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ABSTRACT

A theory of characteristic modes for material bodies is developed
using equivalent surface currents. This is in contrast to the alter-
native approach using induced volume currents. The mode currents
form a weighted orthogonal set over the material body surface, and
the mode fields form an orthogonal set over the sphere at infinity.
The characteristic modes of material bodies have most of the properties
of those for perfectly conducting bodies. Formulas for the use of
these modes in electromagnetié scattering problems are given. A

. procedure for computing the characteristic modes is developed, and
applied to two~dimensional bodies. Illustrative examples of the
N~ computation of characteristic currents and scattering cross sections

are given for cylinders of different material constants.
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CHAPTER 1

INTRODUCTION

1.1 Background

Characteristic modes have long been used in the analysis of radiation
and scattering by dielectric and/or magnetic bodies whose surfaces coincide
with coordinate surfaces in coordinate systems for which the Helmholtz equa-
tion is separable. From consideration of the scattering matrix, Garbacz [1]
has shown that similar modes must exist for any material body. An extensive
theory for perfectly conducting bodies was given in reference [1], but the
dielectric and magnetic body case was not developed. An alternative treat-
ment of the characteristic modes for perfectly.conducting bodies, starting
from the impedance operator for the conducting surface, has been given by
Harrington and Mautz [2]. The computation of such modes has also been con-
sidered by Harrington and Mautz [3]. A theory of characteristic modes for
dielectric bodies, magnetic bodies, and for bodies both dielectric and
magnetic, has been developed by Harrington, Mautz, and Chang [4]. 1In this
work, a theory of characteristic modes for material bodies is developed
using equivalent surface currents. This is in contrast to the approach used
in [4], which used the induced volume currents.

The modes are defined by a weighted eigenvalue equation in such a way
that both the generalized network matrix [5] and the scattering matrix [1],
[2] for the body are diagonalized. The presentation given in this work leads to
explicit formulas for determining the mode currents and fields of two-dimensional

objects, The formulas remain the same for dielectric bodies, magnetic bodies, and



for bodies both dielectric and magnetic. In particular, the scattering
problem of a two dimensional material cylinder will be presented. This

formulation of the problem is applicable to any general material body.

Details are worked out only for two-dimensional problems.

1-2 The Fundamental Operator Equation

Let the material body be represented as in Figure 1-1,

Ei + E

A ~i~o
H + H
~A 'Y}

Figure 1-1, A general material body.

~w},,§f = incident fields (Wavy underline denotes vector
&, H = inside fields quantitics.)

E , H = outside fields

FNIN e REIVIN(o)

The problem of Figure 1-1 can be viewed as a linear superposition of

two cases,

(I) zero field inside

(II) =zero field outside.

These two cases are illustrated in Figure 1-2.



Zero
Field

Zero Field

J"
Mll

Case (I) Case (II)
Figure 1-2, A decomposition of the original problem.

In case (I), let Hos eobe the material constants in the zero-field
region, and similarly in case (II), let u, € be the material constants in
the zero-field region. Having done so, radiation formulas [6] for unbounded
space can be employed. The gﬁandug&are equivalent surface currents [6]. Since
there are no actual surface currents, the following conditions should be

satisfied by the equivalent currents

=0 (1-1)
M +M =0 (1-2)

Equations (1-1) and (1-2) come from the fact that tangential components of

fields are continuous across the interface in the original problem. Note

that
E_ = - juh' - V¢! — ==V x F' + E (1-3)
AN o o Eo M M o
- 1 \ l [ i
HO = - jwF —V¢m+——V x A" + H (1—4)
A A A uom/vv\ A

and



E - ij" - Vq)" - l V X Fll
AMA MA lee EM AAA
H= - juwF" - V¢" + L v x A"
W A wm um lasal
and
ES - - JU.\A' -V | B _1_ vV x ]
SN e Me EOM A
s ' ' 1 '
B = - JuF' - V¢! + =7 x A
lasa) Vaaal AAA uOhM AA

wherehgf and H® are scattered fields, and

-~
'ék= vector potential due to electric current
~E‘= vector potential due to magnetic current
¢e= scalar potential due to electric charge

¢m= scalar potential due to magnetic charge

Primed quantities refer to case (I)

doubly primed quantities refer to case (II)

(1-5)

(1-6)

(1-7)

(1-8)

In terms of general operator notations, the following equations are obtained

-L' L! ] -J'. rES-
11 12 % R
\J ] ' S
L1 2Y) | N N R
I--1-_’" LII 1 i Jll- —E ;
11 12 S R
n " 1"
3 Lo | X LA

(1-9)

(1-10)



where the definitions of the operators are obvious when comparing equations

(1-9) and (1-10) with (1-5) to (1-8). Note that the tangential fields are

continuous at the boundary surface, i.e.

nx (B°+E -E) =0
A Vo) A AN
nx @ +H —H) =0
e ARA AAA AAA

where n = unit normal pointing outward, or

s i
-nxXxH +nxH=nxH
AN A A AN AN YA

The following equations are obtained by substituting equations (1-9) and

(1-10) into (1-13) and (1-14).

-n x L' - nx Lip00) + 0 x LY, (") + n x L12(M") = nxgl
RENN M ~~ AAA AAA AAA AN A

-n %Ly D - x 1y (M )+ mx L3 () 4 x Ly = nxEt

AAA Tana) Faaa fa el AN faa ol

By equations (1-1) and (1-2), it follows that

He

- n X [(Li L" )J ] - nx [(Li L" )M ] = X E
e ANA

e

- n X [(Lé L" )J ] - n x [(Lé L" )M ] =nxH

~n PN AMA AAA

Define all the operators to be tangential operators; the above two

equations can be put into standard matrix form as:

(1-11)

(1-12)

(1-13)

(1-14)

(1-15)

(1-16)

(1-17)

(1-18)



(T " (T ! "
Ly + L7p) Ly, + 17,

+ "

"
+ L") 22

- ' '
Ly + 15 -y,

J! Ei
M' i
~A | tan AAA

-t

(1-19)

tan

The [ ]tan means the tangential components of the bracketed quantity on the

boundary surface. Let
v T no_ o orn
Le' = Lll’ Le Ll
and define
- C'(M') =
AN
- C"(M') =
PAA
c'@') =
AN
C"(J') =
AAA
Hence equation (1-19) becomes
Le' + Le" c' + C"
-(c' + ¢ Lm' + Lm"

t ! "o o_n
1 LT ol =Ly
- =V x F' = LiZ(M')
O~ AAA A
- l V X F!l = L"Z(M')
EM A 1 ANA
1 ] ' '
— Vx A' =L_(J")
M 21
QAN AN ANA
_]_-_ 7xA" = L (J')
u 21
A AAA ANA
J? Ei
NN NI
= (1-20)
i
'
L—'.}EV\— tan -}\L\J tan

It is convenient to rearrange equation (1-20) into the form



Le -ic J gl
PPN N
= (1-21)
-jC Lm M JH
e fataa)
where
Le = Le' + Le" J=J
AAA A
Lm = Lm' + Lm" M=M
PO NN
cC=c'+c"
and the subscript '"tan" has been dropped for brevity. Equation (1-21) is
simply the familiar operator equation expressed below.
L(f) = g (1-22)
AN\ NN

L is a tangential operator on the surface of the material body, and

Le -jC J -Ei
INA AAAN
L = H f = ; g =
falaa VA
-iC  Lm iM jut
. AN NAA

1-3 Format

In this work the impressed magnetic field is assumed to be axially-
directed (perpendicular polarization). The derivation of all the formulas
for an impressed axially-directed electric field (parallel polarization)
will not be given in the main body of this work, in order to conserve space,
however, explicit formulas will be provided in Appendix A. A list of computer
programs will be given in Appendix B,

The content of this work is as follows. In Chapter 2, the operator

equation is reduced to a matrix equation suitable for numerical computation.



The reduction is accomplished by using the method of moments for perpendicular
polarization. The equivalent surface currents can be obtained by matrix inver-
sion. A concise theory of characteristic modes for material bodies, based on
the surface formulation, and explicit formulas for obtaining the modal solutions
are given in Chapter 3. Chapter 4 is a presentation of calculations made for
cylinders of different material constants using both the matrix inversion method
and the modal method. Chapter 5 is a discussion of the results. The computa-
tions presented in this work were performed on an IBM System 370, Model 155

digital computer. The computer programs are written in FORTRAN IV.



CHAPTER 2
MATRIX FORMULATION
The determination of equivalent surface currents requires the solution
of the following inhomogeneous equation
L(f) = g (2-1)
AN AN
where L is the matrix of operators
rLe -jC
L= (2-2)
-jC Lm
and ;L~ gi
(2-3)
f - -
jM ~A
A as

This chapter presents the reduction of equation (2-1) to matrix form by the

method of moments.

2.1 Method of Moments

To apply the method of moments, an appropriate inner product for the

problem is ( ~ indicates transpose)

~
<f, g> = f g ds
e aallV sl PR AN

S
=J (J+ E-H-: Mds (2-4)
S~ pan A AAYN
s

A solution by the method of moments is obtained as follows. Define electric

N expansion and testing functions as
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J we
e .~B e n
£° = W o= |~ (2-5)
ok ~
0 0

0 0
£ = W = (2-6)
All M A wm .

B B

The expansion for f is then of the form

e m
£=7 (L +V £ (2-7)
V) n N A
where the In and Vn are constants to be determined.

The inner product of each {Wz} with equation (2-1) yields
A .

e e
<th L(fn)> = <wm, g> (2-8)

A~ A Ann AN

where
e _ 8 - m
W, L(E)> = <W, ] (ILL(£) +V L(f)>
P~ AV ~no N AA ANA
e e
) I <W_, L(f)>
n PO AOA
e m
+ ) Vo<W, L(E))>
n P~ ren
= e . e . - —-—
= I ‘f[ W« Le(J )ds + ) v ‘ff Woc (<30 M ))ds  (2-9)
n g M A~NA n ~A AN
and
<W:, g = J]‘ W; . Elds (2-10)
A pAN AAA e
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Similarly, the inner product of each {Wﬁ} with equation (2-1) yields

A
<, L(E)> = <, g (2-11)
Lada) AAA PN A

and

<w$, L(£ )> = w$ - (<30 (3_)ds

|
= o]
H
=]
—
» —

+Iv JJ Wooe L (M)ds (2-12)
n SW\ P
<W$, g> = JJ WE . jHids (2-13)
PPN AN SW\W

Equation (2-8) and Equation (2-11) can be placed in matrix form

[z]  [B] [1] A
- (2-14)
[cl  [¥] [V] (rl
where

z_ = JI w; * Le(J_)ds (2-15)
s ™M o

B = ” WS (=10) (t )ds (2-16)
s AN AA

c_ = JJ w$ © (=30 (J_)ds ‘ (2-17)
s faa e AN

Y = ” WE © L (1 )ds (2-18)
s Pa’aa) AAA
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v o= JJ wﬁ - glas (2-19)
g AN

(2-20)

H
.
]
0 —
—_—
e
-
[¥X
(=9
[

ChoosetJn = Wﬁ. Note that [Z] is obviously symmetric, already shown by

AP AAA
Harrington and Mautz. With the choice Mn = Wﬁ, [Y] is the dual of [Z],

magnetic instead of electric, so the symmetric nature of [Y] can be easily

established. It is known that C(Mn) gives rise to an electric field and
A~

C(Jn) will produce a magnetic field. Observe that by reciprocity
Fala o) :

”(Ea P ow? WPy - ” € - 3% -6 - MPyds (2-21)
PA AN AAA AAA ) P SNA NN
s s
Now, consider
(i) 1In situation "a" only electric sources
(ii) In situation "b" only magnetic sources.
It follows that
fj(-na . W)ds = JJ @& - 1*ds (2-22)
P P e Vala oS Ve
s s
Hence
B = Com (2-23)
Consequently, [C] is the transpose of [B], or
~
[B] = [C] with Jn =
(2-24)

We
n
laa e Pl ol
Moo= W
n n
Paaal P
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To this point the matrix formulation is completely general and has
been achieved without reference to specific excitation, expansion functions,
and testing functions. Note that every one of the operators Le, C, and Lm
is composed of two parts as indicated by equation (1-21), and consequently
every matrix element in [Z], [B], [C] and [Y] has two parts; onme is due to

the primed operator, and the other is due to the doubly primed operator.

2.2 Expansion Functions and the Evaluation of [Z] Matrix Element

In this section, the incident field is the axially directed magnetic
field, Hi. Before going into any specific excitation for the scéttering
probleﬁtv;ome general considerations about the evaluation of different types
of matrix elements will be presented as follows.

Note that the original problem, the scattering from material bodies,
has been decomposed into two cases, and their associated operators are of the
same functional form. For instance, the expression for Le"&iz will be identi-
cal to Le'ggz except for the constitutive constants, u and €. For the sake of
brevity, only Le' will be considered. Once Le'(J) 1s known, Le"Sil is obtained

NS

by replacing € and Ho by € and u, respectively.

By equation (2-15)

Zmn = J Wm . (;|wA,n + V¢n)dl (2-25)
A Aren AP :
where
A = magnetic vector potential due to Jn

n
~~ AAA
¢n = scalar potential due to S surface charge
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Applying the one dimensional divergence theorem to the vector ¢nwm’ and noting

N
that
VoW =¢ VW W -V (2-26)
L ag A NMA AAA AR ANA
the following relationship is obtained
v¢n . wmdz = - f ¢nv . Wmdz (2-27)
c PN A ¢ A AAA
Define om such that
o =--tv.w (2-28)
m jw m
laanl AN

Observe that equation (2-28) has the form of the continuity equation
if Wﬁ and o, are interpreted as current and charge, respectively. An alterna-

I aal
tive form for the [Z] matrix element can be obtained by substituting equations

(2-27) and (2-28) into equation (2-25). The new form is computationally more

attractive.

zmn = jw J (wm . An + cm¢n)dm (2-29)
A laaad

Define the two-dimensional Green's function G(r,r').

G(r,r") = i%-Héz)(k|r - r'|) (2-30)
and
A(r) = u J J(r') G(r,r")dr’ (2-31)
AAA A
¢ (x) =-:€L I q(r') G(r,r")ds’ (2-32)
c

where q is related to J by the equation of continuity
o ad
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V+J=- jug (2-33)
A AAA

After substituting equations (2-31), (2-32), and (2-33) into equation (2-29),

the expression for Zmn becomes

N
[

..
jw J'{ J W« w (") + —EIE q ()] G(r,r')de’}ds
AP P
l

c c
L
Note that the primed symbols refer to source location variation, while

[jquﬁ c It wa(\7- Wﬁ)(V' . Jn)]G(r,r')dk'dz (2-34)

ANAA AN A AR AN AN

0N

the unprimed symbols relate to variation in field point location.
The specific formulation proceeds by dividing the contour C into N

segments, not necessarily equal in length. There are N segments and N+l points,

Fig. 2-1. A cross sectional contour.
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and £ is the path length proceeding counterclockwise around contour C.
The sets of expansion and testing functions are chosen as triangle

functions for both electric and magnetic surface currents.

W= TR - L )u k=1,2,...,N (2-35)
P AN
l e —— - — — —— —— — — —
|
|
|
|
|
1 41
-1 ) e el Set2

Fig. 2-2, A triangle function.

where u, is the unit vector tangent to C path length value 2, and T is the
A

triangle function defined by



or

Let

and

AL

=

kt+l

L. L=y
2k+2—2
T -4 = g -2
1+ =1
k
0
0
2 -2
-3 -2
k+2 - “k
T(L - lk) =
L -2
14— lk
k = “k-2
0
L O
- lk then
L 2 -
AL, + AR
T - Zk) = L s
1 ¥'Az ¥ iz
k-2 k-1
0
L o

-2

k

B

g <

—(88, A 1) < =t

-2

-(a2

>4

l-lk

k

k-2

k+2

< A2

>

_Q'k

) > 1—2k

+
k AL

k+1

Akk + A£k+l

8%, 1) 2 4=

k=

k
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(2-36)

(2-37)

0

(2-38)



Now, 2
mn

can be written as

zZ . = J J [jqum It s 4 wm) (v Jn)]G de'dse
PAA AAA PR N AN AR
2or2 *ns2

zer Qn—Z
1 o
+ 5;; T'(2

[{wu T2 ) T(4'-2 ) (u,

- * - '
ln) T'(2 ln)]GdQ dg
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(2-39)

The subscript m indicates the mth triangle testing function and the subscript

n indicates the nth triangle expansion function.

triangle function.

1
- L. < 2 < 2
T - % kS F S e
' — =
T'(2-2,)
1
)
R 2 Mt
0 Y2 b
\ 0 b, 28
or
]
-
5+ AL 022ty 20 2 + 8y
T' (22, ={
K
R —(By ¥y p) 244 <0
k-2 7 Ay
0 b > AL+ AL
L 0 —(B o+ B8 1) > 2t

T' is the derivative of the

(2-40)

(2-41)



The triangle function is approximated by four pulses with amplitudes

hk—2’ hk-l’ hk’ gnd hk+l as shown below

A

1

N

o Blo B Mg Y P Y By B
Fig. 2-3. A four-pulse approximation
where
1 1
b - 2 M2 h - I Ry
-2 TR, + A -1 T B, ¥ AL
1 1
L2 A+ AL b+ 2 M
k T AL+ AL, I R YA

19

(2-42)

The derivative T' of the Triangle function can be represented graphically as
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1
T By B
1 =
[ 3 3 )
| k ]k+1 k+2 )
=2 -1 |
|
) 1
8+ A%

Fig. 2-4, The derivative of a triangle function.

Consider the contour interval spanned by the expansion or testing

triangle function as shown in Fig. 2-5.

Fig. 2-5. Straight line representation of the contour.
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To evaluate the integrals in equation (2-39) each such portion of the
contour is replaced by straight line segments drawn between the points on the
actual contour defined by 21, 22,..., QN+1' The integration variables in
equation (2-39) are taken along these straight line segments, For the nth
expansion function, the indei p=1,2,3,4 is associated with the four pulse
intervals for increasing path length. Similarly, the index q=1,2,3,4 is
defined for the mth testing function. Equation (2-39) can be put in the

following form

4 4 qt+l t:p+l
7 = jop T T (u « u )
w1 L o 1,1
t t
q P
+ 2= T T'] Gde_de (2-43)
Jwe q P P 4q

Note that Tp and Tq are the amplitudes of the p;h and qth pulses,
respectively. The unit vectors up and uq are parallel to the straight lines
of the pth and qth intervals in the direction of increasing path length.
Observe that each of the sixteen terms on the right hand side of equation
(2-43) results from one of two situations. Either the pth and qth intervals

coincide, or they do not. These two situations will be considered separately.

(1) Noncoincident intervals

In this situation each integral in equation (2-44) is
approximated by the product of its integrand evaluated at the
interval midpoint times the interval length. Hence eqdation

(2-44) becomes



4 4 L H(2) (kR )
qu leAtp Atq [Jou Tqu(u . u ) + Toe Tp Tq] —---------—--Eq-—lh_l (2-44)

Atp and Atq are determined by

At, =t -t (k = 1,2,3,4)
and qu is the distance between the midpoints of the pth and qth

pulses.
(ii) Coincident intervals

For coincident pth and qth intervals the integral evaluations
proceed as follows. The q integral is approximated by the product of
the integrand, sampled at the midpoint of the interval, times the
interval length. The p integral is then evaluated as an improper
integral.

The small argument approximation for Héz)(kR) is
1P amy ~1 - 1 2 108 (BD (2-46)

where log y is Euler's constant. Then for coincident pulse intervals

t t
q+l ptl . o Héz)(kR)
TT . + —T' T —— dg d2
[ou pq(up uq) juwe “p q] 4 P q

t t AAA AN

q P
p+l

= L [ S (2)
7 At [Fou TpT + Jur Tp Tq] J Ho (kR)d,Qp | (2-47)

t

22
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Note that the integrand is singular at the midpoint. The improper integral

can be treated as:

tp+l At /2
J Héz)(kR)d = J [1-] %-log (xg%ﬁL)]dx
t -At /2
P P
—-€
= 1im [1-j %log (- ﬁz‘-’i)]dx
0 _ae /2
2
At /2 .
p
+ 1lim I (1 - -?T-log (Y%)]dx
e>0
2 vkAt
= Atp[l -3 log —P—4e 1 (2-48)

Therefore Zmn can be expressed as

1 4 4 - 1
z == At At [wp T T (u - -—=T' T']Z 2-49
- 421 Zl Lo T T Cuy s u) === 1L T (2-49)
q=l p
where
Héz)(kqu) noncoincident intervals
7 =
ykAt
l—j~; log -ZE~R- coincident intervals

Equation (2-49) is used to compute the two parts of each matrix element,
with €50 Hgo and ko in one part and e,u, and k in the other. It can be
readily observed that the use of equation (2-49) will lead to a symmetric

[Z] matrix.
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2.3 Evaluation of [B] and [C] Matrix Elements

Matrix elements for [B] are expressed by equation (2-16)

B = J w; (=30) (M )ds (2-50)

S AAA

Because of the discontinuity of the curl operator at the boundary, care should
be exercised in evaluating equation (2-50). The Green's function is singular,
and a simple interchange of differentiation and integration is not always pos-
sible. Note that the operator C consists of two kinds of operators, namely,

C' and C". C' is for the outside field, and C" for the inside field, with
respect to the material body. In the following development, the symbol C can
be either C' or C" unless stated otherwise. Since the incident field,AEf in
the present case, is considered to be axially directed, there will be a circum-

ferentially directed electric current and an axially directed magnetic current.

Let
e .
Wﬁ =T - lk{g&
and (2-51)
Mn = T( ~ lk)uz
A~ P~~~

Hence, equation (2-51) takes the form

B o= —-% J T(!L—SLm)u2 * Uxu, f T(z'—ln) Héz)(kR)dl'dz
AAA AN AAA
o 4 ot “pH
=-= ) Tu, *Vxu T H(Z)(kR)dz'dz (2-52)
4 q 2 z po
q=1 p=1 t AN mA aae

q P



Since Tp and Tq are constant between tp and t ’ tq and t

p+l
tively, hence they can be taken outside the integral signs, so
4 4 tq+l tp+l
-=-2 ] )Tt u, + Vxu f 1% (r)deas
mn 4 q=1 p=1 P q L z o
P AAA Ath
q P

Again, two situations will be treated separately.

(1) Non-coincident p and q intervals

q+l
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s respec—

(2-53)

The Hankel function 1is continuous and differentiable. After

performing the indicated curl operation in equation (2-53), and noting

that u, refers to q coordinates, then

2
L 4 b 21$®) (r_ ) 21$?) r_ )
Bn="13 Z z At {-EL—?Srlﬂl- Ax - -£L?S:—J§L— Ay }T T
=1 p=1 P q q q T pq
where
- 2 o 42172
qu [(xq xp) + (yq yp) ]
and
(2)
9H (kR) X - X
o N ) P
% ki) (kR) —g
(2)
9H "’ (kR) y-y
- B ¢3) __’p
3y kHl (kR) R
Hence
(2)
_ 4 4 - T T kH (kR)
=_1 pq 1 - -
| an 3 z z Atp - R [ (yp yq)qu

+ (xp - Xq)qu]

(2-54)

(2-55)

(2-56)

(2-57)

(2-58)
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Equation (2~58) is obtained through the application of triangle
expansion and testing function employing a four-pulse approximation to
the triangle, and the integrand was evaluated at the midpoint of each

pulse interval.

(i1) Coincident p and q

Note that in this case, the method used in evaluating the
improper integral for [Z] can not be applied here because the curl

operator is not continuous across the boundary, for instance

oW

Boundary Surface I I
I € € I

Fig. 2-6 Boundary Surface

By visualizing a current sheet that flows into the paper as shown in
Fig. 2-6, it is evident that the tangential field component will de-
cidedly be zero as ¢ -+ O,

A better way is to find the field at a point above the boundary
surface, then find the limit as it approaches the boundary surface from
above. Before performing the limiting process, the integrals in equation

(2-53) becomes
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tq+1 tp+l
J o - Txuy [ E® aeastas
PO
t t
q P
q+l auiz) (kR) anéz) (kR)
= Atp [ux ———5-};-——-— - uy "-“——a;——'] . [uxdxq + uydyq]
t ~~ q AAA q A~ A
q

Note that in equation (2-58) u, refers to the q-coordinates and the p-

integral is evaluated as the product of the integrand sampled at the
midpoint of the p-interval times the interval length.

A local coordinate system is constructed for the evaluation of the

improper integral as R -+ 0. A local coordinate system is shown in Fig. 2-7.

R 2 + y2]l/2

[ (x-x")

-At/2 At/2

Fig. 2-7. A local coordinate system.
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Next, consider the term

At/2 BH(Z)(kR)
———"—E-)-}-,——-—— dx' (2-59)
~At/2
and noting that
3H§2)(kR) 2) 3R
— 5y = - kH) (kR) 3y (2-60)

By using small argument approximation for H{Z)(kR)

(2) - :
H ™" (kR) = J, (kR) - jN, (kR)

kR , . 21
as?f-+ I TRR (2-61)
equation (2-59) becomes
At/2 BH(Z)(kR) At/2 :
-2 ix'=-k [B..Fj._g._] BRdx.
oy 2 TkR® dy
-At/2 -At/2
2 at _ X AL X
L s 2wt (T W (2] g
Note that as x »~ 0, y - 0, the improper integral approaches -j2.
Finally the expression for an can be stated as follows.
L) |
B = - — At TTB (2-63)
mn 4 =1 p=1 P q

where
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(2)

B = - EEl__Eﬁffﬂl [- (y. = y)ax + (x_ - x )by ]
qu P q q P q q
(non-coincident)
B = - j2 (coincident)

Equation (2-63) is used to compute the two parts of each [B] matrix element,
R in one part (due to primed operator) and k in the other (due to doubly
primed operator). Since C' is an outside operator and C" 1is an inside
operator, the values of B for the coincidental case will have opposite signs.
Hence the coincidental-pulse-interval situation contributes nothing to the
values of the matrix elements.

In spite of the fact that [C] = f\i, it is advantageous to evaluate
Cmn explicitly. The procedures involved will be essentially the same as in

evaluating an. Recall equation (2-17), and it can be expressed in greater

detail as

c = ! WD+ (-30) (I )ds

mn
C

5

Voo ol

A specific form, suitable for computational purposes is developed in a
manner similar to that used for an. Considerations governing the choices of
expansion and testing functions are the same as those discussed at the begin-
ning of this section. Note that the electric surface current, in the present

case, is circumferentially directed.

w$ = T - 8 )u_

e ~me (2-65)
Jo=TU - ey
~—~ AN
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where T is defined by equation (2-38) and uz is the unit vector in the direc-

A

tion of the axis; uz is the unit vector along the cross-sectional contour. Cmn
INAA
can be expressed as
t +1 tp+l
1 4 4 2)
c =-+11 1 Tu +Vxu T H'“’ (kR)d2'd2 (2-66)
mn 4 21 p=1 q 2z 2 po
q=l p= t AAA A ~a
q P

The evaluation of the integrals appearing in equation (2-66) is facilitated
by approximating the triangle function by four pulses. The index p = 1,2,3,4 is
associated with each pulse, respectively, for the nth expansion function, while

the index q = 1,2,3,4 is similarly defined for the mth testing function. Since

T 1is constant between t and t and T 1is constant between t and t the
P ptl q q 2 Fqrrr T
can be taken outside the integral signs. u2 is the unit vector along the contour
AAA

with respect to p coordinates. Hence

L4 “pHl
C_ =-= Y ) T.T At u + V x [udx H(2)(kR)
mn 4 21 -1 P4 ¢ b4 X po
q p t AN A AAA
’ (2)
2
+ u dy H '/ (kR
. ,:Xyp° (kR) ]
L b Pl (2 (4py 212 (km)
=-7 L 1 mrToat J [ dy, -~y dx ] (2-67)
q=1 p=1 A q q
P
Note that the integral
t
ptl aHéz)(kR) aHiz)(kR)
[~ dyp -y de] (2-68)
t q q
P

can be evaluated just like in the previous an case. It follows that equation

(2-68) becomes
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(2) X =X y. -y
~kH Y (kR ) [- BT Ay + B2 —H ax ] (2-69)
1 Pq Rpq P Ry P

For coincident p-pulse and q-pulse intervals, the evaluation of the improper
integral is identical to that developed for an. To this point, the matrix

elements for [C] can be conveniently specified as

4
C = - — At TTC (2-70)
mn 4 q=1 p=1 q P4
where kHiz)(kR)
C=-—- - x )Ay_ + - y)A
qu [ (xp xq) Yp (yp yq) xp]

(noncoincident intervals)

C=-j2 (coincident intervals)

Equation (2-70) 1s used to compute the two parts of each [C] matrix
elements; one part is due to the outside operator C', and the other is due
to the inside operator C'". Again, for the coincidental-pulse-interval situ-
ation, the net contribution, to the value of each matrix element, is zero,

because the two values of C in equation (2-70) have opposite signs.

2.4 Evaluation of [Y] Matrix Elements

The only expression left to be developed is that for the [Y] matrix

elements. By equation (2-18)

Y = J wﬁ +L_(M)dg

mn
C AAA AN
- . m
= J,ﬂ; (JuF_ + Vo )da (2-71)
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The superscript, m, indicates magnetic quantities. By equations (2-26)
to (2-28), the following is obtained
. m
Y = jw J (W - F_+o¢)de (2-72)

mn m n
C AP AAA

In this case all the currents are axially directed. The expansion and

testing functions are chosen as

Wk = Mk =T( - lk)uz (2-73)

where T is the triangle function defined by equation (2-38), and uz is the

A
unit vector in the axial direction. The continuity equation in this case
is

VM (2-74)

Note that Mn is u, directed, so

o A~
v . Mn =0 (2-75)
LoV o WV N
and it follows that
o, = 0 and ¢: =0 (2-76)
Therefore
Y. o= juw J Wt oo A" dg
mn m n
c A AAA
_ Wwe (2) '
=% (wm « M )H "/ (kR)dL'dR (2-77)
c c AN ."\IVI\I °

where the unprimed integration is taken over field points and the primed
integration over the source points. A specific form is developed in a

manner similar to that used for Zmn' Equation (2-77) can be expressed
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in greater detail as

a2 nt2

y =8 j f (T2 ) T('-2Y) B Gemylantan (2-78)
L4, 2
m-2 n-2

The evaluation of the integrals appearing in equation (2-78) is carried
out by approximating the triangle function by four pulses as shown in Fig. 2-3.
Equation (2-78) can be written as
4 4 tq+1 tp+l
_ we (2) . )
Yy =51 1 T T H, T (kR)dR'de (2-79)

mn & &
q=1 p=1 ¢ A
q p

The indices p and q have the usual meaning. TP and Tq have already been
defined by equation (2-42). Each of the sixteen terms contributing to Ymn
falls into one of two categories. Either the p-pulse and q-pulse intervals
éoincide, or they do not. If the latter is true, each integral is approxi-
mated by the product of its integrand sampled at the interval midpoint times

the interval length. The expression for Ymn becomes

4 4 (

we 2)
Y == T T At At H kR 2-
o - 4 qzl le o Beptg HTGR ) (2-80)

As previously stated, Atp and Atq are defined by equation (2-45) and
qu is the distance between the midpoints of the p-pulse and ¢-pulse intervals.
For coincident p-pulse and q-pulse intervals, the improper integral and its

evaluation are the same as those in Zmn' Hence
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tq+1 tp+1
TT H(Z)(kR)dQ,'dR
pq o
t t
q P
2 Yk At
=TT At At [l - § = log (——5)] (2-81)
plq Aty q[ j = log (42
where log y = Euler's constant
e =2,718 ....
The final expression for Ymn is
we § §
Yy =-—" TT At At Y (2-82)
where
Y = Hsz)(kqu) (non-coincident intervals)

2 ykAt
[1 -3 ;-log (—ZE—ED] (coincident intervals)

2.5 Excitation Matrix, Measurement Matrix, and Scattering Cross Section

The matrix elements of the excitation matrix are represented by two
expressions, equations (2-19) and (2-20). It is important to realize that
the transformation of (2-19) and (2-20) into computable forms depends on
the type and polarization of the impressed field. 1In the case under con-
sideration, the excitation is assumed to be a 2-directed magnetic field

of unit magnitude. The incident field is given by

Hi(p) = k8 (2-83)

P e ad

The wave number vector k points in the direction of travel of the incident

wave. A coordinate system for the evaluation of the excitation matrix
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elements is shown in Fig. 2-8.

Fig, 2-8, 1Incident field.
Equation (2-19) will be considered first. The testing function is

e— — -
wm = T(R lk)ul (2-84)
PN e

For plane wave excitation the ¢-directed electric field, associated with the

z-directed magnetic field defined by equation (2-83), is

Ei = - nu e_ikﬂ.ng

o~ R

= - n(- u_ sin ¢1 + u_ cos ¢ )e
~A

i i
jk(x__cos ¢ + y_sin ¢7)
mp np (2-85)

where ¢-directed unit vector

x-directed unit vector

y-directed unit vector

§'~<: §x‘= i9-‘:
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¢i = incident angle
xmp,ymp = midpoint coordinates of each straight line segment
n = intrinsic wave impedance

By using four-pulse approximations for the triangle testing functioms,

equation (2-19) can be expressed as
i 4 i
vo= ) up T E(p)ds (2-86)

Note that the excitation matrix element V; is given as the component of
El(p) tangent to the contour for the mth triangle. The integral in equa-
tion (2-86) is evaluated as the tangential field component of Ei sampled

at the midpoint of each p-pulse interval. Hence

. i . i
eJk(meCOS bt Ymp31n ’ )[- Ax sin ¢i + Ay cos ¢i] (2-87)
where Ax and Ay are the rectangular components of the pulse interval. A
portion of the contour is shown in Fig. 2-9 which illustrates how equation
(2-87) is obtained.
Equation (2-20) can be evaluated in a similar manner. The testing
functions are triangle functions, and each triangle function is represented

by equation (2-39) and chosen to be z-directed.

Wk = T(L - Zk)uz (2-88)
AAN AAA
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Fig. 2-9. A partial contour.

The evaluation of (2-20) is quite straightforward and the procedures are
identical to those used in the evaluation of V;. Hence
4 jk(x cos ¢i + y sin ¢i)
i mp mp

I_=3 ) T At e
m p=1 P P

(2-89)

The distant scattered field can be evaluated by reciprocity. A z-directed
magnetic current filament at o of strength Mb is adjusted to produce the unit
plane wave incident on the material body

i jk(xncos ¢S + ynsin ¢S)
H =u e (2-90)

PYSEY

Note that M produces a ¢-directed E* and a z-directed Hi
/\/B\ ~N A~
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Fig. 2-10. A two-dimensional contour and z-directed

magnetic current filament.

By reciprocity it is evident that

- H =ﬁL f(E1 J-H - mde (2-91)
N A AN AN
or ¢
i
1 NMI\
-H = f dg (2-92)
p M A
o -
C jH
A
where J
AAA
f =
jM
AN

(2-93)

f =
Fade]
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With the help of equation (2-93), a new form for equation (2-92) is

[1_]
1
- Hp = ﬁ; [D] (2-94)
Al

Note that [In] and [Vn] are column matrices, and the matrix [D] is

[D] = [[J}j . [E:]d!%] [J [;i:] . ,;gfdkll (2-95)
C o c ™

The values of In and Vn can be obtained from equation (2-14) by matrix
inversion. The constant l/Mp is that needed to produce a plane wave of unit

amplitude at the origin, which is

2
1
M 4wu Ho (kpo)
e (2-96)
_ e

(2)
4 Ho (kpo)

Redefine equation (2-95) as

[p] = {[p%] [D™]} (2-97)
where
e _ i o~
Dn = Jli . [Jn]dk (2-98)
C laaat
m i it
Dn = J 1E« . Q&gdz (2-99)
C

The evaluation of the integrals in equation (2-98) and (2-99) 1is

straightforward, and the procedures involved are completely analogous to
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those used in the evaluation of V; and I;. Only the results will be given

here
4 jk(x__cos ¢° + y__sin ¢S)
De = - q Z T e np np [-Ax sin ¢S + Ay cos ¢s]
n P
p=1
4 jk(x__cos ¢S + y _sin ¢s).
D'=3 ) TAte P np
n Lpp

The scattered field can be expressed as

Bo= 95 1% o ) [0S D7)
or
B o= 52 5% ) [D8] (00

[z]

[cl

iz 7]
[1_]

v,

1] 7t [l

i
) ey

(2-100)

(2-101)

(2-102)

(2-103)

In the scattering problem, the bistatic scattering cross section ¢ is

a parameter of interest. It is defined as the width for which the incident

wave carries sufficient power to produce the field Ep, Hp by omnidirectional

radiation. It may be expressed as

g (%)

or

2m po

1im Py @

27 po
lim p »
o

2
E (6%
(¢7)
n

s, |2
Hp(¢ )

(2-104)
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The large argument approximation for Héz)(kR) is

g? (x) —>| 2 3% (2-107)
(o] Koo X

The expression for the scattering cross section can be stated as

- we ,2 2
g = 1lim 2npo A . h
po+oo [e)
- _.122_ |n|? (2-106)
4n
-1 i
where (2] [B] [vi]
h = | [D]

[c]  [v] (1]
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CHAPTER 3

CHARACTERISTIC MODES - A SURFACE FORMULATION

3.1 Theoretical Development

The treatment of characteristic modes for perfectly conducting bodies,
starting from the impedance operator for the conducting surface, has been given
by Harrington and Mautz [2]. In terms of the polarization current and the
magnetization current, a volume formulation of the characteristic mode theory
for dielectric and magnetic bodies has also been treated [4]. In this chapter
a theory of characteristic modes for material bodies (dielectric, magnetic, or
both) based on a surface formulation is developed. The appropriate operator

formulation of the problem is

Le N J o
AAA % _
= (3-1)
N Im iM gt
LA _jMA -

To emphasize the symmetric nature of the matrix of operators, the off-diagonal

operators are denoted by a single symbol, N. Define the following rise vectors

J E
lanas A
£ I . ’ g = (3-2)
~mA ~N
iM jH
L
and the matrix of operators
Le N
T = (3-3)
N Lm

where N = +_jC,



Equation (3-1) can then be written as

f = gl
MY A

Define the symmetric product

A
Hh
-
oo
\%
]

~
JJ fg ds
oo T o) A MA

]

PN A AR AN

= JJ (J+E-M-"* H)ds
s

which, for f a source'quantity and g a field quantity, is reaction. 'The

product
o~
A A JAAA AN
s

NN NN AAA PN

= JJ (J* * E + M* - H)ds
s

is a suitable inner product for the Hilbert space of functions f, g in S.

43

(3-4)

(3-5)

If £ is a source quantity and g a field quantity, the real part of (3-5) is

A Vv ol

time average power, but the imaginary part of (3-5) differs from the usual

imaginary power. It is easy to show that T is symmetric, that is,

<fl, Tf2> = <f2, Tfl
NA S AN MA A
terms of its Hermitian parts as T = Tl + jT2 where

[ R N, |
1 1

Tl = E‘(T + T*) =
M €
. X N,

T, =57 (T-T% =
T2 P

> by reciprocity. The operator T can be expressed in

(3-6)

3-7
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Here N, and N2 are the Hermitian parts of N, R and X are the Hermitian parts

1
of Z, G and B are the Hermitian parts of Y.

By equation (1-9), the fields due to J and M can be expressed as
J [ﬁ Le' -jc'

L' = = s L' = | (3-8)
iM 11 -ic'  LIn'

As far as radiation is concerned, the contribution due to the doubly primed

operators 1s zero. The power radiated by any J and’gﬁon S is given by
AN

Re(P ) - Re JJ (E « J+ M - H*)ds
] ~N

MA AN A

- Re IJ (E « J* + M* - H)ds

MA MA A M

Re {<f*,Tf>} (3-9)
AMA NN

Hence the time average power delivered‘by a source f 1is

Re(P ) = Re <f*,Tf> (3-10)
s MA M

The imaginary part of <f*,Tf> is not simply related to reactive power.
oA

Using six~vector notation, we formulate a theory of characteristic
modes which parallels that of the volume formulation [4]. The eigenvalue

equation defining the modes is

T2(fn) = AnTl(fn) - (3-11)
o o

where T1 and T2 are real symmetric operators. Hence, all elgenvalues An

are real and all characteristic sources fn may be chosen real. In expanded

IS
form
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J
n

£ = e (3-12)
A iM
n
S

which, for characteristic sources, implies that Mn is imaginary and Jn is

PN s
real. The characteristic sources can be normalized to radiate unit power,

and the usual orthogonality relationships expressed as

* = =
<fm’ Tlfn> <fm’ Tlfn> 6mn
la'aad A AN AAA
* = =
<fm’ T2fn> <fm’ T2fn> Andmn
% = = -
<fm, Tfn> <fm, Tfn> 1+ jxn)émn (3-13)
AN r~~
where Gmn is the Kronecker delta. The field
E
n
g, = |™" (3~14)

due to a source fn is called a characteristic field. In the radiation zone
A
the characteristic field is of the form of an outward traveling wave, and it

is completely characterized by either En or Hn.

~ aaal
Let fn and fm be two characteristic sources. By equation (3-13), the
Falaal Va'a'a)
following expression is true.
Le N Jn
N Vol e
<f , Tf > =< [Jn JMn] >
M A AN AN N Lm jMn
LN
=0 form#n (3-15)
Equation (3-13) is essentially
IJ‘(Jm . En ~-H - Mm)ds =0 (3-16)
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where En and Hn are produced by fn' Because Jm is real and Mm is imaginary,
A AN A AN AN
we have

*
M )ds=0 (3-17)

N AN AN AN

r *
)J (Jm..En + H

It follows that

# %
Re JJ (E.J +H .M)ds =0 (3-18)
n° m n' m
MA M A A
which means that the real part of the cross power is zero. In the

radiation zone the characteristic waves are of the form of outward

traveling wave, i.e.

En =n Hn x n (3-19)
VY s TPV Y e o ]
where n is the unit radial vector on S_. The real part of the cross power

faan)

can be expressed as

*
%*
Re ” E xH_ .ds=Re ”,ﬁm cEhds =0 (3-20)
Valaal AN\ n

The real part of the cross power between j(En’Hn) and (E ,H ) is also

m’ m
NN AN NN A
zero. Hence,
* *
"l-fJ E . E ds =7 [[ H .H ds =286 (3-21)
n m n m n mn
~MA lalan) AN AN

3.2 Characteristic Equation and Modal Representation

In the preceding section, the analytical development was based on
the interpretation of operators. The reduction of operator equations to
matrix equations can be effected in the usual manner by the method of

moments.
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Let
e m
£ = I.f, + V. £, 3-22
n ( 373 i3 ) ( )
A d AN AMA
where e
e W, m 0
£ = . , £ = (3-23)
LR EN -

After substituting equation (3-22) into equation (3-11), the following

is obtained.

e m o, _ e m : _
{ § I,T)fs + ) VT, f b=t g LT £+ g VT E } (3-24)
J ~n - -
Perform inner product with electric testing function Wi,

AN

e e e m
{ Z I, < W, Tpfy >+ Y v,.< Wi Tofy > }

h|
J alala) ~rAA j AAA A
e e e m
=2 | g 1< Wy, Tlfj > + g vy < Wi,Tlfj >} (3-25)
M A MA NN
and with magnetic testing function W?.
fa sl
e m
{ ZIj < w?, Tyfy > + Evj < WT, Tyfy >}
j AN ~MNA j ANA NMA
N Z I,< W, T £ + Z v, <WT T, £y > } (3-26)
J JVN AMA J A A

Equation (3-25) and equation (3-26) can be put into one matrix equation.

[x1 [, [11 R g [ro

1|
>
~

3-27)

1 el [ |1 | tel ||



The definitions of [X], [N2], [B], [R], [Nl], [6], [I], and [V] are
obvious by comparing equation (3-27) with equations (3-25) and (3-26).
Equation (3-27) is the eigenvalue equation which will be used

in the actual computation of the modes. In abbreviated form, it becomes

[T, 106 1=2 [T, 10f ]

AN NN
Now, with the understanding that An and fn can be found, the modal
AN
solution for f can be expressed as
PN
£=1)af

Recall that

Tf = gi

VY AN Y,

After substituting equation (3-29) into equation (3-30) and performing

the inner product with fm’ the following equation results.

PN
_ i
z a < fm’ Tfn > = < fm’ g >
n M ~o~ o aalant

Apply the orthogonality relationships given in equation (3-13). It

follows that

i
<f,g >
o Aol A
n A+3r)<f, TE >
LR PN
Explicitly,
< fm’ gi > = z Ii < fi, gi > + Z Vi < f?, gi >
PN AN i A A i APA AW

The matrix equivalents of the orthogonality relationships
for the characteristic currents, equation (3-13), are also of interest.

For example, that for T1 is

48

(3-28)

(3-29)

(3-30)

(3-31)

(3-32)

(3-33)
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- e m
<f, T f >=c< Z CLE] + V), Ty 2 ( ijj + va ), >

n
ad laas PAA AN AAA

_ e e e
= E g { LI < £1s Tlfj >+ LV, < £, T f j

A A N A

m
+ ViIJ < fi’ Tlfj >+ V VJ < fi’ 1%

MA o AAn V2 NN VN

N N
[T1[RITTI+[T]IIN DIV

~ A ~
FIVIIN TIT1+IVI 6]V

L d

[g, 10T, 10£ 1=¢ (3-34)

mn

NAA ~A

where denotes transpose. Similar derivations hold for T2 and T.

3.3 Linear Measurement

Any scalar p linearly related to the generalized current, i.e.
a linear functional of the equivalent electric and magnetic currents, will
be called a linear measurement of the current.

Any linear functional of f can be expressed as
AN

p=<g, £> | (3-35)

A SN

where gm is a vector function which consists of an electric field and a
magnetic field. By equations (3-32) and (3-33), the linear measurement
of £ can be stated as

i

a0 8.7 m
=1 DS <gh £ > (3-36)
n (1+ j)\n)< fn, Tlfn > MA s

Paare UV O 0
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where
<gl, £ >=]1, <g, £ >=]V, <g" £ > (3-37)
PN Al ol HIW\;M i nm/vvs
and define the following
K: = <gm, fn> = modal measurement coefficient (3-38)
VS AN
<g1, fn> = modal excitation coefficient (3-39)
N s

Equation (3-36) is a symmetric bilinear functional of gi (the
AN

impressed field) and of gm (the measured field). The symmetry of (3-36)
r

is a consquence of the symmetry of the original operator T. Equation

(3-36) can be expressed as

i m
K™ K
p = z — 2.3 (3-40)
1T+ 3 A
n n

similarly, in terms of K; equation (3-32) becomes

o = "‘-——?—T (3-41)

and equation (3-29) will take the form

<
f = z T-_F'—J-T fn (3-42)
S n

MR

3.4 Characteristic Fields and Scattering Cross Section

The characteristic fields are linearly related to the

characteristic currents, fn’ and hence can also be expressed in modal form.

AN ,
&t
I T35 ¢
1+ n
n N aa~

(3-43)

g=
Yol
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When K; and fn are known, the field pattern can be obtained by
N

employing equation (3-43). A convenient way is to evaluate the modal

measurement coefficient first. In the two-dimensional case, consider a

magnetic current filament, M = M u. at ( p,¢ )on S_. See Fig. 3-1 below.
M e

Fig. 3-1. A coordinate system for modal measurement

coefficient
By reciprocity, it is readily seen that

- Hn . M= [ ( Jn . Em - Mn . Hm ) ds (3-44)

MR NN P NN AN NN

where Hn is the characteristic field components produced by the mode

N
current fn. Em and Hm are the fields due to the magnetic current filament,

MA AN A
M. To simplify the analysis, the magnitude of the magnetic current, M, is
~~AN A

adjusted to produce a plane wave on the material body, i.e.

Ho=u e ~m m (3-45)
N A
E =nH xu (3-46)

m m km
Ve o NP VY Y U



where n is the wave impedance and ukm is the

PV S
propagation. The right hand side of equation

modal measurement coefficient. Hence,
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unit vector in the direction of

(3-44), in matrix form, is the

Km=[(J.E—M.H)d9, (3-47)
n n m n m
c A VN AAA MW
Explicitly, the electric field and the magnetic field can be
extracted from equation (3-43) as
-
E = ———e— E (3-48)
oo 1+ 3 An A:L
X
i=l gy H (3-49)
rMaA N n  ,~r
Since the magnetic field is currently under consideration, only equation
(3-49) will be used. The component of the magnetic field on u is
A
i
K
H. u = z L H . u
m 1+3 A n m
MA s D [PV VON
i _m
- - 1 z Kn Kn
M LT +3 A
n n
i_m
K K
we (2) n_ n
% B (kp)g T+3 A (3-50)

Note that Ki is of the same functional form a

has been used in deriving equation (3-50).

s K:. Equation (2-98)

A commonly used parameter in plane wave scattering problems

is the echo area. In two~dimensional problems

" "

corresponds to the " echo area

the quantity " echo width "

of the three-dimensional problems.
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The echo width is defined in equation (2-106).

o=21 o_| |2 (3-51)

H um
PN

m
limit p_ » =
m

By equations (3-50) and (2-106), the following expression for the scattering

cross section is obtained.

i_m

=___ls_|z___5n__1_<n___2 (3-52)
¢ 4 o2 T+ 32
n n n

3.5 Computational Considerations

The solution of the matrix eigenvalue problem, equation (3-28),

will be discussed.

[T, 1 0E£1=r(T 1[f] (3-53)
PN e ol

Note that the subscript n has been dropped for brevity. The conventional
method for reducing (3-53) to a symmetric unweighted eigenvalue equation
requires [TZ] to be positive definite. In theory [Tl] is positive semi-
definite, but because of numerical inaccuracies it is actually indefinite,
with some small negative eigenvalues. If the values of the matrix elements
cover a very wide range, scaling will become desirable. The magnitude of
the scale factor can be chosen as such that all scaled mgatrix elements
will be brought, as close as possible, to the same order of magnitude.
The conventional method will be modified as follows.

Let [D] be a diagonal matrix. After premultiplying by [D],

equation (3-47) becomes



(D1[T, ]l £T=AlDIIT 1[E£]

Then observe that

[D 10T, 1ID 1 CIDI T £1)
Faal

The eigenvalue equation as given by (3-55) will have the same eigenvalues

lalaa)

=AIDIT, D] CIDIHET)
NN

SN
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(3-54)

(3-55)

as the original unscaled equation, but the eigenvectors will be different.

In other words the eigenvalues are not affected by the diagonal

transformation. The original eigenvectors will be modified by [D] inverse.

If the scale factor is s,

[D]=

By equations (3-27), (3-55), and (3-56), the scaled eigenvalue

equation is

1/s

0

]

[ 15 10 £ 1 =017

e

where _

[ x 1/s

[ 151 =
[Nz]/s
[ R ]/s2

[17 1=
[N, 1/s

and

[D] can be chosen as

[ B]

[ N1 1/s

[ 6]

(3-56)

(3-57)

(3-58)

(3-59)
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s s[ I ]
[£7 1= (3-60)

et [v]

Note that [I] and [V] ( J and jM) should first be recovered from the
lala AN Vo o

scaled eigenvectors before computing the surface currents and the scattered

fields.

Rewrite equation (3-57) below

(7 1 ET =0T 10 ] (3-61)

PaVe el

Note that the superscripts have been dropped for brevity. An approximation

will be used in finding the eigenvalues and eigenvectors. The eigenvalue

equation

[Tl]r=ur (3-62)
A M

is used to find a set of basis functions for the T1 vector space. An
orthonormal set of vectors can be obtained by using the vectors { r, }.
Let { Ui } be the set of orthonormal vectors, and let [U] be the orthogonal

matrix which diagonalizes [Tl] according to

000.....

[ U Il T1 Ifu]l=]000 Hyeeoos (3-63)

where the ui are the eigenvalues of [Tl] ordered ul > Hy z_u3 i.“4 Seevaan

Every column of [U] is in { Ui}' Only the larger My can be considered

accurate. All u, > Mul are put in [ ul ] where M is some small positive

i

number set by the estimated accuracy of [Tl]. Usually M is anywhere

between 10—3 and 10-6. The diagonal matrix [u] is then partitioned as
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[ My 1 [ 0]

[uwl-= (3-64)
(01 [w,]
where
0
M1
H2
[ Ul ] = . (3—65)
0 um
M+l 0
M2
[ UZ ] = (3_66)
o b
Now consider
n
£=) x, U, (3-67)

A =1 JVNS

where UR is a column vector of [U]. This is a valid expansion because
N

the { 1% } vectors form a basis for T, vector space. In matrix form equation

1

AAA
(3-67) becomes

f=[01[ x] (3-68)
NN A

If [ My ] is set to zero, it follows that all column vectors of [U]
corresponding to all Hy € [ Hy ] are in the null space of Tl' This is
illustrated in Fig. 3-2.

The expression for f as given in equation (3-67) can be written
as

m n
£ = '2 x, U, + ] x U (3-69)
laaal 1= 1 FVYN k=m+l PN
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Null space of T1 (dim. = N-m)

Fig. 3-2, T. vector space

1

The column vector [x] in equation (3-68) can be partitioned as

A
[x]1=[U1[£f]=] ~x (3-70)
IS Faan [XZ]
V2 al
where [xl] and [x2] are column vectors, and they are obtained by
NN
partitioning [x] according to equation (3-69)., Premultiply equation (3-61)

A
o~
by [U] and use equations (3-63) and (3-68). The result is

(U101, U x1=20ullx] (3-71)
A A

Set [ My ] equal to zero and partition all other matrices

conformably. The following two matrix equations are obtained.

[ A 10x 1+ DA, 0% 1=2A0u I0x I (3-72)
A AAA AAA
~
[ A, 10x 1+ [ Ay 1lx1=0 (3-73)
NN I~

N .
Note that [ A ] = [ U ]I T2 J[ U ]. Equation (3-~73) can be solved for

[ X, ] and the result substituted into equation (3-72) to get

[ Apy = Apphyyhi, 1% 1= AL wy 10 ] (3-74)

AAA A

The brackets of submatrices have been dropped to conserve space.
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Now [ul] has only positive diagonal elements as defined by equation (3-65).

Observe that

Cug 1= 0 a1 02 (3-75)
where
ui/Z 0
1/2
)

1/2

H3
[ uy/%1 - ' (3-76)

By equations (3-74) and (3-75) a new and unweighted eigenvalue

equation is obtained.

[Bllyl=aly]l (3-77)
~a AAA
where
[y 1= 1u/20 % ) (=78
A A~

1

[B1=1 “11/2][ Ap - AleEzAIZ I “11/2

] (3-79)

The eigenvalues of equation (3-77) are the smaller eigenvalues of
the original equation (3-61), and the eigenvectors of (3-77) give the

corresponding eigenvectors of equation (3-61) according to

e=tullxl=1v1| _, |0u10y (3-80)
o e [-8,5415] ~

where [ 6§ ] is the identity matrix.



Once the eigenvalues and the eigencurrents'are known, the
equivalent surface currents and scattered fields can be obtained by

employing appropriate formulas for those quantities.

59



CHAPTER 4

RESULTS

The results of far field scattering calculations for some material
cylinders are presented in this chapter. Equations used are those developed
in Chapter 2 and Chapter 3.

The far field scattering patterns of circular material cylinders have
been computed and the results are shown in Figures 4-1 through 4-16, for
perpendicular polarization (TE). Figures 4-17 through 4-22 give the results
for parallel polarization (TM). All results are compared with exact harmonic
series solutions [7]. Figures 4-1 to 4-5 are obtained by using 15 triangle
expansion functions. Twenty expgnsion functions have been used in obtaining
Figures 4-6 to 4~22. 1In all figures the computed scattering cross section
are normalized by ma, where "a'" is the radius of the cylinder.

The normalized scattering cross sections of square cylinders are shown
in Figures 4-23 through 4-27. All computed results are normalized by b,
where '"b" is one-half the width of the square cylinder under consideration.
Twenty expansions have been used in all computations for square cylinders of
different material constants.

Figures 4-28 through 4-30 show the characteristic currents (or mode
currents) for circular cylinders of different material constants. Fifteen
expansion functions have been used for the computation of mode currents.

For representative computations, consider a circular cylinder with
ka = 0.7 (where "a" is the radius of the cylinder, €, = 9.5, u. = 1.0. The

contour is approximated by 32 straight lines segments of equal length (the

60
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line segments can be of different length), and 15 expansion functions are used
for both electric and magnetic surface currents. Figure 4-28 shows the char-
acteristic currents plotted vs. the contour length variable in terms of a
sequence of triangle functions. All the mode currents are composite currents.
The first 15 points represent the electric mode current, and the second the
magnetic current.

Figure 4-29 shows the characteristic currents for a circular cylinder
with €. = 50.0, W = 1.0, and ka = 0.7. Figure 4-30 shows the characteristic
currents for a circular cylinder of €. = 2,56, Note that every mode current
is normalized by its maximum magnitude.

For perpendicular polarization (TE), the modal solution for the scattered
field agrees extremely well with the scattered field computed directly from
matrix inversion. The scattering cross sections using characteristic modes are
almost identical to the matrix inversion solutions (the differences are less

than 0.001 db).

To be specific, Fig. 4-1 shows the normalized scattering cross section of
a circular cylinder with €. = 9.5, M. = 1.0, and ka = 0.7 for perpendicular
polarization (TE). The computed scattering cross section is in good agreement
with harmonic solution [7]. The maximum deviation is 0.65 db. TFigure 4-2
gives the normalized scattering cross section of a circular cylinder with
€. = 20.0, W = 1.0, and ka = 0.7, for perpendicular polarization (TE). The
maximum deviation from exact harmonic series solution is 0.076 db. Figure

4-3 shows the normalized scattering cross section of a circular cylinder with

€. = 50.0, Moo= 1.0, and ka = 0.7, for perpendicular polarization (TE). Maximum
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deviation from exact harmonic solution is 0.485 db. The scattering cross
section shown in Fig. 4-4 is for a circular cylinder with €. = 100.0,

M= 0.01, and ka = 0.7 for perpendicular polarization. The computed solu-—
tion is in excellent agreement with the exact solution. Maximum deviation

is 0.01 db. Figure 4~5 gives the normalized scattering cross section of a
circular cylinder with e, = 1000.0, W = 0.001, and ka = 0.7, for perpen-
dicular polarization. Note that_the computed result is in excellent agree-
ment with the calculations of a conducting cylinder. Maximum deviation is
0.01 db. The conducting cylinder problem can be viewed as a specialization
of the more general material cylinder problem. This is expected to be true
even for three-dimensional objects. Figure 4-6 shows the normalized scatter-
ing cross section of a circular cylinder with e, = 9.0, Moo= 1.0, and ka = 2.0,
for perpendicular polarization (TE). Maximum deviation from exact harmonic
solution is 1.79 db. Better agreement can be reached, if more expansion func-
tions are used. The scattering cross section given in Fig. 4-7 is for a
circular cylinder with e, = 9.0, W= 1.0, and ka = 1.0, for perpendicular
polarization. The agreement with exact solution is excellent. Maximum devi-
ation is 0.013 db. Figure 4-8 shows the normalized scattering cross section
of a circular cylinder with €. = 9.0, Moo= 100.0, and ka = 0.7, for perpen-
dicular polarization. Agreement with exact solution is very good. Maximum
deviation is 0.01 db. Figure 4-9 shows the normalized scattering cross sec-
tion of a circular cylinder with e, = 9.0, Moo= 5.0, and ka = 0.7, for per-

pendicular polarization. The computed result is in good agreement with exact
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solution. Maximum deviation is 0.3 db. The computed scattering cross section

of a circular cylinder with €. = 0.001, Moo= 1000.0, and ka = 0.7, for per-
pendicular polarization is shown in Fig. 4-10. Note that the cylinder is highly
magnetic. Maximum deviation from exact harmonic solution is 0.001 db. The
agreement is excellent. Figure 4-11 shows the normalized scattering cross section
of a circular cylinder with e, = 1.0, W= 1000.0, and ka = 0.7, for perpendicular
polarization. Maximum deviation from exact solution is 0.04 db. Figure 4-12
represents the computed scattering cross section of a circular cylinder with

e, = 1.0, Moo= 10.0, and ka = 0.7, for perpendicular polarization. Maximum
deviation from exact solution is 0.04 db. Figure 4-13 shows the computed scat-
tering cross section of a circular cylinder with e, = 1.0, Moo= 300, and

ka = 0.7, for perpendicular polarization. Maximum deviation from exact harmonic
solution is 0.2 db. Figure 4-14 gives the normalized scattering cross section

of a circular cylinder with e, = 2.56, BT 1.0, and ka = 0.7, for perpendicular
polarization. Maximum deviation is 0.6 db. Figure 4-15 shows the computed
scattering cross section of a circular cylinder with e, = 1000.0, Moo= 0.001,

and ka = 0.7, for perpendicular polarization. The computed solution is in
excellent agreement with exact solution. Maximum deviation is 0.01 db. The
computed scattering cross sections of a circular cylinder with ka = 0.7, are

given in Fig. 4-16 for three different sets of material constants; i) €. = 1000.0,
wo = 1.0 1) e =10000.0, u_= 1.0 4ii) e = 5.0, u_= 1078, ALl are for
perpendicular polarization. Figure 4-17 shows the normalized scattering cross
section of a circular cylinder with €. = 1000.0, b= 0.001, and ka = 0.7,

for parallel polarization (TM). The solution agrees excellently with conduct-

ing cylinder solution. Maximum deviation is 0.023 db. The normalized scattering
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cross section of a circular cylinder with e = 2.56, ur = 1.0, and ka = 0.7,

for parallel polarization is shown in Fig. 4-18. Maximum deviation from exact
solution is 0.5 db. Figure 4-19 represents the computed scattering cross sec-
tion of a circular cylinder with e = 20.0, Moo= 1.0, and ka = 0.7, for parallel
polarization. Maximum deviation from exact solution is 0.2 db. Figure 4-20
shows the computed scattering cross section of a circular cylinder with er = 50.0,
M = 1.0, and ka = 0.7, for parallel polarization. The computed solution is in
excellent agreement with exact harmonic solution. Maximum deviation is 0.05 db.
Figure 4-21 shows the computed scattering cross section of a circular cylinder
with e, = 4,0, uo= 1.0, and ka = 0.7, for parallel polarization. Maximum devi-
ation from exact solution is 0.2 db. Figure 4-22 shows the computed scattering
cross section of a circular cylinder with e, = 9.5, Moo= 1.0, and ka = 0.7, for
parallel polarization. The computed solution is in excellent agreement with
exact harmonic solution maximum deviatwon is 0.01 db. Figure 4-23 shows\the
computed scattering cross sections of a square cylinder with kb = 1.4, for

two sets of material constants: i) €, = 1000.0, ur = 0,001 4ii) e, = 1000.0,
Moo= 1.0, all for perpendicular polarization. For square cylinders, there

are no exact solutions. Figure 4-24 shows the coﬁputed scattering cross

section of a square .cylinder with e, = 10000.0, Moo= 0.0001, and kb = 1.4,

for perpendicular polarization. The computed solution has been compared with
the solution of a conducting sqﬁére cylinder by using E-field formulation [13].
Maximum deviation is 0.1 db. Figure 4-25 shows the computed scattering cross
section Qf a square cylinder with e, = 9.0, Mo = 1.0, and kb = 1.4, for per-
pendicuiér poiarization. Figure 4-26 shows the computed scattering cross

section of a square cylinder with €, = 100.0, Mo = 1.0, and kb = 1.4, for
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parallel polarization. Figure 4-27 shows the scattering cross section of a
square cylinder with e, = 10000.0, Moo= 0.0001, and kb = 1.4, for parallel
polarization. The computed result is in excellent agreement with conducting
square cylinder solution. Figure 4-28 shows the lowest order characteristic
currents, plotted as a function of the contour variable. The currents are
normalized by choosing their maximum amplitude to be unity. The characteristic
currents are for a circular cylinder with e, = 9.5, Moo= 1.0, and ka = 0.7, for
perpendicular polarization. The electric part of each characteristic current is
circumferentially directed and the magnetic part is axially directed. The
scattering cross section computed from modal solution is almost identical to
that from matrix inversion. Figure 4-29 shows the normalized characteristic
currents for a circular cylinder with e, = 50.0, Moo= 1.0, and ka = 0.7, for
perpendicular polarization. Figure 4-30 gives the normalized characteristic
currents for a circular cylinder with e, = 2.56, Moo= 1.0, and ka = 0.7, for
perpendicular polarization.

The purpose of this work is to show the feasibility that a surface
formulation for the theory characteristic modes can be applied to the solu-
tion of scattering from material objects. For large cylinders, more expan-
sion functions are needed. No attempt has been made to treat large objects.

It is expected that this is one of the important areas for future research.
Many questions are still left unanswered in the interpretation and applica-
tion of characteristic modes to material objects. It is hoped that this work
will be of some value to future researchers in their effort to gain é complete

understanding of the theory of characteristic modes. -
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The eigenvalue equation (3-61) is

[,]1£] = A [T, 11£] (4-1)

and the expression for the Rayleigh quotient associated with equation

(4-1) is —~
RALAIA
1 7 TE,T0T, 1T

A (4-2)

The computed eigenvalues and their corresponding eigenvectors should satisfy
equation (4-2). The Rayleigh quotient check is important because it gives
some .verification to the approximations used in numerical computation.

The quadratic term [fi][Tl][fi] deserves some elaboration since it

gqppears frequently in equations. Note that
(£10T,10£] = [x][U][T, 1(U](x]

[x][u]1[x]

[y 10ny x )+ [ 1Ty 1 [, ] (4-3)
It has already been pointed out in Chapter 3 that [XZ] is the component of
an eigencurrent f that lies within the null space of Tl’ in other words,
[x2] does not radiate. Since approximations are made in the computational
procedures, the eigencurrents will not be absolutely exact. Consequently,
the second quadratic term on the right hand side of equation (4-3) will
differ from zero, but it should be much smaller than the first quadratic
term. To a certain degree, this will give some indication of the accuracy
of the computed eigencurrents. The first quadratic term at the right hand

side of equation (4-3) can be further expressed as



ey 10wy 10x, ]

o —”

- 0y 0

211yl
217

= 310210 10 Ay

[yllyl
=1 (if {yi}'are orthonormal) (4=4)
In numerical computation, approximations are inevitable. Some special

analytical manipulations such as those discussed above can often provide

added insight to the correctness of the numerical results.
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Exact

— — — This method, 15 expansion
functions.

Max. dev. 0.65 db.
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Fig. 4~1. Normalized scattering cross section of a circular cylinder with
€ = 9.5, w = 1.0, ka = 0.7, perpendicular polarization (TE).
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Fig. 4-2. Normalized scattering cross section of a circular cylinder with
e, = 20.0, L 1.0, ka = 0.7, perpendicular polarization (TE).
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Fig. 4-3. Normalized scattering cross section of a circular cylinder with
€. = 50.0, W = 1.0, ka = 0.7, perpendicular polarization (TE).
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Exact

This method, 15 expansion functionms.

Max. dev. 0.01 db.
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Fig. 4-4. Normalized scattering cross section of a circular cylinder with

€, = 100.0, W = 0.01, ka = 0.7, perpendicular polarization (TE).
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— — — This method, 15 expansion functions.
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Fig. 4-5. Normalized scattering cross section of a circular cylinder with
€, = 1000.0, Moo= 0.001, ka = 0.7,. perpendicular polarization (TE).
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Fig. 4-6. Normalized scattering cross section of a circular cylinder with
€, = 9.0, b= 1.0, ka = 2.0, perpendicular polarization (TE).
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Fig. 4~7. Normalized scattering cross section of a circular cylinder with
€ = 9.0, w = 1.0, ka = 1.0, perpendicular polarization (TE).
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Fig. 4-8. Normalized scattering cross section of a circular cylinder with
€.~ 9.0, Moo= 100.0, ka = 0.7, perpendicular polarization (TE).
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Fig. 4-9. Normalized scattering cross section of a circular cylinder with
E} = 9.0,,}% = 5.0, ka = 0.7, perpendicular polarization (TE).
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This method, 20 expansion function
Max. dev. from exact solution, 0.001 db.
: B
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Fig. 4-10. Normalized scattering cross section of a circular cylinder
with €, = 0.001, W= 1000.0, ka = 0.7, perpendicular

polarization (TE).
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Fig. 4-11. Normalized scattering cross section of a circular cylinder with

€. = 1, Moo= 1000, ka = 0.7, perpendicular polarization (TE).
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Fig. 4-12. Normalized scattering cross section of a circular cylinder with
€. = 1.0, Wy = 10.0, ka = 0.7, perpendicular polarization (TE).
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Exact

This method, 20 expansion functions.
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Fig. 4-13. Normalized scattering cross section of a circular cylinder with
e, = 1.0, uoo= 300, ka = 0.7, perpendicular polarization (TE).
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Fig. 4-14. Normalized scattering cross section of a circular cylinder with
€. = 2.56, W = 1.0, ka = 0.7, perpendicular polarization (TE).
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Fig. 4-15. Normalized scattering cross section of a circular cylinder with
e, = 1000.0, W= 0.001, ka = 0.7, perpendicular polarization (TE).
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Fig. 4-16. Normalized scattering cross section of a circular cylinder with

ka = 0.7, perpendicular polarization (TE).
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Conducting cylinder, 20 expansion functions.

This method, 20 expansion functions.

Max. dev. 0.023 db.
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¢ (degrees)
Fig. 4-17. Normalized scattering cross section of a circular cylinder with

€. = 1000.0, wo= 0.001, ka = 0.7, parallel polarization (TM).
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Exact

e — This method, 20 expansion functioms.

Max. dev. 0.5 db.

| | | | | | | | I
20 40 60 80 100 120 140 160 180
¢ (degrees)
Fig. 4-18. Normalized scattering cross section of a circular cylinder

with e, = 2.56, b= 1.0, ka = 0.7, parallel polarization (TM).
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— — —— This method, 20 expansion functions.

Max. dev. 0.2 db.
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Fig. 4-19. Normalized scattering cross section of a circular cylinder
with €, = 20.0, W= 1.0, ka = 0.7, parallel polarization (TM).



Exact
- — — This method, 20 expansion functions
Max. dev. 0.05 db.
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Fig. 4-20. Normalized scattering cross section of a circular cylinder
with €.~ 50.0, W= 1.0, ka = 0.7, parallel polarization (TM).
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Exact
— —— «— This method, 20 expansion functions.
— Max. dev. 0.2 db.
o(¢) (db)
Ta
10 |=
0
| 1 | | i | 1 1 I
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¢ (degrees)
Fig. 4-21. Normalized scattering cross section of a circular material

cylinder, with €.~ 4.0, W = 1.0, ka = 0.7 parallel
polarization (TM). '
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Fig. 22. Normalized scattering cross section of a circular cylinder with
€, = 9.5, ur = 1.0..
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Fig. 4-23. Normalized scattering cross section of a square cylinder with
kb = 1.4, perpendicular polarization (TE).



10 |— E-field formulation [13].
Conducting square 64 expansion functionms.
Eégl (dab) —_——— This method, 20 expansion functions.

B ‘ Max. dev. 0.1 db.

0 p——
/
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Fig. 4-24. Normalized scattering cross section of a square cylinder with
€. = 10000.0, W= 0.0001, kb = 1.4, perpendicular polarization

(TE).



This method, 20 expansion functioms.
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Fig. 4-25. Normalized scattering cross section of a square cylinder with
€. = 9.0, Moo= 1.0, kb = 1.4, perpendicular polarization (TE).



This method, 20 expansion functioms.
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Fig. 4-26. Normalized scattering cross section of a square cylinder with
e, = 100.0, ur = 1.0, kb = 1.4, parallel polarization (TM).



— ‘ 94

Conducting cylinder, 64 exp. funcs.

e — —— This method, 20 exp. funcs.

max. dev. 0.02 db.

al¢) (db)
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20 40 50 80 100 120 140 160 180
¢ (degrees)

Fig. 4-27. Normalized scattering cross section of a square cylinder with
e, = 10000.0, M= 0.0001, kb = 1.4, parallel polarization (TM).
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Fig, 4-28 continued
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CHAPTER 5

DISCUSSION

A surface formulation is developed for solving two-dimensional
electromagnetic scattering problems. A basic theory for characteristic
modes of dielectric and magnetic bodies based on the surface formulation
is derived. The method of computing characteristic modes can be used for
homogeneous material bodies of arbitrary shape provided the body is not
electrically large. The characteristic modes of material bodies have most
of the properties of those for perfectly conducting bodies, and should find
similar uses. The theory presented here is in contrast to that for the
volume formulation [4]. The basic difference is that the current in the
material body has been treated as equivalent surface currents instead of a
volume distribution. The characteristic currents are real and their cor-
responding eigenvalues are also real., The eigenvectors given by equation
(3-73) are those corresponding to the lowest eigenvalues, and they are
usually very efficient radiators. Characteristic currents associated with
large eigenvalues generally indicate higher order modes which do not radiate
very much.

Two ways for computing the scattered fields are given here. The simple
material cylinders. The matrix inversion method is easier to use and gives
very good results. The characteristic mode method may require slightly
longer computing time, but it does provide more insight into the problem.
As in the conducting body case, the characteristic mode method should prove
to be of value, both theoretically and computationally for scattering and

radiation problems. The versatility of characteristic modes has been
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adequately demonstrated in analysis and synthesis problems dealing with
conducting bodies. The two approaches are based on a surface formulation,
and they require the material body to be homogeneous since the unknowns
are surface currents. For inhomogeneous bodies the surface formulation is
not appropriate, and a volume current distribution must be used which re-

quires sample points inside the scattering body.
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APPENDIX A

MATRIX ELEMENTS FOR PARALLEL POLARIZATION

For the incident field
=qu e-ikrgﬂ (A-1)

the following formulas are obtailned ( u, is the axially directed unit vector).
The procedures involved are identical to that given in Chapter 2, except that

the directions of the surface currents are different.

A.1l Formulas for [Z] Matrix Elements

4
z =-2_ 7 J T T 2 (a-2)
- =1 p=1 P 1
where
Z = At_ At H(z)(kR ) (non-coincident intervals)
P q o Pq
2 vkAt
= tp 1 - I Log ———ZEE—— ] (coincident intervals)
A.2 Formulas for [B] Matrix Elements
L]
B T - —— At T T B (A-3)
mn 4 q=1 p=1 q'p q
(9
k}ii“)~(kRPq)
B = - - (x_-x Ay + - Ax
R [ » xq’) Yp (yp yq) » 1

(non-coincident intervals)

= -j2 (coincident intervals)



A.3 Formulas for

[C] Matrix Elements

mn

A.4 Formulas for

1 4 4 .
- = J ot T T C (A-4)
q=1 p=1 1
kH{Z)(kRPq)

= - - (y.- y)Ax + (x - x)A
qu [ (yp yq) Xy (xp xq) Yy ]
(non-coincident intervals)

-j2 (coincident intervals)

[Y] Matrix Elements

4 4

1 1 vt
Y = Y Yot At [weT T (u.u)-—T T ]Y
mn 4 g=1 pm1 q P94 P 4q wh P q
(A-5)
where
Y = Héz) (k qu ) (non-coincident intervals)
vkAt
=1 - Log —_ZE_R_ (coincident intervals)
A.5 Excitation Matrix Elements
i o 1
4 jk( x__ cos¢p” + y _ sin¢g )
Vi) T A e ™ mp (A-6)
p=1 P
i , 4 i 1 jk(x cos¢1+ Yo sin¢1)
I"=--=L ¥ T [ -Axsing” +Ay cos¢" ] e ™ P
m n 27 P
p=1
(A-7)
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J1=0

1 CaLL FP1(Z,F1,P1}
BSU1=F1*SINIZ-P1)/SARTI(Z)
[FIX.LT.0.0)RSILI==RSI]

APPENDIX B DN 7 J=1.LL 111
K1=J1+K
COMPUTER PROGRAMS K2=J1+M
STO=C (K1}
B.1 Listing of the program to compute scattering cross sections CtK1)=C(K?)
C(K2)=ST0/STOR
perpendicular polarization(TE). J1=J1+LL
7 CONTINUE
K1=M1+M
//YUCHANG JOR (0639 ,EF,2M595), '"CHANG .Y ' JREGINN=250K,CLASS=A C(K1)=1,/STOR
/7 EXEC WATFIV DO 11 T=1,LL
//GOLSYSIN DD * TFI1-M) 12,114,172
$JO8 CHANG, TIME=3,PAGES=30 12 K1=M1+1]
SURROUTINE FPO(724F0,PO) ST=C (K1)
Y=3.0/7 C(K1)=0.
FN=0.797RR8456+Y%(-0,00000077+Y*(-0.0055274+Y*(~0.00009512+Y*(0,001 J1=0
137237+Y%(-0,00072805+Y%0.00014476))))) NO 10 J=1,LL
PO=0,78539816+Y%(0.04166397+Y%{0.00003954+Y*{-0,00262573+Y%(0.,0005 Kl=J1+1
14125+Y%(0.00029333-Y*0.00013551)))) K2=J1+M
RFTURN CIK1)=C{K1)-CIK?)=%ST
END J1=g1+LL
SURROUTINE FPLIZ,F1,P1) 10 CONTINUE
Y=3.0/7 . 11 CONTINUE
F120.79788456+Y%(0,00000156+Y*(0.01659667+Y*{0.00017105+Y%(-0,0024 M1=M1+LL
19511+Y%(0.00113653-Y%0.00020033))}}) 18 CONTINUE
P1=0.7R539816+Y%(-0.12499612+Y%(~0.00005650+Y*(0.00637879+Y*(~0.00 J1=0
1074348+Y%(~0,00073824+Y%0,00029166))))) DN 9 J=1,LL
RETURN TE(J-LRIJ)) 14,8,14
END 14 LRJ=LR(J)
FUNCTION RSJO(X) J2=(LRJ-1) %L1
TF(XJLELO.0)WRITF(3,10}X 21 N0 13 I=1,LL
KSJ0=1.0 K2=92+1
[F{X.EQ.0.0)RETIRN Kl=g1+1
7 =ARS(X) S=C{K?)
IF(2.6T.3.0160 T0 1 CiK2)=CIK1)
Y=2%7/9.0 C(K1}=$S
BSJO=1.04Y*(=2.24999974Y*(1.2656208+Y%(=0.3163RA6+Y%(0.,06464479+Y%{ 13 CONTINUE
1-0.00394444Y%0,0002113 1)) LREJ)=LRILRY)
RETURN LR(LRJI=LRY
1 CALL FPO(7+F0,P0) TF(J=LR(J)) 148,14
BS10=FO*COSI7=P0O)/SORT(Z) 8 J1=J1+LL
RFTURN 9 CONTINUE
10 FIRMAT(1H ,'WARNING - AN ARGUMENT OF*,E15.4,3%, *HAS BEEN ENCOUNTE- RETURN
IRED IN CALCULATING 8 RESSEL FUNCTTON OF ORDER 7ERGY/) END
END SUBROUTINE HANK{(GK)
FUNCTION BRSYO(X) COMPLEX CJoH o HF 4A424Y EV
TE(X,LE.O.0)WRITF(3,10)X COMMON DX{62)s0Y(62)4DLIA2)  XM(A2) 4 VM(AD)
HSY0=-1.0E75 COMMON T(120),TN(120},FV(A0),RR(1453)
IF(X.E0.0.0)RETIRN COMMON H(1953),HF(1953),A(3600),7(900),v(Q00), 0
7=ARS(X) COMMON XP(63),YP(63),N?
1F{2.6T.3.0)60 TO 1 PI=3,141593
Y=7%7/9.0 P=2.0/3.141593
BS5Y0=0,63661977+AL0G(0.5%Z)%RSJ0(72)+0.36766691+Y%*(0.A05593hA+Y% (=0 NI=NZ+1
1.743503844Y%(0,25300117+Y%(=0.04261214+Y%(0.00427916-Y*0.00024R4A) FE=4 %2> 71878
211 EL=1.78107?
RETURN 11=0
1 CALL FPO(7,F0,PO) 00 30 J=1,N1
BSYO=FOXSIN(Z-PN)/SORT(7) DN 40 =1,
RETURN Ti=T1+1
10 FARMAT(1H ,*WARNING ~ AN ARGUMENT OF ' E15.4,3X,'HAS BEEN ENCOUNTER IF(1 .ED. GO TO 25
LED TN CALCULATING A NEHMANN FUNCTION OF ORDER 7FRO ARS{X) USEN*/} IF(T .EQ. 1 .AND. 0 .FO, N?2)GO TO 25
FN IF(] LEQ. 2 JAND. I LFO. N1IGD TN 25
FUNCTION RSJLUX) RK=RR(11)*GK
1F(XoLELOLOIWRITF(3,410)X HET1)=RSUOLRK) ~CI%HSYO(RK)
HSJ1=0.0 HF{T1)=BSJ1(RK)—CI*RSY] (RK)
TF(X.EDLO0L0)RETURN GO T0O 40 :
7=ARS(X) 25 CONTINUE
1FIZ.GT.3.0) GO TO 1 AA=(EL*GK*DL( 1)) /FE
Y=7%7/9,0 HIT1)=1.0-Cy*P*ALNG (AA)
KOSl =X#(0,54Y%(~0.56249985+Y%(0,21093573+4Y%(-0,039542R89+Y*(0,00443 40 CONTINUE
13194Y%(=0.N00317A1+YX0.00001109))1))) 30 CONTINUE
RETURN RETURN
END

SURRQUTINE CALZY (WF.WlI)
COMPLEX CJsHoHF AyZ7 . Y,FV
COMPLEX 77

RETURN
10 FNRMAT(1H ,'WARMING ~ AN ARGUMENT OF',F15.4,3%,'HAS REEN ENCOUNTER COMMON DX{62)+NY(A2)4DLIEZ) XMIA2 ), YMIAD)

LFD TN CALCULATING A RESSEL FUNCTTON OF ORDER OME'/) COMMON T(120).TNLI20)},FVIAD)RR{1067)

END COMMON H(1953) HF{1953),A(3A001,7(Q00} .Y (900, |

FUNCTTON RSY1L(X)
TFIX 7D 0IWRITEI3,10)X

COMMON XP(63),YP(63),N?
P1=3.141593

BSY1=-1,0E75 11=0
TF(X.EQ.0.0)RETURN L=0
7=ARS(X) DO 50 13=3,N2,?
TF(Z.6T.3.0160 TO 1 J3-2
Y=2%7/9.0 3-1
HSY1=(-0.63661977+4Y#(0.2212091+Y*(2.1682709+Y*(-1,3164R27+Y%*(0,312 J3+1
L13951+Y#(=0,040097h+Y*0.0027873))))1)1/7+0.636A10TT%ALOG(0.5%7 ) *RSI]
2(7) DO 60 13=3,N2,?
RFTURN I1=11+1
1 CALL FPL(7.F1,P1) 11=13-2
BSY1=-F1*CNS(2-¥1)/SQRT(2) 12=11+1
10 FIIRMAT(1H ,'"WARNING — AN ARGUMENT OF'yE15.4,3X,'HAS BEEN ENCOUNTER T4=13+1
1FD IN CALCULATING A NEUMANN FUNCTION OF DRDER ONE ARS{X) USED'/) Z(111=0.0
RFTURN Y(11)=0.0
END . DO 70 M=Jl1,J4
SHRROUTINE LINEQ{LLC) LL=M+L
COMPLEX €(3600)+STOR,ST0O,ST»S DO 80 N=11,14
KK=N+K

NIMENSTUN LR(60)
NN 20 I=1.0L

TF{M-N)100,120,170

Letl)=1 100 JJ={N=(N=1))/2+M
20 CONTINUE G0 TO 130
M1=0 120 JJ=(M*(M=11)/?2+N
NN 18 M=1,LL 130 CONTINUE
K=Mm DC=(DX{M)XDX(N)+DY (MIEDY (NI )/ (DLIMIEDL (N)
K2=M]1+K ZT1=WUXT(KK)*T(LL Y =NC
ST=ARS(REALIC(K2)))+ARS(AIMAGIC(K2))) 2T2==TD{KK)*TNILL)/WF
N0 2 T=M,LL 2T3=2T1+4272
K1=M1+1] 271=H(JJ)
SZ=AHSIREALICIKL)))+ARSIATMAGICEKL1))) Z(I11)=0.25«DLANY*DLIMYSZTI*ZIZ42(11)
TF(S2=S1) 2.246 YOII)==0.25%WEXT(KK)®TLLL)IXDL(MIEDLIN)I%77+Y (T 1)
A K=1 80 CONTINUE
S1=S¢ 70 CONTINUE
2 CONTINUE YOI ==Y{11)
LS=LR(M) 211 =2(11)/71(377.0%377,0)
LR(M)=LR(K) K=K+2
LR(K)=LS 60 CONTINUE
K2=M1+K L=L+2
STOR=C(K2) 50 CONTINUE



RETURN Cu=(0.41.)

END PA=RD*P]
SURRQUTINE CALCI{GK) P2=A93%P]
COMPLFX CJUsHoHF sAZ Y oFV THETA=0.0
COMPLEX HFRR N5 1=1,NP
COMMON DX{62)+DY(62)4DLIK2) s XM(62),YMI62) XP(1)=RO*COS(THFTA) *WL
COMMON T{120}4TD(120),FV(60},RR{1953) YP{T)=RD*SIN(THETA)*WL
COMMON H(1953),HF(1953) ,A(35600),7(900),Y(900),CJ THETA=THFTA+P2
COMMON XP{63),YP(63),N2 5 CONTINUE
N1=N2+1 WRITE(3,4) (XPUI),YPLI)sI=14NP)
11=0 N0 10 J=1,NY
L=0 J1=J+1
DO 50 J3=3,N2,2 OX{J)=XP{I1}=XP(J)
J1=43-2 DY{J)=YP(J1)=YP(J}
J2=03-1 DLEJ)=SORTIDX(J)*22+NY{J)%%2)
Ja=J3+1 XM(J)=0.5%(XP{J1)+XP(J))
K=0 YM(J)=0.5%(YPLJT1)+YPLI))
NN 60 13=3,N2,2 10 CONTINUE
11=11+1 WRITE(3,45)
11=13-2 45 FORMAT(////7)
12=11+1 WRITE(3,4) (DL{I),1=1,N1)
14=13+) WRITE(3,45)
2111)=0.0 WRITE(3,4) (DX{1),1=1,N1}
DO 70 M=Ul,.44 WRITE(3,45)
LL=M+L WRITE(3,4) (DY(I)si=1,N1}
00 80 N=11,14 11=0
KK=N+K DO 30 J=1,N1
IF(M=N)100,150,120 DD 40 I=1.
100 JO={NX(N=1))/2+M I1=11+1
IF(M JEQ. 1 JAND. N EQ. N2) GO TOD 150 IF(1 +EQ. JIGO TU 25
IF(M FO. 2 .AND. N .FQ. N1} GO TO 150 IFLT EQ. 1 JAND. ) EQ. N2)GH 10 25
Gn TO 130 IFLT +EQ. 2 JAND. J .EQ. NIIGO TD 25
120 JJ={M*{M=1))/2+N XPQ=XM{T)=-XM{J)
IFIN JEQ. 1 JAND. M LEQ. N2) GO TO 150 YPQ=YMIT)=YM(J)
IF(N JEQ. 2 .AND. M .FQ., N1} GO TO 150 RR{I1)=SORT(XPO*XPQ+YPQ*YPQO)
130 CONTINUE 25 CONTINUE
HFRR=HF ( JJ) /RR(JJ) 40 CONTINUE
OTI=0L(M)#T(LLI*T(KK) 30 CONTINUE
CZ==(XM(N}=XMIM) } DY {N}+(YM{N)=YM(M))*DX(N) L=0
7011)=0.25%CI*DTT*HFRR*GK*CZ+Z(11) DO 20 M3=3,N2,?2
G0 TO A0
150 CONTINUE
80 CONTINUE
70 CONTINUE
ZUI1)y==Ca=2(11)
2011 Z{11}/377.0
K=K+2 La=L3+1
60 CONTINUE TIL1)=.5%DL{MY) /(DL (M]I)+DL{MD))
L=L+2 TILZ)=(DLIML)I+.S%NLIM2) ) /IDLIMI)+DNLIMDY)
50 CNNTINUE TIL3)=(0.5%DL(M3)+NL(M4))/{DLIMI)}+DL (Ms))
RETURN TIL4)=0.5%DL(M&) /(DLIM3)+DL (M4} )
END TDILYI =1/ (DLIML)+DLIM2))
SURRQUTINE EXMX(PHI,.GK) TD(L2)=TD(L1)
COMPLEX CJeHoHF 9A2Z Y FV TDIL3)==1.0/(DLIMI)+NL(M4))
COMPLEX PP TD(L4)=TD(L3}
COMMON DX(62)4DY(62),DLIAZ) 4XMI62)2YMI62) L=L+2
COMMON T(120),TD(120),EV(60),RR(1953) 20 CONTINUE
COMMON H(1953),HF(1953),A(3600)+7(900),Y{Q00),C. WRITE(3,45)
COMMON XP(A3),YP(63),N2 WRITE(3,44) (T(I)aI=1,NT)
ETA=376.7301 NS =N**>
N=(N2-1)/2 CALL HANK{GK)
CP=COS(PHI) CALL CALZY(WE, W)
SP=SIN(PHI) K=0
11=0 L=0
L=0 NI=2%NS+N
DO 200 13=3,N2,? nn 500 J=1,N
11=11+1 DO 510 I=1,N
JJ=11+N L=L+1
11=13-2 KK=K+]1
12=13-1 IT=NI+L
T4=13+1 A{L)=7 (KK}
FV(II}=0. ALTT)=Y(KK)
FV(JJ)=0.0 510 CONTINUF
NO 210 M=T1,14 L=L+N
LL=M+L K=K+N
FP=(XM{M)*CP+YM(M)%SP ) *GK 500 CONTINUE
DP==DX(M)%SP+NY (M) CP CALL CALCIGK)
CEP=CNS(FP) K=0
SFP=SIN(EP) 11=N
PP=(CEP+CJI=SEP)*T(LL) DO 540 J=1,N
EVIIT)=PP&DP+EVIIT) DN 550 1=1,N
EVIJJI)==PPXDLIM)+FV(JJ) KK=K+1
210 CONTINUE 11211+)
FV(IT)==FTA%EV(II) AlLTI1)=7(KK)
EVIJJY==CU*EVIJII) 550 CONTINUE
L=L+2 K=K+N
200 CONTINUE IT=T1+N
RETURN 540 CONTINUE
FND CALL HANKI{GKM)
CNMPLEX HFD CALL CAL7ZY(WFM,WtiM)
COMPLEX AE(60) K=0
COMPLEX CJyHyHF A7 ,Y,EV I1=0
COMMON DX(62)sDY(62),DLIA2) 4 XMIA2) yYM(A2) DN 520 J=1,.N
COMMON T(120),TN(120),FV{A0),RR(1953) DN 530 I=1,N
COMMON H{1953),HF(1953),A(3A00),7(900),Y(900),CJ KK=K+1
CIIMMON XPU A3}, YPI6H3) N2 I1=11+1
49=9,0 TTTI=NI+I1
A10=10.0 ACTI)=Z (KK)+A(I])
PI=3.141593 ACTTI)=Y(KK)+A(TI1T])
P4=1R0.0/3.141593 530 CONTINUE
NP=43 K=K+N
N1=NP-1 11=11+N
N2=NP-? 520 CONTINUE
N=(N1-2)/? CALL CALC(GKM)
NT=4%N K=0
WL=1.0 11=N
FI1A=376.7301 DO 560 J=1,N
P1=3.141593/180.0 DO 570 I=1,N
ANS=0.0 KK=K+1
6K=2,0%3,141593 /WL II=11+1
WE=GK/FTA AUTT)=2(KK)+ALTT)
A1=2,405 570 CONTINUE
RDzAY/GK K=K+N
Wi=GK*FTA IT=11+N
NH=2%N 560 CONTINUE
UR=0.0001 NK=2%N
FR=10000.0 N.=2#NS
GKM=SORT (UR®ER ) %GK L=0
WFM=WEXER DN 580 J=1.N
WUM=WUXUR K=N
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DO 590 1=1,N KK=0
KK=J+K NM=N-1
L=L+1 DO 45 K=1,NM
TI=L+NJ J=K 4]
ALTT)=A(KK) DO 35 L=JuN
K=K +NK I=L+KK
590 CONTINUE Jad=(L~1}%N+K
L=L+N RRIT}=RR(JJ}
SR0 CONTINUE X{Tr=xX024)
4 FORMAT(//41H ,10E11.4) 35 CONTINUF
CALL LINEQ(NH,A} KK =KK+N
CALL EXMX(ANS,6K) 45 CONTINUF
WRITE{3,45) DO 46 1=1,N2
WRITE(3,4) (FVII},1=1,NH) XX(Iy=X(1)
WRITE(3,304) 46 CONTINUE
304 FORMAT({1H ,'CURRENT*/* I',6Xs"REALT, 10X, *IMAG®, 10X, "MAGNITUDE ", 7X WRITE(3,201) N
1,'PHASE") 201 FORMAT(/1X,'R MATRIX (STORFD IN SYM. MIDF) NF (IRNDER ', 13)
D} S0 I=1,N WRITE(3,207) (R(T),1=1,N25)
FVI1)=EV(I}/377.0 202 FORMAT(R(1X,E14.7))
50 CONTINUE WRITF(3,203) N
DO 270 T1=1,NH 203 FORMAT{/1Xs'X MATRIX (STORED COLUMNWISF) OF ORDFP Y, T3
AF(11)=0.0 WRITE(3,202) (X({1),I=1,N2}
NO 300 1=1,NH 130 CALL EIGEN{(R,tisN,0O)
J=LI=1)*NH+ 11 J1=0
AFLT1)=ALJ)Y*EVIIY+AF{I]) N0 104 J=1.N
300 CONTINUE J1=J1+4
270 CONTINUE EULJ)Y=R({J1)
NO 70 1=1,N ELtJ)=EUCD)
AFLI)=AE(1)/377.0 RULJI)=14/SORTIARS(FUHI(J)))
70 CONTINUE 104 CONTINUE
N0 BO 11=1,NH WRITE(3,141){EU())+JU=1,4N)
CA=CARS(AE(I1)) 141 FORMAT('OETGENVALUFS OF THE MATRIX R'/{1X,7F11.41)
CPH=ATAN? (AIMAGIAF(I1)),REALIAELT]L)))I*57,2R5R 0N 75 J=1.N
WRITE(3,305)11,AF(11),CA,CPH J1=(J=11=N
305 FORMAT(IH ,1X,1343F14.64F10.3) DO 76 1=1,4N
A0 CONTINUE J2=01+1
WRITE(3,275) T2(J2)=0.
27% FORMAT(///4* SCATTERING ANGLF = PHI',10X, 'ECHD LENGTH/WAVELENGTH') J3={1-1)%N
AN=0.0 DD 77 K=1,4N
P3=A10%P1 K1=K+J3
no 320 1=1,36 K2=K+J1
CALL EXMX{AN,GK) T2(J2)=T2(J2)+X (K )*{K2)
HFD=0.0 77 CONTINUE
DO 330 J=14+NH 76 CONTINUE
HED=FV{J)%AE(S)+HFD 75 CNNTINUE
330 CONTINUE 0N 78 J=1,N
CH=CARSI(HEN) JI=(J-1)%N
FCHO=GK*CH®%2/4 .0 no 79 I=1,4
ECL=ECHO/ (WL=ETA®%2) J2=01+1
PRN=FCL /PA AlJ2)=0,
FCL=10.0%ALBG1O(PRDY J3=(1-1)%N
WRITF{3,335)AN,ECL ND 80 K=1,N
335 FUORMAT(TH 210X,F7,2,20X,F14,71 Kl=K+J3
ANz AN+P3 K2=K+J1
320 CONTINUF AL J2)=A0J2)+0)(K1)=T2(X2)
STup R0 CONTINUE
END Ja=43+]
SNATA : AlJ4)=A002)
$STNP 79 CONTINUE
/% 78 CONTINUE
X2=EU(1)*EPS
DO 70 J=1.N
TF(EULJ)Y=X2) 72,166,164
144 GM=y
70 CONTINUF
B.2 Listing of the program to compute ch. 72 JIN=N-JM
mpute characteristic currents. JM1=gM+]
TFLIN) 145,146,145
C
C TF NO  EIGENVALUES (IF R ARF SFT TO 7FRML (4N =N) Twp TASTRG{TT 8
//YUCHANG 0OR (D639 ,FF+2+2,900) s 'CHANGY ' yREGTIIN=]190K,CLASS=A C BETWEEN 146 AND 151 ARF CARRIED OniT.
7/ »XEC FORTGCLG [4
//FORT SYSIN DO % 146 42=0
¢ DO 1648 J=1.N
r. J3=(Ud=-1}1%N
C  *#*=WFIGHTFD FIGENVALUF FO. - INPUT COMPLFX 7%%=% PO 149 [=1.J
C J2=02+1
COMPLEX 7(900),101,72L(30) Jo=03+1
COMPLEX CuJykC(30) BUJ2)=A ()6 =RULII=RU(T)
NIMENSTON U(900),R(900),T2(900)4,A22(900),B(900),X(9001,A4{900) 149 CONTINUE
NIMENSTON Y (G0N0}, T3(900),FI(900),FI(30),RU(30),AMN(30),LA(30} 148 CONTINUE
NDIMENSTION RR(900)RF{900),FRF(30) CALL FIGEN(R,Y.IM,0)
NIMENSINN AB(900)R22(900) J1=0
DIMENSTON XX{900) N0 150 J=1.N
DIMENSION OX0(30).R0(30) J1=01+4
DIMENSTON DUL30) AMD(J)=R(J1)
NIMENSION FL(30) 150 CONTINUE
DIMENSTON RL(30) WRITE(3,58) (AMD(.1) 4,021 .N)
FOUTVALENCE (RUL)4T201) 482201 )14RET) V4 (XC1),A0L),Y (1)) PO 151 J=1.N
FOUTVALENCE (T3(1).FI01) ), (FULY1),AMN(L) ) Jr=0a-1)%N
Ca={0.0,1.0) NIt 152 I=1,N
REAND(),26) EPS J2=1+1
26 FURMAT{EY1.4) T2 (J2)=Y1J2)%RUIT)
READ(1,7) N 152 CONTINUE
7 FORMAT(T3) 151 CONTINUE
WRITF(3,3) N,EPS GO TO 147
3 FORMAT('0 N FPS1/1X,134F11.4) [«
N7 =N%N C IF SOME EIGENVALUFS OF R ARF NOT SFT TH 7F2(00 (N MAT b, 00 0
NZ =N#N C THFN INSTRUCTIONS RETWFFN 145 AND 147 ARE CARMI=n 1UIT,
M2S=(N+ND) /2 C
READ(1,200)(Z(1),1=1,N2%) 145 J1=0
200 FORMAT(5F15.7) DN 73 J=JM1,N
22 NN=N J2=(J=1)%N
N 650 1=1,N2S DN T4 T=gM1.N
ROT)=RFALI7(1})) Ji=d1+1
XUI)=AIMAGLZ(T)) J3202+1
50 CONTINUE AZ2(J11=A003)
NN 51 T=1.N28 B22{J11=A22(J41)
RR(1)=RI(I) 74 CONTINUE
51 CNNTINUE 73 CONTINUE
[1=N2S+1 JNN=ON* N
NN 40 K=1,N WRITE(3,600) (A22(1),1=14UNN)
J=N+1-K 600 FORMAT(*0A22 MATRIX'/(10(1XsF11.41))
NN 30 L=, 128 CALL LINER{JUN,A22,LR)}
T=N*(J=1)+J-L+1 WRITE(3,601) (A?22(1),1=14INN)
1i=1T-1 601 FORMAT(*QA22 INVFRSF'/({10(1X+F11.4)))
RR{I)=RR(II1) 11=0
X(I1=x(11) DO 700 I=1.JN
30 CONTINUE Kl=(I=1)%=JN
4n CONTINUF DN 710 J=1,JN



[1=11+1
ABLIT)=0.0
DD 720 K=1,JN
KK=K 14K
JI=(K=1)*IN+J
AB(TT1)=A22(JJ)1*B22(KK)+AB(IT)
720 CONTINUE
710 CONTINUE
700 CONTINUE
WRITE(3,730) (AR(I},I=1,UNN}
730 FORMAT('OA22%A22 INVERSE'/(10(1X+Elle4}))
J1=0
nn 81 J=1,JM
J3=(J-1)2N+JM
NN B2 1=1,JN
J2=(1-1)1%)N
Jl=J1+1
T3(J1)1=0,
DO 83 K=1,JN
K1=J2+K
K2=03+K
T3(J1)=T3(J1)+A22(K1)*A(K2)
83 CONTINUE
82 CONTINUE
A1 CONTINUE
J2=0
DO 84 J=1,JM
J3=(J-1)%N
Jo={J=11%IN
No 85 T=1,J
J2=92+1
Ja=034+1
BlJ2)=A(J%)
Jo=(1~1)%N+JgM
DO B6 K=1,JN
K1=K+J6
K2=K+J5
B(J2)=B{J2)-A(K1)*T3(K2}
K6 CONTINUE
B(J2)=R{J2)=RU(JI=RU(T)
A5 CONTINUE
R4 CONTINUE
129 CALL EIGEN(R,Y,JM,0)
J1=0
DO 107 J=1,JM
J1=J1+
AMD(J)Y=R(J1)
107 CONTINUE
WRITE(3,58) (AMDIJ),J=1sIM)
58 FORMAT('OEIGENVALUFS OF THE MATRIX R'/(1X,5F14.,7))
DO 91 d=1.JM
J1=(J=11*UM
Ja=(J=-1)*N
0N 92 I=1,JM
J3=14+44
J2=1+401
T2(43)=Y(J2)*RULT)
92 CONTINUE
9l CONTINUE
L=0

JJ=0
CO 240 I=1.JM
Ja=J0+1
putIINI=0.0
DO 250 J=1+JM
LL=L+y
DULIII=EL(J)*T2(LL)*T2LLLY+DULII)
250 CONTINUE
L=L+N
240 CNNTINUE
WRITE(3,251) (DU(JIY,JJ=1+IM)
251 FORMAT(YQOUADRATIC FNRM X1UL1LIX1'/(R(LX,Ele.7)))
S1=0.
nn 93 g=1,JM
J1=(J-1)%N
NDH 94 1=1,IN
J2=J1+140M
T2(921=0.
DO 95 K=1,JM
K1=(K=~1)*IN+1
K2=K+J1
T2(J2)=T2(J2)=T3(K1)*T2(K2)
95 CONTINUE
94 CONTINUE
93 CONTINUE
K=JM+1
L=0
nO 260 1=14JM
PUlT)I=0.0
NN 270 J=K,N
LL=L+]
NUCTY=EL(J)I=T2(LL)*T2(LLY+DULT)
270 CONTINUE
L=L+N
260 CONTINUE
WRITE{3,261) (DU{T).I=1,0M)
261 FORMAT{'OQUADRATIC FORM X21122Xx2'/(R{1X,E14,7)))
JMM= I MxN
WRITE(3,401) (T2(1),1=1,JMM)
401 FORMAT('OMATRIX X'/(B(1X,E14.7)))
147 DD 96 J=1,IM
$1=0.
J1={J-1)%*N
J6=(J-1)*NN
J7=0
00 97 1=1,NN
J2=06+1
FI1(J2)=0.
34 J7=37+1
DN 98 K=1,4N
K2=K+.1
K1={K-1)*N+J7
FIGI21=F1L02)+11(KY) *T2(K2)
98 CONTINUE
97 CONTINUE
J2=06+1
J3=J6+NN
WRITF(3,138) AMD(J)
138 FORMAT('OEIGENCURRENT FOR WHICH LAMADA = *,Ell.4)
WRITE(3,60)(FI(1),1=02,03)
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FORMAT(1X,8(1X,E14.7)) 114
CONTINUE -
00 310 J=1,JM

J1=(J-1)*N

FRF(J)=0.0

0XQ(J)=0.0

DO 320 I=1,N

$1=0.0

.0

Ja=(1-1)#N

DO 330 K=1,N

43=J1+K

J2= 44K

S1=S1+4RR(J2)*FI(43)
XT=X14XX(J2)*F1(J3)

CONTINUE

J2=0141
FRE{J)=FRFIJI+S12FI(J2)
OXQ(J)=0XQ1I)+X1*FI1{J2)
CONTINUE

RQ1J)=0X0(J)/FRF(})
ECLJI=1.0/(FRF(J)I+CI*QXQ(J))
CONTINUE

WRITE{3,332) (FRE(J),J=14JM)
FORMAT (*OFRF'/(B(1X,F14.7) 1))
WRITE(35333) (OXQ(J),d=1,JM)
FORMAT(*00XQ'/{B(1X,E14.71))
WRITE(3,331) (RQ(I),I=1,M)
FORMAT ( YORAYLEIGH QUOTIENTS'/{RI1X4F14,7)))
WRITE(3,311) (FCIT),I=1,JM)
FORMAT ( *ONORMALTZATION CNEFFS'/{R(1X,E14,7)))
WRITE(3,312) (AMDI{I),1=1,0M)
FORMAT( *OLAMDA*/(B(1X,F14,7)))
WRITE{3,100) (FRE{I),1=1,JM)
FORMAT ( *ONORMALIZATION FACTAR (U, RJ)I*/{RE1X,E14.71))
NRERLEL

PUNCH 101+ (AMD(T),1=1,4M)
PUNCH 101, (EC(T) o 1=1,JM)

PUNCH 101, (FI(T),I=1,NJ)
FORMAT(5E15.7)

sTaP

END

SURROUTINE ETGEN(A,R,N,MV)
DIMENSION A(465),R(900)
IFIMV=1) 10,25,10

10==N

DN 20 J=1,N

10=10+N

00 20 1=1,N

10=10+1

R(1J)=0.0

IF(1-9) 20,1%,20

R(1J)I=1.0

CONT INUE

ANNRM=0.0

nn 35 1=1,N

no 35 J=1.N

IF{I-4) 30,35,30
TA=1+(J%0-4)/2
ANNRM=ANNRM4A(TA)£A(TA)

CONTINUE

TFIANDRM) 165,4165,40
ANORM=] ,414%SQRT(ANNRM)
ANRMX=ANORM=].0F=6/FLOATIN)
IND=0

THR=ANDRM

THR=THR /FLOAT(N)

L=1

M=L +1

MO={MxM=M) /2

LO=(L=L-1)/2

LM=L +MO

TF{ARSIALLM))I-THR]) 130.,65,465
IND=1

COXLATLL)=A(MM))
Y==A{LM)/SORT(A(LM)EA{| M)+X%X)

TF(X) 70,745,775

Y=Y
SINX=Y/SORT(2.0%(1.0+(SORT(1.0=~Y%Y))))
SINX2=SINX*SINX

COSX=SORT(1.0=-SINXD})

CNSX2=CUSX*COSX

SINCS=SINX*COSX

TLO=N*{L-1}

TMQ=Nx(M-1)

PN 125 1=1.N

10=(I1*1-13V/2

TF(I-L) ROs115.HO

TF(1-M) R5,115,90

IM=1+M0

G0 TO 95

ITM=M+10

TF(I-L) 100,105,105

IL=1+L0O

G0 TO 110

IL=L+10

X=A{TL YRCOSX=A{IM)*SINX
ACTMI=ALTLI*SINX+ATTMIRCNSX

ALTIL) =X

TF(MV=-1}) 120,175.170

ILR=1LO+1

TMR=TMQ+1

X=R(TLR)*COSX-R(ITMR)&SINX
ROIMR)=R{TLR)*SINX+R{IMR)*CISX
R(ILR}=X

CONTINUE

X=2.0%A{LMI*SINCS
(LL)2COSX2+A{MM) *STINXD =X
X=A(LL}*SINX2+A (MM} XCOSXD2+Y
ALM)=(A(LL)—A(MM) ) RSTINCS+A(LM)IH(COSX2=SINX?)
AlLL
A(MM) =X

TFIM=-N) 135,140,135
M=M+)

G0 TO 60
TF(L=(N-1}} 145.150.145
L=L+]

GO TO 55




150 IF(IND-1) 160,155,160
155 IND=0
GO 10O 50
160 IF{THR~ANRMX) 165,165,45
165 I0==N
DO 185 I=1,N
10=10+N
LL=T+(I*1-1)/2
JO=N*(][=-2)
DN 185 J=1,.N
JO=J0+N
MM=J+( J*)-J)/2
IFCA(LL)=-A(MM))} 170,185,185
170 x=A(LL)
A{LL)=A(MM)
A(MM) =X
IF(MV-1) 175,185,175
175 DD 1RO K=1.N
ILR=T10+K
TMR=J0+K
X=R(ILR}
R{ILR)=R(IMR)
180 R{IMR)=X
185 CNONTINUE
RETURN
END
SURROUTINE LINER(LL,CsLR)
DIMENSION LR(30).((%00)
Do 20 I=1,LL
LRiI)Y=T
CONTINUE
M1=0
DO 18 M=1,LL
K=M
DN 2 T=M,LL
K1=M1+I
K2=M14+K
TFCARS(CIKL) )=ABS(C(K2))) 24246
K=1
CONTINUE
LS=LR(M)
LRIM)=LR(K)
LR{K)=LS
K2=M1+K
STOR=C(K?2)
J1=0
N7 9=1.0L
K1=J14+K
K2=J1+M
ST0=C (K1)
CIKL)=C(K2)
C(K2)=STO/STOR
J1=J1+LL
CONT INUE
K1=M]4+M
C(K1)=1./STOR
no 1y I=1.LL
TF(I=M) 12.11412
K1=M1+1
ST=C (K1)

2

o

N>

~

1

N

C(K1)=0,
J1=0
nn 10 J=1.L0
Ki=J1+1
K2=J1+M
CAK1}=C{K1)=C(K2)}=ST
J1=01+LL
10 CONTINUE
11 CONTINUE

MlzM1+LL
1R CONTINUE
J1=0

NN 9 g=1,LL
TF{J-LR{J)) 14,48,14
L4 LRU=LR{Y)
J2=({LRJ=-1)¥LL
21 DN 13 f=1,LL
K2=02+1
K1=01+1
S=Ctk?)
C(K2)=C(K1)
C(K1)=S
13 CNNTINUE
LR{J)=LRILRY)
LRILRJI=LRY
TFEJ-LR(J)) 14.8,14
Ji=J1+LL
CONT INUE
RFTURN
FND

£ >

/=%
//GSYSIN DD *
0.1000F-05
30
I
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Listing of the program to compute generalized impedance elements,
perpendicular polarization(TE).

//YUCHANG JOB (0639,FEE,2,2,900),'CHANG.Y'yREGTIN=?50K,CLASS=4

/7

EXEC WATF1V

//G0FTO02F001 DD SYSOUT=R
//GOLSYSIN DD *

sJn8

1

1

1

1

CHANG
SUBROUTINE FPO(Z.+FD.P0O)
Y=3,0/7
FO=0,797RA456+Y%(~0.00000077+Y*(~0.0055274+Y*(-0,00009512+Y*(0.0601
137237+Y*(~0.00072805+Y*0.00014476)1)1)}))
PO=0.7R539R16+Y%(0,04166397+v%(0.00003954+Y%{~0,00262573+Y*(0.000%
14125+Y%(0.00029333-Y*0.0001355)))))
RETURN
END
SURROUTINE FPI(Z,F1.P1)
Y¥=3,0/1
F120,7978B456+Y*(0.00000156+Y*(0.01659667+Y*(0.00017105+Y=*(~-0,0024
1951 1+Y*{0,00113653=Y%0.00020033)1))1}) 4
P1=0.78539816+Y%(=0.12499612+Y*(-0.00005A50+Y*(0.00637R79+Y*(-0.00
1074348+Y%{~-0.00079R24+Y*0,00029166)))))
RETURN
END
FUNCTION RSJO(X)
IFIX.LF.0.0IWRITF(3,10)X
BSJ0=1.0
IF({X.EQ.0.0)RETIRN
Z=ABS{X)
IF(Z.6T.3.0)60 10 1
Y=1%7/9.0
BSUO=1.0+4Y*(=2,2499997+Y*(1.2656208+Y%(=0.3163RAA+Y*(0,0446479+Y%(
1-0.0039444+Y%0.000211))))
RETURN
1 CALL FPO(Z,.,FO,POD)
BSJ0=FO*CBS(Z=-P0)/SORTI(Z)
RETURN
O FORMAT(1H ,'WARNING ~ AN ARGUMENT OF*,FE15.4,3X,'HAS RFEN FNCININTF-
1RFD IN CALCULATING A BESSEL FIINCTION OF ORDFR Z2EROY/)
END
FUNCTION RSYO(X)
TF(X.LF.0.0)WRITE(3,10)X
BSY0=~1.0E75
IF(X.EQe0.0)RETURN
Z=ABS(X)
IF1Z.6T7.3.0)160 10 1
¥=7%1/9.0
BSY0=0.63661977*ALBG(0.5*%Z)*RSJ0O(7)1+0.36T46A1+VE (N AD5593AA+Y (=0
1.743503844+Y%(0.25300117+Y%{-0,04261214+Y*(N,0042791A-Y*0,00024R4A)
21)))
RETURN
1 CALL FPO(Z.FO,PO)
BSYO=FO*SIN(Z-P0)/SORT(Z)

RETURN
O FORMAT(1H ,'WARNING = AN ARGUMENT OF'4F15.443X, 'HAS AFEN FMCOUNTFE
1ED IN CALCULATING A NFUMANN FUNCTTON OF ORDER 7FRN ARS(Y) t(1SFED /)
END
FUNCTION RSJ1(X)
TF{X.LE.O.0)WRITF(3,10}X

RSJ1=0.0
TFIX.EQ.0.0)RETURN
I=ARS(X)
IF(Z.6T.3.0) GO Ter 1
Y=71%7/9.0

BSJU1=X*(0.5+Y*(-0.5h2499R5+Y*(0.210935734+Y*(=0,030842R0+¥=({0,00s% -
1319+Y%{-0.00031761+Y*0,000011091) 1))}
RETURN
1 CALL FP1{Z,F1,P1)
BSU1=F1%SIN(Z~P1)/SORT(2)
IF{X.LT.0.0)RS.I1=~RSI1
RFTURN
0 FORMAT(1H ,'WARNING — AN ARGUMENT NF*¢F15.4,3%, 'HAS REFN ENCOINT Y
1ED IN CALCULATING A RFSSFL FUNCTTON DOF ORNDER ONE ! /)
FND
FUNCTION BSY1(X)
TF{XeLFaNJOIWRITF(3,10})X
BSY1=-1.0E75
IF(X.EQ.0.0)RETURN
7=ABS{X)
IF(Z.6T.3.0)160 10 1
Y=1%1/9,0
BSY1=(=0.63661977+Y%(0.221209]1+Y3(2.1AR2T0Q+ VR (=], 3106/ 74V (N, 3]
139514Y%(=0.04009764+Y*0.002787311}) )1 )1/7+0.ARAATIQT TE AL NC(N, 527 ) RS
2(2)
RETURN
1 CALL FP1(7,F1,P1)
BSY1==F1%C0S(7-P1)/SORT(Z)
O FORMAT(1H , "WARNING — AN ARGUMENT OF'4F15.4, 3%, "1AS RFEN EMCOUNTES
1ED IN CALCULATING A NFUMBNN FHUNCTTON OF (ORDFR NNE ARSEX)Y USED'/
RE TURN
END
SURRDUTINE HANK(GK )
COMPLEX CJsHyHF,A,2,Y,EV
COMMON H{1953) ,HF (1953),A(3A00),7(900),Y(000),FVI60),C
COMMON T(120),TD(120},RR(1954)
COMMON DX(62)+DY(62)4DLIA2) X¥M{A2) s YMIA2])
COMMON XP(63),YP(63),N2
PI1=3,141593
+0/3.141593
N1=N2+1
FF=4.,*2,71R2R
EL=1.781072

11=0

DO 30 J=1.N1
DO 40 I=1,44
I=11+1

TF(T .EQ. 1)GO TO 25

IF(T LEQ. 1 LAND. J .EQ. N2)GD TO 2%
IF(I .EQ0. 2 JAND. J FQ. N1)GO TO 25
RK=RR(I1}#%GK
H{I1)=RBSJO(RK)~CJU*RSYOD(RK)
HE(T1)=RSJ1{RK)~CJ*RSY1(RK)

GO TO 40
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CONTINUE
AA={EL*GK*DNL{1))/FF N
H(11)=1.,0-CJ*P*ALOG(AA)
CONTINUE

CONTINUE

RETURN

END

SURRDUTINE CALCIGK)
COMPLEX CJsHoHF 4A4Z,Y,EV
COMPLEX HFRR

COMPLEX CK

COMMON H{1953),HF(1953),A(3600)47(900),Y(900),EV(60},CJ

COMMON T(120),TD(120)},RR(1953)

COMMON DX(62),DY{62),DLIA2) 4XM(A?) sYMIAK2)
COMMON XP(63),YP(63),N2

N1=N2+1

CK=0,25%CJ*GK

11=0

L=0

0D 50 43=3,N2,2

J1=J3-2

J2=43-1

Ja=03+1

K=0

DO 60 13=3,N2,2

1i=11+1

11=13-2

12=11+1

la=134+1

7(11)=0.0

00 70 M=J1,04

LL=M+L

DO 80 N=I1,14

KK=N+K

IF{M-N)100,150,120

JIZINE(N=1) ) /24M

IF(M LEQ. 1 .AND. N LEOQ, N2) GO TO 150
IF(M ,EQ. 2 .AND. N .EO. N1) GB TN 150
60 TO 130

JU=(ME(M=1)) /24N

IF(N .EQ. 1 .AND. M .EO. N?2) GO TO 150
1F(N LEQ. 2 .AND. M EQ. N1) GO TN 150
CONTINUE

HFRR=HF (JJ) /RR(JJ)
DTT=DL(M)®T(LL)*T(KK)
CZ==(XMIN)=XM{M) ) 2DY (N} +(YM(N}-YMIM) ) =DX(N)
ZUI1Y=DTT*HFRR®C7+2(11)

GO TO RO

CONTINUE

CONTINUE

CONTINUE

Z(11)=CK*Z(11)

Z(I1)==Cy%Z (11}

2{11)=2(111/377.0

K=K +2

CONTINUE

L=L+2

CONT INUE

RETURN

FND

SURROUTINE CALZYIWE ,WU)
COMPLEX CJsH HF A Z4YEV

COMMDN H(1953) 4HF(1953),A(3600)+7(900)+Y(900)4EVIA0),CJ

COMMON T{120),TD(120),RR(19Y53)
COMMON DX(62)4DY(62)4DLIA2)4XM(62) 3 YM(62)
COMMON XP(63)4YP(63) N2
P1=3,141593

WEE=-0.,25*WE

11=0

L=0

PO 50 J3=3.N2,2

J1=y3=2

J2=93-1

J4=43+1

K=0

NN 60 13=3,43,2

Y(I1)=0.0

DO 70 M=)1,44
LL=M+L

DN 80 N=11,14
KK=N+K

DLL=DL (N)#NL (M}
TT=T(KK)®T(LL)
IF(M-N}100,120,120
JI=(NE(N=1))/2+4M

60 T0o 130
JI=(ME(M=1))/2+N
CONTINUE
DC=(OX(M)DX(N}+NY (MIXDY(N))/(DLIMI*DLIN))
IT1=WU*TT=DC
7T12==TDIKK)*TD(LL)/WE
773=2T14272

ZAI1)=DLL*ZT3*H{JJ)I+Z (1)
YOIL)=TTDLL*H(JIb+Y(1])
CONTINUE
CONTINUE

7411)=0.25%2(1

1)
)

ZUELY=2(1T1)/(377,0%377,0)
K=K+2

CONTINUE

L=L+2

CNANTINUE
N=(N2-1}/2
FI=(N®*(N=1))/2+14N
NN 40 K=1,N
J=N+1=-K

NN 30 L=1,4
T=N*()=1)+3-L+1
I=11-1

7(1r=21411)
Y(I)y=y(]l1)
CONTINUE

CONTINUE
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25
40
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510

KK=0

NM=N-]

NN 45 K=1.NM
J=K+1

pa 35 L=0,N
I=L+KK
JU=(L=-1)%=N+K
AR REYANNE}
Y(Lr=Y{J4J)
CONTINUE
KK=KK+N
CONTINUE

RF TURN

FND

COMPLEX HFD
COMPLEX AE(60)
COMPLEX CJsHoHF 4A,Z,Y,FV

COMMON H(1953),HF (1953),A13A00),7(900),Y{900),FVIA0),CJ

COMMON T(120),TD(120),RR{1953)

COMMON DX(62)4NY(62),DLIA2YXMIA?) ,YM{A2)
COMMON XP(63)4YP(63),N?

A9=12.0

A10=10.0

PI1=3,141593

P4=180,0/3.141593

NT=4%N
WL=1.0
ETA=376,7301

.141593/180.0

.0
.0%3,141593 /WL

PA=RD*P1

P2=A9%P]

THETA=0.0

DD 5 I=14NP
XP(I)=RD*COS(THFTA) *Wl
YP(T)=RD%=SIN(THFTA)*WL
THETA=THETA+P?

CONTINUE

WRITE(3,4) (XP(1),YPLT) s E=1,nP)
NO 10 J=1.N1

J1=J+1
DX{)=XP(JT)-XP L)
DY Lg)=YPLJL)I=YP L)

DLJ)=SORTIDX{J)**24NY{J)*%2)

XMED)=0.5%(XPLJ1)+XP 1))
YM{J)=05%(YPLITI+YP L))
CONTINUF

WRITE(3,45)

FORMAT(///777)
WRITE(3,4) (DL{T).I=21,N])

WRITE(3,45)

WRITE(3,4) (DX(1) 1=t 4N1)
WRITE(3,45)

WRITE(3,4) (DY(1).1=1.N1}

11=0

no 30 N1

NN 40 I=1yd

Ti=1141

IF{T JEQ. 16O TU 25

IFIT EQ. 1 AND. O FQL N2YED T00 28
TFIT JEQ. 2 JANDL O JFO. NGO T 25

XPO=XM(1)=XM(J)
YPO=YM(I)1-YM(.))
RRITT)=SORT(XPORXPQ+YFLRYPQ)
CONTINUF

CONTENUF

CONTINUF

L=0

DO 20 M3=3,N2,>

TIL1)=25%DL ML) ZIDL M) 4DNELIM2})
TIL2)=(DLAML)+ 5N IM2) )}/ (DLIMY)I+D] (M2 )
TIL3)=(052DLIMI) DL (MS) )}/ (NLIMA )DL (ML) )
TL&4)=0.5%DL (MG} /(DL IMI)+DL(M&))
TDEL1I)=1./(DLIML)+DLIM2Y))

TD(L2 DL

miL3 1.0/7(DLIMIY+DL (MG
TD(L&Y=TD(L3)

L=L+2

CONT INUF

WRITF(3,45)

WRITF(3,4) (T(I).1=14NT)

NS =N*x*x2

CALL HANK(GK)

CALL CALZY(WF, W}

K=0

L=0

NT=2%NS+N

00 500 J=1.N

nn 510 1=1.N

L=L+)

KK=K+1

IT1=NI+L

ML) =7 (KK)

ALTT)=Y(KK)

CONTINVE

L=L+N

K=K+N




500

550

5640

530

520

250

350

202

200

SOATA
FSTOP
/%
1/

CONTINUE

CALL CALCIGK)
K=0

11=N

DN 540 J=1.N

DO 550 1=1,N
KK=K+1

T1=11+1
ALTT)Y=7(KK)
CONTINUE

K=K+N

T1=11+N

CNNTINUE

CALL HANK{GKM}
CALL CALZY(WEM,WiiM)
K=0

11=0

DO 8520 =1,N

DO 530 I=1.N
KK=K+]

=11+

TTT=NT+IT

ALTT)=7 IKK)+ACTIT)
AUTTT)=Y(KK)+ALTI])
CONTINUE

K=K+N

TE=11+N

CONTINUE

CALL CALC(GKM)
K=0

11=N

DO 560 J=1,.N

DN 570 1=1,N
KK=K+1

11=11+1
ALTTY=Z(KK)+ALTD)
CONTINUE

K=K+N

IT=11+N

CONTINUE

NP0 590 I=1,N
KK=J+K

L=L+1
IT=L+Ny
ACTT)=A(KK)
K=K+NK
CONTINUE
L=L+N
CANTINUE

FORMAT(//41H 410F11.4)

K=0

11=0

DO 350 J=1,NH
DO 250 T=144
11=11+1

JI=K+T
ALTT)Y=A000)
CONTINUE

K=K4+NH
CONTINUE
NSS=({NHx(NH+1))/2

WRITE(3,202) (A(I1},1=1,NSS)

FNRMAT{A(1X,E14.7))

PUNCH 2004 {A(T)41=1,NSS}

FORMAT(5E15.7)
STNe
END

B.4 Listing of the program to compute scattering cross sections,
parallel polarization(TM).

//YUCHANG JOR (0A39,FF.2M595), "CHANG.Y ' hREGINN=250K,CLASS=A

// EXEC WATFIV

//7GO.SYSIN DI *

$J0R CHANG,TIMF=3,PAGFS=30
SUBRUUTINE FPOLZ,F0O,PO)
¥=3.,0/7
FO=0.797RR4564Y%(=0.00000077+Y%{~=0.0055274+Y*(-0,00000512+Y*(0,001
137237+Y%(=0.00072805+Y*0.,00014476)))))
PO=0.78539816+Y*(0.04166397+Y%(0.00003954+Y%(=0.00262573+Y*(0.000h
14125+Y%(0.00029333-Y*0.0001355111))
RETURN .

ND

SURRQUTINE FP1(Z+F1,P1)

¥=3.0/7
F1=0.797RB456+Y%(0.00000156+Y=(0.01659667+Y%(0.00017105+Y%(-0,0024
19511+4Y*(0.00113653-Y%0,00020033)1)}}
P1=0.785398164Y%(=0.12499612+Y%(~0,00005650+Y5({0,0043TRT9+Y*(-0.00
10743484+Y%(=0,00079824+Y*0.0002914646)))))

RETURN

FND

FUNCTION RSJO(X)

TF(X.LE.O.OMWRITF{3,10)X

BSJ0=1.0
TF(X.EQ.0.0)RETURN
2=ARS(X)
IF(Z.6T.3.0)60 TO 1
Y=1%72/9.0

BSJ0=1.04Y%(=2.2499997+Y%(]1,2656208+Y%(=0,31A3RAA+YR(0,D4484T04+Y |
1-0.0039444+Y*0,00021)})))
RFTURN
1 CALL FPO(Z,FO,PO)
BSJO=FOxCOS(72=P0)/SORT(Z)
RETURN
10 FORMAT(1H ,'WARNING - AN ARGUMENT NF ' E15.4,3X, 'HAS RFEN FNCAUNTF -
1RFD IN CALCULATING A RESSEL FUNLTION NF ORDER 7FRPNY/
END
FUNCTION BSYD{X)
TF(X.LE.O.O)WRITF(3,10)X
BSY0=-1.0E75
TF(X.EQ.0.0)RETURN
2=ARS(X)
TF(Z.6T7.3.0)68 TO 1
Y=7%2/9.0
BSY0=0.63661977*A10G(0.5%7 )*RSI017 )+0.3AT4AAQ)L+Y%(0,AD550 4N +Y [ =1t
1.743503844Y*(0.253001174Y%{=0.04261214+4Y5(0,0042791A=-Y%0,00ND0t 2k}
FARRRI
RETURN
1 CALL FPO(7.,FO,PD)
BSYO=FO*SIN(7=-PD)/SORT(Z)
RETURN

10 FORMAT(1H , 'WARNING ~ AN ARGUMENT NF ' F15.4,3X, "HAS KEEN FNTOIM T
1ED IN CALCULATING A NFUMANN FUNCTION OF (PNFR 7FRIN ARS(X) LISFit /)
END
FUNCTION RSJ1(X)
TF(X.LELOLOYWRITE(3,10)X
BSJ1=0.0
TF(X.E0.0.0)RFTURN
2=ARS(X)
IF(Z.6T.3.0) GO TO 1
Y=2%7/9.0
RSJ1=X*(0,5+4Y*{-0.562499854Y%(0,21093573+Y%
1319+Y%(=0,000317A1+Y=0.00001109)))}))
RETHURN
1 CALL FP1(Z.F1,P1)
RS J1=F1#SIN(7-P1)/SORT(7)
TF{X.LT.0.0)HSJ1=~RSUY
RFTURN
10 FORMAT{IH *WARNING - AN ARGUMENT DF 'y b 15,4 43X, "HAS 4EEN FAU A
1F) IN CALCULATING A RFSSFL FUNCTINN NF CRDER NNE /)
FND
FUNCTION RSY1(X}
IF(X.LE.O.0)WRITF{3,101X
BSY1=-1.0E75
TF(X.EN.O.O0YRFTIHRN
2=ARS{X)
TF{Z.6T.3.0)60 TO 1
Y=1%2/9.0
BSY1=(=0.63661977+Y%(0.22120914Y%(2.1AA2TNA+Y:{ =] A1 ALR2T4V (0O, 7
139514Y%(=0.0400976+YR0,0027BT3))) )11 /7400A3ARTOTTRALNG (0,85 1) +as 1)
2(7)
RETURN
1 CALL FPI{7.F1,P1)
BSY1=~F1#COS{7=P))/SORTI(Z)
10 FNRMAT(IH ,'WARNING = AN ARGUMENT DF ' F1l5.443%, '"HAS REEN FNCUIINT -1
TED IN CALCULATING A NEUMANN FUNCTION 1IF ORNDFR ONF ARS({X) 1IS=n1r /)
RETURN
END
SURRGUTINE LINEFQ(ILF)
COMPLEX C{3600),STOR,STN,ST,S
DIMENSICON LR{60)
On 20 I=1.LL
LR(I)=1
20 CONTINUE
M1=0
DN 18 M=1,1t
K=M
K2 =M1 +K
S1=ARS(REALICIK?)})I+ARSIATMAGICIK?)))
DO 2 T=M,LL
K1=M1+1]
S2=ARS(REAL(CIKI)))+ARS{AIMAGIC(K]ID )]
TF(S2=S1) 242,6
6 K=1
$1=582
CONTINUE
LS=LR(M)
LR{M)=LR(K)
LR{K)=LS
K2 =M1+K
STOR=C(K2)
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J1=0

nn7 J=1,1LL
K1=J1+K
K2=J14M

$TO=C (K1)
CIK1}=C(K2)
C(K21}1=STG/STOR
J1=J1+LL

7 CONTINUE
K1=M1+M
C(K1)=1./STOR
b0 11 T=1,LL
IF(I=M) 12,11,12

12 K1=M1+1
$T=C(K1)

CIK1)=0.

J1=0

N 10 J=1.LL

K1=J1+1

K2=J1+M
CIK1Y=C(K1)=C{K2)*ST
Jl=J1+LL

10 CONTINUE

11 CONTINUE
M1=M1+LL

1R CONTINUE
J1=0
D0 9 Jy=1,LL
TFCO-LREJ)) 14,8,14

14 LR(I=zLR(J)
J2=(LRA=-1)®LL

21 D13 I=1,.LL
K2=g2+1
Ki=J1+1
S=C{K2)

CiK2
C(K1})=§

13 CONTINUE
LR{J)=LR(LRY)
LR{LRJ)=LRY
[F{J=LR{J)) 14,8,14

A J1=J1+LL
9 CNNTINUE
RFTURN
END
SURROUTINE HANK(GK)

(K1)

COMPLEX CJyHyHF,A,Z,Y,EV

COMMON DX(62)+NY(A2),DL{A2) 1 XMIA2) s YM(62)
CNMMON T(120)4TNI120),EVI60),RR(1953)
COMMON H{1953) WHF(1953),4(34600),7(900),Y(300).,CJ

CNMMON XP(63},YP(63),N2
P123,141593
P=2.,0/3.141593

N1=N2+1

FE=4,%2,71828
FL=1,781072

In=o

DO 30 J=1,N1

npn 40 1=1,J

=1+

TF(T LEQ. JIGO TO 25

TE(I .EQ. 1 AND. J .EQ.
IF{] JEO0. 2 JAND. J .EQ.

RK=RR([1)*6K

N2)GO TD 2%
N1)GD TN 25

H{I1)=RSJO(RK)I~CI*BSYO{RK)
HFET1)=RSJLIRK)=-CI*BSY) (RK)

G0 To 40
25 CONTINUE
AA=(EL=GK2DL(T)}/FE
HiT1)1=1.,0-CJ*P*ALOG(AA)
40 CONTINUE
30 CONTEINUE
RFTURN
END
SURROUTINE CALZY(WE ,Wif)

COMPLEX CJoH HF W AWZ,YFV

COMPLEX 77 .

COMMON DX{62),DY(62)DLIA2) s XMI62)3YMIK2)
COMMON T(120},TNDI120},FVEAD)RR(1953)
COMMON H{1953) ,HF(1953},A(3600)+7(900),Y(900),CJ

CHMMIN XP(63),YP(63),N2
P1=3,141593
=0

L=0

DOoSn 13=3,N2,2
J1=43-2

J2=93-1

Ja=J43+1

K=0

DO 60 13=3,N2,2
I1=11+1

T1=13-2

12=11+1

DN 70 M=J1.,44

LL=M+L
NN 80 N=11,14
KK=N+K
TF({M=N}100,120,120
100 JO=(NX(N=1))/2+M
G TO 130
120 JJ=(MX(M=T}} /24N

130 CONTINUE

NC=(DXIM)ADX(NI+DY (M) EDYIN) )/ IDLIM)I*DLIN))

YTI1=WE*T(KK)*T(LL}=NC
YT2==TD(KKI®TD(LL} /Wil
YT3=yT1+YT?2

Z7=HtJ4J)

YUID)=0.25%NLAN) =L IM)XYT3*ZZ4Y111)

Z(11)=

a0 CONTINUE

70 CONTINUE
Z(In==21011)
K=K+2

60 CONTINUE
L=L+2

50 CNNTINUE
RETURN

0o 25%WURT (KK )XT{LLI*DL(MY*DLINI®7747(11)

100

120

130

150
80
70
60

50

N
—
(=]

200

END

SURROUTINE CALC(GK)

COMPLEX CJsHyHF,A,Z,Y,EV

COMPLEX HFRR

COMMON DX(62),DY{62)4DL(62)XM(62),YM(42)
COMMON T{120),TD{120),FV(40},RR(1953)
COMMON H{1953),HF(1953),A(3600},7(900)},Y(900),C.)
CNMMON XP(63),YP(h3},N2

N1=N2+1

11=0

L=0

DO 50 J3=3,N2,?

Ji=J3-2

J2=43-1

Ja=J3+1

K=0

DN 60 13=3,N2,?

II=[1+1

11=13-2

12=11+1

T4=13+1

2(11)=0.0

nO 70 M=J1,J04

LL=M+L

DN B0 N=l1,414

KK=N+K

IF({M=N}100,150,120

JI=INE(N=1))/24M

IF(M .EQ. 1 JAND. N .EQ. N?2) GO TN 150
IF(M EQ. 2 .AND. N .FQ. N1) 6O TO 150
G0 Tu 130

JJ=(ME(M=1))/2+N

IF(N .EQ. 1 JAND. M .EQ. N2} GO TD 150
IFIN .EQ. 2 «AND. M .EQ. N1) GO TO 150
CONTINUE

HFRR=HF (J.J)/RR{)J)

DTT=NLA{M)*TILL)*T(KK)
CZ==(XM{N)}=XM(M))EDY(N)+(YMIN)=YM{M))*DX(N)
Z(11)=0.25%CI*DTT*HFRRAGK¥CZ+7 (T1)

GO TO 8O

CONTINUE

CONTINUE

CONTINUE

Z(I1)y=-CuxZ(11)

K=K+2

CONTINUE

L=L+2

CONTINUE

RFTURN

END

SUBRODUTINE EXMX(PHI,GK)

COMPLEX CJOsH4HF ,A,Z,Y,EV

COMPLEX PP

COMMON DX(62)4DY{62)4DLIO2 ) XM{B2}sYMIAD)
COMMON T{120),TD(120).EVI60),RR(1953)
COMMON H(1953),HF(1953),A(3A00),7(Q00),Y(an0}, ()
COMMON XP{63).YP(63),N?

ETA=376.7301

N=(N2-1)/2

CP=COS(PHI)

SP=SIN(PHI)

11=0

L=0

DN 200 13=3,N2,?

1T=11+1

JI=1T+4N

[1=13-2

12=13~-1

14=13+1

EViIT)=0,.

EV(JJ4)=0.0

DO 210 M=11,14

LL=M+L
EP=(XM(M)=CP+YM(M)%SP)%LK
NP=~DX{M)%XSP+NY (M) *(CP
CFP=COSIEP)

SEP=SIN(EP)
PP=(CEP+CJ*SEP) *T(LL)
EV(IT)=PPEDL(M}I+FVIIT)
EVIJJ)=PPRNP+EVI )
CONTINUE
EVIJJ)=CI*EVIIII/ETA
L=L+2

CONTINUE

RETURN

END

COMPLEX HFD

COMPLEX AE(60)

COMPLEX COsH\HF A7 ,Y,FV
COMMON DX{62) DY (62)4DLIAZY s XMIA?) sYM{AD)
COMMON T{120),TH(120},FVIAD)RK(1953)
COMMON H{1953) ,HE(1953),A(3A00),7(000) Y00},
CNOMMON XP{63),YP(63),N2

0.0
P1=3,141593
P4=2180.0/3.141593
NP=43

N1=NP~1

N2=NP-2
N=(N1-21/2

NT=4%N

WL=1.0
ETA=376,7301
P1=3,141593/180.0
ANS=0.0
GK=2,0%3,141593/WL
WE=GK/ETA

A1=0.7

RD=A1/6GK
WU=GK#FTA

NH=2 %N

UR=1.0

ER=100.0

GKM=SORT (URXER ) %GK

P2=A9%P |
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25
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500

550

AS=RD/5.0

SG==AS |

Do 811 I=1,6

SG=SG+AS

XP{1)=RD

YP(1)=SG

CONTINUE

SG=RD

DO 822 1=7,11

S$G=SG~-AS

XP(1)=5G

YPLI)=RD

CONTINUE

J=11

NN 833 [=12,16

J=d=1

XPLI)=~XP(J4}

YPLLI=YP(J)

CONTINUE

J=6

N K44 [=17,21

J=g-1

XP(1)==XP(J}

YPUT)=YP()

CONTINUE

J=21

NN BS5 [=22,26

J=J-1

XP(1)=xP(J)

YP(I)==YP(.»)

CONTINUE

J=16

no Aae6 1=27,36

J=J-1

XP(I1=XP(J)

YP(I)==YP(J)

CONTINUE

J=26

DD 877 1=37,43

J=0-1

XP(I)==XP(4)

YPUT)=YP(.))

CONTINUE

WRITE(3,4) (XP(T),YPLI),I=14NP)
DO 10 J=1.N1

J1=0+1

DX {J)=XPLINI=XP(J)}
NYC)I=YPLI}-YP ()
NLAA)=SORT (DX (J)%¥24DY () %%2)
XMEJ)I=0.5%(XP{I1)+XP(4))
YM(J)=20.5%(YP{J1)I+YP(3))
CONT INUE

WRITE(3,45)
FORMAT(///717)

WRITE(3 %) (DLLT).1=1,N1)
WRITE(3,45)

WRITE(3,4) (DX{T),T=1,N1)
WRITF(3,45)

WRITEI3,4) (DY(I),I=1,N1}
=0

N30 J=1.N1

0N 40 T=1,.

=n+

TECD JFO. 0IGO TO 25

IF(T EQ. 1 <AND. | .FQ. N2)GN TN 25
TF(1 LEQ. 72 .AND. O LEQ. N1)GO TOD 25
XPO=XM(T)=XM{.})

YPQ=YM(I)-YM())
RR{T1)=SORT(XPQ#XPQ+YPQxYPQO)
CONTINUE

CONTINUE

CONTINUE

L=n

NG 20 M3=3,N?2,2

MY=M3->

ML=M3+1

M2 =M3-1

Li=M1+L

L2=L1+)

L3=L2+)

La=L3+1

TILY ) =o52DLIMYLYZIDLIML)+DLIM2))

TIL2)=(DLIMI)+.52DL (M2} )/ (NLIMY)+DL(M2))
TIL3)={0.52DL{M3)+DL(MSG) )/ (DLIMI)+DL (M4 ) )

TIL&)=0.520DL(M&)/(DLIMI)I+DL(MS))
TOILYI)=14/7ID1L(M1)+NL(M2 )}
TDIL2)=TDILY)
TNIL3)==1.0/{DLI{M3}+DL (ML)
TH{L&)=TD(L3)

L=L+2

CONTINUE

WRITF(3,45)

WRITE(3,4) (T(T).1=1,NT)
NS=N#%2

CALL HANK(GK)

CALL CAL7Y{WE,wl))

K=0

L=0

NI =2%NS+N

NN 5no 4=1,N

NN o510 I=1.N

L=L+1

KK=K+1

TI=NT+L

AlL)=7 (KK)

ALTT)=Y(KK)

CNMTINUE

L=L+N

K=K+N

COMT INUE

CALL CALCUGK)

K=0

IT=N

N 540 =1,.N

D550 I=1.N

KK=K+1

11=11+1

A(LIT)=7(KK)

CONTINUF

K=K+N

IT=11+N
540 CONTINUF
CALL HANK(GKM)
CALL CALZY(WEM,WUM)
K=0
1=0

TI=11+1
ITI=NI+11
ALTT)=7Z{KK)I+A(IT)
ACTTI)I=SY(KK)+ACITT)
530 CONTINUE
K=K+N
TI=11+N
520 CONTINUE
CALL CALC{GKM)
K=0
11=N
DD 560 J=1,N
DO 570 I=1.N
KK=K+T
I1=11+}
ALTI)=Z(KKY+ALTT)
570 CONTINUE
K=K+N
I1=11+N
560 CONTINUE
NK=2 %N
NJ=2%NS
L=0
DO 580 J=1.N
K=N
DO 590 I=1,.,N
KK=J+K
L=L+1
IT=L+Ny
A(TT)=A(KK)
K=K +NK
590 CONTINUF
L=L+N
580 CONTINUE
4 FORMAT(//,1H 410F11.4)
CALL LINFQ(NH,A)
CALL EXMX({ANS,GK)
WRITE(3,45)
WRITE(3,4) (EVII),E=1,NH)
WRITE(3,304)
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304 FORMAT(1H L'CURRENT!/? TV 36X TRFALY yIDX ¢ PIMAGY (10X, tMAGNETI Ry 7Y

1. *PHASE")
DO 270 T1=1.NH
AF{11)=0.0
DN 300 [=1,NH
J=(I=1)%NH+T1
AE(T1)=ACJ)%FEVII)+AFR(T])
300 CONTINUE
270 CONTINUE
NN 80 T1=1,NH
CA=CARS(AELIT))

CPH=ATAND (AIMAGIAF(T) )} REALIAF(T11)))%67,266R

WRITE(3,305)11,AF(11)4CA,CPH
305 FORMAT(1H +1X.13,3F14.6,F10,2)
&n CONTINUE
WRITE(3,275)
275 FNRMAT(///+* SCATTERING ANGLF -
AN=0.0
P3=A10%P|
PO 320 1=1,36
CALL EXMX({AN,GK)
HFD=0.0
Nt 330 J=1.NH
HFD=EVIJ)#AE())4HFD
330 CONTINUE
CH=CARS (HFD)
ECHO=GK®=(CH*%D /4.0
FCL=ECHO*ETAXETA
PRD=ECL/PaA
FCL=10.0%ALOGIO(PRN)
WRITE(3,335)AN,FCL
335 FORMAT(IH 10X F7.,2,20X,F14.7)
AN=AN+P3
320 CONTINUE
STOP
END

$NATA
$STNP

PHTI® 10X, "My
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B.5 Listing of the program to compute scattering cross sections

from characteristic currents.

//YUCHANG JOB (0639 ,FF+2,2,900)+ 'CHANGY ' JREGTON=1R0OK,CLASS=A
//  EXEC WATF1V

sJOB

//GOLFTO2F001 DD SYSOUT=R
//GO.SYSIN DD *
CHANG
SURROUTINE EXMX{(PHI,GK)
COMPLEX CJ
COMPLEX PP
COMPLEX VNI

210

200

o

COMPLEX AE,AJLEV

COMMON AJ(®00)sAF(30),WNI(30},EV(30),CJ
COMMON FT(900),T(60),DX(32)sDY{32},XM(32),YM{32),DL(32)
COMMON N2 yNyNH, M

ETA=376,7301

N=(N2-1}/2

CP=COS(PHI)

SP=SINIPHI)

11=0

L=0

D0 200 13=3,N72,2

I1=11+1

JA=TT4N

11=13-2

12=13-1

T4=13+1

FVIiIT)=0.

EV(JJ)=0.0

NG 210 M=11,14

XM{M)XCP4+YMIM)*SP ) #GK
DX (M) *SP+DY (M) xCP
0S(EP)

SIN(EP)
CEP+CU*SEP)®TILL)
EVIIT)=PP*NP+EV(11)
FVIJJ)==PP#DLIM)I+EV(JJ)
CONTINUE

EVITI
EVJS)
L=L+2
CONT INUE

RETURN

END

COMPLEX EC(30)

COMPLEX CAMD(30).,vA(30)

COMPLEX VNI ,CJ,HFD

COMPLEX AE,AJ,FV

COMMDN AJ(9001,AE(30),VNI(30),EV(30),C)

COMMON FI{900),T(60),DX(32)4NY{32).XM(32)},¥YM(32),NL(32)
COMMON N2,N,NH, M

ETA®EV(II)
CI*EVIJI)

DIMENSION TD{60),AMD(30)
NIMENSTON XP(33),YP(33)
A9=12.0

A10=10.0

P1=3.141593
P4=180.0/3.141593

NP=33

WL=1.0
FTA=376.7301
P1=3.1415%93/180.0
ANS=0.0
GK=2,0%3,141593/W1
WE=GK/ETA

1/6K

<56

UR=1.0

GKM=SORT(UR®ER ) #GK

WEM=WE*ER

WiM=WH*UR

Co=(0.414)

PA=RD®P]

P2=A9%P]

THETA=0.0

nns WNP
XP{I)=RD*COS{THETA ) %W
YPLT)=RD®SIN(THFTA)*WL
THETA=THETA+P?

CONTINUE

N0 10 J=1,N1

d1=041

DXLJY=XPJIL)=-XP(J)

PLI)=YP{)
DLEJ)=SQRT(DX(J)*%x24DY (,J) *x2)
XMEJ)=0.5=(XPLIT)+XP(J})
YM(J)=0.5%(YPLI1)+YP(J))
CONTINUE

L=0

NN 20 M3=3,N2,2

M1=M3-2

Mb=M34+]

M2 =M3-1

Li=M1+L

L2=L)+1

L3=L2+1

La=L3+]
TL1Y=.5%DLIMIYZIDLIMY)I+DL(M2))
TIL2)=(DLIMI)+.5%DL(M2))/IDLIMLI+DLIM2))
TIL3)=(0.5%DLIM3)+DL(M6) )/ (DLIM3)+DL(M&))
TIL4)=0.5%NL{M&4 )/ (DLIM3)+DL{M4))
TDALY)=1./7(DLIML)+DLIM2))
TOL2y=TN(LY)
TNIL3)==1.0/(NL(M3)+DLIMS))
TH(L4)=TH(L3)

20
101

20

=

202
203

60
50

110

10

o

210

225
220

235
230

275

33

=

335

32

=3

SNATA

sSTOP
/%
/7

L=L+2

CONTINUE
FORMAT(5E15.7)
READ(1,201} JM
FORMAT(13)
WRITE(3,201) JM
N.J=JMENH

RFAD(1,101) (AMD(T),I=1,uM)
READ(14101) (EC(T)sI=14uM)
RFAD(1+101) (FI(1)sT=1,NY)

WRITE(3,202) (aMh(I),1
WRITE(3,101) (FCUI),I]
WRITE(3,203) (FI(T),I=

1.3M)
v M)
WNI)

FORMAT( *OLAMDA'/(R{1X,F14.7)))
FORMAT(*OFIGENCIIRRFNT '/ (B{1X+F14.7)))

DO 50 J=1,JM
Jd=00=-1)%NH

DO 60 1=1,N
11=J0+1
FI(II)=FI(11)/377.0
CONT INUF

CONTINUE

CALL EXMX(ANS,GK)
LL=0

DO 100 1=14JM
VNI(T1}=0.0

DO 110 J=1.NH
L=g+LL

VNICT)=EVI I XFT(L)+YNT(T)

CONTINUE
LL=LL+NH
CONTINUE

NO 210 I=1.,uM
VALT)=VNI(T)=%EC(])
CONTINUE

LL==-NH

NO 220 I=1,dM
LL=LL+NH

DO 225 Jg=1.NH
L=LL+J
AJIL)=VALII%FT(L)
CONTINUE
CONTINUE

DD 230 I=1,NH
AE(I)=0.0

N0 235 J=1.9m
K={J=-T1)%*NH+T
AECT)=ABE(T)+AS(K)
CNONTINUE
CONTINUE
WRITE(3,275)

EORMAT(///+' SCATTERING

AN=0.0

P3=A10%P[

Do 320 1=1,36

CALL EXMX(AN,GK)
HFN=0,0

N0 330 J=1.NH
HED=EV{J)*AE (J) +HFD
CONTINUE

CH=C ARS{HFN)
FCHO=GKRCH®%2 /4 .0
FCL=ECHO/ (WL XETA%%))
PRND=ECL/PA
FCL=10.0%ALOGIN{PRND)
WRITF(3,33%)ANFCL

FORMATIIH 10X,FT7.2,20X,F14.7)

AN=AN+P3
CONTINUF
STOP

END

ANGLE

PHT 410X, 'FLRO
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