual inductance parameters. Thus, for
this case, the mutual capacitance parameters only have been verified,
due directly to the fact that the driven wire was terminated in a high
impedance, 1000 ohms. That is, for this high-impedance termination,
very little current flows on the driven wire and the mutual inductance
has little, if any, effect on the resulting crosstalk response curve.
Thus, the mutual L parameters could well be in considerable error,
even though the analytical and experimental response curves agree
quite well. |

In order to verify the mutual L parameters, then, it is necessary
to terminate the driven wire so that these parameters will dominate the

crosstalk response. A short-circuit termination on the driven wire will
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accomplish this. A summary comparison} of experimeﬁtal and analytical
results for such a configuration is shown in Table 6.4. Again, from exam-
ination of this table and the data plots in Section 5, the capacitance-based
parameters still give the best agreement. In Table 6.5, the crosstalk
shift for the short=-circuited drive wire is compared to the mutual param-
eter shift previously calculated. Although the agreement between the

| crosstalk shift and mutual L shiit is not as good as noted before when
mutual C dominated the coupling, the results are still indicative that the
coupling is, in fact, being dominated by the mutual L. parameters.

In summary, if it is necessary to verify the model parameters,
care must be exercised in the technique used. It will not be generally
valid to use just any terminating impedance on the driven line. The veri=
fication will require fwo sets of comparisons, one for a high-impedance
termination so that capacitance will dominate crosstalk, and one for a
low=-impedance termination so that inductance will dominate. By this

method, the accuracy of each set of parameters can be verified.

6.2 ERRORS RESULTING FROM ASSUMPTION OF UNIFORM
PHASE VELOCITY

In Section 2.2, we developed the equation relating the L and K

matrices for a cable with nonuniform phase velocities for the individual

conductors; i. e.,

LK = (v 2}
- P
where — -
v_ = phase velocity of i*h wire to return|
Pyj
v = *
-P
v =0 i#j
P: .
Y
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Table 6.4

COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS FOR
SHIELDED TRIO FOR FREQUENCIES FROM 0.3 TO 10 MHz

(Driven Wire Terminated in a Short Circuit)

Analytical Amplitude Error in dB

Transfer
Function Capacitance Open-Z Shorted -Z
V3S/VS -8 to +1.5 -2.5 to +6.5 +2.5 to 9.5
VZS/VS -4 to +1 +1.5 to +6.5 +4 to +7
- . . + .
VZR/VS 6 to +1.5 0 to +6.5 +6 to +13.5
Table 6.5

COMPARISON OF CROSSTALK SHIFT TO
MUTUAL PARAMETER SHIFT

(Driven Wire Terminated in a Short Circuit)

Open-Z vs Capacitance

Shorted-Z vs Capacitance

Crosstalk Mutual CP Mutual L

Crosstalk Mutual CP Mutual L

Wire Shift Shift Shift Shift Shift Shift
Pair (dB) (dB) (dB) (dB) (dB) (dB)
1-3% 45 to 5.5 +5,1 +5.6 | +8 to +10.5 +2. 6 +16.5

*Sending-end data only.
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As noted, then, if the phase velocities are uniform or are assumed to

be uniform, this reduces to

T
LK =—3
v

P

where v is the uniform phase velocity. This latter form of the equation
is the o:e which was used throughout the subsequent modeling work on
actual cables, even though two of them exhibited quite nonuniform phase
velocities, The expected errors in parameters due to the assumption of
uniform v_ will be discussed here.

Thz mean phase velocities and the variation of phase velocity for
the five cables are shown in Table 6.6, The 20~conductor random cable

exhibited the widest percentage range of variation of the cables modeled.

Table 6.6

MEAN PHASE VELOCITY AND VARIATION
FOR MODELED CABLES

Mean
V. . .
P Variation
Cable x 108 m/sec (%)
20-Conductor, Controlled 2.02 +4.6/=-3.1
20-Conductor, Random 1.71 +9,4/=-21.0
I11-Conductor 1.85 +4.9/=17.8
Shielded Trio 1.98 ~0
3=-Branch Cable 1.91 ~0

Only the L parameters, as determined by the capacitance method
applied to the 20-conductor random cable, will be in error due to errors

in vP since the K parameters were determined directly from capacitance
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measurements. The Lii can each be expressed in terms of the X param-

eters and 1/v _2; e.g., for N = 2,

PI
! .
L =
11 2 2 -
"’p1 (K1) - Kyp /K9
and
1
L = .
22 2 2
"y (Kog = Kyp /Epy)

Now, if we have assumed a uniform phase velocity V_andv_. #v__ #7V_,
P pl” 'p2" p

L11 and L22 will be in error by
1 1 1 1 1
Ay A3 Tk 2 7 _ 2
v ' v v
P, P, P

where k is a constant of proportionality determined by Vo, and the appro-

i
priate Kij' For an error as large as the ~21% shown in Table 6.6,

AL . ! .
v 2 [ -o0.21)% 72
p; P p
1
= 2" 1z = 60% ,
0.62 7% v
P p

and then the error in the corresponding I..ii will be 60%. Since the Lij
can be expressed in terms of Lii’ the Lij may be erroneous by as much
as 60% also., This same analysis can be applied to the more complex
case (i.e., N> 2).

This analysis shows very clearly that the assumption of uniform -
phase velocity can produce significant errors, and these may well account
for the only fair results obtained for cables 3 and 4. It should be noted,

however, that the spread in v_ will probably never be very much greater

Pj
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than that shown in Table 6.6 for the 20-conductor random cable, and if
only approximate results are required, the assumption of uniform v

may be adequate.

6.3 SEPARATE MODELING OF CABLE AND STRUCTURE

Section 6.2 discussed the errors which result from the assumption
of uniform v_ when in fact v is not uniform., One conductor pairing where
the differer}ce in vp is frequently very large is between a wire in a cable
and a piece of structure over which the cable is located. This is a prob-
lem only if the structure is treated as a part of the multiconductor trans-
mission line for the actual parameter measurements.

The reason for this difference in vp is that cables are usually
supported at some distance, (on the order of a cable diameter or more)
from the structure. Thus, for the pairing mentioned above, the dielectric
medium is predominantly air, and vp then approaches the velocity of waves
in a vacuum, c. The velocity between pairs within the cable will be only
on the order of 0.5¢c of 0.7¢c, however, based on measurements on the ex-~
ample cables. |

The easy Way to get around this problem for shielded cables is
simply to use a two-step approach; i, e., first, model the cable with the
shield as the reference, using the techniques of Section 4, and second,
model the structure to the shield pair, using either the same methods or
else from conductor geometry. The result is a complete model with the

shield as the reference.

If it is desired to have the structure as the reference, some
manipulation of the parameters is required. The necessary modifica=~

tions, presented here without proof, are:
1. To each Lii of the cable, add an inductance equal to the

inductance of the shield-structure circuit, Lss'
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2. Add to the shield an inductor of value Lss'
3. Add between each L., and L, a mutual L, equalto L. .
ii ss is 8s
A simple example will illustrate the approach.
An RG58A coaxial cable has a capacitance of 101 pF/m and a

phase velocity of 0.66 ¢, as specified in a catalog. This is a cable of

N =1, and the value of Lll is
L . = ——— = 0,253 jH/m
11c ~ 2 C - WH *
Vp 11

There are no mutuals, of course. It is desired to model this cable for
the case of the cable suspended 1.0 inch (to cable center) above a ground
plane. The shield-to~ground plane parameters, as determined from

simple geometry, are

C
ss

16.8 pF/m , -,

and

L
ss

0.663 pH/m .

The models for the cable alone and for the shield-ground plane pair above
are shown in Figs. 6.la and b, respectively, for l-m-long 7 sections.
To combine these models into a single model, the shield inductance shown
in Fig. 6.,1b must be added to the shield conductor of Fig. 6.la, which

does not have an inductor. Then L11 must be increased to

Lip = Trie ¥ L

0.253 + 0.663 = 0.916 gH/m ,

and a mutual Lls equal to LSs must be added between L11 and Lss. - The -
final model is as shown in Fig, 6.2. This model has been tested using
both time-domain and frequency~domain techniques, and has been shown .

to be accurate,
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It is interesting to compare these paramecters to two other scts of
parameters derived by (l) direct calculation from geometry only and (2)
the capacitance method of Table 4.1, using a uniform vp. The three sets
of L parameters are summarized in Table 6.7. The capacitances are,

of course, unaffected by the method used.

Table 6.7

PARAMETERS FOR COAX OVER GROUND PLANE
AS DETERMINED BY THREE METHODS

Method 1 Method 2 Method 3

Direct Separate

Parameter Calculation  Capacitance™  Modeling
Lll 0.954 1.065 0.919
LSS 0.662 0.915 0.661
Lls 0.678 0.915 0.661

*Assuming a uniform v, equal to the average of the cable velocity (0.66 c)
and shield-structure velocity (~c); i.e., % = 0,83 c.

The direct calculation method treated the center conductor-ground
plane and shield-ground plane pairs separately to obtain Lll and Lss' Lls

was determined from circuit theory to be
L. .+L =-L
ss

11
Lls - 2

llc

0.954 + 0.662 - 0,253

> = 0.678 .

As may be seen, good correlation is achieved between methods 1
and 3. This good correlation results from the fact that, in both of these
methods, the actual velocity of propagation for each pair of conductors

was used. In method 2, however, an average value between Vp‘ for pair
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l1-5 (0.66 c) and vp for pair s-g (~1.0 c) was used, i.e., vp = 0.83 c.
That value is ~15% low for the s-g pair and, when squared and inverted,

results in an error of

_1 1 1
A= [ -] 100%
Vp (0.83 c) c
= (}—.—-222 - ‘—12—) 100(70 = 39070 .
C C

Multiplying the Lss’ as determined by methods 1 and 3, by 1.39 results in

Los(0.85 ) = 1+39 (0.66 pH) = 0.915 yH ,

which is the value determined by method 2, as expected. In this case, the
use of an average Vp resulted in an error of ~40%. Similarly, the differ-

ence between L, ., and Lss’ which is the inductance of the coaxial pair l-s,

is ~60% low forlr]:.nethod 2 because the average vP used was too high (Vp in
RG58A is 0.66 c rather than 0.83 c).

The use of separate modeling of cable and shield to structure is
the recommended method, based on the results., Another big advantage
of this method is that it allows the cables to be brought into the laboratory

for the necessary measurements rather than having to do them in the field,

as would be required in many cases.

6.4 VERIFICATION OF THE Rac MEASUREMENT TECHNIQUE

The Rac measurement technique described in Section 4.4 was
applied to four different coaxial cables., Since such cables have specified
attenuation factors, the corresponding Rac values can be calculated from
these an& canAserve as a check on the laboratory method. The measure-~

ments and calculations were made as follows.
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A Tektronix 191 constant-amplitude generator (VOC =10 Vp D’ Ro

= 50 ) loaded with a 50~ohm termination was used to excite the sending
end of the cable and the sending end voltage (VIN) was measured using a
Tektronix 454 scope with a P6047 X10 probe. The open-circuit voltage

at the receiving end (Vo ) was measured with a Hewlett-Packard 410B

UT
vacuum tube voltmeter. The generator was swept from the lowest fre=
quency obtainable (0.35 MHz) to the frequency of the first VOUT peak and
VIN null, Because the VOUT peak tends to be broad and the VIN null very
sharp, the null was used as the A/4 resonance indicator. The frequency,
VIN’ and VOUT were then recorded.
From the experimental results on the four cables, the values of K
and of Rac at 108 Hz have been calculated. They are shown in Table 6,8
~along with values of Rac as determined from the Belden catalog specified .

attenuation factors at 108 Hz using the approximate relation

R:ZQIZO,

where o is in nepers/unit length. In each case, the specified value of ZO
was used for the calculations rather than measuring.the actual ZO. The
agreement between experimental and specified values of Rac is quite
good, especially considering that the 'specified' value is only a nominal

one, and probably subject to some variation,

It is interesting to note the variation of @ with frequency as speci-
fied in the catalog for these four cables. Assuming that Z0 remains con=
stant, then ¢ will vary only due to variation of Rac' Té.ble 6.9 shows the
actual variation of nominal « versus the variation predicted by Rac =5,
using lO8 Hz as the baseline value of o for both cases, for the four cables.
Comparing these, it appears that Rac is nof varying exactly as .f even at _

these high frequencies.
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6.5 EFFECT OF Rac VARIATION ON ANALYTICAL RESULTS

The discussions of L and C parameter value determination for
actual cables and the comparisons of analytical and experimental results -
for these cables has given insight into the effects of L and C variation on
the analytical results. In order to gain the same insight into the effects
of Ra.c variation, two sets of runs were made on the 20~conductor random

cable, using the calculated values of Rac and twice the calculated values.

The results for two typical transfer functions are shown in Figs.
6.3a and b. As can be seen in these two plots, the effect of a 2:1 variation
in R, . is not very great, being on the order of 2 dB except in resonant
dips, where the effect is as great as 6 to 10 dB. For these transfer func=
tions, the calculated values give the best results, indicating that they
are correct. |

This lack of sensitivity to Ra.c and the relative ease and accuracy I

with which Rac can be determined indicates that no problems are to be

expected.
It should be noted that, in these two transfer functions and all of

those shown in Section 5.3, Rac has been treated as hé.ving a /f variation,

i.e.,

Racatf=Kﬂ.

6.6 MODELING OF CABLES WITH FOUR OR MORE BRANCHES

When the two impedance methods of determining L. and C were
first developed, it was hoped that they would have sufficient resolution
to be able to determine parameters in 'trunk' sections of very complex
cables such as shown in Fig. 6.4. Applying the methods to very simple
coaxial cable versions of the cable shown in Fig, 6.4 did, in fact, produce
good results. That is, the impedance of each segment of the cable could -
be determined, even though they were quite different, .
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Branch B

E Branch A Br:‘j:h ¢
g 'Trunk! —_— | :]
RT-00436 Branch D

Fig. 6.4. Cable with four branches and ''trunk"

Unfortunately, real multiconductor cables are simply not as well
behaved as are coaxial cables. For cables of any complexity at all, it
was not possible to distinguish between segments with all the ‘myriad
reflections that were occurring from the various junctions and ends.
Thus, whenever a cable contains such a "trunk'' section which cannot be
reached directly, the only approach possible will be to dissect the cable
so that each segment becomes available. This will undoubtedly render
the cable useless, and that being the case, the process of dissection can
be carried to the point of separating every segment. Then the preferred

capacitance method can be applied.

6.7 TDR IMPEDANCE MEASUREMENT ACCURACY AS A FUNCTION
OF STANDARD IMPEDANCE

The problem of measuring, with a TDR, impedances which are
significantly different from the standard value (50 ohms) of the TDR have
been mentioned repeatedly. A more detailed discussion of the problem
will be presented here.

A typical TDR calculator scale is shown in Fig. 6.5. The instruc=-

tions for use of this calculator are as follows.
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Fig, 6.5. Typical TDR calculator scale, 50-ohm standard
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Fig., 6.6. Typical TDR calculator scale, 20-ohm standard
on p/cm = 0,05 scale
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1. On oscilloscope, set the reflection from a known imped-
ance even with the center horizontal graticule line.
Note setting of Reflection Coefficient (p/cm) control.
2. On the appropriate p/cm scale of the slide rule, set the
known impedance at the center line (L).
3. Replace known impedance with the unknown, and note the
deflection from the center line.
4. Read impedance at appropriate CRT scale marking on
slide rule.
The problem in applying these instructions is that only a limited deflec=
tion, usually £5 cm, is available on the oscilloscope. If the unknown
impedance is very much different from the 50-ohm standard, then lower-
resolution p/cm scales must be used to keep the deflection within the
range of the scope. The p/cm = 0.1 scale, for example, can only meas=~
ure impedance in the range 16 to 150 ohms. Outside this range, the
p/cm = 0.2 scale must be used, which covers the full range 0 to =,
These larger p/cm scales, unfortunately, suffer from very poor reso-
lution, being on the order of only %1 ohm for the p/cm = 0.2 scale.
The TDR calculator shown in Fig. 6.5 is for a known standard of
50 ohms. Figure 6.6 shows a view of the calculator set up for a 20~ohm
known standard on the p/cm = 0.05 scale. From this, impedances in the
range 9 to 35 ohms can be read with very high resolution. 'l;his points
out clearly the gains to be achieved from the use of lower impedance
standards. The two impedance methods for determining L and C, and
in particular the shorted~Z method, will not be fully tested until such
lower impedance standards are used.
Ideally, a range of standards (e.g., 10, 20, 35, 50, 75, and 100
ohms) should be available so that the optimum one —1i.,e., the one which

allows use of the smallest p/cm scale — can be used for each measurement.
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7. SUMMARY AND CONCLUSIONS

This report has presented in considerable detail the theoretical
background and practical problems of a technique for modeling of multi-
conductor cables. The important results will be summarized here for

convenience, and appropriate conclusions drawn from these results.

7.1 THEORETICAL BACKGROUND

The theoretical foundation for the technique requires the assump-
tion of pure TEM-mode signal propagation between conductor pairs. This
is not a significant limitation so long as:
l. Frequencies of interest are below ~108 Hz, )
2. Conductor size and spacings are less than ~l cm, and .
3. Attenuation is less than ~20 dB/m.

Conditions 2 and 3 are met for nearly all practical cable bundles, and con-
dition 1 is an acceptable limit for most applications.
With the assumption of pure TEM propagation, the transmission
line differential equations for an N+1 conductor line with uniformly distri-
buted parameters and sinusoidal excitation are ,
2

d—z E=zYE
dx

and

2
d—zf :Xéf" .
dx

where Z and Y are NxN matrices and E and Fare Nxl column vectors.

The elements of Z and Y are defined by
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= +. .: * o @
Zii Rii ‘]wLii i=1,2 N

Zij = ijiJ. i#]
and
N
Y., = jz=:1 (Gij + chij) i=1,2... N
Yij = -(Gij + jwcij) idj.

The solutions to these differential equations are

- -

E = exp(yx) §+ + exp(-yx) E_

and
—

f: exp(x'x) f_*_ + exp(-_x'x) I_ .

The Nx1 column vectors E+, E , I , and I are constants determined by the

boundary conditions. The rna.tric:e;~ y and vy are the propagation constants
for voltage and current waves, respectively, and they will, in general, be
NxN matrices. Two special cases were examined and produced the results
that (1) for uniform propagation constants on all conductor pairs, Y = l' =
Yi where Y is a scalar; and (2) if wire interaction is neglected, Yy = l’ where
Y is formed by placing the N individual propagation constants Yi on the diag-
onal with all off-diagonal terms equal to zero.

If the line is assumed lossless, the real terms in Z and Y disappear,

and the attenuation constants aii in y also go to zero. Then

LK = (v Z)-1 (nonuniform v )
-- 7P p
or .
I .
LK =—— (uniform v )
v
P
where
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v = phase velocity of wire i to return
v = Pij
- |v =0
pij

and

vp = uniform or average phase velocity .
The characteristic impedanée matrix Z0 is defined in the same manner as
for the two-conductor case; i. e., T

L -
Zo = :B?:'vLK lzsz:'
- - TP

These equations relating K,

i

, ZO, and _Y? form the basis for three methods
of determining the distributed L'and C parameters for cables from certain

measured parameters.

7.2 MODEL DEVELOPMENT TECHNIQUE

The interrelation of the transmission line parameters shows that if
any two sets of parameters can be determined, then all four sets are known.
The phase velocity matrix is the easiest to determine, since it requires only
the measurement of N phase velocities which then form the y_p matrix or are
used to find the average vp. Of the remaining three parameter sets, L is
the most difficult to determine, and so attention is directed toward deter-
mining K and/or ZO.
The definitions of the elements of K are inher.ent in the definition of

Y, since Y =K for the lossless case; i.e., all Gij = 0. Then,

N
K.=2 C..,
ii i=1 ij

and
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The Cij is the actual partial capacitances which exist between wires, and
these cannot be measured directly with a bridge due to interaction with other
wires. However, by making capacitance measurements on a cable in a spe-
cified manner (see Table 4.1), the Kii and Kij terms can be calculated. |
These can then be mapipulated to obtain the partial capacitances directly,
and the inductance matrix can be obtainéd using the phase velocity matrix.
The capacitance method cannot be used for cables with three or more
branches because the various branches cannot be distinguished using a capa-
citance bridge. However, impedances can be measured with time-domain
reflectometry (TDR) techniques, and the time and distance resolution of
this technique allows the branches to be distinguished from one another.

As with K, the Z0 matrix cannot be measured directly, but by making impe-

dance measurements in a specified manner (see Table 4.2), the elements of

ZO can be calculated. Then, using the phase velocity matrix, L and K can

be determined, and the partial capacitances can be calculated from K.

A third method was also developed, one which requires a different
set of impedance measurements but which is based on the same theoretical
foundation. This method is shown in Table 4.3.

In addition to these L and C parameters, real terms are required in
the model to account for losses. The real terms are series resistance R
and shunt conductance G. It was shown in Section 4 that R dominates losses
for practical cable dimensions and materials, and G was consequently ne-
glected. A method for calculating Rac for wire pairs was then developed,

based on measuring

E

OuT at the quarter-wavelength resonant

EIN frequency, fk/4 s

4 in meters ,
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'ZO in ohms ,

and calculating Ra.c from

R a.t‘f = : ZO EIN .
ac N4 4 EOUT ; N
A4

The assumptions used in developing the method require that (1} input imped-

ance of the instrument used for lmeasuring E be high (1.5 to 15 k{}) at

the measurement frequency (fk/4)’ and (2) thca).’?”c:;e total cable loss (@) be

small (<0.8 neper). For the worst-case parameters observed during the

modeling effort, this latter requirement is met for cables up to ~100 m in

length, but to allow a margin of safety, the actual length used should be lim-

ited to about 10 m. It should be emphasized that this low total loss require-

ment applies only to the cable on which the measurements are made; it in -

no way limits losses on the overall cable model.

In the actual cable model, the ac resistances calculated by this

method are agssumed to vary as /T over all frequencies, and then
R atf=K/T
ac

where

i Ra.c at fA/4
K_—\E—— .
24

The /T variation is valid for practical cable conductors only for frequencies
above ~1 MHz, and if a model is to be used below this frequency, some addi-
tional error must be expected. The resistance factor K determined for wife
pairs can be apportioned to the individual wires by (1) measuring a number
of pairs and solving simultaneous equations, (2) by having one conductor of
each pair be a known K, or (3) by judgment for many simple cases.

With the necessary distributed inductance, capacitance, and series

resistance parameters available, a lumped-parameter equivalent circuit -
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model can be created. This model can then be analyzed using any available
computer code capable of handling the resulting netwvork size. The maxi-
mum errors resulting from the use of the lumped approximation, as a
function of the section length in wavelengths, were calculated in Section 3
and are summarized in Fig. 7.1. These results allow the creation of models
no more complex, in terms of model sections, than required to meet the
desired accuracy limits or, conversely, allow the prediction of érror bounds
where computational ability limits total network size. An example will
illustrate the significance of this ability. Consider a typical missile cable
of 20-m length and a phase velocity of 2 x 108 for which a model good to

30 MHz is desired. Applying the frequently used rule of thumb that section
lengths of 0.1\ at the highest frequency of interest will yield '"good'" results,
the cable model requires only 30 sections, but the resulting error bounds
are £16.8 dB. To meet an arbitrarily set accuracy limit of *6 dB, the
model requires 85 sections. This example shows clearly that to obtain
reasonable acéuracy (e. g., factor of 2) for cables of even moderate length

at relatively high frequency requires the use of a great many model sections.
Thus, in preparing to model multiconductor cables, the required accuracy
and upper-frequency limits should not be set arbitrarily, but rather, care-

ful consideration must be given to establishing reasonable limits.

7.3 RESULTS OBTAINED FOR REAL CABLES

The modeling technique described was applied to a number of actual
cables of varying complexity. The modeling and experimental,prograrﬁ on
actual cables produced a total of 85 transfer functions taken on six«cable
configurations, using the three different methods for determining the L and
C parameters. A breakdown of the resulting agreement between analysis
and experiment, by method, is shown in Table 5.4, page 189. The results
were '"Good'" (+3 dB agreement over most of the frequency range) for >40%

of the safnple, "Fair'" (6 to 14 dB) for >50%, and '"Poor'' (>14 dB) results
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occurred for a very small (only 4%) part of the sample. It should also be
noted that, of the '""Fair' results, about half were very near the 6-dB limit,
so that, overall, ~70% of the results were within ~6 dB agreemeﬁt between
analysis and experiment. These results were obtained with absolutely no
attémpt made to alter the calculated parémeters to improve agreemént
between analysis and experiment. The originally calculated parameters,
altered only as necessary to eliminate obviously unreasonable values,
were used for ail analytical calcizlations.

The modeling effort als'o showed that, whﬂe based on sound theoret-
ical foundations, all three of the methods for determining inductance and
capacitance parameters suffered problems in practical applications. The
problems resulted from errors and uncertainties in the requifed measure-
ments which, at times, produced obviouély uhreasoﬁable capabcitai.nce param-
eters. However, it was also shown that judgment could be used to correct
these unreasonable values.

No one method stands out as being fhe best from the standpoint of
results obtained; thus, there is not a ”vmethod‘ of choice' based on results.
There is, however, a subjective order of préfei'ence based on the difficulties
encountered while measuring parametérs on the cables and calculating the
model parameters. This order of preferenc'e is (1) capécitance method, ‘
(2) open-Z method, and (3) shorted-Z method.

The two impedance-based methods which were developed specifically
to handle multibranch cables yielded good results on a cable with three
branches. A sample cable with four branches and a ”trunk’.‘ sectioh, which
could not be reaéhed directly, was also examined. This examination showed
rather conclusively that impedances within this trunk cannot be measured
from the branch ends due to the presence of numerous reflections. Thus,
such cables must be dissected to make the required xheasurements.

The modeling effort also revealed a véry important consideration re-

garding experimental verification of cable model parameters. A generally
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valid cable model must have accurate L and C parameters. If it is desired
to test the accuracy of the model by experimental verification, termination
schemes which adequately test both L and C parameters will be required.

To verify the L parameters, low-impedance («~10 ohms) termination of the
driven wire is required to maximize magnetic coupling. Conversely, to test
the C parameters, high-impedance (>~ 1 kQ) termination of the driven wire
is required to maximize electric-field coupling. If the real-life cable;'cer-
minations are known to always be high or low, this may not be necessary.

(12)

But then the simplifications suggested by Greenstein and Tobin may be
useful, obviating the need for a distributed model.

The complexity of the models required for even a 20-wire cable
prompted a very brief investigation into grouping of some wires for pur-
poses of modeling., This concept is based on the realization that, in many
cases, not every wire will be of interest from the standpoint of detailed
signal distribution. The results of this investigation were encouraging and
indicate that the concept merits further investigation.

One final point which should be made is that, even though t;he methods

for determining I, and C were based on the assumption of a lossless line,

they have been shown to be applicable to lossy cables.

7.4 CONCLUSIONS

A number of important conclusions can be drawn from the results of

this modeling program.

1. Accuracy of Results: All three methods for determining L

and C parameters are capable of good results, within +6 dB
for most cases.

2. Preferred Method: The capacitance method is preferred be-

cause it is least subject to measurement error and ambiguity.
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3. Multibranch Cables: Using the impedance methods, branches

can he modeled without dissecting the cable, but '"trunk" scc-
tions cannot.

4. Model Simplification: Grouping, for purposes of modeling,

of uninteresting wires within a cable appears to have merit,

5. Lumped-Element Approximation: Arbitrary accuracy can be

obtained, but accuracy and upper-frequency limit must be
traded off against model simplicity for even moderately long

(~20 m) cables.

The only limitations resulting from the various assumptions made during

the theoretical development are as follows,

Cable Physical Characteristics

1. The technique is intended to be used with ''tightly packed"
cable bundles; i. e., conductor spacings should be small
(¢~1 cm).

2. Conductor sizes are limited to those found in practical
cables; i. e., No. 22 AWG or greater, but less than ~l-cm
maximum diameter of largest internal shield or conductor.

3. The techniques require uniformity with respect to distance
on the cable. For practical cables, this implies no abrupt
transposition of internal conductors, but twisting and grad-
ual weaving in and out are acceptable.

4. Internal shielding of wires is permissible,

Cable Electrical Characteristics

1. Attenuation must be less than 20 dB per meter. Practical
cables have, at most, a few dB/m attenuation up to 100 MHz.

2. Total loss on the cable on which Rac measurements are made
must be <0.8 neper. The maximum length used should, there-

fore, not exceed ~10 m.
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Frequency Range

The assumptions generally require operation in the range 1 to
100 MHz. However, based on the results obtained, the lower-
frequency limit can be extended to at least 100 kHz., The upper- -
frequency limit can be extended to at least 300 MHz, so long as
the conductor size and spacing limitations are not exceeded and

the loss remains below 20 dB/m.
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