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ABSTRACT

Direct time domain solutions for radiation from and scattering by
thin conducting wires are considered. The problem is formulated in terms
of two coupled integrodifferential equations obtained from the retarded
potentials, the continuity equation, and the boundary conditions for the
wire. Application of the method of moments reduces these equations to a
set of simultaneous matrix equations in terms of currents, charges, and
potentials. A time domain reciprocity theorem is developed which demon-
strates the relationship between reciprocity and the adjoint operator for
the problem.

Two moment solutions are presented for straight wires: (1) a point
tested solutipn and (2) a pulse tested solution. The pulse tested solu-
tions are extended to arbitrarily bent wires and applied to radiation and
scattering by a conducting circular wire loop. The radiation field is
found for both straight and curved wirés by a direct application of the
reciprocity theorem. All solutions are presented as algorithms suitable
for digital computation. The algorithms are iterative by nature, and
inexpensive in terms of computer time.

Illustrative computations are given for the straight wire antenna
excited by a unit step voltage applied at an arbitrary driving point.
Further results are presented for the straight wire scatterer excited by
a plane wave with unit step time dependence. Similar results are presented
for the loop as an antenna and a scatterer. 1In all cases, the wire may be
loaded with arbitrary resistive loads. TFourier transform methods are

used to obtain frequency domain information.
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Chapter 1

INTRODUCTION

This dissertation examines direct time domain solutions for thin
wires utilizing methods similar to those proposed by Harringtonl in the
frequency domain. The time-dependent integrodifferential operators are
approximated by matrix operators which incorporate the initial and boundary
conditions within the formulation. The proposed solutions are presented
as algorithms suitable for digital computation. The algorithms are iter-
ative by nature and hence inexpensive in terms of computation time.

Direct time domain solutions have some interesting aspects when pre-
sented in the language of linear spaces and the methoa of moments. Because
the time domain operator is not self-adjoint, the adjoint space must be
used in evaluations by the method of moments. The relationship between
time domain reciprocity and the method of moments is presented with em-
phasis placed on the equivaleﬁce of the reciprocity theorem and the defini-
tion of the time domain adjoint operator.

Numerical results are presented for the current and charge induced
on a straight wire scatierer excited at arbitrary incidence angles by a
plane wave unit step electric field. Further results are presented for
a dipole excited by a localized unit step voltage. The driving point and
transfer indicial admittances, and the normelized radiation field are
evaluated. The proposed method is extended to wires of arbitrary shape
through the use of the pulse tested method of moments. Results are pre-
sented for the wire loop as a scatterer and as an antenna to provide a demon-

stration of the moments solution.



1.1. Background

Solutions of electromagnetic problems for general time dependent
excitations have been of interest for many years. Manneback's paper
written in 1923 is typical. Two major approaches have been used on time
dependent electromagnetic problems of the thin wire type: transform

3,4,5,6,7,8 9,10,11

methods and transmission line theory A relatively

few papers have examined the thin wire antenna analytically in the time
domain. Of those few, only onelg has direct import to this dissertation.
Reciprocity theorems have been derived for the general time dependent

13, 14

electromagnetic system. Two authors in particulaf have presented

alternate forms of the reciprocity integrals and have derived variational

principles for scattering problems from these integrals. As in the fre-

15

quency domainl’ these integrals can be interpreted as functionals use-

ful in the evaluation of near and far field quantities.

1.2. The General Formulation in the Time Domain for the Response
of Wire Obgstacles

The electromagnetic field due to current and charge on perfectly

conducting bodies is described in the time domain by the folldwing equations.

oA

~o i
E=--V0+E (1)

u J(t-1,2")
%(t,r) = iz RETT ds' (2)

1 t-1,r' .
_—ﬁRrr)ds (5)

o(t,r)

L]
4_~



' o _
v g+§E~O ()4)
Etangential =0 on 8 (5)

Here, E denotes the total electric field, Ei the impressed field, A the
magnetic vector potential, & the electric scalar potential, J the cur-
rent density on the conducting body, p the surface charge density, and
R the distance between source points and field point. The time delay,

7, given by

T = R<r)r‘)/vp (6)

is the propagation time between tﬁe source point r' and the field point r.
vp is the velocity of propagation of the surrounding medium in which the
wire is imbedded. The medium will be assumed to be homogeneous and
isotropic. The tangential boundary condition, Eq. (5), is replaced by

a more general condition,

L, (3) | (7)

Etangential =
in order that impedance type boundary conditions may be considered.

Some common forms of Bq. (7) are

- t 1
Etangential = K(t,v")J(t, ") (8a)

RN b R
Etangential - Ki dt (t,r ) (v)

Equation (8a) is the general time dependent resistive boundary condition,
and Eq. (8b) the general inductive boundary condition. For the remainder
of the paper only boundary conditions of the type of Eq. (8a) will be

considered. The perfectly conducting boundary condition (5) is a special

case of Eq. (8a).
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Equations (1) through (6) simplify considerably for the thin wire.
Let £ denote the length variable along the axis of the wire. The elec-

tric field equation

oA
L oD i
Ep= Tu R (9)
is written on the wire surface in terms of the tangential components of
the total electric field E,, the incident field Ez, and the time derivative
of the vector potential aAz/Bt. The scalar potential contribution (39/04),
is the directional derivative of @ along Z£.

The vector and scalar potentials are given by single dimensional

integrals over the axial sources I and g

B I(t-1,4
é(t,ﬁ) = Iz f R(Z, 17 as! (10)
4@‘
o e te1, 4 1
(D(t)'e) = l&'l‘fé‘ / R ﬁ,f')') d'z (ll)
,{,7,'

The resistive boundary condition, Eq. (8a), becomes

E,=QI . \ (12)

£
where @, the axial resistivity (ohms/meter) will be taken as time inde-
pendent for simplicity. The continuity relationship is given in terms

of the axial and time derivatives.

g;—;_,+g%=o (13)

Accurate treatment of time effects on the order of the transit time

of the wire diameter are excluded in Eqgs. (9) through (13). This is



equivalent in the frequency domain to the exclusion of effects for which

the diameter is an appreciable fraction of a wavelength.

1.3, Operator Approximations

The electric field equation, Eq. (9), is approximated by difference

operators in time and space. The approximation is:

oo AL _ AT
B,(t,4) = - 55lA, (v + 55,2) - A (¢ - 55,2)]

- 2lele, s + 8D - 06,2 - BT+ E(6,0) (2)

The continuity equation is similarly expressed by difference operators

1 2 Abvy . L g . AT T
T, 1B (5, 00 - 8901 + Z5la(egs, #)a(e-5541) ] = 0 (15)
For simplicity,

Al = v AT

D

where vp, the velocity of propagation in the surrounding medium.

1i4., The Method of Moments, Point Testing and Pulse Testing

These terms which are used extensively in this paper will be defined
and illustrated in this section. The method of moments is a means of solving
operator equations such as Egs. (9) and (10) by a set of matrix operations.

Iet a function ¥ be given by the equality
¥(t,7) = L(t|t', rir') o(tt,r') (16)

where ¢ is a function in the domain of the operator L. Furthermore, let ¢

be epproximated by a series expansion



IR NP RICRAENNIIE (17)
m k

where the I''s are the expansion coefficients of ¢ and fi i is a member
2

of the set of expansion functions of the series. Assume L is a linear

operator. The substitution of Eq. (17) into Eq. (16) results in the

approximate expression

v(t,r) = Z ZP(m,k)L(t[t‘,r]r‘)fm k(t‘,r’) (18)
0 k )

for ¥. Let the set of testing functions sJ. z(t,r) be defined on the (t,r)
b
space for each of the integers J and £. The inner product of (18) with

S.

5,0 1 denoted <@(t,r), Sm)g(t,rz> and defined by

@(t,r),sj’z(t,rb Ef f w(t,r)sj,z(-t,r)dr at (19)
0 D(r)

This integral is commonly called a functional.l6 The testing procedure
may be considered as the projective value of V¥ onto the Sm 2 component

) 2
of the space of testing functions.l6 More complete mathematical exposi-

tions are found in references 17 and 18. By virtue of (18)

Q(t,r),sj,z(t, r> = a(T,3,4) <Lfm’k,sj’z> (20)
where G is a function of the expansion coefficients and the indices j
and £. Generally the choice of expansion and testing functions, and the
boundary and initial conditions determine whether G is readily solvable
for the I''s. The method of moments is thus described ﬁy the operations
(16) through (20). When L is self-adjoint and the expansion and testing
functions are the same, the method of moments is also known as Galerkin's

method.18
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Two useful projective operations are point* and pulse testing.
If the testing function is a two-dimensional impulse 6(t+t0) fS(r-rO),
the operation (19) is called point testing and the resulting functional
is W(to,ro). Point testing is recognized as an application of the sampling
property of impulse functions. If the testing function in (19) is taken
as a unit volume two-dimensional pulse, the operation is called pulse
testing and the resulting functional is the average value of W(t,r) over
the domain of the pulse function. Point and pulse testing will be con-

sidered in more detail in Chapters 2 and 3, respectively.

1.5. Format

This dissertation is divided into three main subject areas: (1) point
and pulse tested solutions for the straight wire, (2) the calculation of the
radiation field for the straight wire, and (3) the extension of pulse testing
to arbitrarily bent wires, and its application to radiation and scattering by
the circular wire loop.

The first subject area is covered in Chapters 2 and 3. In Chapter 2
point matched solutions for the current and charge on a straight wire are
developed. The difference approximations of Section (1.3) are used to
evaluate the field point derivatives. Several examples of the straight
wire as a scatterer excited by a plane wave electric field with a propagating
unit step time dependence will be presented. Further results for the
straight wire antenna excited at an arbitrary driving point by a localized
voltage with unit step time dependence are also given. In Chapter 3, the

pulse tested solution is developed for the straight'wire and applied to

*
Point testing is also referred to as point matching.



the same class of problems considered in Chapter 2, along with comparisons
of the two methods.

The presentation of the second subject area is found for the most
part in Chapter 4 and Appendix A. In Chapter h, the pulse tested method
of moments and the time reciprocity theorem of Appendix A is applied to
the calculation of the radiation field of the straight wire antenna or
scatterer. The same type analysis i1s applied to the calculation of the
radiation field of the circular loop in Chapter 6.

The extension of the pulse tested moments solution to arbitrarily
bent wires is found in Chapter 5, and its application to the circular wire
loop is the subject matter of Chapter 6. Also in this chapter are found
the results for the current, charge and radiation field for the loop as
an antenna and scatterer. The excitations are the same as those for the
straight wire. Conclusions and recommendations are found in Chapter 7.

A time domain reciprocity theorem for thin wire objects is proved
in Appendix A. The equivalency between reciprocity and the definition
of the adjoint operator is demonstrated. This theorem is of general use
in the moments solutions for current and charge, and of particular use in
the calculation of radiation fields. Potential integral integrations for
point and pulse testing are discussed in Appendix B. Program instructions

and listing are found in Appendix C.



Chapter 2

POINT TESTED SOLUTIONS FOR THE STRAIGHT WIRE

The straight conducting wire object is the basis for the simplest
example of the application of the time domain electromagnetic formulation
to radiation and scattering. Pigure 2.1 illustrates the straight wire
geometry.

The speclalization of the thin wire equations (9) through (13) is

straightforward. The field points are denoted by z, and the source points

by z'. The electric field equation is written
oA .
4 od i
B w T w (21)

where EZ is the total tangential electric field, E; the tangential compo-
nent of the incident electric field, AZ the tangential component of the
vector potential and g% the z-directed derivative of the scalar potential.

The potentials are given by

1 1!' Iz(t_’r:zt)
Az(t,Z) = _LG j W dz (22)
gl
and
o(t,2) = ﬁz / ;E;,z,) dz ' (23)
gl
where
T = ]z-z’!/vp (2k)
R o (2021)2 + &2 (25)
a = wire radius
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z' (source point)

—

z (field point)

Straight Wire Coordinate Geometry

Figure 2.1
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The integrations are performed over the axial sources IZ and q. The equa-

tion of continuity is

azz 3
é—z—;'i‘g%:O (26)

The resistive boundary condition becomes
= £
E, sz(z)IZ on (27

with @ the axial resistivity (ohms/meter).

2.1. The Point Matched Method of Moments Solution

The solution for current and charge along the wire will be effected
by the point tested method of moments outlined in Section 1..4.
The inner product between two vector functions is defined in Ap-

pendix A. The specialization to the straight wire is given by (28).

w 4
<§,§>= f[f E(t,z)ﬁZB(-t,z)dz]dt (28)
0 O

where K is an arbitrary vector function defined over z and 0 £ t < w, B
is a function defined over z and the adjoint time domain -0 < t < O,
and ﬁz is a unit vector in the z direction. The function B will be re-
placed by the testing functions in the moments evaluation.

The current and charge will be expanded in terms of two-dimensional
pulse functions. The basis functions of these expansions i1s denoted

P(t,x), and defined by the relations:

P(t,x) = P X)Pg(t) (29a)

L (

where
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Pl(z)=l 0z <y

=0 otherwise (29v)
Pg(t) =1 0< t< AT

=0 otherwise (29¢)

P(t,x) is shown in Figure 2.2. The current IZ will be expanded in the

two-dimensional series,

o N-1
I,(42) =) > Blm, k)P, (3"~ (5 .5)80 Byt (w-1)aT) (50)
m=1 k=1

where the B(m,k)'s are the unknown current coefficients and AT = Az/vp

(Vb - the velocity of propagation of the surrounding medium). This choice

of expansion functions satisfies the boundary conditions at z = 0 and £,

as well as the initial condition on IZ(O+,Z’).20 The charge is expanded
in a similar representation
o N
q(t’z!) = -2- E 7(m)k)Pl(Z‘_(k—l)AZ)PQ(t'<m"5)AT) (51)

m=1l k=1
It is apparent this expansion satisfies the initial and boundary condi-
tions on the charge.
The temporal and spatial dependences of the current and charge ex-
pansions are shown in Figures 2.3(a,b) and 2.4(a,b), respectively.

The set of two-dimensional impulse functions {Sj 2}
b

S50 = 8(t + (j-1)at)d(z' - £az) (32)

are used as point testing functions. The time index Jj varies over the
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The Elementary Basis Function
P, (2)P,(t)

Figure 2.2
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bI(t,2))

/eu,k)

B(2,k)

-

O AT 2AT

Time Representation of Z(t,zi)

3AT .

Figure 2.3a

IZ(ty, 2')
(m, k)
B (m, 1) _Z
/ | /B(m:N':L)
1
T T T T ] >z
0 Az £=Npz

Spatial Representation of I(tm,z‘)

Figure 2.3b
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ha(t,z)
7 (4, k)
7(1,k)
T ) T T ;'t
AT AT

Time Representation of q(t,zi)

Figure 2.ha

7(m) l)

L=NAz

7 (m,N)
Spatial Representation of q(tm,z')

Figure 2.4b
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integer set 1,2,..., and the spatial index £ over the integers 1,2,...,N-1.
The point tested method of moments solution proceeds by forming the inner
product between the point testing functions and the electric field equa-

tion (21).

A _
<E,.8; > = < (5= %),sj’» +<E;,Sj)z> (33)

The definition of the inner product is given by (19). The resultant of
the inner product operation is the tangential electric field equation
sampled at tj = (j—l)AE, 2y = £Az . This equation will be approximated

by the difference equation (14) evaluated at the sample points. Thus

i L AT - ATy
Ez(tj,zg) = Q(zz)Iz(tj,zﬁ) t 5T [Az(tj + 3 ,zz) Az(tj 5 ,zz)]
1
+ ZE‘[@(tj,zg + %E) - @(tj,zz - %E)] (34)

The resistive boundary condition (27) has been conveniently included.
The continuity equation (26) is approximated by the difference ap-
proximation (15) at the points t = (m-.5)AT, zi = (i-.5)Az, m = 1,2,...,

,2, 0, N,

i=1,2
.l_ f éZ_ - | éz_ —
= [Iz(tm,zi + 3 ) Iz(tm,zi 5 11 =
1 T T
- o Lale + .20 - alt - 55201 (35)

With the substitution of the current and charge expansions, (30) and (31)
respectively into (55), the following relationships between the current

and charge coefficients result.
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(1) + BRI o (362)
P End Conditions
Initial Cp(1,N-1)
Conditionsﬁ 7(1’N) T Vp =0 (36p)
L7(l,k) + ‘3(1Lk>v‘ B(LEL) _ 5 k2,3,...,N-1 (36¢)
P

y@m,1) - 7(m-1,2) + B o (564)

P

End conditions

y(m,X) - 7(u-1,1) - BElL) o (362)

P
(k) - 7(aed,) + BmELZ BOREL) o (36¢)

P
m=2, 3, -

k=2,3, ...,N-1

2.2. Evaluation of the Point Tested Potential Integrals

Before the iteration procedure is developed, the evaluaticn of the
potential integrals will be undertaken. Egquations (37) and (38) which
follow show the explicit dependences of the vector and scalar potentials

on the temporal and spatial domains. Thus,

fIZ(tj--f_. (a1/2) - 1,2")

9 1
A, (b5 £552,) = Ig R(z,2") gz’ (57a)
£
where
.= Miv'_z'_l_ (370)
P
R(zz,z') = y/(&Az—z‘f2+ a® (37c)
and
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AZ l Q(tj-T}z ) .
@(ta)zz i —é—- = I \/.R(Zz i (AZ/Q),Z') dz (583)
£
where )
(2 + Bz - 2]
- - (38p)
P
R(z, + &,2) = \[((4 + 5)ae - 2)% &2 (38¢)

The functional forms of the scalar and vector potential integrals are

similar. For this reason only the integration of the vector potential
will be considered in detail. The evaluation of the scalar potential

follows directly.

The retarded current in (37) can be written

AT 1y =
Iz<tj+2 T,z)_

Za(;w 5- Z5%) Py (2= (k-.5)02) Py(t-(3+.5- T2)aT) (39)

Causality imposes the restriction that any current coefficient wheose re-

tarded time index is less than unity vanish identically; that is
. s . T
. - J_ + -

AT

+
and, over the interval 0 < t < 5 integration of (37a) may proceed only

over those points z' such that

2 - t

S SN AN P
- >
P

With the substitution of (39) into (37), the vector potential is expressed

explicitly in terms of the current expansion. Because the retarded
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potential operator is a linear operator on the current, sumation and
integration may be interchanged.

N-1 (k+.5)Az
Blat5=lhentfral k) oo (50)

k=l (k-.5)Az (ﬂﬁz-z’)z + a2

AT
Az(tJ + ,zg)

Examination of the retarded time coefficient over (k- .5)az < z2' < (k+.5)Az
reveals that the retarded coefficient is a constant with respect to z'.
For k < £, the retarded coefficient is B(5-(4-k),k), and for £ < k, the
coefficient is B(j-(k-£),k). Hence (40) is written,

(k+.5)Az

a,(ty + 5 ZB(.J-M kl,©)y S 22 =

Summation proceeds only over those k's, such that

|4 - k| >1 s J=1,2,...
4= 1,2,...,N-1

It is shown in Appendix B that integrals of the form

(k+.5)n2

U/P dz!
27

k-.5)Az (402-2")° +a

are functions of the wire radius, subsectlon length, and the absolute
value of the difference of the source and field subsection indices.

These functions will be termed point tested geometry functions and de-
noted by F(|24-k|). The vector potential can be written in terms of these

functions
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loaded subsections, the current is given by

-l pa 4+ p0]
P4 = Ty T 6)

where the RL(ﬁ) terms include the load resistances and the conductive
resistance of the £Z-th subsection. The charge coefficients are cal-

culated from (36) and the iteration proceeds as previously described.

2.4. Summary of the Point Tested Solutions

The steps of the point tested solutions can be summarized;
I) Calculate the point tested geometry function F(n), n=0,...,8-1.
II) Calculete the initial currents, charges and vector potentials
from (45) or (55) and (56), (36a,b,c) and (42), respectively.
III) Calculate the first set of scalar potential terms from (43)
and (4k4).
IV) Calculate the next set of currents, charges and vector poten-
tials from (49) or (55) and (56), (36d,e,f) and (42)
respectively.
V) Advance the time index by unity and go back to step III.
A computer program has been written to implement these steps and
is contained in Appendix C, along with programming notes and instructions.
The program is written in FORTRAN IV and results have been computed on an

IRM 560/50 computer located at Syracuse University.

2.5, Point Tested Computed Results

A number of computations will be presented in this section which

are indicative of what can be achieved with the point tested moment solutions.
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Results for a center fed dipole, (ég) = T4.2), excited by a unit step
voltage are shown in Figures 2.6 through 2.10. Figures 2.6 and 2.7 show
the driving point current for Rg = 0.0 and Rg = 50.0 ohms respectively.
The generally periodic behavior of the current is evident, with the period
cerresponding closely to the fundamental mode of the center fed dipole.
Also evident is the rapid loss of high frequency content in the waveform.
This is indicative that high frequencies radiate more efficiently than low
frequencies. As t—w o, the antenna approaches asymptotically the static

case of a charged dipole, with the corresponding vanishing of the current

due to radiation. The effect of the generator resistance is to decrease the cur-

rent magnitude and speed the damping process through heat loss IgRg.
Figure 2.8 shows the input admittance calculated from the current shown
in Figure 2.6. The values agree closely.with Harrington's results found
in Reference 1, page 72. The peak at kf =~ 3.0 is the fundamental antenna
mode and corresponds closely in the time domain to twice the transit time
from the feedpoint to the end of the antenna. Transform techniques were
used to provide a check on the computed results due to the lack of refer-
ence material. An interesting rule of thumb was used to decide how far
in time to consider results. The effects of truncation errors

in the frequency domain are described by the convolution of the un-

truncated data with the function

-j(wz/2) sin (wT/2
Te oT/2

where T 1s the period of cbservation. The resonance peak width is in-

versely proportional to the Quality factor Q of the antenna, and for
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moderate Q's, truncation errors would distort the resonance most severely.
If T = 2Q, the truncator errors were found to be negligible. In addition,
if the time waveform is approximated by e-atcos 2nfot, then the antenna Q

can be estimated using,
ﬂfo
“=5

The approximate Q estimated from Figure 2.6 is 4.5 which is well within
a factor of two of the value found by frequency domain methods. The
spatial distribution of current and charge on the center fed antenna,
(ég = Th.2, Ry = 50 ), as a function of normalized time (t/(ﬁ/vp)), is
shown in Figure 2.9. The transient behavior along the antenna for
% < TL*/2 . :isﬂgg e§idenced by the zero currents in the regions
lz-ﬂ/2| > Vbtft The effect of reflection from the wire ends is shown
for t/71;> 0.52. The reflection is frequency sensitive with the high
frequencies contributing to the radiation field and the low frequencies
being almost completely reflected. In the time domain, this evidenced
by the loss of the sharp rise time of the current wave. As t —» s
computations show that the scalar potential approaches +0.5 on the upper
half of the dipole and -0.5 on its lower half. This is the predicted
D.C. steady state.

Figure 2.10 shows the point tested tangential component of a unit
step propagating electric field incident on the wire scatterer from
GINC = BOo.asﬂa'functioh of normalized time t/TL. Figure 2.11 shows the
point tested current and charge induced on the wire by this excitation

at selected instants of time.

*
TL = ,@/vp
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Although the point tested method of moments demonstrates the qual-
itative features of the transient process, the numerical errors inherent
in the method (especially in the case of scattering) cast doubt on the
usefulness of the solution method. A marked improvement will be noted
in the pulse tested solutions developed in the next chapter. The far
field result for the point tested antenna and scatterers will be presented

in Chapter L.
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where Pe(t) was defined by (29c). The time index j ranges over 0,1,2,...,
and the spatial index £ ranges over 1,2,...,N-1. Sample pulse testing

functions are shown in Pigure 3.1.

3.2, The Pulse Tested Method of Moments

The pulse tested electric field equation

2
. 2
<psyp = GLmadsy  +ghsy >+ &5y, 09

is similar to (33), but differs markedly in the evaluation of the individual

terms. The resistive boundary condition has been conveniently included.
Substitution of the pulse testing functions for B(t,z) in (28) gives the
pulse testing integral

(3+.5)AT  (£+.5)Az

K ,S, = (-—l—) at Kz(t,z)dz (60)
< J’j> = (315)AT (2-[5)Az

For j = O, the lower limit of the time integration is changed to zero.
The pulse tested incident field will be denoted E;(tj,zﬁ) and is
given by

., : sin oy (JPOT (rSdem
I | e g (e 3 eos o)
(3525)aT (45.5)0z

(61)
As noted above for j = O, the lower limit of the time integration is
changed to zero in (61). Only the case where the incident electric field
El(t) is in the plane of incidence will be considered, Where El(t) is
orthogonal to this plane, there is no field scattered by the wire. El(t)

is in general causal. The geometry is as shown in Figure 2.1.
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A term-by-term consideration of the right-hand side of (59) will
be pursued for the sake of clarity. It will be shown that an iteration
procedure is evolved which is similar to that for the point tested solu-
tions previously considered.

The same current and charge expansions used in the point tested
solutions will be retained, and are noted again for convenience.

o N-1

Iz(t,z’) = z Z s(m,k)Pl(z'-(k-.5)AZ)P2(t-(m-1)AT) (62)
m=1 k=1

o N
a(t,z') = Z Z 7 (m, k)P, (2"~ (k-1)Az)P, (t- (m- .5)AT) (63)
m=1 k=1
The ohmic contribution (QIZ(t,z),Sj 2> is the simplest term to evaluate.
2
Substitution of (62) into the pulse tested integral (60) results in the

following terms after integration.

arsy > = ea,0) (6%)
(at,8; 5> = BHle(s, ne(m, 01 3> 0 (65)

Q(4) is seen to be the average resistivity of the £-th subsection.

OA
The term <'BEERSJ,£:>‘ is the contribution to the electric field

due to -the time rate Ef change of the magnetic flux linking the £-th
subsection. The magnetic vector potential Az is found from the retarded
poten%ial (22). Substitution of the current expansion (62) into this

!
integral results in the following: i

i
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o N-1 (k+.5)Az
B(m-(7/aT), k)P, (- (m-2-(/AT)AT 4,1 (g6)

m=1 k=1 (k~.5)Az _\/(z_z, )2 . 82

Evaluation of (66) is simplified with the following time delay approxima-

A - H
Az - by

tion. The time delay t is a continuous function of |z-z'| which varies

over the range

{|xk~-£]-1)AT < J-Z-i—vz—'-l < {|k-2£]+1)AT (67)
P

for Az = v?am, and |z-z'| < Az. For k = 4, 7 varies over

Z;Z' < AT (68)
D

The evaluation of (66) is considerably simplified if 7 is allowed to take
on the average values of (67) and (68). This approximation will incur
only a small error if the wire is subdivided into sufficiently small sub-

sections. The average values of 7 for £ # k and £ = k are

| -k |AT L4k (69)

T

]

- AT
T=E3

4=k (70)

With the substitution of (69) and (70), Equation (66) mey be written

= (.52
Ay zi‘; Z z 6(111'Iz-kl,k)Pg(t-(m-ll-l,@-kl)AT) dz (71)

m=1 k=1 (k-[S)Az \/(z-z' )2+a2

The derivative of the vector potential given by (71) will be ‘taken on a

formal basis, since the resultant is an infinite series of impulses cor-

responding to the leading and trailing edges of the time pulse functions.
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, oA
However, the functional <~§%, §j P > will be shown to be equivalent to
’ .

the difference approximation to the time derivative applied to the locally

averaged vector potential,

A o N-1 i
St_z zﬁ; Z Z B(m-|L-k|,k) {5(t-(m-1~]2-k]|)AT) - 5(t-(m-|L-k|)AT)])
mel k=1

(k+.5)Az

dz!
s o P e 2
OA

The time integration of <:SEE’SJ £>> is readily performed since over the
) 4

(72)

interval (3-.5)AT < t < (j+.5)AT, only the impulses corresponding to

m=Jand m= j+l give a non-zeroc result. Thus

BA ’° N-l | . .
N B 1-14-ki, k) - B(j-14-k]|,k
< tz,sj’£> ~ (l-ﬁ;a Z ( (J"' | JJ iT (J l f ))
K=1

(£+.5)Az (k+.5)1z

dz!
(2-'[;)Azdz (k-j;)gz '\ﬂz-zr)E s 82 )

(73)

The summation proceeds over the index k such that j-|k-£] >1, j=1L12,...

&

and £ = 1,2,...,N-1. For j = O, only the single term

3 , (£+.5)rz  (4+.5)Az '
I o =

he' AT Az : -
(£-.5)az  (£-.5)Az V(;Z-;z') + a

£=1,2,...,8-1 (74)

is present. It is shown in Appendix B that the double integrals are

functions only of the absolute value of the difference of the source and
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field indices and are defined as G([£-k|). Equations (73) and (74) may

be rewritten in terms of these functions as

[

oA
(85,0 ~hs Z (S(Jﬂ ekluk) - B[kl k)| o)y (75)
for j> 0
and
oA 5(1, )
< gt—z;so,£> zﬁ;( AT ) G(O) for j=20 (76)

The form of (75) and (76) is similar to the difference equation approxima-
tion developed in the previous chapter. The essential difference is in
the interpretation given the testing operation in terms of a local average.
Figure B.3-1 of Appendix B compares the geometry functions. In general
when [«@-kl is a small integer value the pulse tested geometry functions

G are somewhat less than the point tested geometry functions F. This is

a result of the averaging operation inherent in using the pulse tested
formulation. Equation (75) may be written in an equivalent form using

the average vector potentials defined below. Thus

OA E(t. _,z,) -8 (t.,2,)
N - ()
where
N-1 -
Bt 002p) = 1 D B(5+1-]4-x], 00| 4-x]) , 3=kl > 1 (78)
k=1
and
N-1
B, (5,m,) = i Z B(3-14-x|,x)a(]£-x|) 3=kl 21 (79)
k=1
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The pulse tested vector petential contribution is seen to be equivalent
to the time domein difference approximation of the derivative of the aver-
age vector potential Xz'

The final term of (59) to be evaluated is the scélar potential con-
tribution to the electric field:

(3+.2)8T  (£+.5)02

o o) . 1 .
<§’Sj, g> = (A_TAZ— . f at

(3-.8)aT  (£5.5)nz

dz (80)

&

It is convenient to replace the derivative g% with the difference ap-

proximation

% z@(t,z+(&z/£i§ - &(t,2-(az/2)) (81)

The substitution of (81l) into (80) results in the following approximate
. ob
expression for <&, Sj,-@> :

(3+.5)AT (4+.5)nz

[m, z+(pz/2)) - @(t,z-mz/enJ

) 1
<'6—Z-’Sj’ﬂ> = (m) f at AZ

(3.5)AT (£%.5)Az
(82)
Each scalar potential in (82) will be examined individually. The substi-

tution of the charge density expansion (63) into (23) gives the scalar

potentials &(t,z + %5) as

Y (m- T/AT k)dz!®

k_l (k 1)az (-\/(z+(Az/2) z') + a2 2

[~}

Az 1
o(t,z + §‘>=mz
m=1

(83)
with

|z + (az/2) - 2]

P,(t-(m-.5 - 1/AT)AT)
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Following substitution of (83) into (82), the time integration may be per-

formed immediately, leaving the z integration,

(£+.3)02 [@(tj,z+(AZ/2)) - <I>(tj,z-(AZ/2))] dz
AZ

%

<&55,> ~ &)
(£-"5)az

. (8k)

to be performed. The potentials @(tj,z + Az/2) are given by

N kAZ

(b2 % 82) = p ) f i <T/AT)’Z‘)°IZ'2, 340
k=1 (k-l)Az_\/(zj-_(Az/E)-z') + 8

=0 j=0
(85)
Integration of (84) is accomplished with the following changes in the
variable of integration. In the first term of (8h), let =12 + %E, and

in the second, let & = z - %E. Equation (84) can then be written:

<Bs, > - LBz, - 3,2,)] (56)
where
(4+1)Az N kAZ .
E(tj,z“l) = ml_.& an 7(3-([n-2"/az), k)az (87)

Epz k=1 (k-1)az '\J&n-z')g + a2

and

. bpz N kAz . |

B(t,,2,) = i J’ af 3 7(5-(8-z ;/m,z)dz (68)
(£-1)4 k=1 (k¥1)az (8-2")" + a

The mean time delay approximations (69) and (70) will be used in evaluating
(87) and (88). Over the domain of integration, the time delay is now s

constant; hence the charge coefficients can be moved outside of the integrals.
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. Thus (87) and (88) can be written as
_ N (£+1)nz kAzZ
' cb(t,j’z,@+1) =(ETE_.1-_-EZ—) Z 7~(‘j-[ﬁ+l-kl;k) del az > =
k=1 L5z (k—l)az'\/(n-z') + &)
(89)
and
N Az kAz
, epn)) = i) ) rolexlof [ e e
k k=1 (£=1)Az (k-l)Az'\/kg-z') + g
' (90)

The double integral terms are recognized as the pulse tested geometry
functions G(|4+1-k|) and G(|4-k|). Equations (89) and (90) are rewritten

in terms of these functions as

@ :
‘ a(tjyzg,,_l) = (ﬁ) Z 7(3- [#+1-k], k) G([£+1-k]) (91)
k=1
+ N
B(e5,2,) = () ) 7(3-14=k],k) G([4-k]) (92)
k=1
J=1,2,...
£=1,2,...,N-1

The summations proceed over the index k such that neither j-|4+1-k| nor
J-|4-k| is less than unity. The substitution of (91) and (92) into (86)
shows that the scalar potential contribution is the same as if the dif-
ference approximation to the z derivative had been applied to the average
potential over a subsection. |

The contribution the right-hand side of (59) will be combined

‘ to construct an iterative algorithm of the same type developed in Chapter 2.
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Advantage will be taken of the same basic program structure already

developed.

3.5. The Development of Pulse Tested Algorithms for the Wire as

a Scatterer and an Antenna

3.3-1. The Wire as a Scatterer

For j = 0, Equations (61), (64), and (76) are applicable.

The pulse tested electric field is written,

52(0,2,) = ¥ p(1,2) + () Bl 6(0) (95)

and solved for the B(1,4)'s,
=i
EZ(O,zz)

PLA) = QUOET + (16(0) 5 f=12..,01 (94)

The first set of charge coefficients is given by (56a,b,c). The scalar

potentials 5Kt and Ekt z) are calculated by substitution of the

10 %

first set of charge coefficients into (91) and considering the sum to run

l’Z£+l)

over a single index k = £, for £ = 1,2,...,N.

For j > O, the electric field is given by substitution of (61),

(65), (77), and (86) into (59).

(t,,.,2,) - A (%,,2,)
J+l £ Z J £ ]

. A
BL(t,,2,) = a5, ) (341,40 + [ -

[E(tj,zg_‘_l) - E(tj,zz)]

o~ (95)

+

The unknown current coefficients B(j+l,£) only enter into the ohmic con-
tribution Q(£) B(j+1,£)/2, and the vector potential Kz(t3+1’zz)' Equa-

tion (95) can be readily solved for the unknown coefficients. Thus,
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, (ty,2,)- ((2)/2)8(3, 2)- (1/a2)AR)- (1/n0) (5]

B(5+1,4) = (96)
[(£)/2 + (uG(0)/bnaT)]
Here,
ph= g (t5,0,2,) - A (t,,2,) (97)
and
ﬁ_ﬁ = 5(tj’zz+l> - (‘S(tjyzz) (98)
Kz(tj’zﬁ) is given by (79) and:é%(tj+l,zz) is given by
N-1
,(tp002) = B ) (3s1-lamk]x) 6(l4-x]) (99)
k=1
k£ 4

The summation in (99) proceeds over the index k such that j-[4-k| > 0.
The scalar potentials are given by (91) and (92). '

In Chapter 2 it was shown that the expression for the point tested
current could be interpreted as the ratio of a voltage to a resistance
term. Equation (96) may be rewritten to reflect a similar interpretation:

| V(t,m,) - R()B(5,4)/2 - v Ak - 5B
B(3+1,2) = [R(Z)72 + 76 (0)/5w)] (100)

Here, n is the wave impedance of the surrounding medium, VP the velocity
of propagation in the surrounding medium, and R(£) the resistance of the
£-th subsection,Azq(4). The exciting voltage V;(tj,zz) may be either an

impressed voltage or the equivalent voltage

=i =i
v (tj,zz) = Ez(tj,zz)Az (101)
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The remaining terms in the numerator of (100) are the voltage due to the’
time rate of change of the magnetic flux linking the £-th subsection and
the scalar potential difference across the £-th éubsection. The denominator
is the sum of the self impedance nG(O)/hﬁ and the conduction resistance
Béfi. The factér nG(0)/bn is a measure of the interaction of the sub-
section with the excitation.

When the straight wire is excited as an antenna, (100) is somewhat
modified to reflect the localized excitation. In the excited subsection,

the driving point current is given by

T (t2) - R (9)B(3,p)/2.-v AA-r5

i+l = 102
P34, p) (R, ()/2.+76(0) /4x] (102)
and, at the loaded ports
R (£)B(3, £)/2.+v pR-rd (1059
i+1,4) = - ‘ L £ P 103
B(J+1,4) [RL(E)/2.+qG(O)/hn] #
Conduction losses are assumed to be included in the source resistance
Rg(p) or the load resistances RL(ﬂ). The exciting voltage applied %o
the p-th subsection is given for j = O by
+SAT (p+.5)0z
=1 1 i
v (to,zp) = XA at f v (t,z)dz (104)
) (p-.5)nz

and for j > 0O by

_ (3+.2)ar  (p+.5)az
Vl(tj, z5) L f dt v (t,z)dz (105)
(3=25)aT  (p=.5)az
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For j = 0, (102) is further specialized to
(0
0,2,)

(R (p)/2+06(0) /] 4=7p (106)

6(15:9) =
and

4#p

I
(@)

6(1)'2) =

The same procedure as discussed earlier is used to find the charge coef-

ficients and the vector and scalar potentials.

3.4 . Summary of the Pulse Tested Algorithm

1) Calculate the pulse tested geometry functions from equations
B.2-L and B.2-5.

2) Calculate the initial current coefficients from (94%) or (106),
the initial vector potentials from (76), the initial sets of charge coef-
ficients from (36a,b,c).

3) Advance the time index by unity.

4) Calculate the first set of scalar potentials from (91) and (92).

5) Calculate the next set of current coefficients from (100) or
(102) and (103). Calculate the next set of vector potentials from (75),
and charge coefficients from (36d,e,f).

6) Go béck to 3).

A computer program has been written to implement these steps. The program
instructions appeér in Appendix C. The program is written in Fortran
IV and results were computed on an IBM 560/50 computer located at Syracuse

University.
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3.5. DPulse Tested Computed Results

Similar pulse tested computations will be presented for the straight
wire as an antenna and scatterer as were presented in Chapfer 2. The
pulse tested results for the straight wire antenna do not differ substan-
tially from the point tested results. Figures 3.2 and 3.3 show the driving
point current for the center fed dipole antenna (£/2a = Th.2) for Rg =50 Q
and 100 @ respectively. The importance of the latter case is that it is
approximately the matched condition, i.e., Rg ~ 1G6(0)/4n, and is useful
in a discussion of the transmission line model of the dipole considered by
a number of authors.(9’lo’ll)

A detailed discussion of this point will be delayed until the last
chapter of the paper. The current and charge distributions for Rg = 50 Q
are essentially the same as those found in Figure 2.9. It is to be noted
that increasing the generator resistance does not change the general shape
of the time response but does cause it to decay faster. Frequency domain
considerations would interpret this as increasing the real part of the
poles of the current response while leaving the imaginary parts unchanged.
This observation is an aid in determining the reflection coefficient of
the end of a wire. -

The pulse tested tangential incident electric field is shown in
Figure 3.4, The effect of the pulse testing operation can be seen if
this figure is compared to Figure 2.10. The pulse testing operation gives
the average tangential field in the neighborhood of a point of time t
over a given subsection, whereas point testing gives the value of the

tangential electric field in the center of & subsection at the point of
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time t. If the incident field has not yet reached the midpoint of a sub-
section at t, the point tested algorithm gives a zero result. This has
been found to introduce large errors in the écatterer formulation, and
hence the improvement due to the pulse testing algorithm. The current

and charge induced by this excitation is shown in Figure 3.5. The improve-
ment is apparent when this figure is compared to Figure 2.11. The sawtooth
nature of the results is due to the errors introduced in the average time
delay approximation. It i1s felt that an improved approximation to time
delay would improve the solution. Because of the averaging operation
inherent in the pulse tested solutions, averaging of adjacent poiﬁts would

also improve the smoothness of the solution.
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Chapter 4
EVALUATION OF THE STRAIGHT WIRE RADIATION

FIELD BY RECIPROCITY METHODS

The time dependent radiation field will be calculated for the straight

wire by pulse testing the Reciprocity Theorem developed in Appendix A.

4.1. The Far Field Algorithm

The reciprocity theorem is conveniently written

.<§l(t’§)’ Lt §> = <£1(’°,Z'), Eg(t,2'> (107)

Here, Il is assumed to be the current on the straight wire, and 12 is the

testing current at the far field point. The fields El and Ez are the fields

excited by zl and Ee’ respectively. El is calculated from the retarded

potential integral solution operating on the causal current El' Ee is an

anti-causal function, that is, it vanishes for t > 0, and is calculated
from the advanced potential integral solution operating on the current

%2 which is itself anti-causal. The advanced potential operator is shown

in Appendix A to be the adjoint operator to‘the retarded potential operator.
The domain -o< t < 0 is referred to as the adjoint time domain. Inter-

pretation of the field E and its relationship to the source I2 is found

2
in Welsh.15

Summarizing his discussion, E., can be thought of as either

~2

an outward propagating field excited by I. with time running backwards

from t = O, or §e is an inward propagating wave which excites EE with time

starting from t =+,

The far field testing current is assumed to flow in the Gé directibn,

where ﬁé is a unit vector directed in the 8 direétion of the standard
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spherical coordinate system as defined in I-Iza,nc'rington“.2)+ Since the radia-
tion field of the straight wire is azimuthally symmetric, the testing cur-
rent can be considered to always lie in the plane of incidence. The

testing current is written
1 A
I (%, 8) = (og) By (8-tg) Boet-r-ty)uy (108)

The transit time between the time reference and the field point is 7, to
is an arbitrary time delay and Af = VPAT. The latter assures a uniform
quantization of the time domain throughout the problem. Equation (28)
will be used to define the inner product relationships. The left-hand
side of (107) will be termed E (the subscript indicating the far field

direction). Thus,

N to+aT
<~l(t £), I,(t,8)D = Agm f dg[ / 2, (t +1 ldt'] (109)
t
0

The barred notation is indicative of the averaging operation in the vicin-
ity of (t + & ,§ Ag). The time axis was shifted in (109) to remove

the time delay between the source and field point. The far field excited

f (t+7, £) at . (110)

§

by 12 can be written

$1t
WIH

gg(t,R) =

where R is the distance from a reference point on the wire to the field
point. The substitution of I, given by (108) into (110) results in the

expression for the electric field E, in the vicinity of the wire object:
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B8(-t+t S(-t+t +AT)

O) 0

AT

B, (4,R) = - £=(2) 6, (111)

The right-hand side of (107) is evaluated after the substitution of (111)
and the current expansion (62). The dot product between E, and I, is
taken and the time dependence of (111) must be modified to reflect that
time is now measured with respect to the tangential coordinates of the

current. The result of this operation is shown in (112).

£l<t,z'),§2(t,z') =

by R

: ' ) £ ,
_(P_)(S;;l QR) j ot f [S(t-to+(z /Vp)cos GR)-S(t-tO-AT+(z/vP)cos GR)J
0
0 0

=
]

Z B(m,k)Pl(z’—(k-.5)AZ)P2(t- (m-1)AT)dz" (112)

m=1

i

where RO is the Qistance between the field point to the time reference
of I,. The geometry is shown in Figure b1,

The time and space integrations are interchanged in (112) and the
time integration performed. The sampling property of the impulses picks
out the proper current coefficients which contribute to the radiation

field at the time t'. The resultant of the time and spatial integrations

can be shown to be

;El(t)z' ))gg(t}z')

oin 0 ZN“l e s e
R g)k- - g'l9k
} uT:r Ry ./ [ AT ]dz (113)
k=1 (k-.5)Az

*
where ¢ = Fix[tO/AE + z'/Az cos GR].

* -
The function Fix(x) gives the largest integer less than or equal to x.
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‘ Equation (113) may be viewed as a line integral in the t-z plane.
The integration path is shown in Figure 4.2 for to = (j-.5)aT, j = 1,2,...
Note that for broadside incidence the time delay is zero.

A subroutine has been written to compute the normalized far fieid

RO <:£l(t,z'), Ez(t,z'):> . The subroutine is listed in Appendix C.

L.2. Results

The normalized field scattered by & linear wire has been evaluated
for both the point tested and pulse tested results of the preceding
chapters. Figure 4.3 shows the wire excited by a unit step plane wave
electric field from the direction GINC = BOO. The current was found
using the point tested algorithm of Chapter 2. The time axis major 4di-

- visions are normalized with respect to the transit time of the wire
. T, = L/Vp. Major divisions of the ordinate correspond to 1 volt/meter.
The normalized scattered field for identical excitation but using the
- pulse tested algorithm is shown in Figure 4.4. Comparison of the far
fields demonstrates the improvement which results from the pulse tested
algorithm. The time reference t = O is the point first struck by the
incident wavefront.

The far field algorithm has also been used to evaluate the radia-
tion field of a dipecle antenna. Again, both point and pulse tested
solutions have been compared. Figure 4.5 shows the normalized far field
radiated by a center fed dipole excited by a unit step voltage source
with 50 ohm internal resistance. The effect of the load is evident in

y the broadside field (900) where the field strength takes a sudden drop at

. t/'rL = 1. This is a discontinuity introduced by the source resistance.
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A major ordinate division is .1 volt/meter. The time axis is referenced
to the driven terminal.

Figure 4.6 shows a normalized radiated far field for the same
excitation shown in Figure 4.5. The current was computed using the pulse
tested solution presented in Chapter 3. There is some small improvement
in the results. All scaling is as described for Figure 4.5,

A detailed discussion of these results will be delayed until the

last chapter.



—k—2a

|
50° ' 7 A\__JFIJLTJ —

NORMALIZED FAR FIELD RE,
CALCULATED FROM POINT
TESTED CURRENT

FIGURE 4-3




W

— —2

80

oy

NORMALIZED FAR FIELD RE,
CALCULATED FROM PULSE
TESTED CURRENT

FIGURE 4 -4



Al

= 742

A o e e s

&2

N,

“POINT TESTED CURRENT
RADIATED FAR FIELD RE, OF
CENTER FED DIPOLE EXCITED

BY A UNIT STEP VOLTAGE
FOR Ry =50 a

FIGURE 4-4&



R

e~

2a

= 74.2

D e w00 U0 PP U 0O g P A SN S,

63

PULSE TESTED CURRENT
RADIATED FAR FIELD RE, OF
CENTER FED DIPOLE EXCITED

BY A UNIT STEP VOLTAGE

FOR R"So_n_
" FIGURE 4-6



et b e e wE oacim. wms e b B Cheae e e lwSRe e e e Do P et Bl st e e

Chapter. 5
SCATTERING BY AND RADIATION FROM

ARBITRARILY BENT WIRE OBJECTS

A pulse tested method of moments solution is developed which can
be applied to radiation and scattering by arbitrarily bent wires. For
simplicity, the analysis will be restricted to wires lying in a plane.
The method, however, is not limited by this simplification. Both open
and closed wires will be discussed with the major emphasis on the analysis
of closed wire objects. The closed circular wire loop will be analyzed in
the following chapter as an application of the method to be developed
herein.

Equations (9) and (12) express the relationships between the total
electric field, the excitation and the source dependent potentials. These

equations are repeated here for convenience:

oA .
EZ=-§€£-%+E§ (11h)

E, =l (115)

Here, B, is the total tangential electric field on the wire surface, Aﬁ

is the tangential component of the magnetic vector potential, %% is the
tangential derivative of the scalar potential, Ez is the tangential com-
ponent of the incident time dependent fleld, @ is the axial resistivity,

oA
and I is the axial current. The terms 5%£ and 57 are given explicitly by

Ry %y, fyt-w')
ss=4f sl Wdz' (116)

E!



65

?= P - % Lleej alrnt) o (117)
ﬁl

where 7 is a unit vector tangent to the field point £, and q is the axial
charge density. The distance between source point £' and field point £,

is given by

R 5'\¢k3-3')2 + a° a = wire radius (118)

The time delay, 1, will be approximated by

iﬁ:ﬁll , (119)

v
p

5.1-1. Current and Charge Expansions for the Arbitrarily Bent Wire

The current and charge will be expanded in pulse type expan-
sions similar to (30) and (31) for the straight wire. There are two dis-
tinct types of arbitrarily bent wires: those which are closed and those
which are open. The circular wire loop and the straight wire are examples,
respectively, of each type. The proper boundary conditions satisfied by
E and g depend on whether the wire is open or closed. This in turn affects
the functional form of these expansions for the current and charge. As
we have seen for the straight wire, open wire geometries require that the
current vanish at the ends of the wire. Provision for charge buildup at
the wire ends is necessary as well. Closed wire geometries, however,
require that both I and q satisfy periodic boundary conditions. That is,

for a closed wire of length L, the current and charge satisfy

1(+,0) = I(t,L)

and

Q(t)o> = Q(t;L)
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The initial conditions satisfied by the current and charge remain the same.
The wire will be subdivided into N subsections of length Al = L/N.

The unit vector Gk will be taken as tangent to the ﬁidpoint of the k-th

subsection. In terms of these gquantities the current and charge on the

open wire are given by

o N-1

1(t, ') Z Z B (m, )P, (£'- (k- .5)88 )P, (4 (m-1)AT)0, (120)
m=1l k=1

a(t,4') = ) ) 7m0 (4= (5-1)00)R, (b (- 5)AT) (121)
m=1 k=1

and for the closed wire

o N
1(6,2) = Y Y Blmm)py (41 (- 5 )0)B, (- (m-LIATIO, (122)
m=1 k=1
and
B(m,N+j) = B(m,J) (123)
o N
a(t,4') = Z Z 7(m, k)P, (2= (k-1)04)P, (%~ (m-.5)AT) (12h)
m=1 k=1
and
7 (m,N+3) = 7(m, J) (125)

Equafions (123) and (125) are a direct consequence of the periodic boundary

conditicns. The pulse functions Pl and P2 are ag previously defined by

(29b) and (29c). The spatial summation in (122) is extended to an upper
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limit of N to insure, along with (123), that the current is piecewise
continuous over the entire wire. On the open wire, the vanishing of the
current at the wire ends is guaranteed by the upper summation limit of
N-1. As before, the charges are offset by e half interval in space and

time and vanish in the neighborhood of t = 0.

5.1-2, Continuity Relationships

The continuity equation will be satisfied by the difference
operator given by (15). The substitution of (120) and (121) into (15)
results in the same set of relationships between the current and charge
coefficients as found for the straight wire (Chapter 2, (36a,b,c,d,e,f)
if AL = vﬁAT. Substitution of (122) through (125) into (15) results in a
somewhat different set of relationships between the current and charge

coefficients for the closed wire, namely

y(1,k) = - (B(l’kg'a(l’k'l)) | k=23...,N (126a)
Initial p
Conditions
[m = 1] 2(1,1) = - (B(l,l‘)f-B(l,N)) (126b)
p
ymx) = - EEEEBImEL) oo ) (126¢)
m=2,5,... i k = 2,5,...,N
7(m,1) = - (5(1,13-5(1,N)) + 7(m-1,1) (1264)
p

5.2, Pulse Testing Functions

The proper testing functions for the arbitrarily bent wire prob-

15

lem are vector functions. It was pointed out by Welsh™ that the testing
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functions can be interpreted as currents which enter into the reciprocity
integral relationship. This was used in Chapter 4 to compute the pulse
tested radiation field. The vector pulse testing functions are defined

by (127) and (128) which follow:

s . (t,4) = % P (4-(i-.50A8) - 2 <t <0
RO,iv 7?7 T AIAT T ) )y 2 =
‘ (127)
= 0 otherwise
2i
§j,i(t,ﬂ) = ~par Py (4-(1-.5)88)B &~ (3-.5)aT) (128)

~
Here 2i is a unit vector tangent to the i-th field subsection, and PZ the
adjoint time pulse function defined by (58). The index j runs over
j=1,2,... and i runs over 1,2,...,(N-1) for the open wire and 1,2,...,N

for the closed wire.

5.32-1. The Pulse Tested Algorithm

The pulse tested electric field equation can be written in

vector form as

: OA
1 ~
B850 = L8L648; > + <5, 85> f K95 )

(129)
The definition of the inner product between vector functions, (28), in-
cludes the dot product. This was not important in the analysis of the
straight wire since all the components on the right-hand side of ('59)
were colinear.
Further analysis of (129) will be specialized to the development of

pulse tested solutions sultable for closed wire objects. All spatial
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indices will thus be gssumed 10 vary over 1 < i < N. The incident propa-
gating plane electric field may be written

i 'Wr.. 'G A
B (r,t) = A(t - Z) Uy (130)

The unit vector ﬁn is assumed normal to the plane wave and pointed in the
direction of propagation, r is a radial vector in a spherical coordinate
system, the center of which is the time reference t = 0. A 1s assumed to
be causal, and as such vanishes for (t - r Gn/vp) <0 Gé is the di-
rection of polarization of the incident field.

The pulse tested incident electric fileld <:§;’§j,i‘>' is obtained
by the substitution of (130) and the testing functions (127) and (128)

into the definition of the inmer product given by (28); thus,

. < 2, - 6, (3+.5)aT  (i+.5)a0 r(4) - G
. e ——————— - N—'—-——-‘— E
(3=.5)aT (i5.5)al
3=1,2,3,...
i=1,2,...,N (131)

For j = O, the lower limit of the time integration is zero, since S ..
. ) 1
2

vanishes for t > 0. The dot product between the unit vectors Ei and

aE gives the tangential component of %i over the i-th subsection. {(2)
is the shape of the wire and is a function of the field coordinates £.

In practice 5(8) is given in terms of the axial coordinate £' since the
thin wire approximation excludes time effects on the order of the transit
time of the wire radius. The point z(ﬁ) = 0 will be taken as the point
on the wire first struck by the incident wave; and the time axis of the

wire will be referenced to this point.
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. The ohmic contribution, <s‘zI(t,E),Sj i> , to the total electric
~ ’
field is identical to the same term as considered in Chapter 3 and is

given by (64) and (65). These equations are included again for reference:

@xlt 9,5, > =4 e, (132)
Cap(to)s, > =4H Bn18(5,0) 3>0 (1)
‘ oA

The component of the total electric field, <5’€ ’Sj,i> , can be written
34 (3+.2)aT  (i+.5)a8

~ 1
{80 =R f a D)
(35)ar (35500 Lmed

(- (k+.5)n8

& (t+1- m-l) B8 (t+1-AT)
(5<m- E,m[ ( S pelies ]

(k5.5)ad

The sampling property of the impulses permits direct time integration of

(134). Thus
’ 3 N (i+.5)Ad (k+.5)al : y o in)
P B(3+1 = 1/AT, k)-B(j-1/AT, k
<E’~J - F(ATM Z b3 Uy f aky d’zk[ : R(Z,, 4,) LS
k=1 (17.5)a8  (k7.5)al *
(135)

The distance R(Z £ is found from simple vector considerations

»

and may be written

- . l . .
2.4 = + £ - 2 B \
where r, is the vector between the beginning of the i-th subsection

.- 7 ~i,k
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<£i = 0) and the beginning of the k-th subsection (ﬂk = 0). Figure 5.1
illustrates the geometry involved. After completing the square, R(Ei,ﬂk)

can be written in the form,

1
R(4,,%,) = [(Ei-A(i,k))2 + B(i,k)]2 (137)
where
A(i}k) = ri,k cos<wi-ei}k) + ’gk cos(’l{i-drk) (158)
B(i,k) = r2 + 22 4+ or, 2 cos(y, -6, , ) - A2(i k) (139)
AL TS k ik'k k “ik ’

. i £ . i £ .
(Note: the magnitudes of Ei,k’ b etc. are written ri,kf K )

Integration of (135) with respect to Zi can be carried out analytically

with the substitution of (137). The current coefficients are constant

over the domain of the ﬁi integration. With the integration with respect

oA
to Ei completed,<:-5% ’§j,i:> can be written,

3 N (k+.5)aL
o8 e ) b f (B(g+1-04, k)-8 (-4, k) JF (302, £, )as
k=1 (k7.5)al
(140)
where
% = Fix(——F—) (1k1)
and

(i+.5)a8-A(1, )+ W/((i+.5)Aﬁ-A(i,k))2+B(i,k)

F(i&z,ﬁk) = log
° 1. Voo NC
(i-.5)a2-A(1,k)+ V¥ ((i-.5)aL-A(4,%))7+B(4, k)

(1k2)
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Geometry of Two Arbitrarily Oriented

Planar Wire Segments

Figure 5.1
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R(inf, zk)
The function Fix(—T—)

R(iaf, £, )
AL

Further integration of (140) can proceed over those regions of ﬁk

returns the largest integer less than or equal to the

argument {

where the current coefficients are constant, or equivalently over the
regions of ﬂk where ak is constant. An overlay of the regions of constant
time delay over a closed wire object is shown in Figure 5.2. Examination
of this figure shows that some subsections (2,4,8,9,10,14) are wholly
contained in a constant time delay region, while others (1,3,5,6,7,11,12,13)

lie in two time delay regions. Investigation of the integral
fF(mﬁ, 1 )as, | (143)

showed that this integration can be performed analytically whenever

~

2i ' ﬁk = + 1. The straight wire integrations satisfy the criterion.

In general, integration of (143) must be done numerically. Let ak be as-
sumed constant over a portion of the k-th subsection 8y < £k < bk' Since
any subsection is contained in at most two constant time delay regions,

a, is either the beginning of an interval and bk is an intermediary point

or bk is the end of an interval and a,_ an intermediary point. (In the

k

case O, is constant over an entire interval, a_ 1s the beginning of the

k

k~th subsection, and b

k

K is the end point of the subsection. Over
<4 <D the time indices of the current coefficients (j+1-0 ) and

I N k

(j-ak) are constant with respect to the ﬁk integration, and the coeffici-

ents may be moved outside the integral giving terms of the form
b

k

(B(341-04, ) - Blo-ay, ) [ FCint, 4 )k, (244
a.
k
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A numerical integration of (1L4k4) of the form

(i+.5)a8)-A (1 k)+ 1V/[(1+ 5)A4-A (1 k) %48 (1 k)
ol Z log, " (145)
=0 (i-.5)a8)- As(l k)+\/ [(i-. 5)A£ A (l k) %48 (1 k)
where
b, -a
P=7Fix ( kMk) M (146)
M = number of sample points
in entire subinterval
A (i,5) = v, , cos(v,-6, (e + ) cos(y,-¥, ) (157)
s T oTi,k i7ik k M ik
] 2 2.2 £ 2/,
Bs(l,k) = ri,k+(ak S0 ) +2r ( ay+ Eﬁ—) cos(wk—eik)-AS(l,k) (148)

has been successfully used for the case of the wire loop. The details
will be delayed to the next chapter. The relationship of the time delay
index & and the source and field points i and k, respectively, is not
simple for the arbitrary wire. For computational simplicity it is con-
venient to define the function G(a,i,k) as

bk
%{f?f F(iaf, 4, )ik, (149)

,ak

(o, i,k)

whenever the O constant time delay region, centered on the field point

inf, includes a portion of the k-th source subsection, and
G(a,i,k) = 0.0  otherwise (150)

In the evaluation of the potential integrals, G(®,i,k) is analogous to
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the previous geometry functions F(|i-k|) and G(|i-k|) of Chapters 2 and
3. It is more general in the sense that a subsection can fall into more
than one time delay region, which does not occur in straight wire problems. -

The calculation of<<‘§% ’gj,i:> begins with finding the points on
the wire where the time delay circles shown in Figure 5.2 intersect the
wire. The regions between the points of intersection are the constant
time delay regions. Over each region beginning with ¢ = 0, and proceeding
to successive Q's in turn, the G(@,i,k) are calculated from (137, 138, 139,
lh2, lh9, 150).. ,Unless. symmetry considerations can be used to simplify
the geometry, G(@,i,k) must be calculated over every k for each & and i.
The storage requirements are ¢ times as large as those required to store
Green's function integration results required in method of moments in-
vestigations of the same wire object in the frequency domain. Now,
<: 5%’§j,i:> can be written in terms of G(&,i,k) by inspection as

v %)

JA
~ H > 5 B(j+l-a3k)'6(j"a3kl 4 3
<§E’§j,i> = In E, Z‘gi'Uk[ AT (@, 1,k) i=1,2,...,N
k=1 a=0

(151)
where QM(i) is the index of the largest timérdelay region centered on |
the midpoint of the i-th subsection which encloses the wire object. During
the transient buildup period, summation is terminated if the time coef-
ficient (j-a) is less than unity. During this period (151) is written

for j £ 0, as

N J-1
A A
~ i+1-0, k)-B (3~ k , 1,k .. “
(Be, > -5 ) (T pusematan]onyn 222 o 02,4,
k=1 VC=0

(152)



and, for j = 0, as

A A,(t.,4,) ' .
~ j/ ’ ( ,i,1)
<575’§O,i> - S = ) S0k (153)

G(O,i,i) is recognized as the self element term and is equal to G(0)
defined in Chapter 3. This provides a useful check on the precision

of the numerical integration of thé geometry functions for the bent wire
problen. The pulse testing integral (60) can be interpreted as a gen-
eral averaging operator on the integrand, and in this light, (151) can

be written,

3A A (t, ,8.) - 2,(t.,8.)
~ £Y75+17 71 £Y7532 7%
< gf’§j,i> = AT - (154)

with the bar denoting the average taken over the i-th subsection of the
tangential component of A.
The final term on the right-hand side of (129) to be analyzed is

the scalar potential contribution 41?@,%.,ii>> . That is
(3-.5)aT - (i+.5)al o N
1,1 e Z‘

<V®, §j, i> = kxe (ATA—@ ) j dt f dzi 57: Z
m e

(37.5)AT (15)A8 1 k=1
kAL
j as [7(m‘(T/AT);k)P2<t+T‘<m'-5)AT)] (155)
, k R(%., %)

(k1)al ik

where R(Zi, ﬁk) is given by (137), and the time delay 1 between source
and field points is R('ei"ek)/vP' The partial derivative operator will
be approximated by the difference operator of Section 1-3. The pulse
tested scalar potential contribution Will.be shown to be proportional to
the difference of the pulse tested scalar potentials E(tj,ﬂiﬁﬁﬁ/2) and

—- . .
CD(tJ., i _Az/e)
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If equation (155) is written in terms of the difference operator,
it can be integrated with respect to the time variable. An immediate re-
sult is the j = O term vanishes.. This result follows directly from the
shifted pulse expansion. for the charge (124) which assumes that over the
period 0 £ t < 0. 5AT the charge is zero. Physically this approximation
assumes that any charge buildup thaf occurs durlng this period has a
negligible effect on the scalar potential, which in turn has a negligible
effect on the tangential electric field. The remaining terms (3> 0) are
given by

(i+.5)a8 N

1, 1,2
<85 1> = Trear) f as )
(1-7.5)A4 k=1

kAL
y(j=c” k) y(3-0 k) .,
R(Z, +(M/2 T R(Z,-(atk/2),4 k
(kZ1)n4 *
156)
where
R(2,+(04/2),
o = Fix - ! (157)
. R(4,-(a4/2),4
o = FlX = (158)

oL

The local subsectional geometry is illustrated in Figure 5.5. Further

analysis of (156) will be aided by defining an average potential

(1+.5)a4 N LAY ( . )
ry Y j—Ot ’k
¢(tj’£i+ ) lme Az) f aty Z R(Jzi+ZM/2),zk by
(17.5)a4 k=1 (k-1)AZ

(159)
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(ing) (i+1)A0
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Subsections
7
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Current
Subsections

Local Subsection Geometry Useful in the
Evaluation of the Pulse Tested
Scalar Potential Contribution

Figure 5.3
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Equation (159) is transformed into an integral which can be evaluated in

terms of the geometry functions G(a,i,k) by the substitution ny = Zi+.5A2

(i+1)AL N kAL
AL 1,1 .4+
Bty 4+ B0 = () Jdni Z f ACEIRS Y
1 K2 k=1 (k1)af “\ir %k
(160)
o re o)
= oAT

Over the regions of constant time delay the charge coefficients are con-
stant with respect to the variables of integration and may be moved out-
side the integrals. The double integral is the same type as (149) which

defines G(a,i,k). Evaluation of (160) proceeds in the same manner as the

oA

. ~ = A .
evaluation of<<’5%,§j}£ >> . @(tj,£i+ 5—) can be shown to be given by
v Gl
(e, 0+ 5 = = Z 7(3-0,%) G(o, (i+1),k) (161)
3’ 2 bre L ’ ? ’
k=1 =0
and similarly,
N ogd(l)
o(t.,4,- é‘-ﬁ) = z Z j-a, k) G(o, i-k) (162)
J', i 2 - >

k=1 =0

where Oﬁ(i) is defined following equation (151). Summation is terminated
when (j-&) < 1. The pulse tested scalar potential term 4:&@ ~J l:>

is then

<V®,§j,i> - 5(tj, 2.+(ntf2) - 5<tj,zi—<Az/2)

- (165)

The relationships developed in Chapter 3 for the solution of the
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current coefficients B(j+l,i) hold formally for the arbitrarily cleosed
bent wire. The quantities involved, however, are those which have been
analyzed in this chapter. The relationships will be included for com-

pleteness. The first set of current coefficients B(l,i) is given by
EYS

. ’~0, 4
B(1,1) = Q(i)/2 + (ué(O,i,i)/hr&T (164)

where 1 = 1,2,...,N. The first set of charge coefficients is found from

equations (126a,b). The current coefficients B(j,i) for j > 0 are given

by
{2h8, ;> - @(0)/2) 8(3,1) - (1/a0)(aR) - (1/02(55)
B(5+1,1) = - — (165)
[a(2)/2 + (pa(0,4,1)/4nT)]
Here,
LR = Eﬁ(tj+l, ) - Kz(tj,ﬂi) (166)
and
The vector potential terms gz and Kz are given by
N %)
gﬁ(tjﬂ_’Zi) = L%E Z z B(i+l-o,k) G(o,4i,k) (168)
k=1 =0
k£1
and
Kz(tj+l,zi) = -E-& B(3+1,1i) G(0,i,1) + Eﬁ(tjﬂ,zi) (169)

and
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y (i)
By(ty,2) = i E: E: B(3-0, k) G(ct, 1,k) (170)
k=1 =0
where Oﬁ(i) is defined following equation (151). The scalar potentials
5(tj,$£€§$ andré(tj,%j%g)aregiven by (161) and (162), respectively. The
charge coefficients 7(j,1) are found from (126c,d). The seme impedance
interpretation can be given to (165) as was developed in Chapters 2 and

3. Equation (165) can then be rewritten,

(b, 2,)-R(2)/2 B(3, 1)-v AR-00

j+1,1) = e
B(3+1,1) [R(i)/2 + nG(0,1,1)/kn] (a71)
The same cbmments following equation (100) in Chapter 3 pertain. The
exciting voltage Vl(tj,ﬂi) is defined by
=i i
£.) = AL

If the wire is excited as an antenna at the p-th port, equations (102) and
(103) hold formally, and are repeated for convenience. At the driven port,

the driving point current is given by

_ Vl(ta, Zp)-(Rg/E.) B(j’i)_v‘p&z-&g

B(3+1,p) = (173)
T TR e)/2 + (0, 1, 1) /4]
and
| (1) B(4,1)/2. + v AR + AD
B(341,8) = - Lt £ (174)
[RL(l)/2 + nG(0,1,1)/bx]
For J = O, the initial set 6f current coefficients is given by
T, L)
B(1,p) S

" TR, (p)/2 * (0, 5,1)/57] f=r (1752)
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and
B(1,4) =0 L4 (175b)

Conduction losses are assumed to be included in the source resistance
Rg(p) and the load resistances RL(i). The exciting voltage applied to
the p-th subsection is given for j = O by

LBAT (p+.5)A4

=i 1 i
0 (p=.5)04
and for j> O by
(3+.5)AT (p+.5)aL
=i 1 . i
v (tj,zi) = XInT at ( v (t,zi)dzi) (177)
(35.5)AT " (p-.5)nl

5.4, Summary

The steps for the solution of the current and charge coefficients
on an arbitrarily bent wire may be summarized.

1) Calculate the points of intersection between the wire and the
circles of constant time delay. From these calculate the geometry func-
tions G(@,i,k) from (137, 138, 139, 142, 149 and 150).

2) Calculate the first set of current coefficients from (164) if
the wire is a scatterer or (175a,b) if an antenna. Calculate the charge
coefficients from (136a,b). Calculate the vector potential from (153)
and the scalar potentials from (161) and (162).

3) Calculate the current coefficients from (165) if wire is a

scatterer or from (173) and (174) if an antenna. -
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L) Calculate the vector potentials from (169), the charge coef-
ficients from (136c,d) and the scalar potentials from (161) and (162).

5) Advance the time index by one unit and go back to step 3).

These steps will be illustrated in the next chapter where the circular

wire loop is analyzed.



Chapter 6

SCATTERING AND RADIATION BY THE CIRCULAR WIRE IOOP

Radiation and scattering by the circular wire loop are investigated
by specializing the pulse tested solution for the arbitrarily bent wire
to the circular lcop geometry. The rotational symmetry of the loop is
used to simplify fhe pulse tested geometry functions. Results are pre-
sented for the current and charge induced on the loop for a unit step
propagating incident electric field, and for a unit step voltage applied
across a subsection. The normalized radiated far field is presented for

both cases of excitation.

6.1-1. The Current and Charge Expansions for the Loop

¢

The form of the current and charge expansions for closed wire ob-

jects is given by (122) through (125), which are included here for

convenience:
o N
I(6,40) = ) ) Blm)p (A= (k SR (- (m1)aD), (178
m=1 k=1
and
B(m,N+j) = B(m,J) (179)
o N
a(t,4) = Y ) lm k)P (8- (s-1)a2)By (b= (m- .5 )AT) (160)
m=1 k=1
and
7@, 15) = 7(m,3) (181)

where for the loop, AL = 2nr/N, AT = Aﬁ/vp, Gk is a unit vector tangent
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to the direction of the k-th subsection, and r is the radius of therloop.
The loop geometry is shown in Figure 6.1. The current subsectional geom-
etry is shown in Figure 6.2,

The continuity relationships are given by (136a,b,c,d) which are

-repeated for convenience:;

y(1,%) = - (Bllk) - BQLk-1), k=2,3,...,N  (182a)
Initial Yo
Conditions ‘ }
(m=1] y(1,1) = - (5(1’1)V' B(l:N)> (182b)
P
y(m,k) = y(m-1,k) - (B(m’k)f(m’k'm) k=2,3,...,N  (182¢c)
m= 2’3: ’
7(m,1) = y(m-1,1) - (B(l’l)f(l’N)) (1824)
P

6.1-2. The Pulse Testing Functions for the Loop

The pulse testing functions for the arbitrarily bent wire were
given in the last chapter by equation (127) and equation (128) and are

repeated for referral. Thus,

~

y)
71 . AT

§o,i = XInT Pl(z-(l-.s)az) for - 37 <t <0 (183)
2, |

3,1 = RmiAT F (£-(1-.5)80)P, &= (§-.5)AT) (18%4)

where Ei is a unit vector tangent to the i-th field subsection, PZ

adjoint pulse function defined by (58b), and A4 and AT are defined in

is the

Section (6.1-1).
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88

Current Subsectional Geometry

Pigure 6.2
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6.2. The Pulse Tested Solution for the Loop Current and Charge

Coefficients

The solution steps outlined in Section 5.3 will be specialized to
the loop in this section.
The circles of constant time delay intersect the loop at the points

£+(Ot,i) and 4 (@,1), where

£*(0,1) = 16k + 2r arcsine (223D (185)
and
£(a,1) = 1Af - 2r arcsine (22(2:2)) (186)

The time delay index O takes the integer values & = 1,...,S, where
S = FlX("I]\_%) The intersections £ and £° are shown in Figure 6.3.

The loop pulse tested geometry functions are calculated from

i+.5 )M-Am(i, k)+'\/[ (i+.5)A£-Am(j_, k) 32+Bm(i, k)

MP
. 1 (
6o, |1-x]) = § ) log, -
m=0 (i-.5>M-Am<i,k>+‘\/[(i--5>M-Am<i,k>J +B_(1,k)
(187)
where O takes on the integer values = 0,1,2,...,8 S
M is the number of sample points in an interval Af

MP is the number of sample points in the interval 8y <z'< bk

b (@) - & ()
AL

MP = M (188)

Am(i,k) = [ak(a)i—n.-ﬁ-%] cos(ei-ek) - [rik+a] sin(a'jQ-ek) (189)

8.-8
. _ .2 mAL42 2 .2, 3 "k
Bm(:.,k) =T, ¥ [ak(a)+—ﬁ—] +a° + &rjka sin” (—5—)

- zrjk[ak(om-mﬁ—’e] sin(ej-ek)-Ai(i,k) (190)



Intersections of a Constant Time Delay Circle and the Loop

Figure 6.3
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and

Gk-e.
rjk = 2r sin{——E—Q] (191)

A simplification due to the rotational symmetry of the loop is that
the geometry functions are functions of the absolute difference of the
source and field subsection indices. This result permits a reduction of
storage requirements for G by a factor of N. A further reduction in
storage requirements is possible due to the mirror symmetry of the loop
about any diameter. That is, for every source subsection k there is an-

other source subsection £ which satisfies one of the following:

li-k| = |£-1] 1<k<i< g (192)

or
li-k| = [4-1i+0] 1<f<kgigN (193)

or
|i-k+N| = |£-1i] 1<i<£<k<N (194)

It will be shown in the following sections that the quantities cos[%f(i-k)]
and G(@, |i-k|) always occur together as a product. This product will be
referred to as the modified pulse tested loop geometry functions. The
modified pulse testing functions for a twenty subsection loop which has

a radius of 5 meters and a loop radius to wire diameter ratio of 18.9

are given in Table 6.1. The symmetry demonstrated by equations (192)
through (194%) is readily evident for o = 1,2,3,...,6. If the difference
of the subéectional indices is such that the source point is outside of

the & time delay region, the geometry function is set to zero as required

by (150).
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=0
1 3.293%8 0.0 3 0.0 0.0 5 0.0
6 0.0 0.0 8 0.0 0.0 10 0.0
11 0.0 12 0.0 13 0.0 14 0.0 15 0.0
16 0.0 17 0.0 18 0.0 19 0.0 20 0.0
a=1
1 0.0 0.4664 2 0.003410 0.0 5 0.0
6 0.0 0.0 8 0.0 0.0 10 0.0
11 0.0 12 0.0 13 0.0 b 0.0 15 0.0
16 0.0 17 0.0 18 0.0 19  0.003410 |20 0.4664
o= 2
1 0.0 0.0 3 0.185%6 0.007000 | 5 0.0
6 0.0 0.0 8 0.0 0.0 10 0.0
11 0.0 12 0.0 13 0.0 14 0.0 15 0.0
16 0.0 17 0.0 18  0.007000] 19 0.1856 20 0.0
a=3
1 0.0 2 0.0 3 0.0 0.08170 5  0.007464
6 0.0 0.0 8 0.0 9 0.0 10 0.0
11 0.0 12 0.0 13 0.0 1L 0.0 15 0.0
16 0.0 17 0.007462} 18 0.08170 | 19 0.0 20 0.0
o=k
1 0.0 0.0 3 0.0 L 0.0 5  0.02722
6 0.60625x10'7 0.0 8 0.0 0.0 10 0.0
11 0.0 12 0.0 3 0.0 L 0.0 15 0.0
16 o.6o6é'5><1o'7 17  0.02722 | 18 0.0 19 0.0 20 0.0
Q=5
1 0.0 0.0 3 0.0 0.0 5 0.0
6 0.5903x10° 20.02451 | 8 -0.006186 0.0 10 0.0
11, 0.0 12 0.0 13 0.0 1L -0.006186 | 15 -0.02451
16 0.5903x10° " |17 0.0 18 0.0 19 0.0 20 0.0
a=6
1 0.0 0.0 3 0.0 4 0.0 5 0.0
& 0.0 0.0 8 -0.03656 9 -0.05656 | 10 -0.06676
11 -0.073k2 12 -0.06676 | 13 -0.05656 | 14 -0.03656 |15 0.0
16 17 0.0 18 0.0 19 0.0 20 0.0

Modified Pulse Tested Geometry Functions for a

Table 6.1

20 Subsection Loop



95

Before the loop current coefficients can be evaluated the pulse
tested incident electric field must be found. Unlike the straight wire,
the loop interacts with both horizontally and vertically polarized plane
wave incident electric fields.* Let us denote these two cases by gi(H)
and %i(v), respectively. The incident plane wavefront will be assumed

to be normal to the plane 6 = 0.

The tangential component of the vertically polarized incident field

is given by:

<§i(V))§j,i> _

(3+3)AT  (i+1)al
at [Ei(t-E—(l-cos(ﬁ))cosw ' ){sin(é)dﬁ
v T elev T
(3-DaT  (i-%)as P

sin q)elev

ATAL

(195)

For sufficiently fine sampling, this eqguation can be approximated by

i(V) L_dndy i, T ing
<:§ ’gj,£:> ~ sin( - )Slnmelele (JAT—Vp(l—cos( = )cosmelev)[ (196)
over those indices i._such that
. T irg
(3+.5)AT - Vp(l-cos(—;—) cosP ., > O (197)
for each j = 0,1,2,... . The tangential component of the horizontally

polarized incident field is found by an analogous procedure to be

. ‘AL 3 ing
<i§l<H)’§j,£>> ~ cos(E%—)lEl(JﬁT‘%;(l'cos E%—)COS Qelev>[ (158)

for all j,1 such that (197) 1s satisfied.

*A vertically polarized plane wave field has a vector component normal to the
plane of the loop. A horizontally polarized plane wave field is defined as a
field whose direction is parallel to the plane of the loop. An arbitrarily
polarized plane wave field can always be decomposed into a linear combination
of vertical and horizontal polarizations.
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During the transient period in which the plane wave has not yet
traversed the diameter of the loop, the pulse testing integral weights
the partially excited subsections by the ratio of the excited portion
of the subsection to the total subsection length. Egquations (196) and
(198) must be multiplied by a factor of (3) for j = O due to the half
interval time testing function S. .. The first set of current coeffi-

~0, 1
cients is given by (16L4)

<E.80,>

L) - gy ¢ (oG, o) Ty P et 199)

E:L ié’either‘§}<H) or E1<V>.

The first set of charge coefficients is
~ ~

found from (182a,b). The vector potential is given by

B(ty,4,) = = 8(1,1) 6(0,0) (200)

and the first scalar potentials by

(b, 4, + %f) = 1= 7(1,1+1) &(0,0) (201)
38,4, - 52) = p= 7(1,1) 6(0,0) (202)

The algorithm proceeds in the manner described in the preceding

chapters.

A
The vector potential contribution <15%’§j ij;> as noted in the
2

previous chapter can be expressed in terms of the difference of the aver-

aged vector potentials A(t.

£ Iy 2.
410 i) and A(tj, i)

cA _ _
< yl;',,svj, D - i—T-[A(tjﬂ,ﬂi) - A(tj,zi)] (203)



The vector potentials are given by:

A(t

g h) =03

v
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S-1

O=1

+
B(3+1,1) 6(0,0) + ) Y e(31-0,p) 6(o, |i-p])
p=

+
n

+ E: B(3+1-a,p) G(a, |i-p|)

p=n
+

!
+ Z B(j+l's:p) G<S) !i'p{ )] (2014')

=q

where summation terminates in all cases when J + 1 -a< 1. a=1,2,...,5

and by

A )/

S-1

(0,0) +'§:

C=1

+
n

" E:_

pP=n
+

=q

+

m

j{: B(3-0,p) Glot, |i-p])

p=m_

B(3-a,p) ala, |i-p]|)

B(3-s,p) G(5, |i-p|) (205)

where summation terminates in all cases when j ~ o< 1, = 1,2,...,8.

Note tﬁat

S

Fix(N/n)
Fix(2+(a+l,i)/A£
Fix(4"(a,1)/a8

Fix(4™ (o, 1)/al

Fix(£4™ (a+1,1)/n8)

Fix(4'(8,1)/04)
Fix(£ (S,1)/n4)
1,2,...

1,2,...,N

(206)



96

S is the number of time delay circles which intersect the loop. The next
time delay circle (S+1) would completely enclose the loop. The summa-~
tions over m to m+ and n~ to n+ are the sumations over the source co-
ordinates which lie in the O time delay region. If the time delay circles
bounding the & time delay region intersect a subsection between its end-
points, then m (o+l) = m+(a) and n (o#l) = n+(a); however, if the time
delay circle intersects the loop at the beginning of a subsection, then

m (o+l) = mf(a) +1 and n (o+l) = n+(a) + 1. If the intersections of the
S' time delay circle occur within source subsections, then g = m+(S) and
q+ =n (8), and if at the beginning or end of a subsection, g = m+(S) + 1
and q+ =n (8) - 1. Figure 6.4 illustrates these quantities.

The pulse tested scalar potential contribution has been shown to

be expressible as the difference

< NJ l> [@(t ﬂ + ﬂ) - 5(tj,,@i - %E)] (207)

The extens1on to j > 1 proceeds in a manner analogous to the calculation
Al Al
°f<:ET3 85, 1:> The potentlals @(tj,ﬂi 3 ) and @(tj,ﬂi - E—) can be

shown to be given by

+
S-1, m
IO gz) = H%Z 7(3,1+1)G(0,0) + E: 5:_ 7(3-a, pr1)a(a, [p+1-1])
C=1\ p=m
n+ q+
+ Z 7(3-0,p+1)G(a, [p+1-i] )|+ Z (7(3-8,p*1)G(s, |p+1-i])
p=n’ p=q

(208)

where summation terminates for j-a< 1, a = 1L, ...,S, and by
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?\

Intersections of the Loop and a Set of
Constant Time Delay Circles

Figure 6.4
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.
S-1p m
Ble, 0, - 80 = g | 7(5,00000,0) + | ) G pIae, fe-i])
Q=1 \ p=m
ot q+
+ j{j 7(3-a,p)a(e, [p-1i])) + ji: 7(3-8,p)a(s, |p-i])
p=n p=q

(209)

where summations terminate for j-a < 1, &= 1,...,S. All quantities 5,
m+, m , etc. are as defined in (206).
A general note on the summations involved in (20%), (205), (208),

and (209) is in order. When necessary, the periodic boundary conditions

7(3,k+N) = 7(J,k) (2102)
B(J, k) = 7(J,k) ‘ (210b)
and
7(3,k-p) = 7(3,N-(p-k)) p>k (210¢c)
8(3,k-p) = B(J,N-(p-k)) (2104)

must be applied. The current coefficients are found by the substitution
of the vector and scalar potentials into (164) and (165). The charge co-
efficients are found from (182). The vector potential terms are found
from (204), (205), and (206), and the scalar potentials from (208) and
(209). When the loop is excited as an antenna, (173), (17k), and (175)

are readily specialized to the loop.

6.%3. The Pulse Tested Normalized Radiated Far Field

The normalized radiated far field of a loop has only an azimuthal compo-

nent E,. There is no polar component(e-component in spherical coordinates)

¢

because the dot product between ﬁé and the current subsections is zero.

The receiver geometry is shown in Figure 6.5.



Loop-Receiver Geometry

Figure 6.5
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The testing current at the far field point is an azimuthally di-
rected dipole of the same type as considered in Chapter 4. The testing

current radiates an impulsive electric field

1 [6(t-_t7to) - S(t;+1-t6.f+- AT)] - (211)

E(t,R) = - 7%:? (§) AT Us

where to = time delay between the field point and any point at R, and

~
U, is an azimuthally directed unit vector.

¢ .
The field E2 is the testing field in the reciprocity expression (107).
The normalized electric field RE¢ radiated by the loop can be shown to be

given by the expression
N
. 214
[BIE, (65 BI/v ,R) = - f=(p) Y ‘cos(wAZ - <-N—“)1))
i=1

({DLc (@, |1k ] )IB(3-G, 4)-B (3-1-05,1)1)

+{pcc(a, |i-k] )[B(j-l-cx,i)-ﬁ(j-z-a,i)]}) (212)

where

2x

T ]

Q= Fix[g;(l-COS(WAZ-< )i)ecos

VELEV

pce(e, |i-k|) = AL - DIC(a, |i-k|)

n = free space wave impedance

wAZ = the azimuthal position of the field point

WELEV = the elevation of the field point

and, DLC(a,li-k|) is the part of the i-th subsection which is excited
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by the testing field as it propagates over the loop. DLC(a,[i-k[) per-
forms the same role as the geometry functions G(a,[i-k[), in the evalua~
tion of the pulse tested far field. The form of the DIC's is simpler
than the G's because R is a constant in (212) and may be extracted from
the integral leaving simple linear integrals which are evaluated as

DLC(a, |i-k|) and DCC (e, |i-k|).

6.4, Conclusions

It has been shown that the loop may be analyzed by use of the method
of moments solution formulated for the arbitrarily bent wire. The algorithm
that results is iterative in the time domain. The far field of the loop
can be analyzed by a moments solution which is analogous to the straight

wire far field formulation found in Chapter 4.

6.5. Computations for the Loop

Computations have been made for the current and scalar potential
along a loop when the loop is excited as an antenna. The geometry is
shown in Figure 6.6. The ratio of loop radius to wire diameter considered
was 18.92. The exciting voltage was a unit step applied as shown. Two
cases of source resistance were considered; Rg = 0 Q and Rg = 100 Q
(the matched case).

Let us examine Figure 6.7 which shows plots of the spatial distribu-
tion of current and scalar potential at selected instants of time. As
the current wave travels away from the source, the vector directions of
the current are away from the plus (+) terminal and towards the minus (-)

terminal of the source. This is indicated on the figure by + and -



The Loop Excited as an Antenns

Figure 6.6
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respectively. When the current reaches a point opposite the source (marked
* :
as point "D" on Figure 6.6) at t/TL = 0.5, the currents add as shown.
Because of the shift of the time axis of the charge by AT/2, the scalar
potential is ahead of the current waveform in time (i.e., 0.5 corresponds
to 0.55, etc.). The driving point current for Rg = 0, and Rg = 100 @ is
shown in Figure 6.8. The behavior of the current for Rg = 0.0 is explained
above. As expected as t/TE__"w , the current driven through the Rg = 100 Q
approaches 10 ma. The current reaches 90% of its final value at T/‘zL ~ 3.0.
If an exponential fit to the data is made, the time constant is =~ 1.3.

Assuming the exponential behavior can be characterized by a series R-L

circuit, the inductance is found to be

L ~ 130 T (213)

assuming the resistance R = Rg. For a loop r = 0.5 meters, r/a = 18.92,

an equivalent inductance of
L = 1.35u henries (214)

is found. This agrees to within an order of magnitude with the inductance
calculated from the susceptance curves found in Reference 1, page 93, for

small b/A, and in effect (213) can be taken as a rule of thumb.

T, = 2ﬁr/vp
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Chapter 7

DISCUSSION

Additional results were computed for the straight wire scatterer,
using:thé pulse tested formulation developed in Chapter 3. Pigure 7.1
shows the normalized scattered field of a wire illuminated by a unit step
electric field incident at 450. Figure 7.2 illustrates the geometry.

The scattered field is largest in the direction GR = 7 - eINC' Simple

ray theory suffices for explanation. As the incident wave A propagates
over the scatter, currents in each subsection are excited. These currents
radiate a wave which is in time phase along the wavefront B. Hence, the

radiation is largest in the direction GR = T - eINC'

Scattering by a Straight Wire

Figure 7.2
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NORMALIZED SCATTERED
FAR FIELD COMPUTE D
FROM PULSE TESTED
CURRENT FOR Gpe=45°

FIGURE 7-1
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In the back scattered direction, no significant field is received

until the time t = ﬁ/vp (L +cose This was experimentally verified

p INC)'
by Hong, Borison and Ford.2 The authors analyzed the results using an

a7

asymptotic ray theory developed by "~ Urimtsev. The computations shown
in Figuyes 4.l and 7.1 agree with the results of these authors. The

response at ﬁ/vP (lﬁﬁ\cos 8 was ‘first analyzed by Peters.28 He sug-

INC) _
gested that a traveling wave launched at the near end and then reflected

at the far end is the source of the back scattered energy. The results
presented in Figure 3.5". substantiate this suggestion. The current

grows ~. .. as 1t travels from the near end to the far end of the scat-
terer. When this current reaches z' ='E, it is reflected, and simultane-
ously radiates a large field. It is this field contribution radiating in
the back scattered direction which was noted by Peters. -—

The center driven straight wire antenna was investigated in Chapters 2
and 3 of this paper. The effect of changes in the source resistance Rg is
shown in Figures 2.6, 2.7, and 3.3. (For Rg = 0, the value of the driving
point current at t = O obtained by the pulse tested method of moments ‘
agrees with the exact value calculated by T. T. Wulngithin 5%.) The ef-
fect of changes in the source resistance on the driving point current may
be summarized. Increases in Rg cause the currgnt to damp out faster, but
do not materially affect the shape of the waveform. The effects of
changes in the position of the feedpoint were also investigated. The
feedpoint was moved from z' = £/2 to z' = 34/4. The driving point cur-
rent and the radiated far fields were calculated. The results are presented

in Figures 7.3 and 7.4. In Figure 7.3, the driving point is z' = 34/k.



Driving Point Current (ma)

Drawing Point Current (ma)
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The driving point current is shown for two different source resistances.
It is interesting to compare Figure‘7.5 witﬂ the results for the center
driven antenna shown in Figures 3.2 and 5.3. The differences can be ex-
plained gqualitatively by transmission line traveling wave theory. It was
shown in Chapter 2 that a voltage source applied to the dipole excites

two current waves fraveling towards opposite ends of the wire. Let the
wave traveling towards z' = O be denoted IQ and the wave traveling to&ards
z' = £ be denoted Ig. Let the reflection coefficient of the wire end be
denoted R. The center fed driving point current will be examined first.
Between 0 < t/TL < l.O*, neither Iy nor I,

point. At t/TL ~ 1.0, the two current waves reflected from the wire ends

has returned to the driving

arrive at the driving point simultaneously and add, giving -R(IO + Iz).
The net current is driven to a negative value, since the driving point
current has decreased from its value at t = O due to radiation. The waves
proceed along the wiré in this manner giving the entire time response..
Let the case for the wire driven at z' = 3£/4 be investigated simi-
larly. Between O < t/TL < 0.5, neither IO nor Iz has returned to the
driving point. However, between 0.5 < t/TL < 1.5, the driving point cur-
rent almost vanishes due to the return of the current -RI, from z' = 4.
At t/TL =~ 1.5, the current —RIO returns from z' = O and causes the cur-
rent to further decrease to negative values. The droop of the driving
point current between 0 < t/TL < 1.5, is due to radiation at the source.

Bulgakovll maintains that when Rg is matched, all current flow ceases

after the two current waves reach the source. TFigures 3.3 and 7.3 (for

* .
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Rg = 100 @, the matched case) show this is not the case. Only when radia-
tion from the source and wire ends is neglected is his conjecture true.

It must be concluded that transmission line analysis without these effects
is only gqualitatively correct.

In the frequency domain, a'paper by Shen, Wu and KingBO demonstrates
that if the proper reflection coefficients are used for the ends of the
wire, and the radiation is handled correctly, that transmission line-
traveling wave theory can be used to analyze the dipole antenna. The ef-
fect of moving the feed from z' = £/2 to z' = 34/4 on the dipole radiated
far field is shown in Figure 7.4. In this figure the fields are plotted
as a function of space at a fixed instant of time. The normalized fér
field REe for the center fed dipole is shﬁwn on the léft, and the field
radiated by the dipole fed at 5£/h is shown on the right. The source
resistance Rg = 100 Q. As expected, the field radiated by the center
fed dipole is symmetric about eR = 900, but the far field for the antenna

fed at 34/4 is shifted towards 6

R= 0. This would indicate that the far

field tends to shift towards the traveling wave as the feed is moved away
from the center. In this case, the traveling wave propagates towards
z' = 0. (The geometry shown in Figure 7.2 is applicable.)

It has been shown that the method of moments can be used to treat
thin wire radiation and scattering in the time domain. Other problems
can be treated by modifications or extensions of the theory. For exaﬁple,
the problem of scattering by bodies of revolution can be treated in a
manner similar to that developed for the loop. Reactive loads can be

treated by defining the proper operator on the current and charge for
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. these elements. The reflection coefficients at the énds of the wire can
be determined by a careful evaluation of the fields in the vicinity of
the wire ends.

Numerical errors which occurred in the results are due to the time
delay approximation used in the evaluation of the retarded potential in-
tegrals. These errors can be substantially reduced by a more sophisticated

handling of these integreations.



Appendix A

A TIME RECIPROCITY THECREM FOR WIRE OBJECTS

A time reciprocity theorem which is the basis for the method of
moments solutions for wire objects is developed in this appendix. The
identification of the negative time domain with the adjoint time space
is an integral part of the theorem.

Iet the following functions be defined on the time and space domains:

gl(t,z) =0 t <0 (A.1)
g(l)(t,z') = 0 t <0 (A.2)
5(2)(45,;3) = 0 t >0 (A.3)
Ms,00) = 0 t<0 (A1)
q(g)(t,z) =0 t>0 ' (A.5)

The inner product <:§(l)(t,£), ;(2)(-t,z):> will be taken over
the unprimed coordinates £. (The notation ak will be used to denote unit

vector tangent to the subscript coordinate system.) Thus,

(1) (2) [ [k 1)
<1‘3, (t,0), T (t"“)> = f[at ﬁ_ﬁf R,z
0 £ A

s a1 [
* Uy 57 lmef R(¢
gl

(Ejgfz') ar| - 13 (-2, 0)a0at
E} ~

(4.6)

This integral is most conveniently investigated by considering the vector
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and scalar potential terms separately. The vector potential term

o (1) |
IV (t-1,2")
ff % ﬁ“ﬂf R + 18 e, masat (A7)
2 A

0

wvhen integrated by parts with respect to the time variable results in

the sum
(1) o
‘ E (t-t,£')as’ 2)
[l | w1 1P |
2 A 0

% (1) (2)
IV (t-1,4") AN C
ofl [ [ S @] s e w9)

t

If the additional requirement that I(E)(t,z) vanish as t —~e» -w, then
only the second integral need be considered. If a new time variable '

is defined as

t= b -1 (4.9)

and substituted into the remaining term of (A.7) the integral

| [t ] S e s e (4.20)
o & £

results. The limits on the t' integration are as before since t > 0. An

interchange of the spatial integrations

0 (2)
V(- (t"+1),8)
[ [ e [\t [ mmrr— o |Joe wa
o &'

£

gives an integral that is of the form

<£(l),L 1(2)> | (A.12)
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where

By P ) Flt+r, 4
L =147 Eja 1,2y |3 (A.23)
and Li is recognized'as the adjoint operator to the retarded potential

integral operator

LG=f 5;‘/’5-((%% : (A.14)
and, by virtue of (&7, (AL 12;, fALTEY and (A L)yt e g,

<L e (2) > - <I(l) > (A.15)

The negative time domain is adjoint to the positive time domain and
is the domain on which L?_ operates.

The second term of (A.6)

P e L (1)
ff“z %z[uief (étzfiz 2 ] ) 5(2)<-‘°:ﬂ)dﬂdt (A.16)
0 ¥4 2!

is integrated by parts with respect to £ to get

o(1)
f n,ﬁf Ré"f’“w - 1)

1 81(2)
f.[lme f ( ) t—T L) ap . —g—r(-t,z}izat (A.17)

The imposition of either the open wire boundary condition

at

O— =

I(t,0) = I(t,4) = O

or the closed wire periodic boundary conditions
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E(tao) - z(t)ﬁ)
a(t,Q) = a(t,4)
causes the first term of (A.17) to vaniéh, leaving only the second term

for consideration. The current ;(2)(-t,t) satisfies the continuity

equation,
. a1(?)
C o (-t,4) '6'%—5( -t,28) (A.18)

which can be substituted into the remaining term of (A.1lT) to give

e COPI 34(2) |
+ff[ui€(f g R(E;‘fit ) dz'g 5%_—{5(-1:,3)]&& (A.19)
o 2 2’ "
If (A.19) is integrated by parts with respect to t, the sum

(1) : ‘ T
- f(uief R d") Een ]
. 4 L

0

& 1) :
+f f (%E Tie j q(RTSZT’)z ) d"]) (B (-, 0)asat (4.20)
O l

results. If the additional requirement that q(e)(t,ﬂ) vanish as t = =co,

then only the second integral contribution need be considered. A new

time variable t' will be defined as
=t -7

and substituted into the remaining term of (A.20) to get

4 o
[ JBlme [ st o] Qe
O 4 L'
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The charge q<l) satisfies the continuity egquation
a1(t)
—%—(t',z') + 0, S5(80,00) (4.22)
(1)

allowing (A.21) to be written in terms of I'"’/. An interchange of spatial

integrations can also be made, The resulting integral is

) o RO
6, e [ e o

2

which can be integrated by parts with respect to £'. Thus

nay FRoe
-f,l(l)(t',z’) '(ufmf R%z%';ﬂ L) dz)l at'
0 y; 0

c " (@) ¢ (g
89000080 ] e [t
0 ! 2

(A.2k)

The first term of (A.2%) vanishes whether the wire is open or closed

leaving the term
I(l)(t' ADEE G ) 1 q(‘?)("(t"*"f)’z) dslagzrat’  (a 25)
> ) £t 92" | bne R(4,4") ’
0 4! £

which is recognized to be of the form

(I(l) : (2 > ‘ (A.26)
where
a e 1 F(t+‘r,£l A
LF = 5 )-mcj R(£,£") a2 U, (A.27)

£
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I; is the adjoint operator to

3 1 F(t-1,4) A -
LEF - al L‘"T[G f R(ﬂ,!') azr’ U‘Z s and, (A¢28)
~

by virtue of the definition of the adjoint operator
(1 2 1) .a (2
<L2§( )’;\E,( )> - <£( )’LQq( )> (A.29)
BEquation @.6)can now be written,

P01 000> = Lag™g® > v (1B

(A.30)

and by virtue Of.(Alli)ﬂanég(A,EQQL as

CEVeB > - M@ s e Mg® s

~ 2%
(A.31)
Finally, since
22 (5,0) = 1@1(2) + LZq(a) (A.32)
~/ e
the desired reciprocity relationship
CEMe,0,1%w0> = < 1M e, Been > (4.33)

is obtained. When this theorem is used to compute far field quantities,
the distance R(4,4') is considered a constant with respect to the £ and
£' integrations. As a consequence, the fequirement that q(g)(t,z)--o
as t —s - may be relaxed since over the object no net charge accumulates

and hence the first integral of (A.20) vanishes.



Appendix B

POINT AND PULSE TESTED GEOMETRY FUNCTIONS

B.1. Point Tested Geometry Functions

The point tested straight.wire solution requires the evaluation of
integrals of the form_f % dz'. These can be integrated analytically and
& .

are given by

(k+.5)Az
az! (i-k+.5)pz + -V(i-k+'5)2A22+32 (B.1-1)

= log
e
(k25)nz  (inz-z')"+e” (i-k-.5)az + \(i-k-.5)2nz%4a"

when k> i, this function suffers a loss of significance,but as noted

23

by Harrison and Aronson

loge(-x +'\/x2+a2) = log 2 (B.1-2)
© 2. 2

x + X +a

>, the identity

can be used to remove the difficulty. The identity is also useful to
show that(B.l—D is & function of ]i-kl only. Let k> i, then using

(B.1-2), (B.1-1) is rewritten,

(k-i+.5)Az +-\/(k-i+.5)2A22+a2

(k=i~.5)Az +V(k-i— .5)2A22+a2

log, (B.1-3)

If, in (B.1-1), the field points are denoted by the index i and
the source points by k, when the field and source points are interchanged,
(B.1-3) equals (B.1-1). The point tested geometry functions F(|i-k|) are

thus functions only of the absolute difference of (i-k) and are given by

P= [i-k| = 0,...,N-1

2
e« s [ 2ok Vi

(P-.5)Az +_\/(P-.5)2A2,2+a2
(B.1-4)
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‘ B.2. The Pulse Tested Geometry'Functions

The pulse tested straight wire formulation requires the evaluation
of integrals of the form

(£+.5)az  (k+.5)Az
a

oL dz'
4z ’ 2 27
(£-.5)Az (k-.5)Az’\/ a + (z-z')

The holding of z fixed and the substitution n = (z-z') allows

(B.2-1)

(B.2-1) to be written

, (£+.5)az  z-(k+.5)Az
L dz S S (B.2-2)

” (z-‘.[5)Az z-(kfmz el

The substitution of z" = z - (k-.5)Az results in the final integral

, t form
® (ki
s ]

E dz" —_—= 'd (B°2-5)
(4-%)1z z'-Az a” + 7

Equation (B.2-3) is evaluated using Dwight25 (200.01) and 625).

2 2

2 2 2 V.2
a(P) = P log ((P+1)Az +—W/a,+(P+1) Az 3 ((P-L)az + V o +(P-1)"Az"7)
© v 2, 2 2
[RAZ + Va© + Pz ]
(P+1)az + a2+(P+l)2A22
+ loge
' 2 2 2
(P-1)az + Va +(P-1)"Az
+ i;[e a2+P?AZ2 - a2+(P+1)2A22 -_M/a2+(P-1)?Az2 ] (B.2-4)
5
where P = |4-k|, P = 0,1,...,(N-1). Loss of s:’.g,niaf‘icanceg5 can occur in
‘ the calculation of G(0). Application of (B.1-2) allows G{0O) to be written
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V a2+A22 }_ 2AZ

a(0) = 2 loge[‘az - - —— (B.2-5)
-\/ a2+22 )

a +
The symmetry properties of G(P) were investigated by letting P! = -P,
(this is equivalent to interchanging in field and ‘source points) and
applying (B.1-2). It can be shown that G(P) = G(-P), and hence (B.2-4)

is valid for P = |4-k|. )

An analytical comparison of the point and pulse tested geometry
functions was not carried out due to the dissimilarity of functional

forms.

B.2. Comparison of Point and Pulse Tested Geometry Functions

Computations have been made for (£/2a) = Th.2 for N = 20 and 26
of both the point and pulse tested geometry functions. The point tested
functions are shown in Tables B-1 and B-2, with the pulse tested functions
in Tables B-3 and B-L.

The point and pulse tested geometry functions only differ to any
degree for |i-k| = O where the point tested functions are about 10% larger
than the pulse tested functions. The difference can be explained on phys-
ical grounds. The geometry functions F(O) and G(0O) have been shown to be
proportional to the input resistance of the lossless wire and a measure
of the self-reaction of a subsection on itgelf. In the point tested solution
the current over an entire subsection has as its source a unit voltage ap-
plied across a small distance in the middle of a subsection (this is referred

to as & slice generator). This induces a highly localized field which
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opposes the slice generator voltage resulting in an input resistance which
is higher than when the voltage source is applied across an entire sub-
section which is the case in the pulse tested solutions. The notion of
the pulse tested solution as a local averaging operation with the average
of the current being less than the value of the current at the midpoint
of the subgection leads to a similar conclusion. A comparison of the

geometry functions is shown in Figure B.3-1 for N = 26, £/2a = Th.2.
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POINT TESTED
GEOMETRY FUNCTIONS
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Table B-1

N = 26
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Table B-2

PULSE TESTED
GEOMETRY FUNCTIONS

N=20
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18 0.0588

Table B-3
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' Appendix C

PROGRAMMING INSTRUCTIONS AND PROGRAMS

A semple program will be examined in detail in this Appendix.
Since thé programs are largely similar, and differ only in the sub-
routines specialized to the function of the object (antenna or scat-
terer) and type (straight wire, loop, etc.), only the main program and
3 subroutines for the.pulse tested straight wire scatterer will be examinéd
in detail. The main program is shown in Figure C.1.
Between (:)*and (:), the variables are declared and physical quali-

ties are read in. The following variables are used:

B(J,K) current coefficient
A(J,X) vector potential
n POT(J,K) scalar potential
. G(J,K) charge coefficient
VA(J,K) the tangential component of the incident field
RL(K) resistive load
* F(K) geometry function
TI(J) an array to store the normalized time values
) ER(J,M) the array which stores the normalized far
fields
R THETA(M) array which stores the angles for far field
computation

The J subscript is the time iterate, K the space iterate on the wire,
and M the far field angle iterate.

The following integér quantities are read in:

. N number of subsections
, MT number of transit times to be examined
N KTH number of far field angles < 1Q

*
‘ Circled numbers refer to the source quantities found in Pigure C.1.
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Py atsiatakalatakatzlaXalakakelalal

reuNtsl
sus CONTINUE
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and then the following floating point variables are read in:

AL straight wire length

OMEGA ratio of length to diameter

EP relative permittivity of the surrounding medium
m relative permeability of the surrounding medium
PL the driving point if wire is an antenna

DRTH increment in fer field angles

RL(K) the resistive and/or generator loads

Between @ and @ quantities are calculated which are derived from
the basic quantities just read in. Some additional data are read in as

well. The quantities calculated are:

MF number of time iterations to be performed

R,D the antenna radius and diameter

DZ the subsection length

LP the driven subsection (if wire is antenna)

C speed of light of surrounding medium

DT transit time of subsection and basic time
iterate

The geometry functions are calculated from the statement CALL GEOM (F,R),
and returned to the main program for printing later. The subroutine GEOM
is shown ag C-2.a.

Between (:) and.<:>, the program is identified and the quantities
Just calculated are outputted by the printer.

Before the remainder of the program is described, the general philosophy
of the program will be discussed. In general, the retarded potential formula-
tion reqguires at most the N previous currents and charges. The far field

evaluation needs at most N current coefficients previous to the time J and
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SUBROUTINE GECM (FyR}

RLAL*4 F(20)

COMMON UPL4,EP T4, Ny MFyNHM,OT,DZ,T

:él:=i;;&;06((DL&SORT(R‘R*DL'DZ))/R)-?.*DZ/(R*SQRT(R‘R&DZ‘DI))
=24

PPL=K*DZ+SQRTIR*R¢(K¥DZ 1 x*2)

PML=(K-21*0Z+SURT(RBR{ {K~2 ) %DZ 1 %%2)

PP=(K-11*DZ+SCRT(R¥R+{(K=-11%DZ)#%2}

FIKY={K=-1}%ALOG(PPL*PML/ (PP #%2))

FIK)=F(K}+ALCG(PPL/PNM])

FIKYSFAK) #{2.%PP=PPL=PML} /D2

CONT INUE

RCTURN

END

C.2-a

SUBRCUTINE VOLT(JyVA,THETA, JJ)
REAL*4 VA{52,26)
COFMMUN UPL44EP T4 Ny MF 4 NMN DT 4DZ,C
SR=SINITHETA)
CR=CUS{THETA)
TE(CR) 5+444
G0 1 K=lNM¥
FIT=(K+e5)%CR
MI=(K-.51%LR
[FUCSI-MTIILGTWMF) GGTO 21
LEC(RTT-Fi=1)11 243,43
2 Tel=sJ)J-K&CR
VA{J 4K} =SK*EXCTITKL)
TFE0.5-TKE) .G tial)
ulb TC 1
BIC=MTT/LR~K+.5
veC=1-02¢
IKEzJ3-((K=.3)¢D2C/2.)%CR
TK2=J4={{K+¢51~NCCI2,1%CR
VAL K)=SRe(DZC*IXCTLTKLI4DCCHEXCT(TK2))
EEQ0eD=TE L) oGEWCWoT) VALI,KI=VA(J,K) /2,
LONTENUY
GeoTy 2t
ull 7 K=1.NMM
KK=k-N
FTT={KK-.5)%(K
PI=(KK+.5)%C
FROLII-MTT)LGTWMFY Gu TO 21
TFIMIT-MT=1) 9,8,8
Q? (KisJJ-Kr*CR
VAL oK) =SA*kEXCTIRLY
LE({e9=Tr L} oGEWU LU}
b Tu 7
8 G/C=-{MTT/CR-kK=-.5)
GgeC=1-n1C
IKI=J3-{(Kkt,2}=02C72.)%CR
TRi=Jd={{KK=a5V+DCC/2,) 201
VAL KY=SRE(LICEEXCT(TREY4CC*EXCT(TK2))
TEQULO=THLYaGlats ) VALS MY =VAL Y, k)72,
7 CUONTENUE -
1 ORETURN
ENG -

C. 2 -4

F3

VALS,K)=vA(J,KI/2,

>

O]

VALJsK1=2VALU,KY /2,

r~s

FUNCTLON FXCTEX)
PE(XaLTot L) GO T6 1
EXCE=le0L
6O TC 2
eXCT=0.0
2 LORTINUE

RE TURN

+NO

—

C.2 -¢

205
16

21

b
19

N
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SUBROUTINE CURR (RLyFyVAByA4PUT, J)
REAL*4 RLU26D9F(26),VAL152,26)98152,26),A(52,26),PUT(52,26)
COMMUN UPL4,EPLG o NyMF NFM,DTD2,C
DULK=1gNMK

FLS.ECQeD) GO T1 2

SUMI=¢

SUM2=C.

LK=k-1

IF(LK.EQ.UICO TO 16

U205 M=1,LK

IF(J-M)16,16418

CONT [WUE -
SUMLSSUML#F(R+1)$B{J-M,K=M)

CONT INUF

CONRT [NUE

LKak#]

[FILK.EQ.NIGO TO 19

DU20U6MSLK, NMM

[FEI-MER)19,19,21

CONTINUL
SUM2=SUM2eB ( J=MeR M) &F (M4 ]1~K)

CONT (NUT

CONT {NUE

BPEY = (POTIJ~1yK)=PUT{JI~LyK¥L)}/DZ
HOJgKI=(VALI g R) =t J=1 KI*RLIK)I /2. ¢DPOT#{A(J=1,K)={SUML#SUM2) *UP]
LDV /(RLAKI /2. 4UPT4*F (LY /DT
ALJoKI=(BIIeKIRE (L) +SUMLESUM2Y®UP LG
GO Tu 1

BlIsK) =VALSoKIZ(RLIKIZ2.2UPL4*F{ L} /DT
AL KIZB LS KIRE (L) *UPL4

CONT INUE

RETURN

END

C-2-d

SURRUUTINE CGPUT (T 4By Gy PUT )
REAL*¥4 F(26)00(52+4206):G(52426),P0UTI52426)
COMMON UPT4 EP T4 Ny NFaNNMyOT 4 0LoC
DOLR=L4N
[F{S.FO. 1) GC TC 2

708 IF(K-1)23,22423

22 GUdeRI=U0JL)/050I=1, 1)

: o Lt

23 LEUK=N)25424425

24 GUJakISBIJaN-1)/04GEI-1,\)
“C IC L

25 GUIwRIZGUI-1 ok e {r{IgK=1D~0B(JsKkIDI/C
G0 TGt

2 CONTINUE

1F(K=-1)9,3,9

GlLy Ld==nll, 1070

G T 203

9 1FlK=NYT1lsliwll

1O GULaNYsHIL N=-10/C

el

ol Te 203
11 L{LlykI=0 {1 4K=1)-B{LsK)}/C
201 LONTiNE -
PLICI yKE=rPIAXFLLY*i{J,K)
1 cuntinue

[Fldactot) GU TL 3
{L 2InK=1N
SUMZ =
SUML=C.
LK=K~-1
FE(LRLQeIGL TE 26
LO2GIv=14LK
[FEd-41264126428
S8 CCNT{NUE
SUML=SUML+F (ML) {J~¥,K-M)

-209 ChaTlinuf

26  CONTLNUE
LK=K ¢l
FFILKLEGSAELILGY HL 29
LO2LOM=LR,N

TF{J=-Mtk)29,29,31
31 CUNT I NUE
SUMZ=SUMZ R (Mel-RERGLI-MEK M)

210 CONTINUFE
29  CCONT{uuL
POTCIoRI=CPIA*(F{LI®G( I KIESURTESUM2Y)
2uB  CUNTINUE
3 rETURN
£ND
C.2-& .
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N currents after, making a total of 2N coefficients which must be known
before far field evaluations must be made. In view of this, at any time
only 2§ X N currents and charges must be stored together with at least
2N vector and scalar potentials. The program actually stores 2N x N
vector and scalar potentials for ease in outputting the guantities. The
program meets these requiremenﬁs by shifting coefficients in their arrays
and outputting desired quantities every 2N time iterates. If MF is not
an integer multiple of 2N, provision is made at the end of the program to
output the remaining quantities in storage.

Between (:>anxi(:) the first 2N X N.currents, charges and potentials

are calculated. The calculation begins with
KOUNT = 1

This quantity is incremented by unity until it exceeds MF, when the program
goes into its exit routine. The normalized time is calculated and stored
in TI(J).

If KOUNT < 2N+1l, the program calculates the first 2N currents,

charges and potentials. The calculation begins with the statement
CALL VOLT (KOUNT, VA, THETA, KOUNT)

This subroutine calculateé the excitation (in this case the pulse tested
tangential electric field for the straight wire). This subroutine is
found on Figure C-2 as (C-2b) along with a function statement used in VOLT
and termed EXCT-(C-2c). EXCT is a functional description of the incident
electric field as a function of time, and in this case describes a unit
step function. The call to VOLT returns the excitation in the array VA,

which is used in the next subroutine. The statement
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CALL CURR (RL, F, VA, B, A, POT, KOUNT)

causes the arrays RL, F, VA, B, A, POT to be available to this subroutine
found as (C-24). In this subroutine the current is found in terms of the
‘retarded integrals described in Chapter 3. The most recent coefficients

*
are returned as B(KOUNT,K) K= 1,N-1. The next call statement
CALL CG POT(F, B, G, POT, KOUNT)

results in the set of charge coefficients G(KOUNT,K) K = 1,N to be found,
and from these charges and those found previously, the set of potentials
POT(KOUNT,K) K= 1,N is also found and returned along with the G's to
the main program. This program is labeled C-2d4. The time iterate KOUNT
is advanced by unity and tested again. When KOUNT = 2N+1, the first far

field quantities ER(J,M), J = 1,N; M = 1,KTH are computed by the call
CALL RFRLD(B, J, RTHETA, ER, MPF, KTH, DRTH, J, THETA)

This subroutine is labeled (C-3a). The program header describes the
purpose and method of computation performed by the subroutine.

Betweerl(::) and.(i:), the program checks whether KOUNT-1 is a multiple
of 2N. If it is, then the subroutine OTPT is called to output the data in
the arrays VA, B, G, A, POT. 1In the version labeled (C-3b) only VA, B

and G are outputted. The call is
CALL OTPT(2%N, 1, A, B, G, POT, VA, KOUNT, TI)

The subroutine PROUT called in OTPT is a standard array format to be used
for each outputted array variable. The subroutine is shown in (C-3c).
If (a), KOUNT-1 is not a multiple of 2N, or (b) the outputting is com-

pleted, the program proceeds to the steps between @ and ‘ The call

*
The notation K= 1, N-1 implies K takes all integer values from 1 wp to
and including N-1.
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SURRUUTINE RERLD (Bo JJoRTHETA ERyMPEKTH,DRTH, Jo THETA) ] SUBROUTINE OIPTIKE KT A¢8,GoPOT,VALKOUNT, T}

Cosenssasnrstesarenese soe REAL®ABIS2¢261+G(52,261A182,26),POT(52,26),VAIS2,26} (T1(500)

c COMMON UPE4yEP L4 MyMF  MNR,DT,D2,C )

¢ . PE=(KF-K(1/10,

¢ THIS PROGRAM COMPUTES THE NORWALIZED FAR FIELD OF A LINEAR DIPGLE FOR A HPERPF

¢ GIVEK REFLECTION ANGLE. TME WETHOD IS EQUIVALENT TO PULSE MATCHING (N fHE PPESMPE

c TIME AND SPACE DOMAINS. THE BASIS SPACE FOR THE CURRENT EXPANSION 1S A SET LF{PPF.EQ.PF} GO 1O L

3 OF TwO NIMKENSIONAL PULSE FUNCTIONS. THE PART(AL DERIVATIVES N TIME ARE MBFuMPE+]

¢ APPROXIMATED BY FHE OIFFERENCE OPERATOR, BECAUSE OF HE SASIS SPACE FOR 1 CONTINUE

¢ THE CURRENT, TRE INTEGRAL DPERATIONS ARE REPLACED 8Y EIMITE SUMS WNHICH 00302 (=i MPF

¢ TAKE INTO ACCOUME THE TIME DELAY DPERATOR WHICH 1S A FUNCTION OF THE ) MPESLO®ToKI=1

¢ REFLECTION ANGLE, MEC2 10 [+KOUNT=L=KF oK [=}

c mplajye{f-1}exi

CesasavssasNOTE, KTH MUST KOT BE LARGER THAN 10,e8s80e YT NE{n08(1-1§¢KOUNT-KFeRT-k

< IF{1.CQ.*PF) GO 16 11

¢ 60 10 L2

3 11 CONTINUE

C . HPEeK{

Cosedisdsasenen st (1} MFEsK(IUNT~L
REAL®4 BUS52,26),ERIS00,10)4RTHETALLO) 12 CONFINUE
COMMUR UPT4¢EP T4 NoMFyNNM(DT0Z4C PRINT 411
IE(KTH.GT.10} KTH=10 ALL FORMAT(LH oSGX923MINCIDEXT ELECTRIC FIELD)
CCHRCOS(THETA) CALL PROUT(TEyVA MMM ME [ MFE (MPELNPI)
DO ARKNe] KTH PRINT 31t
RTHETA(KN) «KNSDRTH®3,1415926571080.0 311 FORMAT(LH ¢50Ks20HCURRENT COEFFICIENTS)
CR=CUS (RTHETALRN)) CALL PROUTITE, BoNNM MF1,MEE,MPE MP])
SReSIN(RTHETAIRN)} . PRINE 312
1E(CRLLT.U.0) GO TO 22 . 312 FORFAT(IH oS0Xs19HCHARGE COEFFICIENTS)
SUmiag, CALL PROUTITLy GoN oMFT o MFEJPPE,MPL}
DU 1KK=l NMN . 302 CONTINUF,
MTIls{RK+.5S)OCR B R+ TURN
MTs(KK=,3)0CR . ENU

{FEEJJ-KITIouloMF) GC TD 22
[F(MTT-MT=1) 243,3

1]
4 BRANCH 2 INDICATES ENTIRE SUBSECTION IS EXCITED 3 - b
2 CONTINUE : -
KTekKeCR
{FICCR)Y 2ue2l021
0 KImJJexT . SUDRUGUTINE PROUTITLy XoKNsMFL g RFEyMPEMP])
KaN=KK KCAL®4 X(52926)1,TI(S00)
GC ot 23 PRINT3GT o LTLIK) o KaME [ MFE)
2l KimdJ=Krl B NiavEIn] o KN
K=KK . . PRINT30L¢Je (X(PyJ)oPuMPEMPE])
23 CURTINUE 406 CONTENUC
IF(KT=1) Le6y? PRINT 30%
6 SUMLaSUMLeH({RT )2, 30T FURMATLLH o277, H o6HTIME m o G{2XsFT14242X)477)
U 10 1 : 305 TURMAT(LH o#7/7/17)
7 OSUNLSSUWTORIKTKI=B(KT=L4K} (301 FCRVATIRH 42Xy 13,200 1XyELU3D)
o2 T0 L RETURN
3 DICAMTT/CR-KK S LNy
cce=t-D2C
Kia{{KR=y5)¢02C/24)%CR ' 3 -C

K2={ (KKt45)=0CC/2.00CR
IF(CCR) 24425425

24 kl=lyexl
xZadJeK2
K=N-KK . SUBRCUTING SHEFT(BelsyA¢PUT,VA)
o€ T 26 . ALAL#4H(52 4260951529261 1A(52926),POTI52¢26),VAL52,26)
25 Kl=j)eKl COMMON UP L4 EPL&oNyMFoNPM 0T 4DZ7,C
K22JJ-K2 LZe28n-1
KKK DCL KoLy Ney
26 CONTENUE UC2a= 1402
TF(RL-1) 1y12413 RO KD xBL+L,K)
12 5UPL=SUMI+DIC*BIK]K)¥2, ACdoK ehldol, k)
o TG 8 VALI KD uvA(Jo1,K)
13 SUMLaSUMIeDZCH{BLKL,K)=B(KL=1,K)) 2 CLNTINLE
# CONTINUE MPL ST e
TFIK2=1) 159,10 A(23N K)oy
9 SUNLESUMISDCCORIK2,K)%2, VALZON K} a0,0
Wi Tu L 1 CORTENUL
10 SUMLSUMLIDCCRIRIK2 4 KI=RIKZ=1yK1} : WKL N
L CONTINUE Y oneadetLy
ER{JoKN)==SRESUMLSUPIA/OT TNy
22 MPFa) PUTLdeK ) mPUT(S4L KD
& CONTINUE & CONTINUE
JF TURN Gl2sNaKI=0eu
£ND . PLTI2ONSK ) 20U

-

CONT [NUE
(: - A TURM
, 8%
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statement
CALL SHIFT(B, G, A, POT, VA)

causes all the elements of the arguments to be shifted one place back in
their storage locations and the most recent location to be initialized to

zero. As an example, the following occurs:
B(J,K) = B(J+1,K)

for J = 1,(2*N-1); K= 1,N~1. The most recent location B(2*N,K) is set

to zero preparetory to the new value of B which will be stored in that

location by CURR. Bubroutine SHIFT is shown as C-3d. The subroutines

VA, CURR, CGPOT, RFRLD operate as previously described each time inserting

their results in the (2N,K), K = 1,N or N-1 locations in the proper arrays.
Branching to statemenf 1 signifies th;£>the program has begun its

exit procedures. Between and@ the last far field guantitites

are calculated and the arrays are outputted by OTPT 'so that no data remain

which have not been outputted. Between @ and , the far field quan-

~tities are arranged for convenient printing end are printed out as a func-

tion of angle an& time. In addition, the time and far field are punched

out on cards by the instrictions

DO 1002 J = 1,KTH
PUNCH 1003, (TI(M), ER(M,J), M = 1,MPF)
1003 FORMAT (8(E10.3))
1002 CONTINUE
The program stops and exits.
Note that all routines on Figure C-3 are common to all straight wire
problems. SHIFT, OTPT and PROUT are common to all time domain moment

problems solved using the algorithms of this paper.
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