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ABSTRACT

A method for obtaining a desired radar scattering pattern by
reactively loading a conducting body is given. The theory uses the
concept of characteristic modes of a loaded body. Any desired real
current can be resonated by reactive loads to make it the dominant
mode current of that body. If no other mode is near resonance, the
radar scattering pattern becomes nearly the same as the radiation
pattern of the resonated current. A quality factor Q is defined as
a measure of the broadband behavior of a scatterer. Procedures for
computing the real currents having minimum Q, and maximum gain-
quality ratio, are given. A pattern synthesis procedure is developed
for obtaining the real current whose radiation field pattern is the
least mean square approximation to a desired field pattern. The use
of lumped loads to approximate continuous loading is also considered.
Numerical examples and computer programs are given for each procedure

discussed.
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PART ONE

THEORY AND EXAMPLES

L. INTRODUCTION

A procedure for obtaining a desired electromagnetic scattering pattern
by loading a conducting body is given in this report. Although primary con-
cern is given to reactive loéding, similar procedures can be applied to the
more general case of impedance loading. It is well known that the radar cross
section of a conducting body can be grossly changed by impedance loading [1].
This loading may be either continuous [2,3] or discrete [4,5]. Analyses are
available for some specific cases, such as loaded wire dipoles [6,7] and loaded
circular loops [8,9]. The problem of minimization of back scattering by load-

ing has been considered for wire dipoles [10,11] and for wire loops [12].

Small conducting scatterers can be resonated by reactive loads to greatly
enhance the scattered field [13]. The concept of resonance can be extended to
larger conducting bodies through the use of characteristic modes [14-17]. Any
desired real current can be resonated by reactive loads, thereby making that
current the dominant mode current of the body. The scattering pattern then
becomes predominantly that of the resonated mode, that is, of the desired
real current. This assumes that the resonated mode is excited, and that no
other mode is near resonance. The latter condition is usually met by bodies
of electrically small and intermediate size, but may be violated if the body
is electrically large. The resonance procedure tends to increase the scat-
tered field of a body, and thus is more appropriate for cross section en-

hancement than for reduction.

Computation of mode currents and fields for reactively loaded surfaces
is basically the same as for conducting surfaces [17,18]. Computer programs
are available for surfaces of revolution [19] and for wire objects [20]. The
computations included in this report are all for wire objects, although simi-

lar computations for surfaces of revolution have also been made.



II. MODES OF A LOADED SURFACE d

A loaded surface S is defined as one for which the tangential electric
field Etan on S is related to the surface current 3 on S by an impedance func-

tion 2 that is

L’
>

= @ (1

The total electric field is the sum of the impressed field E plus the scat-
tered field Es’ produced by the currents 7 on S. In terms of vector and
scalar potentials, the tangential component of E° on S is given by [16]

=S

B = (-juk - Vo) = - z(D) (2)

where the Z is called the impedance operator characterizing the surface.

Letting E=E + ES, and substituting from (2) into (1), we have

-> >1
@+2z2)0) = E on (3)
This is the fundamental operator equation for the current J on a loaded sur- N
face excited by an incident field El. It is of the same form as for con- ‘

ducting surfaces except that the operator (Z + ZL) in (3) replaces the operator
Z in [16, eq. 71.

Modal solutions to (3) are obtained by a procedure similar to that used
for conducting surfaces [16]. Consider the eigenvalue equation
- >
@ + ZL)(Jn) = vnM(Jn) (4)

=
where v, are eigenvalues, Jn are eigenfunctions, and M is a weight operator

to be chosen. In general,

Z =R+ iX , z; = R+ iX (5)
where R and X are the Hermitian parts of Z, and RL and XL are the Hermitian
parts of ZL' If the loads are lossy, that is, if RL # 0, we have two choices:

(a) Set M =R+ RL, in which case the mode currents are real, but we lose

orthogonality of the radiation patterns. (b) Set M = R, in which case we




retain orthogonality of the radiation patterns, but the mode currents may be

complex.

For this report, we consider only reactive loads, that is, RL = 0,
The surface is loss free, and the above two choices for M become the same.
Hence, let M = R and v, = l+j>\n in (4), cancel the common terms R(jn)’ and

obtain
&+ x)3 ) = rE) 6

This is of the same form as for conducting surfaces, except that the
operator (X + XL) in (6) replaces the operator X in [16, eq. (13)]. Now
all properties of the mode currents and mode fields for the reactively
loaded surface remain the same as for the conducting surface [16]. Some

of the more important of these are:

i f s s
(a) All eigenvalues An and characteristic currents Jn are real.
(More generally, the characteristic currents are equiphasal, that is, a

complex constant times a real current.)

(b) The eigencurrents 3# form an orthogonal set with respect to the

operator R over the surface S, that is,
@3-R§ds=0, m#n (7

>
(c) The eigencurrents Jn form an orthogonal set with respect te the

operator (X + X ) over the surface S, that is,
P

@—J}m'(X+XL)—J)nds=O, m#n (8)
S

(d) The eigenfields En (produced by 3n) form an orthogonal set over

the sphere at infinity S_, that is

E3
.l.@g.g s =0, m#n (9)
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Fig. 1. Thin wire triangle used for illustrative computations.




(* denotes conjugate). The use of characteristic modes for radiation and
scattering problems remains the same for reactively loaded surfaces as for
conducting surfaces [16], except for minor changes due to replacing X by

X + XL). Formulas for the computation of modes and modal solutions for re-
actively loaded surfaces remain the same as for conducting surfaces [19],
except that the generalized impedance matrix [Z] is replaced by [Z + jXL],
where [jXL] is the load matrix. '

It should be émphasized that the modes of a reactively loaded surface
are different from those of the same surface unloaded. TFor illustrative
purposes, we include computations for an unloaded (XL = 0) thin wire triangle,
as defined by Fig. 1. The half-length of the wire is L=one half wavelength, and
the wire diameter d = 0.,01L. The triangle lies in the y=0 plane with tip at the
origin. The coordinates of a field point are the usual r,9,¢ spherical coordi-
nates. All computations are made with a Galerkin solution using 30 triangle
functions fo;jexpansion of the current [18,20]. Hence, the generalized impedance
matrix for the wire was 30 by 3OVin size. The four lowest order mode currents
for the unloaded wire tfiangle‘are‘shown in Fig. 2. The four lowest order mode
gain patterns for the unloaded wire triangle are shown in the %=0 plane in Fig.
3, and in the y=0 plane in Fig. 4. Convergence of the modal solution for bi-
static radar cross section, given a plahe wave axially incident on the 30°

angle of the unloaded triangle, is illustrated by Fig. 5. Those modes excited

°

by the plane wave (even symmetry) are added in the order of increasing ]An

Note that only two modes contribute significantly to the scattering pattern.

III. RESONATING A DESIRED REAL CURRENT

The modal solution for the field scattered by a reactively loaded surface
is of the same form as for a conducting surface [16, eq. 31]
28 ¢ VIJ; f1‘1
E" =) E;Ejr- (10)
n "~ 7'n

where En are the mode fields and V; is the mode excitation coefficient
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Fig. 2. Lowest order mode currents for the unloaded wire

triangle of Fig. 1.
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Fig. 3. Lowest order mode gain patterns in the x=0 plane for
the unloaded wire triangle of Fig. 1. (Subscript on
g denotes polarization of the field.)
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Fig. 4. Lowest order mode gain patterns in the y=0 plane for
the unloaded wire triangle of Fig. 1. (Subscript on
g denotes polarization of the field.)




Fig. 5.

(b) add A3 = 31.8

(c) add Ag = =282

Convergence of the modal solution for bistatic radar
cross section/wavelength squared (6/»2) for the unloaded
wire triangle excited by a plane wave axially incident
on the 30° angle. Modes are added in the order of in-
creasing [Anl. Patterns in the x=0 plane are plotted by
squares, in the y=0 plane by x's. Solid curves are the
matrix inversion solution.
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n tan

vi=@5 TR 4 (11)

The modes which contribute most to E° are those having the smallest |An|, under
the assumption that they are excited (V; not zero). A mode having Ixnl = 0 is
said to be externally resonant. If no other[kJ is also small, then the scat-
tered field consists almost entirely of the single resonant mode field, This
has been true for all electrically small and intermediate size scatterers for

which we have performed computations,

For a reactively loaded surface, any real current T can be made an eigen-
current corresponding to the eigenvalue A=0 by choosing the appropriate loading

reactance. To show this, let

x @ =-x® (12)

whence the left-hand side of (8) is zero. If T is not associated with an
internal resonance, R(j) = 0 and the eigenvalue X must be zero. Assuming
X, to be a simple function of proportionality, we can solve (12) for the

required surface reactance on S.

The gbove procedure becomes clearer when expressed in matrix notation.
To be explicit, consider a wire object and apply the method of moments with
triangle functions for expansion and testing. Let s be the length variable
along the wire, I(s) the current on the wire, and T(s—si) a triangle func-

tion extending from point s, _

i1 to SFFRE with unit peak at S, Then the

current is given by
I(s) =) I, T(s-s;) (13)
i

where Ii = I(si) are unknown coefficients. Applying Galerkin's method to

(3), we obtain the matrix equation [21]

[z + 2 1[1] = [v'] (14)

where [I] is the columm matrix of the Ii, [Vl] is the excitation matrix

with elements




i i
Vj = f T(s-sj) Es(s)ds (15)

wire

[Z] is the generalized impedance matrix for the wire [22], and [ZL] is the

load impedance matrix with elements

(ZL)ij = .J ds f ds' T(s'—si) ZL(s) T(s—sj) (16)
wire wire

Note that [ZL] is at most a tridiagonal matrix, since ZL is an ordinary

function of position. To simplify computation, we approximate ZL(s) by

lumped impedances at the points i in which -case [ZL] becomes a diagonal

matrix. Computational checks show that this makes no noticeable difference

in the solution so long as the s, are close together. A solution for the

current [I] is obtained from (14) by matrix inversion.

For our problem [ZL] is a pure reactance [jXL]. Hence, the matrix

representation of the eigenvalue equation (6) is

[X + X, 1[1] = M[R][I] )

where [XL] is the diagonal matrix

[XL]= X, 0 0 ... (18)

To resonate a desired real current [I], set the right-hand side of (17)

equal to zero, and, analogous to (12), obtain

X Iy = - (XIID), (19)

for 1=1,2,3,... . The notation ([X][I])i means the i-th element of the
column matrix [X][I]. Since [X] and [I] (the desired current) are known,

the reactive loads can be computed from (19),

11
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To illustrate the procedure, suppose we want to resonate the A = 31.84
mode current of the unloaded wire triangle, Fig. 1. This "desired current"
is that of Fig.-Zc, and its characteristic mode gain patterns are those of
Figs. 3c and 4c. The reactances XLi required at the 30 points 8 needed to
resonate the current are computed according to (19). These loads are then
added to the generalized impedance matrix as in (14), and the new mode cur-
rents and fields computed with available programs [20]. The four lowest
order mode currents for the reactively loaded triangle are plotted in Fig. 6.
Note that the new dominant mode current, for which X = - 0.0002, is identical
to the third mode current of the unloaded triangle, for which A = 31.84, as
anticipated. The other mode currents for the loaded structure are different
from those of the unloaded structure. The new mode gain patterns are not
~shown, but, except for the mode resonated, they are different from those of

the unloaded structure., Convergence of the modal solution for bistatic radar

cross section, given a plane wave axially incident on the 30° angle of the

loaded triangle, is shown in Fig. 7. Note that the scattering pattern is almost

identical to the mode pattern of the current resonated, Figs. 3c and 4c, as

desired.

It can be shown that the gain pattern of any real current is "point-
symmetric," that is, its gain in any direction T is equal to that in the
opposite direction -T. Whenever a scatterer is loaded to resomate a real
current, its scattering pattern is also nearly point-symmetric, because the
current is principally the real resonated current. The bistatic
radar cross section pattern of Fig. 7 exhibits this point symmetry. As a
cdrollary to this property, we can say that a scatterer loaded to resonate
a real current has approximately equal forward scattering and back scattering

cross sections.

y




Fig. 6.

wire triangle of Fig. 1.
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(b) Ay = ~-3.48

(d) A4 = -175.

Lowest order mode currents for the reactively loaded

Loads were chosen to resonate

the A = 31.84 mode current of the unloaded triangle.
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P

Fig. 7.

(b) add A

= =22.0

3

Convergence of the modal solution for bistatic radar
cross section/wavelength squared (6/2%) for the re-
actively loaded wire triangle excited by a plane wave
axially incident on the 30° angle. Modes are added
in the order of increasing lk . Patterns in the x—O
plane are plotted by squares, in the y=0 plane by x's,
Solid curves are the matrix inversion solution.
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IV. BROADBAND SCATTERERS

It is often desirable to have a scatterer whose characteristics change
slowly with frequency. As a measure of the frequency sensitivity of a cur-

rent [I], we define its quality factor as

= W liﬁjiEQLlELl (20)
[T*1[RI[1]
where [X'] = [dX/dw]. If [I] is an eigencurrent, an interpretation of Q can
be made in terms of the frequency variation of the eigenvalue, as follows. Con~-
sider the Rayleigh quotient formula for A, and assume that the dominant fre-
quency variation is due to that of [X]. Taking the frequency derivative of the

Rayleigh quotient, we have

Qx~ w — (21)

A scatterer will be called broadband if only low Q modes contribute sig--

nificantly to the scattered field.

The reader may note that the Q defined by (20) differs from that pre-~
viously defined for small antennas [21, eq. (10-81)]. Since the electric

and magnetic energies [21, eq. (10-79)] must be positive, it follows that

~% '
wlI JX'IMI] > [T*1[x)I1) (22)
Hence, for electrically small antennas, the Q of (20) is always greater than

or equal to that previously defined. In other words, for electrically small

antennas,

Q2 (23)

(e [=

where 8 is the fractional bandwidth of the input impedance to the antenna.
The lowest Q currents for a given surface can be found from the Rayleigh

quotient (20) in the usual way [21]. The resulting eigenvalue equation is

[wX'][I] = Q[R][I] (24)

where Q is the eigenvalue. The smallest eigenvalue is the minimum Q for all

possible currents [I]. Equation (24) has been solved for the wire triangle
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of Fig. 1, and the lowest order Q found to be Q@ = 7.38. The corresponding
current is shown in Fig. 8a, and the gain patterns in the x=0 and y=0 planes
are shown in Fig. 9a. The current is an odd function about the midpoint of

the length variable, and it radiates maximum field in the 2z=0 plane. We call
it a broadside mode., The next lowest Q was Q = 27.6, The corresponding cur-
rent is shown in Fig. 8b, and the gain patterns in the x=0 and y=0 planes are
shown in Fig. 9b. Note that this current is an even function about the mid-
point of the length variable, and it radiates maximum field in the z directiomn.

We call this current the lowest Q endfire current.

We next choose the lowest Q endfire current as the one to resonate
according to the concepts of Section III, The required load reactances are
found from (19), and the modes of the loaded triangle calculated by the
programs of [20]. The four lowest order mode currents are shown in Fig. 10.
Note that the higher order modes have a jump at the points where the dominant
mode current has a zero. This is because the load at this point is a very
large reactance, almost an open circult. The dominant mode current is the
lowest Q endfire current, Fig. 8b. All mode currents are all different from
those for the unloaded triangle, Fig. 2. Convergence of the modal solution
for the bistatic radar cross section, given a plane wave axially incident
on the 30° angle of the loaded triangle, is illustrated by Fig. 1ll1. The
solution is essentially only one mode,'that of the resonated lowest Q end-
fire current, hence only one plot is shown in Fig. 11. Note that the scat-
tering patterns are identical to the mode patterns, Fig. 9b, Note also that
these mode patterns are similar to those of a magnetic dipole, which agrees

with our intuition that low Q currents are associated with dipole fields.

To illustrate the varilation of radar cross section over a frequency
band, graphs of backscattering cross section versus frequency are shown in
Fig., 12, The object is a wire angle-circle (cross section of a cone-sphere)
with various loads. As shown in the insert of Fig. 12, it consists of a 12°
wire angle closed by a wire circle of 8 inches outside diameter. The wire
diameter is one-tenth the circle diameter. This object is naturally resonant
in the vicinity of 175 MHz. The wire is excited by a plane wave axlally inci-

dent on the angle. Curve (a) shows o/A2 for the unloaded wire, curve (b)

N
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Fig. 8. Lowest Q currents for the wire triangle of Fig. 1.
(a) Lowest Q odd current (broadside radiation).
(b) Lowest Q even current (endfire radiation).
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Fig. 9. Gain patterns for the lowest Q currents of the wire
triangle of Fig. 1. (a) Lowest broadside Q.
(b) Lowest end-fire Q.
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Fig. 10. Lowest order mode currents for the wire triangle
reactively loaded to resonate the lowest Q endfire

current.
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Fig. 11.

‘Modal solution compared to the matrix inversion

solution (solid) for bistatic radar cross section/
wavelength squared (c/A2) for the triangle reactively
loaded to resonate the lowest Q endfire mode, and
excited by a plane wave incident on the 30° angle.
Patterns in the x=0 plane are plotted by squares, in
the y=0 plane by x's.
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Fig. 12. Back scattering radar cross section/wavelength
squared (0/A%) versus frequency for a wire angle-
circle (cross section of a cone~sphere).

(a) Unloaded wire. (b) Wire loaded to resonate
the most inductive eigencurrent of the unloaded

wire.

(c) Wire loaded to resonate the lowest Q

endfire current.
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(a) Unloaded (x=0 plane) (b) Unloaded (y=0 plane) 3
|
A z
T \ogz/r2 T 2
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' | Y ' 0.5 ( X _
i
|

(¢) Loaded (x=0 plane) (d) Loaded (y=0 plane) '

Fig. 13. Comparison of the monostatic radar cross sections of
the unloaded angle-circle with those for the angle-
circle loaded to resonate the lowest Q endfire current
at a frequency of 150 MHz.
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shows 0/A% for the wire loaded to resonate the most inductive eigencurrent
(largest positive kn) of the unloaded wire, and curve (e¢) shows o/A% for the
wire loaded to resonate the lowest Q endfire current. Note that the lowest

Q case is considerably more broadband than the other two.

Finally, to illustrate the gross changes in radar cross section that can
be obtained by reactive loading, Fig. 13 shows the directional variation of
backscattering cross section at 150 MHz for the unloaded wire angle~circle and
for the wire loaded to resonate ﬁhé lowest Q endfire current. The angle-circle
is that shown in the insert of Fig. 12. Figure 13a shows 0/A2 (& polarization)
in the x=0 plane for the unloaded wire, and Fig. 13b shows o/A? (8 polarization)
in the y=0 plane for the same unloaded wire. Figure 13c¢c shows 6/x%2 (¢ polari-
zation) in the x=0 plane for the wire loaded to resonate the lowest Q endfire
mode and Fig, 13d shows o/A? (& polarization) in the y=0 plane for the same
loaded wire. Note that the wire angle-circle has been changed from a broad-

side scatterer to an endfire scatterer by the introduction of reactive loads.,

V. MAXTMUM GAIN-QUALITY RATIO

The power gain of a system of currents is defined as the ratio of the
radiation intensity in a given direction and polarization to the radiation
intensity which would be obtained if all power were radiated omnidirectionally.

In terms of matrix elements, it is given by [21]

¢ = K0 [T 1ve1 T[] (25)
[T%1[R](1]

where k is the wavenumber, n is the intrinsic impedance of space, and [V]
is the voltage excitation column matrix due to a unit plane wave incident

from the measurement direction. By dividing (25) by (20), we have the

" gain-quality ratio

G _ k2 [T*)[v*][V](1]
[T*]0x'1[1]

Q . (26)
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If the reciprocal of Q is interpreted as bandwidth, then (26) is also known

as the gain-bandwidth product.

The parameter G/Q is in the form of a Rayleigh quotient, hence its

stationary polnts are the eigenvalues of

k?n o~ _ G '
o WP = § (%' 1IT] @27)

&
Since [V ][%ﬁ is a one-term dyad, all eigenvalues of (27) are zero except

one, which is

_(_}___15_2_11_«\; 1= leg* .
@, = dwo 1TV (28)
The associated elgenvector is
(1], = [x'17h v (29)°

or any constant times it. For currents of electrically small extent it

can be shown that [X'] is positive definite, in which case (G/Q)o is the
maximum gain-quality ratio., For currents of electrically large extent,
[X'] may be indefinite, in which case (G/Q)O is merely a stationary point.
However, it still defines a current [I]O which is relatively insensitive to
frequency variation and therefore of value in the design of broadband

scatterers.

A current can be a mode current only if it is equiphasal, that is, a
real current times a complex constant. Since the complex constant cancels
in (25), it is sufficient to consider [I] to be real., Hence, we reconsider
* the optimization procedure with [I] restricted to the real fieid. Afhe de-
tails for general problems of‘this type are given in the Appendix; The
results specialized to our particular problem are aé follows. For [I] real,

the non-zero stationary points of G/Q are given by

2 ~ -
@, = o Re[VIIX'1™" (RelV] + ¢ In[V]) (30)

where c has the two values

c=-a+Va? ¥1 (31)

N —— 4 o e —har—. T ———n
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and . - : o :
o o Bel¥IX' )7 Re[v) ~ Inf¥1[x"] " 1n[v]

2 Re[V][X'] ™ 1m[V]

Here Re[V] and Im[V] denote the real and imaginary parts of the complex

(32)

column vector [V]. If [X'] is positive definite, the larger of the two
values G/Q obtained from (30) will be the maximum obtainable with real

current. The current corresponding to the stationary points (30) is

[1] = [X'] Y (Re[V] + ¢ Im[V]) (33)

It is shown in the Appendix that the maximum G/Q for real current is at
least one-half of that attainable for complex current. The two cases are

equal if [V] is equiphasal.

To illustrate typical results, consider the wire triangle of Fig. 1,
and let G/Q be maximized for some direction 8, in the y=0 plane (plane of
the triangle). Figure 14 shows the real current for maximum G/Q in the
directions (a) eo = 0 (endfire), (b) 6,= 20°, (c¢) 60 = 45°, and (d) 90= 90°
(broadside). Note that, as eo is increased from O to 90°, the current changes
gradually from an endfire current to a broadside current. Note also that the
maximum G/Q currents, Fig. l4a and d, differ somewhat from the minimum Q cur-
rents, Figs. 8b and 8a, respectively. The gain patterns for the currents of
Fig. 14 are shown in Figs. 15 and 16. Those of Fig., 15 are in the y=0 plane
and 6 polarized. Those of Fig. 16 are in the x=0 plane, with (&) and (b)
¢ polarized, and (c) and (d) 6 polarized. In case (b) there is also a small
6 polarized field (not shown), and in case (c) there is also a small ¢ polarized
field (not shown). Finally, the real currents of Fig. 14 can be resonated by
- reactive loads according to the concepts of Section III. When the loaded wire
object is excited by a plane wave from or near 60, the bistatic radar cross
Section patterns consist primarily of the resonated mode. Hence, the radar
cross section patterns are essentially the same as the patterns of Figs. 15

and 16, except for a scale change.
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0 : } 4 { 0 } ;
...1 - _1 -,
(a) G/Q = 0.573 (b) G/Q = 0.566
I T
1+ I+
’ \W | | i l ;
-1+ -1+
(c) 6/Q =0.198 (d) G/Q = 0.106

Fig. 14. Real currents for maximum G/Q for the wire triangle
of Fig. 1. Gain is taken in the y=0 plane at the

angles (a) ©

= 0 (endfire),
and (d) 6 =%90° (broadside).

(b) 60 = 20°, (c) eo = 45°,
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(a) 6/Q = 0.573 (®) 6/Q = 0,566
‘ Z z
°

(e)

G/Q = 0.198

(d)

G/Q = 0.106

Fig. 15. Gain patterns for the maximum G/Q currents of Fig. 14
in the plane of the triangle (y=0). Field is 6-polarized.
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(a) G/Q = 0.573 (b) G/Q = 0.566
Z Z
1+ 1+

(e} G/Q =,0'l98 (d) G/Q = 0.106 E

Fig. 16. Cain patterns for the maximum G/Q currents of Fig. 14 in
the x=0 plane. Field of (a) and (b) is ¢ polarized, that
of (c¢) and (d) is 9 polarized.
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VI. PATTERN SYNTHESIS

The sdéttering pattern of a reactively loaded body can be made nearly
equal to the radiation pattern of any real current, or, more generally, any
equiphase current, by the resbnating procedure of Section III. We now con~
sider a synthesis method for finding a real current whose radiation pattern
at M points approximates in a least-squares sense some desired pattern. Be-
cause the radiation pattern of a reai current is point symmetric, the desired
pattern should also be point symmetric. Furthermore, to reduce supergain

effects, the source will be limited to modes having small eigenvalues,

> .
Given a desired field pattern Eo’ it is desired to obtain an equiphase
> >
current J whose radiation pattern approximates Eo' We assume that J is a
>
superposition of N mode currents Jn of the form
. N
- -
F = B ) o J (34)
nn
n=1
where the real constants o and B are to be determined. The radiation field
of this current is
> jB N -
E=c¢e ) o E (35)
nn
n=1
- - > > . i}
where the En are characteristic fields., We set E = EO, real and imaginary
parts, at M points on the radiation sphere. If M > N/2, where N is the
number of modes used, there are more equations than unknowns o to be found.
4

In this case we can minimize the mean square error

M N 2
e= ) ed® J o ©E" - E" (36)
nn o
m=1 n=1 .
where the superscripts m denote evaluation at the m-th point on the radi-

ation sphere. In matrix notation, (36) can be written as

Sy —
e = [eJBAa - E]*[ejBAa - E] (37)

s

where [a] and [E] are column matrices of the o and Eg, and [A] is an M by N

matrix with elements
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A =E (38)
The variation of ¢ when [a] is varied is
s = 2[85]1[Re (A A)a - Re(eIBX"E)] (39)

For Se to be zero for arbitrary [Sa], the final bracketed term must be zero,

or
[0] = [Re (R 4) 1 LiRe (e 38X E) ] (40)

Substituting this into'(37), and simplifying, we have the mean square error

given by
e = - Re[e IPME] + [E°1[E) (41)

For a fixed phase B, the expansion coefficients ¢ are found from (40) and

the squared error from (41).

We can still adjust B to obtain the minimum €. To do this, substitute

(40) into (41) and rearrange, obtaining

£ = clcosze + czsin28‘+ c3sin B cos B + [ﬁﬁ][E] (42)
where
N _
¢, = ~ [Re(BE)1[Re (") 1" Re [R"E] (43)
ey = - (Tm(X°E) 1 [Re (F*4) I L1m[K*E] - (44)
ey = 2 {TaA By 1 [Re (B*4) 1 LRe [X¥E] (45)
Setting 9¢/9B = 0, we obtainvfrom (42)
1. -1,°53
B m g e 20 (46)

We need consider only -m/2 < B8 < 7/2, since adding 7 to B merely changes
the sign of 3, as is evident from (34), There are two solutions to (46)

in this range,$one of which corresponds to the best choice of 8 and the

o 4 s i Sy i £ M S e e | ot s =
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other the worst choice., The equiphase current for our synthesis procedure
is now given by (34), where the o are found from (40) and B is chosen to

give the smaller ¢ according to (41).

To test the pattern synthesis procedure, we first chose ﬁo to be the
field radiated by the current for maximum G/Q, axial direction, for the wire
triangle. This case was considered in Section V, the solution being graphed
in Figs. l4a, 15a, and l6a. We set Ee = (Ee)o at 15 points in the y=0 plane,
x > 0, and the synthesis method converged upon the current of Fig. l4a using
3 modes. (This means that the maximum G/Q current consists of three modes of
the unloaded triangle.) The gain patterns were, of course, the same as those

of Figs. 152 and l6a,

To illustrate the method for an arbitrarily chosen pattern, let

(Ee)o = cos 2(8-45°) (48)

in the y=0 plane, which is a four-lobed pattern in this plane. We set

Ee = (Ee)o at 15 points in the y=0 plane, x > 0, and ran the synthesis
program. Figure 17 shows the convergence of Eq (solid line) to (Ee)0
(shown by x's) as the number of modes of the unloaded triangle (Fig. 2) is
increased. The first two modes contribute little to Eg, hence we show only

the cases 3, 4, 5, and 6 modes in Fig. 17. The sixth mode has A = =3930,

Hence, we would expect the synthesized pattern to be high Q, that .is, fre-

quency sensitive. Figure 18 shows the convergence of the synthesized cur-
rent for the corresponding 3, 4, 5, and 6 mode cases. As modes are added,
the current becomes more and more oscillatory, a property which continues
as even more modes are included. This is characteristic of supergain be-
havior.,6K Finally, once the equiphase current is found, we multiply it by
e—jB to make it real, and then resonate it according to the procedure of
Section ILI. This has been done for the currents of Fig. 18, and the re-
sultant plots of o/A2 are shown in Fig. 19. The incident wave was taken

at the angle 0 = 45° to insure that the dominant mode excitation coefficient

is large. Note that the o /A2 patterns correspond more or less to the syn-

thesized patterns of Fig. 17, with the greatest distortion occurring in the

. 3 mode case,
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(a) three modes ' (b) four modes
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X X x
x x x
b 4 x ®
x x X x X
x 2 =
® x X
% x
(c) f£five modes (d) six modes
Pattern synthesis of gg = E% in the y=0 plane as modes

Fig. 17.

are added in the order of increasing»|>\n .
wire triangle of Fig. 1.
synthesized gy is shown solid.

Body 1s the
Desired gg is shown by x's,
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..1 -t .-1 -
(a) three modes (b) four modes
I I
14 1+

NS A

(¢) five modes (d) six modes

Fig. 18. Currents on the wire triangle for the synthesized
patterns of Fig.17. Current continues to get more
oscillatory as modes are added.
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T R}
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(a) 3 mode synthesis (b) 4 mode synthesis !

N
0N

_—
=T
>

(;) 5 mode synthesis (d) 6 mode synthesié

Fig. 19. Scattering patterns for the currents of Fig, 18 (a)
to (d) resonated by reactive locads on the wire triangle. i
Excitation is by plane wave incident at the angle 6 = 45°
in the y=0 plane.
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VII. SPARSELY LOADED SCATTERERS

So far all examples have been for continuous loading, or, more precisely,
one load per expansion function. It 1s suspected that, for most purposes, a
few lumped loads may do almost as well as continuous loading. Scatterers with
just a few loads will be called sparsely loaded scatterers. A method for reso-
nating currents on sparsely loaded scatterers is given here to test this

hypothesis.,

Let the current matrix for a scatterer be partitioned as

(1] = | [1] (49)

1
(11,

where [Il] is the current matrix for loaded ports, and [Iz] is the current
matrix for unloaded ports. The reactance matrix for the scatterer is par-
titioned conformably with [I], so that, in matrix form, (19) can be written

as

X1 (01 ||, | =- [[x], (x],| |[1]] (50)
[0] (0] [I]2 [X]2l [X]22 [I]Z_
Here [XL]is the load matrix for the loaded ports only. Equation (50) is a

pair of simultaneous matrix equations. From the second equation, we have

_ -1 .
Substituting this into the first matrix equation and rearranging, we obtain

1

(X MIT = = (X = Xy, %) Xpy JIT] (52)

If [I]l is a desired current, the loads XLi to resonate it can be computed
from (52).

To illustrate the behavior of sparsely loaded scatterers, the lowest Q
end-fire current, Fig, 8b, of the wire triangle is chosen as the desired cur-
rent. This current is first resonated with loads on every expansion function

(30 loads), then loads on every other expansion function (15 loads), then 8
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loads, and finally 4 loads. The resultant currents are shown in Fig. 20. 1In

Fig. 20, (a) is the same as Fig. 8b, and the currents in the sparsely loaded

cases, (b) to (d), have currents equal to those of (a) at the loaded points.

At the unloaded-points, the current differs from that of (a), the difference
becoming greater as the number of loads is decreased. The bistatic radar cross
section patterns for the four cases are shown in Fig. 21, These are plots of
6/x? in the two principal planes for an axially incident plane wave. Figure 2la
is the same as Fig. 11. Note that Figs. 21b and 21c are quite close to the con-
tinuously loaded case, 2la, while 21d departs considerably from it but is still

a desirable radar scattering pattern.

VIII. DISCUSSION

For a given body, any real current can be resonated by reactive loads
to make it the dominant mode current of that body. This real current may be
chosen to optimize various parameters, such as quality factor and gain, or to
synthesize a desired scattering pattern. The‘numerical examples included are
for loaded wire objects, although simllar computations have been made for con-

ducting bodies of revolution., On wires, loads can be physically realized by N}

lumped network elements, such as resistors, inductors, and capacitors. On 0
bodies of revolution loads are more difficult to interpret and realize. For

example, reactive loads might be approximated by tuned slots or stubs on a

conducting body, but the numerical value of their equivalent reactance is not

easily obtained.

Preliminary results for sparsely loaded bodies indicate that they have
great potential for reactive control of radiation and scattering patterms.
The approach used here was to constrain the total current to be a desired
current at N ports on the body. A better approach would be to formulate the
entire problem in terﬁs of N-port parameters [5,21]. A theory using the N-port
network parameters for problems of optimization and synthesis problems should
in many respects parallel the theory developed in this report using generalized

impedance matrices, Work along these lines is now in progress.
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I I
1+ 14+
01 + } } 0 omemest ; t 4 ]
-] = _1--
(a) 30 loads (b) 15 loads
: I
1
1T 1
‘ Q g t t t t e 0 { 4 . : L
-1+ -1+
(¢) 8 loads (d) 4 loads
Fig. 20. Currents on the reactively loaded wire triangle as

the number of loads is decreased. The resonated
current at the load ports is the lowest Q end-fire
current. Excitation is by a plane wave axially
incident on the 30° angle. :
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(e)

Fig. 21.

8 load
cads (d) 4 loads

Bistatic o/A2 for the reactively loaded wire triangle
for the currents of Fig. 20. E=xcitation is by a plane
wave axially incident on the 30° triangle. Single mode
solutions are shown by squares in the x=0 plane and by
x's in the y=0 plane. Matrix inversion solutions are
shown solid,
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APPENDIX

OPTIMIZATION OF A RAYLEIGH QUOTIENT WHEN THE VECTOR IS REAL

For conciseness, no special notation will be used to denote vectors

and matrices. In general, a Rayleigh quotient is defined as

N
=3 (A-1)

where I is a column vector, and A and B are Hermitian matrices. If I is
over the complex field the stationary points of (A-1) are the eigenvalues

p of
Al = p BI (A-2)

It is desired to determine the stationary points of (A-1) when I is over
: T .
the real field. For this, we drop the conjugation on I and set the vari-

ation of (A-1) with respect to I equal to zero.

§p = %2- [D(STAI + TasI) - N(SIBI + YBSI)]
=%§f[(A+X)I-p<B+%’)I] =0 (A-3)

Since A is Hermitian, the matrix

2 (a+%) = rea (4=4)
is a real symmetric matrix with elements equal to the real parts of those
of A, and similary for B. For (A-3) to hold for arbitrary S8I, the term
in the brackets must be zero, or

(ReA)I = p(ReB)I (A-5)

Hence, for I real, the eigenvalue equation (A~5) replaces (A-2) for

determining the stationary points of p.

For our problem, the matrix A is the one-term dyad

A=VYV - (4-6)
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where V is a complex column matrix, Let V be expressed in terms of real and

imaginary parts as

V= Vl + jv2 (A-7)
Then, substituting (A-6) into (A-4), we have
ReA = V.V, + V.V, (a-8)

11 2°2

This shows that ReA is a two-term dyad if V_ and V2 are linearly independent.

1
Hence, all eigenvalues of (A-5) are zero except two. To find the non-zero

eigenvalues, substitute (A-8) into (A-5) and obtain

0(ReB)I = (%il)vl + (V,D)V, (A-9)

Premultiplying by (ReB)_l shows that I is a linear combination of

(ReB) v

H
"

1 (A-10)

1 (ReB)'lv

2

5 (A-11)

Since a constant times an eigenvector is still an eigenvector, we can rewrite

this linear combination as

o
i

I, +c¢I (A-12)

where

c = Vzl/VlI (A-13)

Next substitute (A-10) through (A-12) into the left-hand side of (A-9), sub-
stitute (A-12) into the right-hand side, and equate coefficients of V., and

1
v, (assumed independent). The result is
p = Vl(Il + ¢ IZ) (A-14)
and
; - 1
0 = V2 (c Il + Iz) (aA~15)

These two expressions for ¢ must be equal, which results in the quadratic

for ¢

o

[ [P

[ N [PV U U

ot —— -
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~ 2 + ~ AL ~ _
VlIZC (VlIl - VZIZ)C - VZII = 0 (A-16)
From (A~10) and (A-11l) it is evident that
V1I2 = VZIl (A=17)

With this relationship, the two roots of (A-16) are

c=-a+vaZ + 1 (A-18)
where ~ ~
V.I. - VI
a=-Lll 22 (4-19)
2VlI2

Equation (A-18) determines two real values of ¢, from which the stationary
values of p are determined by (A-14) or (A-15), and the extremizing vectors

by (A-12). The maximum p is the larger of the two stationary values.

The question arises as to how much p is decreased by restricting I to
be real. In the text we are interested only in real positive definite

matrices B, in which case ReB = B. The maximum p for I complex is then

~ -1 %
o = VB "V
com,

_ =1 A~ =1
= VlB Vl + V2B V2 ‘ (A-20)

The maximum p for I real is given by (A-14). Substituting for ¢ from

(A-18) into (A-14), simplifying, and taking the larger value, we have

=1 ST ITY -
preal T2 pcom.+ a® + 1 VlIZ (a-21)

From this it is evident that the maximum p's are related by

p (A-22)

p <
real — " com.

1
2 pcom.i

The left-hand equality is attained when Vl and 12 are orthogonal, that is,

S

when Vl 5 = 0. The right-hand equality is attained when V is of constant

phase, that is, when V2 = bVl where b is any real constant.

41
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PART TWO

PROGRAM DESCRIPTIONS AND LISTINGS

I. INTRODUCTION

The programs used to compute the examples of part one, except those
appearing in previous reports, are described and listed here in part two.
Each program is accompanied by operating instructions and sample input-
output data. To facilitate reference to the theory, this part of the re-
port is divided into sections having the same headings as the corresponding

sections of part ome.

II. MODES OF A LOADED SURFACE

The'computer programs of Sections IIL, IV, and V of reference [20]
are written for use on both unloaded and~loaded bodies. It is merely neces-~
sary to»read in the proper load matrix [ZL] to be added to [Z]. These
programs calculate the mode currents, the mode gain patterns, and the modal

solution for bistatic radar cross section.

III. RESONATING A DESIRED REAL CURRENT

This program calculates the loads Which_make a given real current a
mode current of the”loaded surface with eigenvalue zero. The activity on
"data sets 1 (punched card input), 2 (punched card output), and 6 (direct

access input-output) is as follows.

READ(1,10) N, MD5, N6
10  FORMAT (20I3)
REWIND 6
'NZ = N#N
SKIP N6 RECORDS ON DATA SET 6
. READ(6) (Z(I), I = 1, NZ)
DO 16 J = 1, MD5 ' ‘
READ(1,28) (FI(I), I = 1, N)

e ue—
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28  FORMAT (10F8.4)

WRITE(2,26) (XL(I), I = 1, N)
26  FORMAT (7E1l.4)
16  CONTINUE

The program in Section II of [20] has already calculated and stored the
impedance matrix Z of order N on the (N5+1)th record of data set 6. The pro-
gram in Section II of [20] gives an unsymmetric impedance matrix Z, but all
the programs of the present report require a symmetric impedance matrix Z.

The addition of the statements

DO 41 J =1, N
J1 = (J-1)*N
DO 42 I =1,J .
J2 =J1+ 1
J3 = (I-1)*N + J
Z(J2) SE(Z(I2) + 2(33))
Z(J3) Z(J2)
42 CONTINUE
41  CONTINUE

just after the CALL CALZ statement in the main program in Section II of
[20] will make the impedance matrix Z symmetric by averaging corresponding
off diagonal elements. The load reactances XL are computed from the cur-

rents FI in DO loop 16 according to (19).
Minimum allocations are given by

COMPLEX Z (N#N)
DIMENSION X(N*N), FI(N), XL(N)

The sample data and printed output are taken to resonate the A = 31.84
mode of the unloaded wire triangle of Fig. 1. Note that the program of
Section IIT of [20] writes the mode currents on direct access data set 6

instead of punching them out.

The mode currents, the mode gain patterns, and the modal solution of
bistatic radar cross section are computed by the programs in sections ITI,

IV, and V of [20]. Note also that the programs of [20] are more general in
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that they will admit complex loads ZL instead of reactive loads XL. The
user must either modify the programs of [20] to accept the real XL instead

of the complex ZL or modify the program of Section III to punch out XL

interspersed with zeros to represent zero resistive loads.

ot

LISTING OF PROGRAM TO CALCULATE REACTIVE LOADS ™ ' '
TO RESONATE A DESIRED REAL CURRENT

/7

{0034,4EE4242,5) y*MAUTZ ,JOE*,REGTON=140K

// EXEC FORTGCLGsPARMFORT=*MAP?
//FORTLSYSIN DD *

10

11

14

15
13

27

22

28

29

24
23
25

26
16

COMPLEX Z(900)

DIMENSION X(900),FI(30),XL(30)

READ(1,10) NyMD5,N5 .
FORMAT (2013} i
WRITE(3,11) N,MD5,N6
FORMAT{*0O N MD5 M6'/1X,313})
REWIND 6

NZ=N*=N

IF(N6) 13,13,14

DO 15 J=1,N6

READ(6) ’
CONTINUE :
READ(&Y(Z{T)s1=14N2Z)
WRITE(3427)1(Z(1),I=1,3)
FORMAT('0Zt'/(1X410E11.4))
DO 22 I=1,NZ
X{I)=AIMAG(Z2(1}}

CONTINUE

DO 16 J=1,MD5
READ{1,428}(FI(1)y1=1,N)
FORMAT(10F8.4)
WRITE(3429)(FI(I)sI=1,N)
FORMAT('OFI'Y/(1X4310F8.4))
DO 23 I=14N

Ji=(I-1)=N

S].:Oo

DO 24 K=1,N

J2=J1+K

S1=S1+X{J2Z2}*FI({K)
CONTINUE

XL{I)==S1/FI(1)

CONTINUE
WRITE(3,25)(XL(I)s1=1,4N)
FORMAT(*OXLY/(1X,7E1Ll.4)}
WRITE(2426){XL{I},1=14N)
FORMAT(T7El1l.4)

CONTINUE

STOP

END




45

/ S
//7GNGETOAFOCL DD DSNAME=ELQO034,REVINDISP=0LD,UNIT=2314, X
// VOLUME=SER=SUN004 ,DCB={RECFM=VSRLKSI7E=259A,LRECL=2592)
//GHGSYSTN DD =
A0 1 0
069240 049463 0.9678 049849 0.9959 1.0000 049969 0.9866 049695 0.9464
N,Q18& (148871 N.8HAT 048453  (0,R408 00,8394 Q,R408 00,8453 0.85A7 (0.,8R71
D.OTEL  0.9454 00,9695  9,98A6 0.9949 1.,0000 0.9959 00,9829 00,9578 00,9463
/i
/7
SaMPLE PRINTED QUTPUT
fo MY RA
20 1 0

/
OebRN1F=01-0.5873F+03 0.5810E~01 0.2657E+03 0.5784E-01 0.3124E+02

F1
0,9240  0,9463 0,9A78 0.9849 00,9959 1.0000 049969 0.98A6 0.9695 0.9464
(e@1R%  0,RRT7T1  0N.R567 048453 0.8408 0.8394 0.,R408 . 1.8453 08567 0Q.8%71
Ne91RG 09464 N.9A95 0.98A6 00,9949 1.0000 0.9959 0.9849 00,9678 0.4463

%,
—0.32831+02-0,3349E+02-0,3509F+02-0.3650E+02~0.3786E+07-0.3918E+02-0.4043++02
~0e41T1F+02-0,4300E+02=0.4419F+07=0.4521F+02=0.4618E+07=0.5183F+02-0.5777E+02
=0.h003F+02=0,5948F+02-0,5903F+02-0,5777E+02=0.51R3E+02-0,4A1RE+02-0.4521F+02
=0 AL1OF+02=0,4300E+02-0.4171E+02-0.4043E+02-0.3918F+02-0,37R7E+02-0,2650E+02
~043500F+02-0.3349E+02
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IV. BROADBAND SCATTERERS

The eigenvalues Q and eigenvectors [I] of (24) can be computed by the

program in Section III of [20] if [R] + j[wX'] is stored in place of [Z].

A program to store [R] + jlwX'] on data set 6 is described next. The
activity on data sets 1 (punched card input) and 6 (direct access input-—

output) is as follows.

REWIND 6
READ(1,7) N4

7 FORMAT (2013)
DO 15 L = 1, N4
READ(1,8) N, N5, N6, N7, D

8 FORMAT (413, E11.4)
NZ = N*N
SKIP N5 RECORDS ON DATA SET 6
READ(6) (Z1(I), I = 1, NZ)
SKIP N6 RECORDS ON DATA SET 6
READ(6) (22(I), I = 1, NZ)
SKIP N7 RECORDS ON DATA SET 6
WRITE(6) (Z(I), I = 1, NZ)

15  CONTINUE

The impedance matrices at propagation constants k and k(l1.+D) have been stored
on the (N5+1)th and (N5+N6+2)th records of data set 6 by the pfogram of Section
II of [20] with the modification given in Section III of the present report.
[R] + j[wX'] is stored in Z and written on the (N5+N6+N7+3);h record of data
set 6. A finite difference approximation -is used in DO loop 12 to calculate

[X']., Minimum allocations are given by
COMPLEX Z1(N*N), Z2(N*N), Z(N#N)

The sample input data and printed output are for the wire triangle of Fig. 1.
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LISTING f)F PROGRAM TO STORE R+JWX'! ON DATA SET 6

1/ (0034 4EE¢242) 3 "MAUTZ yJOE ' ,REGION=140K
// EXEC FORTGCLGyPARM.FORT='MAP!?
//FNRT,SYSIN DD =
COMPLEX Z1(900),22(900)42(900)4U
REWIND 6
READ(1,7) Né&
7 FORMAT(2013)
WRITE(3,10) N4
10 FORMAT('ON4Y/(1X,13))
DO 15 L=1,N%
READ(1,8) NoN5,N64N7,D
8 FORMAT(413,E11.4)
WRITE(349) NyeNS,N6yNT,D
9 FORMAT('0 N N5 N6 NT7'y5Xe!'DV/1X,4134E11.4)
NZ =N%N
JI=IABS(NS)
IF{N5) 16,17,18
16 DO 19 Jd=1,J1
BACKSPACE 6
19 CONTINUE
G0 TO 17
18 DO 20 J=1,J1
READ(6)
20 CONTINUE
17 READ(B)I(Z1(1),1=1
WRITE(3,11)(21(1)
11 FORMAT('0Z1'/(1X,
J1=TABS(NG)
IF(N6) 21,22,423
21 DO 24 J=1,J1
BACKSPACE 6
24 CONTINUE
G0 TO 22
23 DO 25 Jzl,J1
READ(6)
25 CONTINUE
22 READ(GI(Z2(1) 4I=1,NZ)
WRITE(3413)(Z2201),1=1,3)
13 FORMAT('0Z2'/(1X,10E11.4))
U=(0eyle)/D
DO 12 J=1,NZ
Z(J)=REAL(ZI(J) ) +URAIMAGIZ2(J)~2Z1(J)})
12 CONTINUE
WRITE(3,26)(2(I),1=1,3)
26 FORMATI(90Z'/(1X,10E1l1.4))
J1=TABRS(NT)
IF(NT) 27428429
27 DO 30 J=1,J1
BACKSPACE 6
30 CONTINUE
GO TO 28
29 DO 31 J4=1,J1
READ(6)
31 CONTINUE
28 WRITE(6)(Z(I),I=14NZ)
15 CONTINUE
STOP R
END

sNZ)
1I=193)
10E11.4})
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/%
//GO.FTO6F001 DD DSNAME=EEO034,REV1,DISP=0LDsUNIT=2314, X
// VOLUME=SER=SUQ004,0CB={RECFM=VS,BLKSIZE=2596,LRECL=25%6)

//7GO.SYSIN DD *
1

30 0 0 0 0.1000E-02

/%

/7

SAMPLE PRINTED OUTPUT

N4
1

N N5 Né& N7 D
30 0 0 0 0.1000E-02

Z1

0.5801E-01-0.5873E+03 0,5810E~01 0.2657E+03 0.5784E~01 0.3124E+02

12

0.5811E-01-0.5867E+03 0.5822E~01 0.2655E+03 0.5796E~01 0.3121E+02

z

0.5801E=-01 0.5994E+03 0.5810E~01-0,2583E+03 0.5784E~01-0.,3020E+02
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Programs to calculate backscattgring cross section versus frequency and to
calculate patterns of o/A% from the matrix inversion solution are not included
because they are essentially bits and pieces of the program in Section IV of [20].
Instead of modifying the program in Section IV of [20] it may be easier for the
user to base his pattern programs on the progrem included in the present section
which calculates the receiver excitations VR. An element of VR is the reaction
between a unit incident plane wave and one of the functions used to expand the

electric current.

The receiver excitations VR are calculated by the subroutine VOLT which
requires some common data from the main program. The punched card input to

the main program is as follows.

READ(1,9) NP, NW, BK, THET
9 FORMAT (213, 2E14.7)

READ(1,10) (PX(I), I = 1, NP)
READ(1,10) (PY(I), I = 1, NP)
READ(1,10) (PZ(I), I = 1, NP)

10 FORMAT (10F8.4)
READ(1,15)(LL(I), I = 1, NW)
15 FORMAT (2013)

The PX, PY, and PZ are the X,y, and z coordinates of NP data points
describing the axes of NW wires. There is an odd number greater than or
equal to 5 of data points on each wire. The data points must be arranged so
that there are n-l linearly independent triangular expansion functions peaked
at a junction with n branches. BK is the propagation constant k. The receiver
excitations VR will be computed for the six different incident unit plane waves
E" given by (17)-(22) of [20). THET is either 6 in (17)=(20) of [20] or ¢ in
(21)-(22) of [20]. The LL(J)th data point marks the beginning of the Jth wire.

> -> - - >
In DO loop 8, TX, TY, and TZ are Upe Uy Upy * uy, and U1

BX, BY, and BZ are kx', ky', and kz' evaluated midway between the Jth and
(J-1)th data points. AL(N1) is the distance between the Jth and (J-1)th data

'+ .
°u, while

points. DO loop 8 reckons that there will be N=J4-2 triangular expansion func-

tions, the L(J)th being the first one on the Jth wire.
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The domain of each triangular expansion function is broken up into four
not necessarily equal segments, two on the upward sloping side and two on the
downward sloping side. The T((J-1)%4+K) calculated for K=1,2,3,4 by DO loop 5

is the integral of the Jth triangular expansion function over its Kth segment.

The subroutine VOLT stores

f 4

J CRICAPEEIR SO ETAEE) [ETG") -+ 4,1 J T (@' (53)
wire K=l K Kth segment
axis

in VR((J-1)MW+I) where [E¥(2') + 9,1, is the Jth of the set (17)-(22) of

[20] evaluated at the center of the Kth segment of the Ith triangular expan-
sion function TI(Q'). In DO loop 30, the six variables ZZ(I), 2Z(32), 22(J3),
Z2(J4), ZZ(J5), and ZZ(J6) correspond to the six equations of the set (17)-(22)
of [20]. The number [Er(ﬁ') . ;2']K of (17) of [20] for the Ith triangular

function is stored in
ZZ((I-1)*2 + (M-1)*% 2 + K)

if the Ith triangle function is on the Mth wire. DO loop 52 performs the sum
on K appearing in [20], DO loop 53 obtains each of the six ES(eY) - U of
the set (17)-(22) of [20] while DO loop 49 obtains the Ith expansion function.

Minimum allocations are given by

COMPLEX VR(N#6), ZZ(N1%6)
COMMON L(NW+1), T(N*4), BX(N1), BY(N1), BZ(N1),
TX(N1), TY(N1), TZ(N1)

in the subroutine VOLT and by

COMPLEX VR(N*6), ZZ(N1%*6) _

COMMON L (NW+1), T(N*4), BX(N1), BY(N1), BZ(N1),
TX(N1), TY(NL), TZ(N1)

DIMENSION PX(NP), PY(NP), PZ(NP), LL(NW+1l), AL(N1)

in the main program where




of Fig. 1.

N1 = NP - NW

N = N1/2 - NW
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The sample punched card input and printed output is for the wire triangle

The receiver excitations are computed for all six of the polarizations

(17)-(22) of [20] with 8 and ¢ equal to 7/4 but only the results for the third

->
polarization Ug s y=0 are printed out.

LISTING

//

(00344EE+242) 4 "MAUTZ4JOE'yREGION=140K

// EXEC FORTGCLG,PARM,FORT=!MAP!
//FORTLSYSIN DD x%

SUBRNOUTINE VOLT

COMPLEX VR(180),UsZZ(372)4U3,U4,U5
COMMON VR 4U,Z7Z4SNoCSyN1,L(5)4NNN6

OF PRNOGRAM TO CALCULATE RECEIVER EXCITATIONS VR

COMMON T(120),BX(100),BY(100),BZ(100),TX(100}),TY(100),TZ(100)

DO 30 I=1,N1
Sl==RY(I)*SN
$2=BZ(1)*CS

$3=81+S82
S4=BX(I)=#SN+S52
S5=RX(I)*CS-S1
U3=COS(S3)+U*SIN(S3)

T U4=COS(S4)+UxSIN(S4)

30

51

Us=COS{S5)+UxSIN{S5)
S1=TY(I)%CS

S2=TZ (1)=*SN

J2=1+N1

J3=J2+N1

Je=Jy3+N1

J5=J4+N1

J6=J5+N1
Z2Z(1)y=(~-S2-S1)=U3
27(Jd2¥=TX(I)%xU3
7Z(J3)={TX(1)*®CS=~S2)*U4
22(Jd4)=TY(1})*xU4
272(J5)==TZ(1)*U5
ZZ2{J6)=(=TX{I)%SN+S1)=U5
CONTINUE

Jé==2

J5=1

DO 49 I=14N
J2={1-1)*4
IF(L{J5)=1) 50451,50
Jb=44+2

J5=J5+1
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50

52
53

49

14

10

11
13
15

16

J6=J4
DO 53 J=1,NN6&6,sN

VR(J)=0,

DO 52 K=1,4

K3=J6+K

K2=J2+K

VR(J)=T(K2)%ZZ (K3)+VR(J)
CONTINUE

Je=J6+N1

CONTINUE

Je=J4+2

CONTINUE '
RETURN

END :
COMPLEX VR(180),U,7ZZ(372) ,
COMMON VR UsZZsSNyCSyNL4L(5)4NJNN6 |
COMMON T{120),RX(100)4BY(100},BZ{(100)4TX(100},TY(100),TZ(100) ,
DIMENSION PX(100),PY{(100),PZ(100)}sLL(5),AL(100}
U——-(Ooqla)

READ(149) NPyNWyBK,THET

FORMAT(2I3,2E14.7)

WRITE(3414) NPyNWsBK,THET

FORMAT (10 NP NW'y6Xe'BKY g 11X *THET'/1X421342E144.7)
READ(1410){PX(I)sI=1,NP}

READ(1,I0M{PY(I)s1=1,NP}

READ(1410)(PZ(I1)4I=1,NP})

FORMAT(10F8,4)

WRITE(3,11)(PX{(I)sI=14NP}
WRITE(3,12)(PY(I),1=1,NP}
WRITE(3,13)(PZ(1)s1=1,NP)
FORMAT('OPX'/({1X,10F8.4))
FORMAT(YOPY'/(1X,10F8.4))
FORMAT('OPZ'/(1X,10F8,.4))

READ(1415) (LL(I)sI=14NW)

FORMAT (2013)

WRITE(3,16) (LL(I),I=1,NW)

FORMAT (FOLL'/(1X,2013)) |
LL{NW+1}=200 :
BK5=,5%BK ;
N1=0

J4=2

Jl=1 :

DO 8 J=1,NP
IF(LLEJL)I=J) 746,47
Ja=J4—-1

LiJiy=J4 '
Jl=J1+1

GN TO 8 : '
N1=N1+1 |
J3=4=-1 ’
IF({NL1/2%2=N1) ,EQ.0) Ja=J4+1 .
S1=PX(J)=PX(J3) ,
S2=PY(J)=PY(J3) ot

;
.

4w g me————




S3=PZ(J)=-PZ(J3)
S4=SORT(S1%S1+S52%S524+53%53)
TX{NL1}=S1/5¢4
TY(N1)=52/54
TZtN1}=S3/5¢4
" BXINL)YSBKS#(PX{J)+PX(J3))
BY(N1)=BK5*®(PY{J)+PY(J3))
BZ(N1)=BK5%({PZ(J)+PZ(J3))
ALIN1)=S¢&
8 CONTINUE
N=J4=-2
L{J1ly=J4
Ji=1
J2=-2
DO 5 J=1,N
TF(L{J1)=d) 344,3
4 J2=J2+2 .
Ji=J1+1
3 Ja=(J=~1)%4+1
J5=J4+1
J6=J5+1
J7=Jd6+1
Ke=J2+1
K5=K4+1
Ké6=K5+1
K7=K6+1
S1=AL(K&)+AL(K5)
S2=AL{K6Y+AL(KT)
TOJ4I=AL (K& )%, 5%AL (K41 /S1
TIJS)=AL(KS )% {AL(K&4)+.5%AL(K5))/S1
TIJE)=AL (K6 ) (AL(KT)+.5%AL(K&))/S2
TIJT)=AL(KT ) %a5%AL(KT)/S2
J2=J2+2
‘5 CONTINUE
SN=SIN(THET)
CS=COS(THET)
NN6=N*%6
CALL VOLT
J1=2%N+1
J2=3%N
WRITE(3417)(VR(J)sJ=J1,42)
17 FORMAT{'OVRY/(1X,7E11.4))
STOP
END
/%
//G0.SYSIN DD =
63 1 0.1039861E+00 0.7853982E+00
-0.5176 =0.2588 (,0000 0.2588 0.5176 0.7765 1.0353
2.0706 243294 2.5882 248470 3,1058 3.3646 3.6235
4,6587 4.,9176 5.,1764 5.,4352 5,6940 5,9528 6.2117
2.0706 1.,0353 0,0000 -1.0353 =2,0706 =-3.1058 —=4.1411
~5.6940 =5,4352 =5,1764 —4,9176 =4,6587 ~4,3999 =4,1411
—3.1058 =2,8470 -245882 =2,3294 =2,0706 —-1.8117 =1.5529
-0.5176 -0.2588 =0,0000 ‘
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0,0000 0.,0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.,0000 0.,0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 04,0000

1.2941
3.8823
5.1764
~5.1764
-3.8823
-1.2941

0.0000
0.0000
0.0000
0.0000
0.0000

0.0000 .

1.5529
401411
4e1411
-6.72117
=3.6235
-1.0353

0.0000
0.0000
00000
0.0000
0.0000
0.0000

53

1.8117
443999
3.,1058
=5.9528
~3.3646
=0.7765

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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1,9319 0.9659 0.0000 0.9659 1.,9319 2.8978 3.8637 4.8296 5,7956 647615
77274 846933 9.6593 10.6252 11.5911 12,5570 13.5230 14.4889 15,4548 16.4207
17.38A7 18.3526 19.3185 20,2844 21,2504 22.2163 23.1822 23.1822 23.1822 23.1822
23.1822 23.1822 23.1822 23,1822 23,1822 23,1822 23.1822 23.1822 23.1822 22.2163
21.2504 2042844 19,3185 18.3526 17,3867 16,4207 15.4548 14,4889 13.5230 12,5570

1145911 10.6252 96593 Be6933 T.7274 647615 5.7956 4.8296 3.8637 2.8978
1.9319 0.9659 00,0000

1
/%
//
SAMPLE PRINTED OUTPUT

NP NW BK

63 1 0.1039861E+00 O.

PX

THET
78539R82E+00

-0.5176 =0.2588 0.,0000 0.2588 045176 0.,7765 140353 1.2941 1.5529 1.8117
2.0706 2.3294 2.5882 2.8470 3.1058 33,3646 3.6235 3.8823 4.1411 4.3999
4,.6587 4,9176 5.1764 5.4352 5,6940 5.9528 6.2117 5.1764 441411 3.1058
2.0706 1.0353 0.0000 -1.0353 -2.0706 -3,1058 =4.1411 -5.1764 —6.2117 =-5.9528

~5.,6940 =5,4352 ~5,1764 =4,9176 —4.6587 ~4.3999 —-4.1411 -3.8823 -3.6235 ~3,3646

“3.1058 =2,8470 =2.5882 ~2.3294 ~2,0706 =1.8117 —=1.5529 -1.2941 -1.0353 —-0.7765

-0.5176 -0.2588 -0.0000

PY

0.0000 0.0000 ©0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0,0000 0.0000 0.0000 0.0000 0.0000 0.,0000 0.0000 0.00G00
0.0000 0.0000 0.0000 0.0000 ©.00006 0,0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 ©0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000
0.0000 0.0000 0,0000 0.,0000 0.0000 0,0000 0.0000 0.0000 0.0000 0.,0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.,0000

Pz

1.9319 0.9659 0.0000 00,9659 149319 2.8978 3.8637 4.8296 5.7956 647615
7.7274 846933 90,6593 10.6252 11.5911 12.5570 13.5230 14.4889 15,4548 16.4207
17.3867 18.3526 19.3185 20.2844 21.2504 22,2163 23.1822 23.1822 23.1822 23.1822
23.1822 23.1822 23,1822 23.1822 23.1822 23.1822 23.1822 23,1822 23.1822 22.2163
21.2504 2042844 1943185 1843526 17,3867 1644207 15.4548 14.4889 13,5230 12.5570
11.5911 1046252 9.6593 846933 7.7274 6.7615 5.7956 4.8296 3.8637 2.8978
1.9319 049659 0.0000

LL
1

VR

0.3666E+00 0.3734E~04-
-0.5129E+00-0,7492E+00~
—0.3042E+00-0.9494E+00~
-0.9706E+00 0.,3978E+00-

0.41220+00~041402E+01
~0.14406+01 0.1143E+00
0.1026E+01 0.1393E+01
0.1011E+01 0.1502E+01
0.1693E+01 0.3573E+00

0.9808E+00=0,1786E+00~0.9330E+00-0+3514E+00-0+8550E+00
0.657TE+00-0.6193E+00-0.7813E+00~0.4693E+00~0,8796E+00
0.1292E+00=-0.9886E+00 0.5001E~01~0.9957E+00 0.2276E+00
0.9142E+00 0.6216E+00-0.1063E+01 0.6200E+00-0.,1323E+01
0el949E+00-041448E+01-0e2699E~01-0.1461E+01-042482E+00
0,1038E+00 0.7L65E+00 0.1575E+01 0.R761E+00 0.1492E+01
0.1165E+01 0.1279E+01 041292E+01 0.1151E+01 0.1404E+01
0.8596E+00 0,1583E+01 0.6991E+00 0.1647E+01 0.5311E+00
0.1721E+01 0.1796E+00
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V. MAXIMUM CAIN-QUALITY RATIO

The program described in this section computes both the real and complex
currents (33) and (29) for maximum gain-quality ratio. The activity on data

sets 1 (punched card input) and 6 (direct access input-output) is as follows.

READ(1,7) N, N5, N6, BK
7 FORMAT (3I3, El4.7)
REWIND 6
NZ = N*N
SKIP N6 RECORDS ON DATA SET 6
READ(6) (z(I), I = 1, NZ)
DO 15 K=1, N5
READ(1, 16) (VR(I), I = 1, N)
16  FORMAT (7E1l.4)
15  CONTINUE

The first program described in Section IV has stored [R}] + j[wX'] for
propagation constant BK on the (N6+1)th record of data set 6., The complex
variable VR is the receiver excitation computed by the second program de-

scribed in Section IV.

It was necessadry to multiply [wX'] by 0.1 in DO loop 14 to avoid an
overflow in the matrix inversion subroutine MINV., [23] DO loop 19 stores
the complex current (29) in FI., The gain-quality ratio attained by this
complex current (29) will be stored in GB2. If either the real or imaginary
part of the complex current (29) is zero, (32) becomes impossible to compute.
In this case the maximum gain-quality ratio GBl attainable by a real current
is set equal to GB2, the real current for maximum gain-quality ratio is stored
in CUR by DO loop 28, and execution proceeds to statement 29. If the complex
current has both non-trivial real and imaginary parts, the logic between
statements 27 and 29 implements (30), (31), (32), and (33). DO loop 33 norma-

lizes CUR so that the element largest in magnitude is unity.
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data was taken from the sample printed cutput of the second program in

Minimum-allocations are given by

COMPLEX Z(N*N), VR(N), FI(N)

DIMENSION XP(N*N), XPL(N*N), LA(N), LB(N),
RV(N), AV(N), RI(N), AI(N), CUR(N)

Section IV.

LISTING OF PROGRAM TO COMPUTE CURRENTS FOR MAXIMUM GAIN-QUALITY RATIO

/7

" 12

13
10

14

25

16

17

The particular receiver excitation VR appearing in the sample input

(0034 ,EE4342) 4 "MAUTZ ,J0DE*,REGION=140K
// EXEC SSPCLG,PARM.FORT=T'MAP!
//EORTLSYSIN DD =

COMPLEX Z(900),VR(30),FI(30)
DIMENSTON XP(900),XP1(900),LA(30),LB(30),RV(30)+AV(30),RI(30}

DIMENSION AI(30),CUR(30}
READ(1,7) Ny¢NS5S,N6,BK
FORMAT(3I3,E14.7)
WRITE(3,8) NyNE54N6,BK

FORMAT('O N N5 N6's6X,"BK'/1Xy3I3,E147)

ETA=376.730

P1=3.141593
Cl=BK*BKXETA/(44%P])
REWIND 6

NZ=N*N

IF(N6) 10,10,12

DO 13 J=1.N6

READ(6)

CONTINUE
READ(6)Y(Z(T)qaI=1,4NZ)

DO 14 J=1,4NZ
XP(J)I=AIMAG(Z(J))
XPl{J)=a1%XP{J)

CONTINUE

CALL MINV(XPLlyN,DsLA,LB)
DO 25 J=1.NZ
XPL{J)Y=.1%XP1EJ)
CONTINUE

DO 15 K=1,4N5
READ(1,16)(VR{I)s1=14N}
FORMAT{7E1l.4)
WRITE(3,17)(VR(I),I=1,4N)
FORMAT{'OVR*/(1X,TE1ll.4})
00 18 J=14N
RV{JY=REAL(VR{J))
AV(JY=AIMAG(VR{J) )}

. e e T
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18 CONTINUE

d S1=0.

( Se=0.
DO 19 J=1,N
FI{J)=0.

. J3=(J-1)=N
DO 20 I=1,4N
Jl=J3+1

FI(J)I=FTI(JI+XPLIJLI®VR(])

20 CONTINUE
RI{J)Y=REAL(FI(J))
AT(J)=AIMAG(FI(J})
S1=S1+ABS(RI(J))
S2=S2+ABS(AI(J))

19 CONTINUE
GR2=0.

DO 26 J=1,N
GB2=CB2+RV{J)=RI(JI+AV(I)*AT ()

26 CONTINUE
GB2=GB2*C1
IF({S1%52).ME.0.) GO TO 27
GB1=(GR2
DO 28 J=1,N
CUR(JI=RI(JI+AT ()

28 CONTINUE
GO TO 29

27 S1=0.

S2=0.

$3=0.

DO 30 J=1,N

S1=S1+RV(JI=®=RI(J)
e $52=52+AV(J)*AT(J)

S3=S3+RV(J)*AT(J)

30 CONTINUE
A=(S1-52)/(2.%83)
SA=SORT{A%A+1,)
C=-A+SIGN(SA,S3)
GB1=C1l#(S1+C*S3)

DO 31 J=1,4N

CURGJ)=RI(JI)+CxAT(J)
31 CONTINUE -
29 S1=0.

J1=1

DO 32 J=1,4N

S2=ABS(CUR(J))

IF{S2=-S1) 32,32,24

24 S1=S2
Ji=J

32 CONTINUE
Sl=1./CUR(JL)

DO 33 J=1,N
CUR(J)I=CUR(J)*S1

33 CONTINUE
WRITE(3,34) GB1,GR2

34 FORMAT('0'44X,'GB1T,8X4'GB2'/1X,2E11.4)
WRITE(3,35)(CUR(J)+d=1,N)

35 FORMAT('OREAL CURRENT FOR MAXIMUM GAIN-QUALITY RATIO'/(1X,10F8.4))
WRITE(3436)(FI(J)yJd=14N)

36 FORMAT(*OCOMPLEX CURRENT FOR MAXIMUM GAIN=-QUALITY RATIO'/{(1X,7E1ll,

14y)

15 CONTINUE
sTOP

' END
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PRp——

/% |
//GO.FTO6FO0L DD DSNAME=EE0034 .REV1,DISP=0LD,UNIT=2314, X '
1/ VOLUME=SER=SU0004DCB={RECFM=VSsBLKSTZE=2596,LRECL=2592)

//GOLSYSIN DD =
30 1 2 0.1039861E+00
0.3666E+00 0.3734E~-04-0.9808E+00-0.,1786E+00~0,9330E+00-0.3514E+00~-0,8550E+00 :
~0.5129E+00~047492E+00~0,6577E+00=0,6193E+00~0.7813E+00-0+4693E+00-048796E+00 i
-0.3042E+00~0,9494E+00-041292E+00~0,9886E+00 0.5001E-01-0,9957E+00 0.2276E+00 i
=0.3706E+00 043978E+00-0.9142E+00 0.6216E+00~0.1063E+01 0.6200E+00-0.1323E+01
0.4122E+00~0,1402E+01 0.1949E+00~0.1448E+01-0.2699E-01~0.1461E+01-0.2482E+00
-0.1440E+01 0.1143E+00 0.1038E+00 0.7145E+00 0.1575E+01 O.8761E+00 0.1492E+01
0.1026E+01 0.1393E+01 0,1165F+01 0.1279E+01 0.1292E+01 0.1151E+01 0.1404E+01
041011E+0L 041502E+01 0.8596E+00 0.1583E+01 0.6991E+00 0«1647TE+01 045311E+00
0.1493E+C1 0.,3573E+00 0.1721E+01 0.,1796E+00 i
/% ,
/7

SAMPLE PRINTED QUTPUT ‘
;

N N5 N6 BK
30 1 2 0.1039861E+00

VR
0+3666E+00 043734E-04-0.9808E+00~04,17RB6E+00~0.9330E+00-0,3514E+00~0.8550E+00
=0.5129F+00-0.7492E+00-0.6577E+00-0.6193E+00~0.7813E+00-0,4693E+00-0.,8796E+0Q0
=0.3042E+00-0.,9494E+00~-0.1292E+00-0,9886E+00 0«5001E-01-0.9957E+Q0 0.2276E+00 !
~0.9706E+00 043978E+00-0.9142E+00 Q.6216E+00~0.1063E+01 0.6200E+00-0.1323E+01
0.4122E+00-0.1402E+01 0.1949E+00~041448E+01~042699E~01-0.1461E+01=-0.2482E+00
-0.1440E+01 0,1143E+00 0.1038E+00 0.7165E+00 0,1575E+01 Q0.R761E+00 0.,1492E+01
0.1026E+01 041393E+01 0.1165E+01 0,1279E+01 0.1292E+01 0.1151E+01 041404E+01
O0e1011E+0Y1 0.1502E+01 0«8596E+00 0,1583E+01 0.6991E+00 0.1647E+01 0.5311E+00
0.1693E+01 0.3573E+00 041721E+01 0.1796E+00

GB1l GB2
0.1063E+00 0.,1592E+00

REAL CURRENT FOR MAXIMUM GAIN-QUALITY RATIO '
03773 041698 -0.0015 —=0.1454 —-0.2611 03496 =-0.4126 -0.4524 =-0.4711 -0.4726
=0e4602 =0.4390 ~0.4131 =-0,3734 -0,3175 -0.2340 -0.1101 Q0.0678 0.3279 0.5807
0.7566 048804 049584 0.9971 1.0000 0.9710 049117 0.8233 0.7063 Q.5613

COMPLEX CURRENT FOR MAXIMUM GAIN-QUALITY RATIO v
0.1066E~01~0,4325E~03 0.7057E-02-0,2188E-02 0.4475E~02-0.3982E-02 0.,2647E-02

=0.5790E-02 0.1517E-02-0.7544E-02 0,9928E-03~-0+9186E-02 0.9806E-03-0,1067E-01
0.1387E-02~0.1198E-01 0.,2114E~02-0.1306E-01 0.3068E-02-0.1394E~01 0.4148E-02 .

-0.1460E-01 0.5251E-02-0.1507E~01 0.6267E-02-041535E~01 0.6736E-02-041482E-01 ;
0.,69256-02~0,1365E~-01 0.,7113E-02-0.,1183E~-01 0.7516E-02-0.9245E-02 0.8347E-02

~0¢5751E—-02 0.9911E-02-0.9462E~-03 0.1178E~01 0.3414E-02 0.1338E-01 0.6187E-02
0.1480E~01 Q0.7879E-02 0.1599E~01 D0.8680E~-02 0.1693E-01 0.8771E~02 0.1755E-01 i
0.B291E~-02 0.1782E-01 0.7371E-02 0,1764E~-01 0.6114E~02 0.1696E~-01 0,4619€-02
0,1567F=01 0,2975E-02 0.,1368E-01 0,1277E-02
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VI. PATTERN SYNTHESIS

A program has been written to calculate 8 and o appearing in (34)
and (35). The activity on data sets 1 (punched card input) and 6 (direct

access input-output) is as follows.

READ(L,4) N, NT, N6, N7, N8

4 FORMAT (201 3)
REWIND 6
NTN = N*NT
NZ = N8N
SKIP N6 RECORDS ON DATA SET 6
READ(6) (VR(I), I = 1, NTN)
SKIP N7 RECORDS ON DATA SET 6
READ(6) (FI(I), I = 1, NZ)
READ(L,4)M,M9
READ(1,4) (NE(I), I = 1, M)
READ(1,4) (\M(I), I = 1, N9)
READ(1,7) (RE(I), I = 1, M)

7 FORMAT(7E11.4)
READ(1,7) (AE(I), I = 1, M)

A slight modification of the program of Section IV has stored receiver
excitations VR for at least all the M different unit plane waves correspond-
ing to E: of (36). The receiver excitation (53) for the Jth unit plane wave
and the Ith triangular expansion function should be stored in VR((J-1)*N+I).
The program of Section III of [20] has stored the eigencurrents FI for the
unloaded surface. The M and N9 of the program correspond respectively to M
and N of (36). The real and imaginary parts of E: of7(36) are read in through
RE and AE. The receiver excitation for the (NE(I))th unit plane wave must be
used to calculate a far field that can be compared to RE(I) + jJAE(I). The
(MM(n)) th eigencurrent is the nth eigencurrent to be added in the sum (34). The
variable NM is necessary because the program of Section III of [20] stores the
eigencurrents in order of increasing A while it may be preferable to do the

sum (35) in order of increasing |A].
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DO loop 20 stores the real and imaginary parts of the matrix [A] of
(38) in RA and AA, If NT > M, RA + jAA has extra rows. If N8 > N9,
RA + jAA has extra columns. With RA + jAA thus computed recyeling could be
obtained if all the logic beyond statement 37 were put in a DO loop. DO loop
45 stores [E*][E] in EE.

The index J of DO loop 25 corresponds to n in (36). DO loop 26 stores
the real and imaginary parts of [X*E] in AEl and AE2. DO loop 28 puts the
Jth column of [RE(X*A)] in B according to the symmetric storage mode de-
scribed in page 4 of [23]. DO loop 32 stores [Re(A*A)] in BB columnwise.

The subroutine MINV [23] inverts BB. DO loop 34 stores [Re(K*A)]_lRe[K*E]
in Tl and [Re(K%A)]_lIm[K%E] in T2. Expressions (43)-(45) are stored in Cl,
C2, and C3. Since the Fortran supplied subroutine ATAN gives an angle between
-90° and 900, there are two solutions BET(1) and BET(2) to (46). DO loop 46
computes the mean square error (42) for 8 = BET(K). DO loop 50 stores [a] of
(40) in AL. DO loop 52 stores the coefficients of the triangular expansion
functions for nil anjﬁ of (34) in CUR. 1If the given far electric field Ee is
written

-jkr

B ; ~jwpe Em
9 4rr o

where E: ig the data RE + jAE, then ejB times CURR is the electric current
(evaluated at the peaks of the triangular expansion functions) whose far field
approxiﬁates Ee.
mation to RE + jAE in E1l and E2.
Minimum allocations are given by
COMPLEX VR(NT#*N)
DIMENSION FI(N8#N), RA(NS*NT), AA(NS*NT),
NE(M), NM(N9), RE(M), AE(M), AE1(N9),
~ AE2(N9), B(N9#(NO9+1)/2), BB(N9#N9),
ML(N9), MM(N9), T1(N9), T2(N9), AL(N9),

CUR(N), E1 (M), E2(M)

DO loop 54 stores the real and imaginary parts of the approxi-~

\
/

—m o e

oy — =
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The sample input data and printed output are for the wire triangle
of Fig. 1 with Ee of (48) evaluated at the 15 angles 10° to 170° in steps
of 10° except for 50° and 130°. The receiver excitations VR have been
calculated at the 73 angles 0° to 180° in steps of 2.5° and stored in
record 4 of data set 6 whereas the eigencurrents of the unloaded surface

have been stored on record 5 of data set 6.

LISTING OF PROGRAM FOR PATTERN SYNTHESIS

/7 {00344EE9342) 9 "MAUTZ,,JOET REGION=140K
// EXEC SSPCLG,PARM.FORT='MAP!
//FORTLSYSIN DO =
COMPLEX VR(21901}),U2
DIMENSTION FI(900)+RA(584)4AA(5R4),NE(30)yNM{30})yRE(30})4AE(30)
DIMENSTUN AEI{(30)4AE2(30) ,8(465)4BB(900) +ML{(30} ,MM{30),T1{30}
DIMENSTION T2(30)4BET(2)4ER(2)4AL(30)+CUR(30}+E1(30),E2(30)
P2=3,141593/2.
READ(144) MyNT4N64NT4N8
4 FORMAT(2013)
WRITE(345) NyNT N6,N74N8
5 FORMAT('O N NT N6 N7 NBY/1X,513)
REWIND 6
NTN=N=NT
NZ=NB8¥N
IF(NG) 11,411,112
12 DO 13 J=1,4N6
READ(6)
13 CONTINUE
11 READ(A)(VRI(T),I=1
WRITE(3414)(VR(I)}
14 FORMAT({YOVR'Y/(1X,
J1=TABS(N7)
IFINT) 15,16,17
15 DO 18 J=1,.J1
BACKSPACE 6
18 CONTINUE

+NTN)
1151431
6E11.4))

G TO 16
17 DO 19 Jd=1l,J1
READ(6)

19 CONTIMNUE :
16 REAN(AHY(FI(TI) yT=14N7)

WRITE(3424) (FI(1)y1=1,47)
24 FORMAT('OFI'"/(1X,7E11.4))

DO 20 J=1,4N8

J1=(J=-1)=NT

Jb6=(J=1)*N

DO 21 T=14NT

J3=(I-1})*N
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22
21
20
36

37

3R

23

T

29

45

26

28
27

J2=J1+1

U2=0.

DO 22 K=1,N

J4=4d3+K

J5=J6+K
U2=U2+VR(J4)I=FI (Jb5}
CONTINUE

RA(J2)V=REAL(U2)
AA(J2)=AIMAG(U?)

CONTINUE

CONTINUE
WRITE(3436)(RA(TI),1=1,7)
FURMAT(YORAY /(1X,T7ELL.4)}
WRITE(34371{AA(T)4I=1,47)
FORMAT(YOAA' /{1X,7ELL %)}
READ(L,4) MyNY
WRITE(3,38) M,N9
FURMATI'O M N9'/1X,4213)
READ(Ly&4)Y(NE(I)yI=14M)
WRITE(349)(NE(I},1=14M)
FORMAT('OMEY/{1X,2013})
READ(144)(NM(I),I=1,NG)
VRITE(3423)1(NM(I ) I=14N9)
FORMAT(YONME /(1X,2013))
READ(L47)(RE(I),I=1,M)
FORMAT(7E1le4)
WRITE(3,8)(RE(I),1=1,M)
FORMAT('ORE'/({1X47E11.4)}
READ(L+7)Y(AE(TI)s1=1,M)
VRITE(3429) (AE(T )Y I=14M)
FORMAT{'OARY/{1X,TELL.4))
EE=0.

DO 45 J=1,M
EE=CE+RE(J)HRELJ)+AEB(IIRAE(J)
CONTINUE

J3=0

P 2% J=1,N9
JI=(NM{J)=1)%NT

AELI(J)=0.

AE2(J)=0.

DO 26 I=1,.M

J2=JL1+NE(T)
AEL({JY=ABY(U)+RE(T }*RA(J2)+AELT I®AA(J2)
AEZ2(JI=AE2(J)+AE(TI)®RA(TJZ2I-RE(TI)xAA(J2}
CONTINUE

DO 27 I=1,4

J3=43+1

R{J3}=0.

JE={NM{T)=1)=NT

Df) 28 K=1,M

Ja=Jl+NE(K}

J5=J6+NE (K}
B(J3)1=B(J3)+RA(JI4)I=RA(ISI+AA(ILI*RAALID)
CONTINUE

CONTINUE

J8=0

DO 32 K=1l,J

Ja=(K=1}%])

DG 33 L=1,K
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33
32

35
34

43

51

46

47

48

49

50
56

57

53

J8=J8+1

J5=J4+L
Jo=(L-1)%J+K
RB(J5)=B(J8)
BB{J6)=RBB(J5)
CONTINUE

CONTINUE

CALL MINV(BB,JsDoMLoMM)
DO 34 K=1,J
T1(K)=0.

T2(K)=0.

Jl=(K=1)=J

DO 35 I=1,J

J2=J1+1
TL(K)=TL(K)+BB(J2)*AEL(]
T2(K)=T2(K)+BR{J2)*AE2(1]
CONTINUE

CUNTINUE

Ci=0.

c2=0.

€3=0.

DO 43 I=1,4
Cl=Cl-TL(I)®AE1(I)
C2=C2=T2(1)%AE2(1)
C3=C3-T2(1)%AEL1(])
CONTINUE

C3=C3%2,
BET(1)=,5%ATAN(C3/(C1=-C2))
BET(2)=RET(1)~SIGN(P2,BET(1})
WRITE(3,51) J

FORMAT('0',13,' MODE SOLUTION')

DI 46 K=142

CS=COS(RET(K))

SN=SIN(RET(K))
ER(K)=C1%CS*CS+C2%SN*SN+C3%SN*CS+EE
CONTINUE

IF(ER(1)=ER(2)) 47,47,48
BETA=BET(1)

ERR=ER (1)

G0 TO 49

BETA=RET(2)

ERR=ER(2)

SN=SIN(RETA)

CS=CNS(BETA)

DD 50 I=1,J ]
AL(T)=T1(I)%CS+T2(I1)*SN

CONTINUE

WRITE(3,56) RETA,ERR

FORMAT (10" ,4X, tBETA' 47X, 'ERR1/1X42E1144)
WRITE(3457) (AL(I),1=1,J)

FORMAT ('OMODE COEFFICIENTS'/(1X,7E11l.4))
DO 52 K=1,4N

CUR(K)=0,

DO 53 I=1,J

JOzK+ (NM(T)=1)%N

CUR(K)=CUR(K)+AL (T)%FI(J6)

CONTINUE

)
)
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52 CONTINUE
WRITE(3,58)(CUR({I}),I=1,N}
58 FORMAT('OCURY/({1X,7E11.4))
DUy 54 K=1.M
S$4=0,
E2(K)=0.
MY 55 I=1,J
JAE=(NM{T)=1)ENT+NE(K)
S4=S4+AL(T)=RA(JA}
F2{K)=E2{(K)}+AL(T)®AA(J6)
85 CONMTEINUE
FLIK)=CS*S4-SN®E2 (K )
E2(KY=SN*S4+CS*%E2(K)
54 CONTINUE
WRITE(3,59)(E1(I)s1=14M)
59 FURMAT(IORLI'/{1X,TELL.4))
VRITE(3,60)(E2(1)s1=1,M)
6N FUORMAT(TOE2'/(1X47E11.4))
2% CONTINUE

STop

FND
/3
//GOLFTOAFOCY DI DSMAME=EEND34.,REVILDISP=0LD,UNIT=2314, X
i VALUME=SER=SU0004,DCR=(RECFM=VSyRLKSI7E=259A,RECL=2597)

//GOSYSIN BD %
3073 3 0 8

15 1
5 9 13 17 2% 29 33 37 41 45 49 57 61 A5 A9
2

0e3420F+00 0.6428FE+00 0.8660E+00 Q0.984RE+00 0.86A60F+00 0.6428E+00 0.3420F+00
(. 0000F+00=0,3420E+00-0,6428E+00~0.8660E+00-0.984RE+00-0.,RAA0E+00~0.6428E+00
=} 3420F +00
0.0000E+00 0,0000E+00 0,0000E+00 0.0000F+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 040000E+00 0.0000E+00 0.,0000E+00
VeNO0OE+O0 '
kS
//

SampPLE PRINTED QUTPUT

NONT MA NT NR
30 73 3 0 R

VR .

0eH157F+00 0.3891E-01 0.5053E+00 0.1029F+00 0.474AE+400 0.2017E+00

F1

1 Q240E+00 0.9463E+00 0.9678E+00 0.,98B49E+00 049959E+00 0.1000E+01 0.9969E+00

RA
Uell?FFE+02 0,1129E+07 0.1131E+02 0.1134E+02 0.1139E+02 0.1144E+02 0.1150E+02

AA .
e1625F+01 0,1A06E+01 0.1549E+01 0.1454E+01 0.1322E+01 0.1150E+01 0.9399E+00

Mo 9
15 1

JEpE—
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NE ‘
5 9 13 17 25 29 33 37 41 45 49 57 61 65 69

NM
2

RE = '
0¢3420E+00 0.6428E+00 0.8660E+00 0.984RE+00 0.BHA0E+00 0.6428E+00 De3420FE+00
0.0000E+00~-0.3420E+00-0.6428E+00~0.,8660E+00-0,9848E+00~0.8660E+00~-0.6428E+00

=0.3420E+00

AE
0.0000£+00 0.0000E+00 0.0000E+00 0.0000E+00 0,0000£+00 0.0000E+00 0.0000E+0Q0
0.0000FE+00 0.0000E+00 0.0000E+00 0.0000E+00 D.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00

1 MODE SQLUTION

BETA ERR
041571E+01 0.5168E+01

MUDE COEFFICIENTS
0.1631E~01

CUR
~042539E~06 0.3520E-02 0,6767E=02 0.9728E=02 0.1726E~01 0el425E=01 0.1562E-01
0.1631E-01 0.1629E-01 0.1556E-01 0.1417E-01 0.1217E~01 0.9662E~02 0.6623E~02
0e337RE=02 049423E-07-0.3378E-02~0.6623FE~02-0,9661E-02-0.1217F-01-0.1417E=01
~0¢155AE~01=041629E~01=0,1631E~01-041562E=01=0+1425E=01~0,1226E=01~0.9728E-02
~0.6T76TE=-02-0.3520E~02

£l

0.7580E=01 0.1479E+00 0.2108E+00 0.2564E+00 0.2575E+00 0.2010E+00 0.1105E+00
~0e1012E~06-041105E+00-042010E+00~0,2575E+00-042564E+00-042108E+00~041479E+00
—0.7580F-01

E2
~0¢2111E-01-045115E-01~0,9732E-01~0.1631E+00~043375E+00~0,4217E+00-0.,4815E+00
~0.5032E+00-0.,4815E+00-0.4217E+00~0.3375F+00~0.1631E+00-0,9732E-01-0,5115E-01
-0.2111E~01
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VII. SPARSELY LOADED SCATTERERS

A program has been written to compute [1]2 of (51) and [XL] of (52).
The activity om data sets 1 (punched card input) and 6 (direct access input-

output) 1s as follows.

READ(1,11) N, N6
11  FORMAT (20I3)
NZ = N*N
'REWIND 6
_SKIP N6 RECORDS ON DATA SET 6
READ(6) (z(I), I = 1, NZ)
READ(1,11) NL
READ(1,11) (L(I), I = 1, N)
READ(1,40) (FI(I), I = 1, N)
40  TFORMAT (10F8.4)

The impedance matrix Z of order N has been stored on the (N6+1l)th record

of data set 6 by the program of Section II of [20]. Loads occur at the peaks
of the (L(I), I = 1, NL)th triangular expansion functions. There are no loads
at the peaks of the remaining (L(I), I = NL + 1, N)th triangular expansion
functions. The real current to be resonated is (FI(L(I)), I = 1, NL) at the

peaks of the (L(I))th triangular expansion functionms.

DO loop 16 stores in X the reactance matrix arranged so that rows and
colums corresponding to load positions come first. The subroutine MINV [23]
inverts the matrix [X}zz of (50) stored in X22 by DO loop 23. DO loop 25 puts
[XZI][I]l of (51) in XI. DO loop 27 stores [1]2 of (51) in T2. DO loop 29
stores [XL] of (52) in XI. DO loop 32 changes the current FI at the no load

positions to [I]2 of (51). DO loop 34 stores in XL the reactive loads arranged

in the order of the triangular expansion functions implicit in the input data
Zand FIL.

Minimum allocations are given by
COMPLEX Z (N*N)
DIMENSION L(N), FI(N), X(N*N),
X22 ((N-NL)**2), LB(N-NL), MB(N-NL),
XI(N), T2(N-NL), XL(N)
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The sample input data and printed output are for resonating the
minimum Q end-fire current on the wire triangle of Fig. 1 with loads on

every other expansion of function.

LISTING OF PROGRAM FDR SPARSELY LOADED SCATTERES

/7 (0034 4EE+34+2) 4 "MAUTZ JOE',REGTON=140K
// EXEC SSPCLG,PARMJFORT='MAP?
//FORTLSYSIN DD =
COMPLEX Z(900)
DIMENSION L(30)+FI(30}),X{900)},X22(900),LB(30)4MR(30),XI(30}
DIMENSION T2(30)4XL (30} ‘
READ(Yy11) NyN6&
11 FORMAT(2013)
WRITR(3,35) N.Nb
35 FORMAT('C N N6'/1X,213)
NZ=N*N
REWIND 6
IF(N6) 36436,37
37 DO 13 J=1,N6
READ(A)
13 CONTINUE |
36 READ(6)Y(Z(I1)41=14NZ}
WRITE(3,38)(Z(1),1=1,3)
38 FORMAT('0OZ'/1X46E11.4)
READ({L,+11) NL
WRITE(3,12) NL

12 FORMAT(*ONL*/1X,13)
READ(L1411)(L(TI)sT1=14N)
WRITE(3414)(L{T)sI=14N)

14 FORMAT('OL'/(1X,2013}))
READ{1440)(FI{I)sI=14N)
40 FORMAT(10F8.4)
WRITE(3441)(FI(TI)41=14N}
4] FORMAT('OFI'/(1X.10F8,4))
NL1=NL+1
NLZ=N-NL
DO 16 J=1,4N
J1=(J=-1)*N
Ja=(L{J)=1) =N
DO 17 TI=1,N
J2=J1+1
J5=J4+L (1)
X{J2)=AIMAG{Z (J5Y})
17 CONTINUE
16 CONTINUE
J1=0
PO 23 J=NL1,4N
J2=(J=-1) %N
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24
23

26
25

28
27

30

31

29

32

33

DO 24 T=NL14N

Jl=Jd1+1

J3=J2+1 :
X22(J1)=x(J3)

CONTINUE

CONTINUE

CALL MINV(X22yNL24D,LByMB)
J1=0 .

D0 25 J=NL14N

Ji=Jd1l+1

XI{(J1)=0.

Ja=(J-11}*N

DO 26 I=1,NL

J2=44+1

J3=L(1)
XT(JL)y=XI(J1)I+X{(J2})*FI(J3)
CONTINUE

CONTINUE

DO 27 J=1,NL2

T20J1)=0.

J2=(J=1)*NL2

DO 28 I=1,NL2

Ji=J2+I
T2(4)=T2(J)-X22(J1)=XT1(1)
CONTINUE

CONTINUE

DO 29 J=14NL

X1(J)=0.

J2=(J=1)*N+NL

DO 30 I=1,4NL2

Jl=J2+1
XI(J)=XI(3)+X(J1)y=T2(1)
CONTINUE

Ja=(J-1)*N

DO 31 I=1,NL

Jl=d4+1

J3=L (I}
XT(J)Y=XT(JI+X(JL1)*FI(J3)
CONTINUE

J3=L(J)
XI(J)==XT(JH)/FI(J3)
CONTINUE

Ji=0

DO 32 J=NL1,N

J3=L(J)

J1=J1+1

FI(J43)=T2(J1)}

CONTINUE
WRITE(3441)(FI(I)sI=14N)
B0 33 J=NL1,4N '
XI(J)=0.

CONTINUE

DD 34 J=1,4N

J3=L(J)




XL{J3)=XI(J)
34 CONTINUE

//GOFTO6FO01 DD DSNAME=EEQO34.,REV1DISP=0LD,UNIT=2314,
// VOLUME=SER=SUO004+DCB=(RECFM=VS4sBLKSTZE=25964LRECL=2592)

WRITE(3439)(XL{I)yI=1,N)
39 FORMAT('OXL'/(1X47E11.4))

STOP
END

/%

//GO.SYSIN DD =*

30 0 '

15

1 3 5 7 911 13 15 17 19 21 23 25 27 29 2

12 14 16 18 20 22 24 26
-0.0300 ~0.0266 =0.0206
0.3806 0.5258 0.,7178
0.3810 0.2672 041800
/%
s

SAMPLE PRINMTED QUTPUT

N N6
30 C

Z

0.5801E-01-0.5873E+03 045810 E~-01

NL
15

L
12 14 16 18 20 2224 26

FI

~0.0300 =0.0266 -0.0206
0.3806 (.5258 0.7178
0.3810 0.2672 0.1800

FI

-0.0300 -0.0209 ~0.0206
1.380A6 05803 0.7178
0.3R10 (C.315R 0.1800

XL

28 30
~-0.0102

0.8825

0.1142

1 3 5 7 9 11 13 15 17 19 21

28 30

0.8825
O.l142

-0,0001
0.8521
0.1468

0.0063

0.9707

N.0655

0.0309
1.0000
0.0304

4 6

0.0660
0.9716

8

10

0.1147
0.8837

69

X

0.1803 0.2673
0.7191 0.5267

0.2657TE+03 0.5784E~01 0.3124E+02

23 25 27 29 2

0.0063
0.9707
0.0655

0.0063
0.9707
0.0A55

0.0309
1.,0000
0.0304

0.0501
0.9747
0.0496

& 6

0.0660
0.9716
0.0058
0.0660

0.9716
0.0058

8

10

041147
0.8837
-0.,0107

0.1471
0«B530
~0.0005

0.1803 0.2673
0.7191 0.5267
~0.0210 -0.,0268

0.,1803 0.3157
0.7191 0.5811
-0.,0210 -0.0211

0.20276+03 0.0000E+00 0.6206E+03 0.,0000E+00-044060E+04 0.0000E+00-0.6929E+03
0.0000E+00-0,4022E+03 0.,0000E+00-0,2557E+03 0.0000E+00-0,1677E+02 0.0000E+00
0.4981E+02 0.0000E+00 0.5028E+02 0.,0000E+00-0.1615E+02 0.0000E+00-0.2555E+03
0.0000E+00-0.4038E+03 0.,0000E+00-0.6995E+03 0.0000E+00-0,4419E+04 0.0000E+00

0.6147E+03 0.0000E+00
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