HDL-TR-1736

Transient Currents in Partially Shielded
Conductors: A Circuit Model

November 1975

T THIS RESEARCH WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
| UNDER SUBTASK R99QAXEBO75 AND WORK UNIT 43/CURRENT
| INJECTION TECHNIQUES FOR C3 APPLICATIONS.

aaiuOW 7 pleydly AQ—PpoW ENAIY Y SI00NPUO) papia!ug Aeised Ul sjusung 1uagsuu1-gga;gl

U.S. Army Materiel Command |
HARRY DIAMOND LABORATORIES

Adelphi, Maryland 20783

e iy
RESEARCH
DEVELOPMENT
ENGINEERING
s

h

:

&

i

|

l ) APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
i '

I






UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE o EAD INSTRUCTIONS
. REPORT NUMBER 2. 30VT ACCESSION NOJ 3. RECIPIENT’S CATALOG NUMBER
HDL-TR-1736
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Transient Currents in Partially Shielded Technical Report

Conductors: A Circuit Model 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
. NWER Subtask:
Richard L. Monroe
R99QAXEBO75
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
i X AREA & WORK UNIT NUMBERS
Harry Diamond Laboratories Work Unit: 43

2800 Powder Mill Road
Adelphi, MD 20783 Program: 62704H

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Director November 1975
Defense Nuclear Agency 13. NUMBER OF PAGES
Tyggh;ngton. DC 20305 35
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a, DECLASSIFICATION7 DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

AMCMS Code: 6910002210917 HDL Project No.: E194E2

This work was sponsored by the Defense Nuclear Agency under
Subtask R99QAXEBO75 and Work Unit 43/Current Injection Techniques
for C® Applications.
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Shielded cables

EMP

Shielding effectiveness

Current injection

20. ABSTRACT (Continue on reverse side if y and identify by block ber)

This note presents a resistive-inductive circuit
representation of the coupling of transient currents to partially
shielded conductors. The current coupled to the inner conductors
is computed in terms of the shield current by use of lumped
parameters directly related to the specific geometry of a given
problem. The model is applied to an example where experimental

1 52::'5,, 1473 EDITION OF 1 NOV 65 IS OBSOLETE 1 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

data are available; the peak value of the coupled current is a
significant fraction of the exciting current; that is, the shield
is effectively short-circuited.

2 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




[0 )N V2 B ~ S VS

@

10

11

12

CONTENTS

Page
INTRODUCTION . « o o = o o o s o o o o o s o o o o = = = = = = 5
CIRCUIT MODEL « &« ¢ = o o o o & o o o o o s o o &« & o o =« & = 7
LUMPED PARAMETERS + ¢ s o o o o o o o o o o o o = o o = o o 11
TRANSIENT BUNDLE CURRENTS .« ¢ « « o o « < o o o o = o o o = 17
4.1 Case 1, Zg = R+ « v o o o ot o s e e e e e e e e 17
4.2 Case 2, Capacitive Load . . + « « « « o =« « o o « o = = 19
DISCUSSTION + o « o o o o o o o o o s o o o o s s & s o o = = 24
DISTRIBUTION . . « o o o s o o o o s o o o » o o s o o =+ =« = 27
FIGURES

Current source driving a grounded cable shield containing

an internal bundle (end effects ignored) . . . . . . . . . . 5
Partially shielded bundle grounded at both ends through load

impedances 2] and Zg . - ¢+ o« e e s e s e e s e e e e e e e 6
Primary 1OOD . « « o o o o s o o o e e 2 e e s s s s e e e .. 8
Secondary loOP « « « o o o 2 o s e e e e e s e s e e e s e s 8
Partially shielded bundle . . . « « « « &« = « ¢ o o « ¢« & o 10

Ground conductor and partially exposed bundle . . . . . . . 12
Two arbitrarily positioned filaments of lengths % and m . . 13

Reconstruction of figure 6 with the coordinates of each
segment specified in a rectangular system . . . . . . . . 15

Theoretical shield and bundle currents for the case of a
resistively loaded bundle . . . . « « + ¢ ¢« o o o o ¢ o & 19

Theoretical shield and bundle currents for the case of a
capacitively loaded bundle . . . « « ¢ « « « ¢ « o o o . . 24

Experimental shield current generated at a radio transmitting
FACility « o o o o o o o o 4 e s e e s s e s s s e e e e oo 25

Experimental bundle current caused by the shield current in
figure 11 . ¢ ¢ ¢ ¢« o o v e e e s s e e e e e e e e e e 25



1. INTRODUCTION

The degree of electrical jsolation or shielding between two
segments of a conducting structure 1is frequently determined by
measuring induced transient currents in one of the segments when a
known current is injected into the other. Typically, a current pulse
ip (t) is generated on a grounded cable shield by a small transient
source, and the resulting current on an internal bundle ig(t) is
measured (fig. 1). A low ratio of peak bundle current to shield
current generally indicates a high degree of isolation, and
conversely, a high ratio of currents indicates poor isolation. If the
cable shield were completely continuous and surrounded the entire
length of the internal bundle, this ratio would be small indeed,
because the current induced on the internal bundle would be solely due
to fields directly penetrating the shield, and such fields would have
peen attenuated by hundreds of decibels in passing through the walls
of a typical shield at most frequencies of interest. Unfortunately,
most cable shields are not completely continuous and do not surround
the internal bundle over its entire length. There are often direct
resistive, inductive, and even capacitive coupling routes between the
outside of the shield and the internal bundle, which effectively
bypass the high-loss path through the shield. It is then found that
currents generated on the internal bundle greatly exceed the currents
that would have been produced if direct penetration of the shield had
been the only coupling route available. In other words, a
discontinuous or incomplete cable shield can be partially or wholly
short-circuited by direct coupling between shield and bundle.

Figure 2 represents a frequent situation. Here a cable shield,
grounded at both ends, surrounds a section of a bundle that also is
grounded at both ends through load impedances. If a current ip(t) is

SOURCE

GROUNDED SHIELD

/ INTERNAL
-
-

——BUNDOLE

Figure 1. Current source driving a grounded cable
shield containing an internal bundle (end
effects ignored).
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Figure 2, Partially shielded bundle grounded at both
ends through load impedances 3z, and Z5.

generated on the shield by a small source, ip(t) can contribute in
three ways to the bundle current ig(t), in addition to directly
penetrating the shield wall:

(a) Resistive coupling through the grounding system

{(b) Inductive coupling between the outside of the shield and those
segments of the bundle conductor that are not surrounded by
the shield

(c) Capacitive coupling between the outside of the shield and the
exposed segments of the bundle conductor.

Resistive coupling depends on the resistances between the four
grounds taken in pairs; inductive coupling depends on the length and
orientation of the bundle conductor with respect to the shield; and
capacitive coupling depends on the surface areas and distance between



the shield and bundle, among other factors. 1In such a situation, one
should not be surprised if the performance of the cable shield in
electrically isolating the internal bundle is rather poor.

This report presents an R,L circuit representation of the situation
depicted in figure 2 (capacitive coupling is ignored) that permits one
to compute 1ig(t) in terms of ip(t) using lumped parameters directly
related to the specific geometry of a given problem. The model 1is
applied to an example where experimental data are available, and it is
verified that the peak value of ig(t) is indeed a significant fraction

of ip(t); that is, the shield is effectively short-circuited.

2. CIRCUIT MODEL

For a circuit model of the partially shielded bundle, the
distributed resistances, inductances, and capacitances along and
between the shield and the bundle must be replaced by lumped
equivalents of near equivalents. For example, the distributed self-
inductance of the shield, which in fact is a complicated function of
frequency, must be replaced by a constant Lp corresponding to a single
impedance element of the form j2wfLlp, where f is the frequency. This
constant must, of course, be an adequate approximation to the actual
self-inductance of the shield over the frequency range of interest.
Similarly, the distributed self-inductance of the bundle is replaced
by a constant Lg; the distributed mutual inductance linking the shield
and the bundle is replaced by a constant M; and the ground resistances
linking Gl, G2, G3, and G4 are replaced by constants R;,, Ryss Riuy
Ry3, Ray, and Rgy.

Generally, a lumped parameter model for a distributed structure is
valid when the longest dimension of the structure is significantly
smaller than the shortest wavelength of interest in the current pulse.
For example, a current pulse with a rise time of 10-6 s contains
important amounts of energy at frequencies as high as 106 Hz. A
frequency of 106 Hz corresponds to a free space wavelength of 300 m.
Hence, with this current source, a lumped parameter model for a
partially shielded bundle of conductors would probably be wvalid for
conductor lengths of 100 m or less. This report is limited to sources
with significant frequencies below 10 MHz. 1In this frequency range,
distributed capacitances can be expected to be much less important
than resistances and inductances in coupling energy from the shield
into the bundle. Consequently, distributed capacitances are ignored
as a first approximation in the following. However, load capacitances
(that is, condensers in Z: or Zz,) are not ignored, for these can have
an important effect on the bundle current.

The first step in constructing a circuit model is to note that the
source lcop in figure 2 is small compared to the rest of the structure
and is equivalent to a current source ip(t) (Ip(f) in the frequency
domain) on the cable shield. Thus, there are two basic loops to
consider. A primary loop consists of a path along the cable shield
and through the ground (fig. 3, where R, is the ground resistance
between Gl and G2 in fig. 2 and Lp is the self-inductance of the
shield). A secondary loop consists of a path through the load
impedances 2z, and Z,, the internal bundle and the ground . (fig. 4,
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Figure 3. Primary loop.
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Figure 4. Secondary loop.

where Rg is the ground resistance between G3 and G4, and Lg is the
self-inductance of the bundle). These +two loops are inductively
coupled through the mutual inductance between the shield and the
bundle, and they are resistively coupled through ground paths
connecting Gl and G3, Gl and G4, G2 and G3, and G2 and G4. Thus, in
the circuit model shown in figqure 5, M is +the mutual inductance
between the shield and the bundle, and Ry;, R,,, R23, and R,, are the
resistances through the ground paths connectlng Gl and G3, Gl and G4,
etc. Sometimes in practice, the return path in the secondary loop is
not through the ground, but directly through the load impedances 2;
and Z,. When it 1is, there is no resistive coupling between the
primary and secondary loops, and the only link between the shield and
bundle is through the inductive coupling M. This link can ke obtained
from the model by letting Rg ~ 0.

The circuit in fiqure 5 is to be solved in the frequency domain for
Ig(f) in terms of Ip(f) and the resulting expression transformed into
the time domain ) ig(t) by taking the inverse Laplace transform.



8killing! describes a method of solving networks with current sources
and inductive coupling using node equations. This method relies on
branch equations and connection equations from Kirchhoff's laws.
Since there are eight branches and three independent nodes in
figure 5, this approach obtains a system of 11 equations in 11
unknowns. Fortunately, this system can be reduced quite easily to an
equivalent set of seven equations with seven branch currents as the
unknowns:

I + I3 + I, + I,3 + 0 + 0 + 0 = 0

+ 0 - I,3 + o + Tyy + I,2 + 0 = - Ip

0 + 0 + 0 - I, + 0 - I,2 + I, = Ip

AL - R.Isu + 0 + 0 + 0 + 0 + 0 = - j2nfMIp (1)
jZNfMIs + 0 + o + 0 + 0 - R I, + 0 = - j2rfL I
PP

c - RSI3u + 0 + Ry3Izs + 0 + 0 + RyyIoy = 0
0 - Rslau + Ry3Ii3 + 0 +Riuvliy + 0 + 0 = 0

where I,, is the current in the branch connecting Gl and G2, I, is
the current in the kranch connecting Gl and G4, and I,;. T,30 Iy, and
I,, are defined similarly. All other quantities are as previously
defined, except

A= 2, + Zp + j2mfL_ . (2)

The solution to this system, though tedious, is quite straightforward
with determinants. Omitting the details,

R WR_ + ] R + 3
sy j2nfM pY jZﬂprRSw

I_(f) = ~ I_(f) (3)
s R_R X + J2nEMR W+ AR X P
where
W = R;3R14 - R13Rzy (4)
X = (Rzu + R23) (Ryy + Ris) (5)
Y = X + RS(RZQ + Ry3 + Riy + R13). (6)

ly. H. Skilling, Electrical Engineering Circuits, John Wiley & Sons, Inc., New
York (1965), 336.
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Figure 5. Partially shielded bundle.

Equation (3) is the desired expression relating the shield and bundle
currents in the frequency domain. Since equation (3) is derived from
a circuit model, it will always be possible to carry out the inverse
Laplace transform to obtain an explicit expression for ig(t), provided
Io(f) 1is sufficiently well-behaved. This report is limited to shield
currents of the form

_ 1
Ip(f) - I(E + j2nf  F + j2nf) (7)

where the inverge transformation of equation (3) is straightforward.
The time domain representation of equation (7) is the difference
between two decaying exponentials:

1,(8) = I(e'Et - e‘Ft). (8)
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Since most current pulses of interest can be approximated by linear
combinations of terms like equation (8), limitation of Ip(f) to the
form given by equation (7) does not seriously restrict the theory.

3. LUMPED PARAMETERS

The accuracy of any model is no better than the accuracy of the
parameters that go into it. Thus, if the present model is to have any
chance of success, the ground resistances and self- and mutual
inductances must be determined with sufficient accuracy +to at least
preserve in a general way the correct relationships among circuit
elements. One might prefer to measure these quantities directly, but
could do so only rarely with existing structures, since direct
measurement would require that the structure be at least partially
dismantled. Then usually one must attempt to estimate these
quantities from the best available information. Ground resistances
can frequently be estimated from measurements at the time of
construction, since grounding systems must usually be certified to
meet specifications. If this information is not available, standard
formulas such as those given by Sunde? can be used to compute ground
resistances, provided ¢the grounding elements correspond reasonably
well to those few types for which formulas have been developed, and
provided the soil conductivity is known. For inductances, one is
limited to estimates based on calculations, since these quantities are
not usually certified at the time of construction. The formulas
compiled by Grover3 are very useful in such estimating.

Figure 6 illustrates the wuse of inductance formulas. The heavy
solid line represents an exposed conductor connecting the ground G and
the cable shield, which is shown as three parallel dashed lines. The
lighter solid 1line is an exposed 3segment of the internal bundle
starting at the point T where the shield terminates. The coefficient
of mutual inductance M between the ground 1line and the exposed
internal bundle is to be computed. 1In practice, one would compute
also +the mutual inductance between the cable shield and the internal
bundle. However, since the same method can be used in both
calculations, the latter is ignored here. Each conductor consists of
a series of straight segments, and the lengths of these segments are
much greater than the diameters. Each segment may be considered a
straight 1line current filament of =zero diameter. The mutual
inductance between ground 1line and bundle can be computed by first
calculating the mutual inductances between all pairs of segments
consisting of one filament from +the ground line and one from the
bundle and then adding these contributions to obtain the total. These
pair-wise calculations use a general formula giving the mutual
inductance between two straight filaments placed in any desired
position.} Figure 7 shows two such filaments of lengths £ and m in
arbitrary positions with respect to a rectangular coordinate system.

2g. D. Sunde, Earth Conduction Effects in Transmission Systems, D. Van
Nostrand Co., Inc., Princeton (1943).

3p. w. Grover, Inductance Calculations: Working Formulas and Tables, Dover
Publications, Inc., New York (1962).

11
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Figure 6. Ground conductor (heavy line) and partially

exposed bundle (light line) .

If the coordinates of the end points of the first filament are (Xis
Y1, 2;) and (X2, Y2, Z2) and the coordinates of the end points of the
second are (xi, y!, z}) and (x;, vs+s Z3), then & and m are given by

)z)% (9)

and the distances D,, D,, D3, and D, are

12



(qJPqJ
\\ (XZ.YZ vzz)
\ ~p
\ 2~ ~ / \\
\ Ds
\D / NN N
~
l\ / D4 Sy (%n,y2,20)
\ /
\ oy ©
\ 4 y

Figure 7. Two arbitrarily positioned filaments
of lengths 2 and m.

1,
D, = ((x1 - x;)2 + (y, - y{)2 + (z, - z;)2> :
1
D, = ((x1 - X2+ (y, -y o+ (2 - z;)z) :
2 2 AR (10)
Dy = ((x2 - x3)° 4y, = yy) + (z, - _4))
1
Dy, = ((x2 - x;f + (y, - y;ﬁ + (z, - z;f) :
The mutual inductance M between the two filaments is given by
: M -1 m
= + e
0.002 cos ¢ (¥ 2) tanh D; + D
+ (v + m) tanh™! L
D, + [,
(11)
- -1 __m_
¥ tanh 5+ D
B -1 A _ Qd
v tanh D, + D3 2 sin ¢

13



where

cos £ + (U + &) (v + m) sin? e>

_ a2
— 1
£ = tan ( dD, sin €

1 (d2 cos € + (u + ) v sin? e)

- tan GD, sin ¢
(12)
- d? cos € + pv sin? ¢
1
+ tan ( dD; sin € )
2 N
_ -1 {d° cos € + p(v + m) sin® €
tan™? ( 3D, sin € )
and
cos € = 0?/2%m (13)
«? = D2 - D3 + D% - b} (14)
d? = D% - u? - v? +2uvcos ¢ (15)
2
u/2=2m2(D§—D§-12)+ot2_(D§—D§—m) (16)
492%m? - ot
2 2 2 2 2
o/m = 22° (p2 - D2 - m2) + o? (D3 - DI - 22) . (17)

42%m? - ot

In these formulas, all distances are in centimeters, and +the mutual
inductance is given in microhenrys. On the basis of equations (9) to
(17), it is a straightforward matter to write a computer program that
will take the coordinates of the end points and compute the mutual
inductance between any pair of current filaments. To facilitate the
use of such a program, it is convenient to introduce a coordinate
system into figure 6 and to specify the coordinates at each end of
every segment. With the aid of figure 8, one can compute the mutual
inductance between ground line and bundle by applying this program to
all pairs of segments comprising the ground line and bundle and adding
up the results. Since the ground 1line has five segments and the
bundle has four, there are 20 distinct pairs, each of which is
composed of one segment from the ground line and one from the bundle.

14
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Figure 8. Reconstruction of figure 6 with the coordinates of each
segment specified in a rectangular system.
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Designating M(1,1') as the mutual inductance between segments labeled
1 and 1' in fiqure 8, M(1,2') as the mutual inductance between
segments 1 and 2', and so on, one obtains the following:

M(1,1') = 0.0327 uH M(2,1') =0
M(1,2') =0 M(2,2') =0
M(1,3') =0 M(2,3') = 0.341 uH
M(1,4') = 0.0289 pH M(2,4') =0
M(3,1') = 0.189 uH M(4,1') =0
M(3,2') =0 M(4,2') = 0.136 pH
M(3,;3') =0 M(4,3') =0
M(3,4') = 0.0909 uH M(4,4') =0

M(5,1') = 0.0329 uH

M(5,2') =0
M(5,3') =0
M(5,4') = 0.0635 uH

The mutual inductance between perpendicular segments is 0, as
expected. The total mutual inductance is then +the sum of the
preceding 20 quantities:

M M(1,1') + M(1,2') + . . . + M(5,4")

0.0327 + 0.0289 + 0.341 + 0.189 + 0.0909 + 0.136

+ 0.0329 + 0.0635 uH

0.915 uH.

The self-inductance of a circuit composed of straight segments equals
the sum of the mutual inductances of all pairs of filaments of which
it is composed, plus the sum of the self-inductances of all segments
of which it is composed. Therefore, the preceding formulas can be
used also with the general expression for +the self-inductance I of
straight round wire of radius p and length X\:

L = 0.002) [1n(ﬁ) - EJ (18)
o] - 1

to compute Lg and Lp for use in equation (3).3

3r. W. Grover, Inductance Calculations: Working Formulas and Tables, Dover
Publications, Inc., New York (1962).
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4, TRANSIENT BUNDLE CURRENTS

This section applies the inverse Laplace transform to equation (3)
with Ip(f) given by equation (7) and obtains explicit time domain
expressions for the bundle current ig(t). For these calculations, the
load impedance %Zg = Z, + Z, must be specified. Two cases are
considered, depending on the values assigned to Zg. In the first
case, Zg is a pure resistance R, and in the second, it 1is a pure
reactance equal to that of a single condenser (capacitive load). As
one would expect, ig(t) is quite different in these two cases.

4.1 Case 1, Z5 = R

With a resistive load, equation (3) can be written

I (f) = I A + j21fB 1 _ 1
s - C ¥ jentD| |E + j27f F + j2rf
where
A= RS.WRp (20)
B=MRY +L RW (21)
P p s
C =R X(R + R) (22)
P S
D =MRW+ L_R X. (23)
S s p

Equation (19) can be cast into another form suitable for easy
transformation by use of partial fraction expansions of the type

1 . 1 - £ + 7
a + j2TER Yy + j2nf a + J2mER Y + j2nf
where
_ 1
C"a_B.Y
E =~ Bz .

17



Omitting the details,

-Ct
. _ (F - E) (AD - BC) b
tgle) =1 [(c = DE) (C - DF)

(24)

(A - BE) -Et (A -BF) Tt
(C - bE) © € - or) © .

Figure 9 rlots ip(t) and ig(t) computed from equations (8) and (24),
respectively, by use of several values of M as indicated and the
following values for remaining parameters:

L = 20 uH L = 20 uH
s P

R = 40 Q R = 50 Q
s P

R13=20Q R2q=20Q

Ris = 40 Q Ry3; = 40 Q
R=0
E =25 x 10% s~! F=24x 107 g7}

In figqure 9, the amplitude factor I is chosen to produce a peak value
for i (t). of 1 A. Thus, from equation (8), I is given explicitly as
follows:

I = 1 (25)

-Et -

t
e MaX_.g = max

where tp.. is the time at which ip (%) attains its maximum value. From
equation (8), it can be shown that

t = . (26)

For E and F as given above, tmax 111 ns = 111 x 10-9 s,
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Figure 9. Theoretical shield and bundle currents for the
case of a resistively loaded bundle.

Figure 9 indicates that in this case, bundle current is quite
similar to shield current in shape and in peak value. As M increases
through positive values, the peak current increases in magnitude, and
the rise time decreases. That ig is opposite in sign =o ip‘when M is
positive means that ig is flowing in the opposite d.rection to that
assumed in figure 5. When M is necgative, both the peak values and the
rise time increase as M assumes larger negative values.

4.2 Case 2, Capacitive Load

When the load in the secondary circuit consists of a condenser
with capacitance Cg, then

_ 1
Zg = j2miC, ' (27)

19



and equation (3) becomes

R WR_ + J2wfMR Y + j2nfL R W
S P P P s

Is(f) =1 - i
RGR X + J2mEMR W + (J_Zﬁ'f_c: + ]2'nfLs)RpX
1 _ 1
*|E + j32n¢f F + j27f
which can be rewritten
I (f) = Ij2nf P + Qj2nf
s - D U + vj2nf + (j2nf)?
(28)
1 _ 1
‘IE + j2nt F + j2rf
where
P = RsWRp (29)
=MRY + L RW 30
Q o pRs (30)
D = MR W + Lstx (31)
U = RpX/CsD (32)
vV = RSRPX/D . (33)

20



With the aid of a partial fraction expansion, equation (28)

becomes
IV, : Qj2rf + ¥
1_(f) = <5>32nf(P + Qj2wf) <U ¥ Vi2nt + (J2mER
(34)
Y - ¥
t EF j2n8  F + j2“f>
where
_ 1
Y= EE-V) +0 (35}
. 1
Y T F(F-V) +0 (36)
V= (BE-V)y - (F-WVY' . (37)

When the factors in the numerator are multiplied, equation (34) becomes

1_(f) = (%)[(Q¢(j2nf)3 +(Qy + Po) (j276) °

) 1
+ Pw(]zﬁf))<u ¥ V(j2nE) + (jZNEV) (38)

N (P(jzﬂf) + Q(jznf)z)'(g +Yj2ﬂf T F +Y;2Trf)]

where

b=y -y . (39)

21



Now the inverse Laplace transform of equation (38) can be written by
inspection with the aid of the following pairs:

vt
-T2 .
1
L—_l [ - . 2] - € sin wt (40)
U + vj2nf + (j2nf) w
where
VZ ;5 V2
w= {0 - T and U > v is assumed, (41)
1 _ =at
n
| -1 [(jznf)n F(j2'nf)] = 9_fr_(1£)_ (43)
dt
where
£(e) = | -1 [F(jZTrf)] .
I *
Thus, the time domain representation of the secondary current is
A
i =2 (0sds + v+ Py Ly + pydi) e sin ut
s D dt dt at/ -~ o
(44)

. 2. - -
* <PSTE * Q%F><Ye Ft - yre Ft> .

4G. Doetsch, Guide to the Applications of Laplace Transforms, D. Van Nostrand
Co., Ltd, London (1961).
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After the differentiations and the collection of 1like terms are
carried out,

vt
= ~-Ft
2 o+
i (t) = I [e (o sin wt + p cos wt) + Te Et + ue (45)
S D W
where
3w? V2 2 PYV
g = Q¢V( g - §—>-+(Qw + P¢) (%— - wz)— —%— (46)
3v? 2
p = Qdu\—z— - W= Vo (Qy + P¢) + Pow (47)
T = YE(-P + QE) (48)
p = Y'F(P - QF) (49)
and the remaining quantities are as defined previously. Figure 10

plots equation (45) (bottom curve) along with equation (8) (top curve)
for the following parameters:

Lp = 20 uH LS = 20 uH M = 2 uH
R =10 Q R =10 Q
S P
R13 =5 Q Roy = 5 Q
R,y = 10 Q Ry,; = 10 @

C=10"7 F = 0.1 uF

2.5 x 107 s7!

I

E= 2.5 x 10° s™! F
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Figure 10. Theoretical shield (top) and bundle (bottom)
currents for the case of a capacitively
loaded bundle.

Figure 10 shows the type of oscillatory behavior that one
might  have expected in an R,L circuit with a capacitive load.
Although differing in this respect from the curves in figure 9, these
curves are similar to the latter in two other respects: The rise time
of the secondary current is approximately the same as that of the
primary, and the peak secondary current is a significant fraction of
the peak primary current.

5. DISCUSSION
The preceding sections have described a circuit model for a

partially shielded bundle of conductors. Calculations based on
representative (assumed) sets of lumped parameters have indicated that
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this model will predict rise times and peak currents on the bundle of
the same order of magnitude as those on the shield. Experimental data
and theoretical curves obtained by use of computed {or measured) input
parameters are not compared here in detail. But one set of measured
curves at least qualitatively supports the model. Figure 11 is the
shield current, and figure 12 is the corresponding bundle current
measured on partially shielded conductors forming a section of a large
radio transmitter. The curves have been normalized to a peak shield
current of 1 A, and the scale of figure 12 has been expanded. Rise
times range from 250 to 500 ns, and the peak bundle current equals
approximately 13 percent of the peak shield current. The
corresponding values for the computed curves in figure 10 are 700 to
1000 ns and 46 percent, respectively. Considering the uncertainties in
the circuit parameters, these represent rather good agreement. Many
more such comparisons will be required to determine if these
agreements are significant or merely fortuitous.

u Figure 1ll. Experimental
shield current generated
[~ at a radio transmitting
facility.

1 DIV = 3.30E-01 UNITS

AMPL VS TIME ('s)

Figure 12. Experimental
bundle current caused by
the shield current in
figure 11.
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