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Abstract - The currents and charges induced in a pair of electrically thin
crossed wires by a normally incident plane electromagnetic wave are derived
by analytical methods. The boundary conditions at the ends and at the junc-
tion are explained. The solution of a new integro~differential equation for
the currents 1is obtained in terms of trigonometric and integral-trigonometric
functions. Depending on the electrical lengths of the crossed elements and
the location of their junction a variety of quite different distributions of
current and charge obtain. These determine the scattered near and far fields.
Graphs of computed currents and charges per unit length on the four arms of
several important cases are displayed. The accurate determination of the in-
duced currents and charges on a mathematically tractable structure - the thin-
wire cross - 1s an early step in a study that will proceed to electrically
thick cylinders, wide strips, and theilr junctions in crossed configurations

in an effort to gain a meaningful approximate understanding of the currents

and charges induced on an aircraft by an electromagnetic pulse.
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1. Introduction

A knowledge of the distributions of current and charge induced on crossed
conductors by a plane electromagnetic wave is needed to determine the scattered
field, At distant points this is of interest in radar; near the metal surfaces
it provides a means for estimating the penetration through holes and slots in
a structure like an aircraft. Since the transverse dimensions are generally
not electrically small, the determination of surface currents and charges is a
formidable fask. Attempts have been made to simulate an aircraft by crossed
cylinders and to determine the currents and charges on these by thin-wire antenna
theory which ignores transverse currents., Since such currents are significant
on electrically thick conductors, the distributions calculated for crossed thin
tubes are not representative of those on thick cylinders. Nevertheless, a deter-
minaticn of their properties is a useful step in the study of induced currents
and charges on crossed conductors in general.

Studies of crossed thin wires excited by a plane wave have depended primarily
on numerical methods [1]-[4] to solve coupled integral equations subject to boun-
dary and junction conditions. Graphs of numerically computed distributions of
the induced currents have been displayed [2]-[4] for crosses constructed of rel-
atively short wires,but these are hardly adequate to provide insight inte the
behavior of currents and charges under conditions of resonance and antiresonance
with their quite different standing-wave patterns [5]. This can perhaps be obtained
best from an analytical solution which relates:the distributions of current and

charge to the lengths of the arms and the location of the junctionm.

2. Formulation of the Problem: Boundary and Junction Conditioms

In the interest of simplicity the plane of the crossed wires is assumed to
lie in a wave front of a normally incident plane wave with its electric vector
parallel to one of the wires. For mutually perpendicular wires, the solutiom

with the electric vector parallel to the other wire is obtained by a simple change
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in notation. A superposition of the solutions for the two polarizations gives
the solution for an arbitrarily polarized, normally incident wave.

The crossed wires and the incident electric field are shown in Fig. 1. The
wires extend from x = - zl to x = 22 and from z = —hl to z = h2 with the center

of their junction at x = y = z = 0, The wires all have the same radius a and

this is sufficiently small so that
ka = 2ra/X << 1 |, hi/a >> 1 2i/a >> 1 (1)

where 1 = 1 or 2 and k = w/c = 27/X is the wave number, The incident field is

Einc( ) = Elnce—Jky

inc
z 2 where Ez is the value at y = O,

Under the action of the incident field,standing-wave distributions of charge
and current are induced on the vertical conductor and these, in turn, induce distri-
butions on the horizontal arms. All of the currents and charges are distributed
so that the total tangential electric field vanishes on the conducting surfaces.
Subject to the condition ka << 1 all transverse currents are negligible. Since
the excitation is not rotationally symmetric, the induced axial currents and asso=-
ciated charges also depart from rotational symmetry. However, when ka << 1, this
can be disrcgarded and the components Kx(x) and Kz(z) of the surface density of
current and the associated surface densities of charge n(x) and n(z) treated as
functions of the relevant axial coordinate only. The total currents and charges

per unit length and the equation of continuity they satisfy (with y = x or z) are:

Iy(y) = ZwaKy(y) s aly) = 2man(y) [aly(y)/ay] + juqly) =0, (2)
The four sets of currents and charges are Ilz(z), ql(z) in the range —hlizio,

Izz(z), qz(z) in the range 02z2hy; I3x(x), q3(x) in the range -Zlixio; and I&x(x>’

qéx) in the range Oixizz.
At the open ends of tubular conductors, the total currents vanish so that
Ilz(-hl) = Igz(h2> = I3x(-21) = IAx(22> =0 . (3)
The specification of the currents and charges at the junction is difficult

since the boundaries between the chargeable surfaces of the four arms and the
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surface of the junction are ambiguous. However, since this latter is an area

of the order az, it is negligible when ka << 1 and each of the arms effectively
ends at x = z = 0, The small overiapping areas can be ignored. Alternatively,
the surface currents and charges may be tréated as if at average locations on
the'axes of the conductors. For them the juﬁction is the point x = z = 0 with

no chargeable surface. To complement the conditions (3) on the currents at the
outer ends, four additional conditions are needed at the junction x = z = 0.

Since ka << 1, all interactions éssociated with chérges and currents near the
junction are quasi-stationary and the conditions of low-frequency electric circuits

obtain. With the continuity properties of the electric field it follows that,
Ilz(O) - IZz(O> + I3X(O) - I4x(0) = 0 (4)
q7(0) = q,(0) = 35(0) = q,(0), (5)
With the equation of continuity an alternative form of (5) is

[31, (z)/3z],

0= [azzz(z)/az]z=0 = [SIBXCX)/BX]X=O = [3I4X(x)/8x]x=o .

The condition (4) is a consequence of the conservation of electric charge and

the absence of significant chargeable surfaces on the junction. The condition
(5) is usually not expressed in low-frequency circuit theory since there are no
charges on the surfaces of the conductors (except the inner surfaces of conden-
sers). In effect, all conductors and their junctions are at a maximum of current
and a zero of charge per unit length in a standing-wave pattern. In transmission
lines and antennas that are not electrically short, a junction may be located at
an arbitrary point in a standing wave, so that large concentrations of charge

may be present at and near a junction. The condition (5) assures that discontin-
uities in charge per unit length are ruled out in passing from one conductor

to another across the junction. Such discontinuities cannot exist in the absence

of delta-function generators. Note that the current in a driven antenna has a

continuous slope everywhere except at the driving point and that it becomes con=-

5



tinuous there when the driving voltage is reduced to zero. The condition (5)
has been confirmed experimentally [6] for conductors with the same radius. Its
extension to conductors with unequal radii is under study both theoretically [7] e

and experimentally but the results obtained transcend the present investigation.

3, Analytical Formulation
Since the conditions at the ends of the crossed wires and at their junction
involve the currents and their derivatives, an integral equation in which the
constants of integration appear in expressions for the potentials is not con-
venient. Therefore, new and somewhal different integral equations for the cur-

rents are derived from the boundary conditions on the conducting surfaces: ‘ .

(z) = Einc - QQLEL - = . -
E, ) z — juh_(z) =0 hy <z <h (6a)
- M - —‘ . -
Ex(x) = X Jwa(x) =0 H 'Q'l <x< 22 (6b)
where h
UO 2 t T T
A (z) = = f I (z")K(z,2") dz (7
-~
l,
i Y2
9(z) =7 [f q(z")K(z,z") dz' + [ qx"R(z,x") ax'| . (8)
0 thy "2
Ax(x) and &(x) are obtained from (7). and (8) by interchanging z and x, h and 2.
The average kernels are K(z,z') = exp(-ijz)/Rz with R = [(z-z')2 + 3211/2 and
iy o » . 2, a2, 2172 _ \
K(z,x') = exp( Jchz)/Rcz with Rcz [z + x'" + a”] . Note that K(z,z2')
- t : ' 1y z.z') = —(si .
= KR(z,z )+ JKI(Z,Z ) where KR(z,z ) (cos kRZ)/Rz and KI( ,z') (sin kRz)/Rz

In the analysis of single and parallel antennas it is customary to intro-
-
duce the conditiom, V<A + j(kz/w)¢ =0, in (6) to eliminate the scalar poten-

tial. This procedure is not followed here. Instead, the integrals in (7) and

(8) are inserted directly in (6) to obtain ti‘xe following equations: ’
hz o . ) hZ ’ 22
f I(z")K(z,z"') dz' —'1% -g; f q(z")K(z,z?) dz' + f q(x")K(z,x") dx'
—hl k -hl —ll
= =(j4m/wp)ENC (9 a)
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% % By

f I(x")K(e,x") dx' - v 8 f q(x")K(x,x") dg' + f q(z'}K(x,z') dz’ = 0
-% k —21 -hl

2 9x
1

These are to be solved for I and q in the two conductors subject to (3), (4)

and (5). The equation of continuity interrelates the current and charge.

4, Formal Solution of the Integral Equations
Before obtaining a solution of (9a,b) it is convenient to apply the equa-
tion of continuity (2) to the middle integral in (9a). With 3K(z,z')/oz'=

-3K(z,z"')/3z, the desired relations are:

h
2
= 1 O 1 ' (- _T-_i_z_ 3
J(z) = jw 32 -£ q(z )K(z,? ) dz f 2! - K(z,z') dz' (10)
1 l
Integration by parts now yields:
By 2
2 I(z" .
3(2) = ~jula(h)K(z,hy) = q(-hIK(z,~h)] = [ EEELR(z,z") az' . @
-h 3z!
1
With (11) and an expression like it with x subs;ituted for z and & for h,
(9a,b) become:
h - inc
2l.2 ., ~j4TK“E
f 3 I(z") + RZI(Z') K(z,2z') dz' - F (z) - F (2) = —— Z (12a)
12 2 3 WU
-h 3z J
1
Yar.2 7
IGD) 21| kix,x') dx' - Fo(x) - Fu(x) = 0 (12b)
2 2 3
-9 ox! J
1
where 22
Fo(2) = juze | q(x)K(z,x") dx' (13a)
~2
1
Fy(2) = =julq(h,)K(z,h,) ~ q(-h)K{z,~h )] . (13b)

The functions Fz(x) and F3(x) are obtained from (13a,b) with the substitution
of x for z and & for h.
The equations (l12a,b) can be simplified greatly if use is made of the peak-~

ing property of the real parts of the kernels of the integrals. These occur at z'
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=z and x' = x where'KR(z,z’) and KR(x,x') become very large when ka << 1,
As a consequence, the relation

h. h
2 2 cos kV(z-z')2 + a2

f f(z")K_(z,2") dz' = f £f(z")
-h KR -h

1 1 r’(z-z')2 + a2

where ¥ is a constant is an excellent approximation for any function f£(z) such

dz' = ¥f(z) (l4a)

2 .
as (82/82 + kz)I(z). [Note that (l4a) is not valid when ka is not small.] The
constant parameter ¥ is defined by

hy

= £ 1 T '
b4 £ (zm) f f(z )KR(zm,z ) dz (14b)
-h
1
where z is a point near the maximum of £(z). This integral is readily eval-
uated for the problem at hand [8,Appendix A]. When the electrical length of
the conductor is not smaller than m/2, ¥ = 2[&n(2/ka) - 0.5772]. Evidently the

same parameter ¥ applies to the transverse conductor if it has the same radius.

With (14) the coupled integral equations (12a,b) become:

[ 52 2 2 1. '
—a-z—z— + k 4 I(z) = AK® + V¥ [Fl(z) + Fz(z) + F3(z)} (15a)
52 2| R
3X2 + k% I(x) = V¥ [Fl(x) + Fz(x) + FS(X); (15b)
where . .
A= —(j!mEjz“nc/wu‘P) = (-j/60v‘¥)(EinC)\) (16)
and
b, 2.,
Fl(z) = =i [ {——3——13—2-2-)+ kZI(z')] K (z,2") dz' . (17)
3z'

_hl
The function Fl(x) is obtained from (17) with the substitution of x for z, & for h.
The solutions of (15a,b) include the simple solutions of the homogeneous

equations and sums of particular integrals due to the inhomogeneous terms. The

formal solutions for the currents on the four arms of the crossed wires are:

Il(z) = A[Ci cos kz + Ci sin kz + 1] + Hh(z)/? ; -h, <z <0 (18a)
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IZ(Z) = A[Cé cos kz + C; sin kz + 1] + Hh(z)/? ; 0<zc< h2 (18b)
I.(x) = A[C! cos kx + C" sin kx] + H_(x)/Y¥ i -L.< x<0 (18¢c)
3 3 3 2 1l - -

Ia(x) = A[CA cos kx + CZ sin kx] + Hg(x)/W : 0<x< 22 (184d)

where the C's are arbitrary constants of integration and

Hh(z) = Tl(z) + Tz(z)‘+ T3(z) , Hz(x) = Tl(x) + Tz(x) + T3(x) (19%a)

with
z

Ti(z) = k_l é Fi(s) sin k(z - s) ds , 1=1, 2, 3, (19b)
The functions Fi are defined in (13a,0) and (17). The particular integral due to
the first term on the right in (15a) is obtained from (19b) with sz substituted
for Fi(s). It contributes the term 1 in (18a,b) and to the arbitrary constants
Ci and Cg. The other particular integrals are the functions Ti(z) and Ti(x).

The distributions of charge per unit length are obtained from the currents

in (18a-d) with the equation of continuity. With 3H(z)/3z denoted by H'(z),

ql(z) = (jk/w)A[—Ci sin kz + CE cos kz] + (j/wW)Hﬂ(z) | (202a)
qz(z) = (jk/w)A[—Cé sin kz + Cg cos kz] + (j/wW)Hﬁ(z) (20b)
q3(x) = (jk/w)A[—Cé sin kx + Cg cos kx] + (j/wW)Ha(x) (20c)
q4(x) = (jk/w)A[-CL sin kx + CZ cos kx] + (j/wW)Hk(x). (204)

Since the currents and charges appear in the integrands of the particular
integrals, (18a-d) and (20a-d) are not solutions but rearranged coupled integral
equations. Approximate solutions can be obtained by iteration, Suitable zero-
order solutions are given by the square brackets in (18a-d) and (20a-d). Firxrst=-
order solutions are obtained with thg substitution of zero-order values into the

integrands in Hh(z) and H2<X) and their derivatives. Second-order solutions can

be generated by the substitution of first-order values in Hh(z) and Hg(x). For

present purposes first-order solutions are adequate.



5, First-Order Solutions

The substitution of zero-order currents and charges in (13a,b) and (17)

yields zero-order values of the functions Fi. When these are used in (19)

the following first-order integrals are obtained:

Tl(z) = -Acl(%) [ Tl(x) =0 (21)
TZ(Z) = ~A[C§Gs(z,£ ) - CLGS(Z,Z ) + Cch(z,zl) + CZGC(z,lz)] (22a)
Tz(x) = —A[CiGS(x,h ) - CéGS(x,h ) + CIGc(x’hl) + C;Gc(x,hz)] (22b)
T3(z) = A[%(z,h )(—Cé sin khz + C; cos khz)

—‘9(z,-hl)(Ci sin khl + C; cos khl)] (23a)

o ! . =1t
T3(x) AlI(x,%,)( C4 sin kzz + ¢V cos kzz)

4

—.9(x,-ll)(03 sin kll + Cg cos kﬂl)] . (23b)

Formulas for the several functioms in (21) - {23b) are given in the Glossary.

Their evaluation is carried out in [8,Appendices B,C, and D].

When (21) - (23b) are substituted in (19), (18a-d) and (20a-d), first-
order solutions for the currents and charges per unit length are obtained. It

remains to evaluate the constants Ci and C; from the boundary and junction conditions.

6. Evaluation of Constants cf Integration
a — = t = 1t = . - .
Since Hh(O) = Hz(O) 0 and Hh(O) HQ(O) 0, the junction conditions
(4) and (5) are completely specified by the zerc-order parts of (18a-d) and
{20a-d). Thus (5) gives:

e LI o e R Y oLLI
Cl C2 C3 C4 = C (24)

Similarly, from (4):

C1 - Cp+Cy-Cp=0. (25)

The conditions (3) involve zero- and first-order terms. They yield the following

four simultaneous equations for the C5 , 31 =1, 2, 3, 4:

4
LClag, =R 5 1=1,2,34 (262)
3=1
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where

- - "/ - . = N : -
Rl = =1 + 8¢ hl) + C"(sin khl bl) ; R3 C"(sin kzl b3) (26b)
= - Yall] . ' . = i .
. R2 1+ 6(h2) C"(sin kh2 + b2) ; R4 C"(sin k22 + b4) . (26¢c)
The following coefficients are involved:
L1 ; i v loi , .
a;; = cos khy - ¥ 3(—hl,—hl)51n khy 5 ap, = -¥ J( hl,h2)51n kh, ;
a. = -%"6 (-ho,0) 5 a., = ¥7YG (-h.,0.) 3 (27a)
13 s 171 0 C14 st 12727
w1 _ . . _ _w-l - .
ay; = Y J(hz, hl)SJ_n khl 3 a2y, = cos khz Y 3(h2’h2>81n khz ;
a,. = -vig (h,,2.) 3 a,, = y~lg (h,y2,) (27b)
23 s 271 ? 24 s> 272 ’
a,, = =%16 (=4 ,h) ; a. = w'lé (=2.,h.) 3 a..= cos ki
31 st 712717 32 st 127 2 %33 1
"l . - - "l - . R ’
-y J(-ll,-21)81n le 3 ag, = ¥ 21,22)51n klz o (27¢)
a -yl (4.,h.) 5 a,. =¥ig (,,h,) ; a,, == v'%}(z -4.)sin k&, ;
41 s 721 ? 42 s 7272 ? 43 2?71 1
- -l .
a,, = cos ki, =¥ J(zz,g2)51n ke, - (274)
T T D - 8= - - '
‘ by = ¥ [J( hy,~h;)cos kh, J( hy,hy)cos khy + G (~h,2.) + G (=hy,8,)] (28a)
. -l '
b, = -¥ [-S(hz,hz)cos kh, +—9(h2,-hl)cos kh, + Gc(hz,zl) + cc<h2,zz)] (28b)
- .-l 3 - - A - -
by = ¥ [J (=2, ,-2;)cos ki, J( %1s%5)c0s ki, + G (=2,,0,) + G ( %15h,)] (28¢)
b, = =¥ "[=)(2,,8,)cos ki, +5<22, 2.)cos kg + G (8,,h)) + G (4,,h,)] (284d)
6(z) =t (2)/¢ . 29)

The solutions of the simultaneous equations (26a) have the form:
cg = Aj/D , j=1,2,3, 4 (30)

where D is the determinant of the coefficients aij,and Aj the appropriate cofac-

tor. General analytical formulas can be obtained quite simply when ¥ >> 1 -
' which is a necessary consequence of the condition ka << 1. When terms of the

order ‘&'_2 are neglected? the determinant of the coefficients aij reduces to

. the diagonal terms. Thus,
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D = (31)

211%22%33%4 -

. -1 . . . .
This contains terms of the order Y.~ which are important since the leading terms

in a;; can vanish when the cosine is zero. With (31) e

Ay = Ri3508558,, = Ry3)58558,, = Rydy53503,, = Ra) 85584, (32a)

By = Rpapqagqa,, — Rjajiag48,, — Raayqag08,, - Ria,,2;524, (32b)

Ay = Rqa118998s, = Ry83783598,, = Rydgp8572,, = Riaq,8,03), (32¢)

By = R4311899833 ~ Ry841855895 = Rya 0817254 = Rqa 58,98,, (324)
It follows that

-1
v s - - -
Cp = 8/D = a7 Ry - Roay,/ay, - Ryajz/agy = Riay,/a, ) (33a)
. "l
' = — - - —~
Cy = 8,/D = a5 (Ry = Rjay /a)) = Ryap/aqgy - Reay /a,,) (33b)
. -1
v = 3 - - -
Cy = 45/ * agy(Ry = Ryag/a)y = Ryagy/ay, — Riay,/a,,) (33¢)
v . -1 - - - -

C, - 8,/D % 2, (R, - Rja, /a;; - Rya;,/a,, = Rya,q/a..) | (33d)
These expressions involve C" which occurs in the R's. It can be determined ’
with (25) and the simplifying notation:

a a a a a a

a - 3 WS N o, = 32 _ 242, P12 (34a)
8220 %33 By 833 %4 211
a a a. a a a

113 = 43 - 13 + a23 ; n4 = 14 - 324 + a34 . (3[,b)
844  ®11 %22 811 %2 %33

With (34a,b), (25) becomes:

(Rl/all)(l + nl) - (Rz/azz)(l + n2) + (R3/a33)(1 + n3) - (R4/a44)(l + na) = 0

The substitution for the R's from (26b,c) yields: (35)
nwo_ -1, ~1 _ -1
¢ = (T + M) (all a5, + N) (36)
where -1 -1
N = all[nl - 9(-hl)) - a22[r12 - B(hz)] (37)
-1 , =1 .
M = all[nlbm khl - bl(l + nl)} + azz[n231n kh2 + bz(l + nz)}

-1 . . -1 N ¢ i 73
+ 333[n351n kgl o3(l + n3)] + a44[t1451n REZ + b4‘~l + uq)] (28)
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=1 -1 . . '
T = a,; sin khl + a,, sin nhz + F(Ql,lz) (39)

_ =1 -1
‘ F(Ql,lz) = a53 sin kZl +a,, sin kzz . (40)
When (36) and (26a-d) are used in (33a-d), these yield explicit formulas

for the four C's, It is convenient to separate the leading and higher-order terms

as follows:

C} = aj1[-1 + ¢} + C"(sin kh, + cl)] (41a)
¢y = aj3l-1+ c} - C"(sin kb, + el (41b)
<y = agé[cé + C'(sin ki, + )] (41c)
c) = a e} - C"(sin ke, + c))] (41d)
where .
ci = 6(-hl) + alzagé[l - e(hz)] : cé = e(hz) + aZIaIi[l - 8(—hl)] (42a)

, “ley g -l .
3 = a2yl - 8(-h)] + 23,8501 - 8(h)]

® o) maall - 8(-h)] + a0l - 8(h)] ; (42b)
el = -b, + a;, 22(sm kh, + b,) - a;, 33(51n k&, = by) +a;,2 44(s,m ke, + b,) (42¢)
cg = b dyq 33(31n kzl - b3) I 44(s:.n k£2 +b ) + a,,2 ll(31n khl - bl) (424d)
cg = —b3 + ag, 44(51n kz + b4) aqq lﬂ?ln khl - bl) + 2,8 22(sin kh2 + b ) (42e)
CZ = b4 a1 ll( sin kh bl) 3, 22(51n kh2 + b ) + 3,33 33(51n kl - b3)
Since C" is given explicitly in (36), the four constants Ci, é, Cé and CZ

have been determined.
7. The Distribution of Current
The substitution of (4la-d) and (36) into (18a-d) gives the first-order

currents. They are:

‘ I, (z) = A[T + M}"l{a'l':lL(sin kz + sin kh)) - a-:zt(sin kz - sin“khz)
Il 22(5Ln khl + sin kh )cos kz + [F(R 52 ) + MlI(1L - 1icos kz)
‘ + N[sin kz +»'alisin khlcos kz] + [c (T + M) + l.'J:(all 2% + N)la 11
RO | (43a)

13
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-1y -1, ,. R .
Iz(z)s— A[T + M] {all(51n kz + sin khl) a22(51n kz - sin khz)

-1 -1, . , -1
alla22(51n khl + sin khz)cos kz + [F(zl,zz) + MI(L - a,,C08 kz)
- Tad ' - an -1 - -1 -1 / 1
+ N[sin kz a,,sin khzcos kz] + [cz(T + M) CZ(all ay, + Nﬂazzcos kz|
-1
+ Hh(Z)Y (43b)
. -1 -1 ~1 . -1 .
13(x) = 4[1 + M] {(a%l - a5, + N) (sin kx + aj3sin kllcos kx)
+ [c)(T + M) + c:”(a“l - a4 N)]a—lcos kx} + H (x)W_l (43c)
3 3V811 22 33 % ¢
-1, -1 -1 ) -1 '
Ia(x) = A[T + M] {(all = a5, + N) (sin kx - a,,sin kzzcos kx)
+ [T + M) ~ c"(all - aTt + WlaTteos kx] + B, )T (43d)
4 4711 22 L4 % *

With (1%a), (21), (22a,b) and (23a,b), it follows that
H (z) = -A{tl(z) + C;J(z,~h;)sin kn, + Céﬂ(z,h ) sin kh, + CiGs(z’ll) - €,6,(2,%))

+ C"[3(z,-hl)cos kh, = 2(z,h,)cos kh2 + Gc(z,l )y o+ Gc(z,zz)l} (44a)

1
where the C's are given by (4la-d) and C" by (36). The functions t, G and J

are listed in the glossary. The corresponding formula for H£(x) ist:

= oL - (3 ] | - ]
H, (x) A{b33(x, 2,)sin ki, + € 0(x,2,)sin k&, + C]G (x,h;) = C1G_(x,h,)

1

3t - - =
+ C"[J(x, Zl)cos kﬁl 3(x,22)cos kzz + Gc(x,hl) + Gc(x,hz)]} . (44b)
= - ! = ' =
Note that Hh(O) HQ(O) 0, Hh(O) HQ(O) 0.
When the electrical lengths of the four arms differ from integral multiples

of A/4, simple zero-order formulas may be adequate when ¥ is sufficiently large. t

These are obtained by neglecting all terms with W—l as a factor. They are:

{Il(z)]o = -AW[sin k(hl+ z) + sin k(hz- z) - sin k(hl+ hz)
+'F(£l,£2)cos khz(cos kz - cos khlj]
(45a)

[Iz(z)]o = -AW[sin k(hlf z) + sin k(hz— z) - sin k(hl+ hz)

+ F(gl,zz)cos khl(cos kz - cos khz)]

(45Db)
14




[13(x)]o = -AW (cos kh, - cos khl) sec k&, sin k(ll + x) (45¢)

2 1
[14(x)]0 = AW (cos kh2 - cos khl) sec kzz sin k(l2 - x) (454d)
where -1
= 1 1
W= [sin k(h;+ h)) + F(2,,2,) cos kh; cos kh ] ™, (46)
A is defined in (16) and F(Zl,lz) = tan kzl + tan k22.

8, The Distributions eof Charge Per Unit Length
The first-order distributions of charge per unit length are obtained
directly from the currents (43a~d) with the help of the equation of continuity,

qly) = (3/w)[3I(y)/3yl. The very simple zero-order formulas are:

[q;(2)]1, = (-jkAW/w) [cos k(h,+ 2) - cos k(b,- 2) - F(2;,8,)cos kh, sin kz]  (47a)
[q,(2)], = (~3k&W/w)[ecos k(h + z) ~ cos k(h,~ 2) - F(&,%))cos khy sin kz]  (47b)
[q;G) 1 = (-jkAW/w) (cos kh, - cos kh,) sec k& cos k(& + x) (47¢)
[q,G) 1 = (=3kAW/w) (cos kh, - cos kh)) sec k&, cos k(L, = x) | (474)

9. Special Cases

In order to gain insight into the numerous possible distributions of
current and charge on crossed dipoles, it is important to study the special cases
associated with conditions of resonance and antiresonance in the six possible
circuits, each consisting of two arms. These are not adequately represented by
the zero-order formulas. It is also of interest to examine the completely
symmetrical case and the vertical section alone without side arms. This will
be done first.
1) Junction at the center of the vertical element, h2 = hl = h,

Under these conditions I(x) = 0 = g(x) since the horizontal element is in

the neutral plane. The vertical section behaves as if isolated. Specifically,

I(z) = A{l + Cicos kz - 6(z) = Ciw-l[ﬁ(z,—h) + J(z,h)]sin kh} ; -h<z<0

15



q(z) = (=jkA/w){C)sin kz + &2 4 [CI/RYTIS' (2,-h) + 3" (z,h)]sin kh} ; -h < z <0

k
where the prime denotes differentiation with respect to z and where (49) ‘
v - - . = — )
¢ = [0¢-h) = 11/laj+a,] 5 6(2) = £ (/Y . (50)
Note that L(~z) = I(z), q(-z) = -q(z).
When kh = n/2, the antenna is near resonance with ajq = -J(h,h)/Y |,
aj, = -J (~h,h) /¥ , Ci = =¥[6(~h) - 1]/[9(h,h) + 3(-h,h)]. The zero-order term ig;
[1(2)], =[A¥cos kz]/[J(h,h) + J(-h,h)] ’ (51)
When kh = m, 311 % 3y, = -1, Ci =1 - tl(—h)/W , so that
I,(2) = A{L + cos kz - w'l[cl(z) + t;(-h)cos kzl} ; -h <z <0 (52)
where tl(—h) = 2,95 and
tl(z) = —j{Si(ﬂ+kz) + Si(n-kz) + (1/2)[Cin 2{(w+kz) - Cin 2(w-kz)]sin kz
+ (1/2)[Si 2(n+kz) + Si 2(m-kz) - 4 Si m - 2 Si 2m]cos kz} , (53)

Graphs of I(z)/A for kh = m, ka = 0.04 are shown in Fig.2. They show the
familiar distribution chearacteristiec of forced currents. . °
2) Junction at minima of charges per unit length and maxima of currents along
horizontal and vertical elements: khl = 51/2, kh2 = kﬁl = kRz = /2.
For the specified lengths, a;; = ~2(5X/&,50/4)]¢ , 8,0 835= 8;,=
~d(\/4 0 /6) /Y, With (36) and (4la-d), it is readily verified that C" is of

order 1, whereas the C's are of order Y >> 1, The leading terms in I and g are:

fte
(83

Ii(z) ACi cos kz qi(z) K—jkA/w) Ci sin kz ; i =1, 2 (54a)

fie
ile

Ii(x) ACi cos kx : qi(x) (-jkA/w) Ci sin kx ;3 1 =3, & (54b)

Graphs of the first-order currents calculated by machine with the complete
determinant of the aij are shown in Fig. 3. It is seen that the leading-term
representation is a good one for the three short arms, only approximate for the ‘
long arm which evidently carries a not insignificant component of forced current

as well as a leading term of resonant current. This combination is typical of

currents on resonant elements in a plane-wave field [5].
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CURRENT AND CHARGE PER UNIT LENGTH ON CROSSED ANTENNA
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18

=772 0 772
1 — kh,= 9772, khy,= kP, = kb, =72
c or Tho— 8;(x)
S T I ka = 0.04
3 of
(0 2b _/
- kx
! |10 e o ™ e
_ .5: ay(x)
N RN
S LT a0
-5t R
._}'5
A\
A\
1y
?.\.
P o
[ :
QI(Z) ; l, .':
N
.’. qR(Z)
.'.../
I[
{
o
o
)
-2 | I
N \
\\ \\
_57T [ e 8 500 o T A l | L N e
2 ~5 O 5 -2 0 2 -5 0 5 10
I,(z) in mA/Volt Radians wq(z)in mA/Volt m




3) Junction at charge minimum, current maximum along vertical element; charge
maximum and current minimum along horizontal element: khl= 37, kh2= k21= k22= T
T { : = = = = - =
he following parameters apply 311 = 2y, 334 = 3, 1, T =0, and

F(Zl,lz) = 0. The leading terms for the currents and charges are:

Ii(z) = Iz(z) A[Ll + cos kz + (N/M)sin kz] ; I3(x) = IACX) = A(N/M)sin kx (33a)

ql(z) & q2(2) (=jkA/w) [sin kz ~ (N/M)cos kz]

45(x) = q, (x)- = (jka/w) (N/M) cos kx (55b)
Note that at the junction Il(O) and IZ(O) are maxima, ql(O) and q2(0) minima.
On'the other hand, 13(0) and I4(O) are minima, q3(0) and q4(0) maxima,
Complete first-order distributions of current and charge per unit length
are shown in Fig., 4. It is seen that the leading terms in (55a,b) are reasonable
approximations, In particular, the currents in the vertical arms are typical

forced components since the lengths are antiresonant.

4) Junction at minima of charge and current along vertical element, maximum of
charge and minimum of current along horizontal element: khl= 47, kh2 = 2m,

kzl = kzz = T,

a,,=1,a,., =a, =-1, T=0,

11 - 33 44

F(ﬁl,iz) = 0. The leading terms for the current and charge are:

For the specified lengths, a

Il(z) & IZ(Z) All - cos kz + (N/M)sin kz] 13(x) = 14(x) = A(N/M)sin kz (56a)

ql(Z) = qz(z) (jkA/w) [sin kz + (N/M)coskz]

q3(x) =q,&) = (GkA/w) (N/M)cos kx . (50b)
At the junction Il(O), IZ(O), ql(O), qz(O), 13(0) and 14(0) are all minima;
q3(0) and qa(O) are maxima.

Graphs of first-order currents and chafges are shown in Fig. 5 . The forced

currents on the vertical arms are like theose in Fig. 4 but with minima instead

of maxima at the junction. Note that in this case I3(x) and Ié(x) are very small.
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5) Large discontinuity at the junction in the z-directed currents: khl = 41,

khz = kzl = klz = 1,

With the specified lengths, ajy = 1, 25, 33 T 84, = -1, T =0,

F(Zl,zz) = 0, The largest components of current are Il(z)

= a

fle

A(l -~ cos kz)

and Iz(z) £ A(l + cos kz). Evidently,'Il(O) = 0, 12(0) = 2A, This large
discontinuity in the leading part of the z-directed current indicates that the
x-directed currents are necessarily relatively much gréater than in the previous
cases and that an approximation by leading terms alone is not adequate. The

four currents are well approximated by the following expressions:

I,(2) & A{1 - cos kz = [(2 + M/M] (b cos kz - sin kz)} + H (2)/¥ (57a)
I,(2) # A{l + cos kz + [(2 + N)/M] (b, cos kz + sin k2)} + H (2)/¥ (57b)
I,Ge) & [A(2 + M)/M] (b, cos kx + sin kx) + H,(0)/Y | (57¢)
I, (0 & [AQ2 + N/ (b, cos kx + sin kx) + H (/¥ . (574)

At the junction, I (O) = -2Ab /M; IZ(O) = A2 + ZbZ/M); 13(0) = 2Ab3/M; 14(0) =
2Ab4/M. Also, ql(O) q2(0) q3(0) = q4(0) £ (jkA/uM) (2 + N). It can be veri-
fied that the currents satisfy (4). The vanishing of the currents at the ends
is accomplished with the terms Hh(z) and Hl(x).

Graphs of the first-order currents and charges are shown in Fig. 6. It
is seen that the discontinuity in Iz(z) at the junction is greatly reduced
from the value of 2A obtained from the largest terms. It is, nevertheless,
quite large and the currents in the x-directed arms are comparable in magnitude

to those in the z-directed ones.

6) Horizontal element asymmetrical: khl = 51/2, kh2 =T, kll =7/2, k&, =

For the specified lengths the following parameters apply: a;; =

\-l = = _l - - E - 2
-1y \3(-111,—111), 8.22 = -1, a33 = ¥ T8¢ SLl, ,Q,l), a/§4l 1 where lall}<< 1,

2 1 -1 , )
la33]<< 1. Also, T = + 333 5 F(il,lz) = a3 - The two largest terms are:
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11%33

a principal oscillation takes place along the vertical arm 1 and the horizontal

Il(z) = ~(A/Ta } cos kz and I3(x) = (AfTa ) cos kx. They indicate that

11733
arm 3, Owing to the wide range of amplitudes of the currents in the four arms
all of the first-order terms are required. Compgtations from (43a~d) yield the
graphs in Fig. 7. These confirm the large currents in arms 1 and 3. They also
show a current of moderate amplitude on arm 2, a very small current on arm 4,
Since hl+ 21 = 3A/2, arms 1 and 3 together form a resonant circuit with a large
current, In addition, there are forced currents on arms 1 and 2.

7) Crossed short dipoles: khl = 1,38, kh2 = kzl = kzz = 0.69 .

The currents and charges per unit length on the arms of this cross are
shown in Fig. 8. The currents are similar to those reported by Chao and Strait
[4] for the same structure but their components do not have discontinuous slopes
at the junction. Such discontinuities can also be'observed in graphs shown
by Logan [9]. Their occurrence is not surprising since numerical methods used
in the solution enforced the junction condition (4) but not (5). Currents with

discontinuous slopes are physically impossible in the absence of delta-function

generators.

10. Conclusion
An analytical solution has been obtained for the currents and charges cn the
perfectly conducting, mutually perpendicular, and electrically thin arms of a
crossed dipole antenna when excited by a normally incident, plane electromagnetic
wave. The solution applies specifically when the electric field is parallel to
one of the conductors but it is easily extended to an arbitrarily polarized,
normally incident plane wave. The in&uced currents and charges determine the

scattered field both far from and near the crossed conductors.
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*The following corrections to this report have been noted (numbers refer to

equations): Insert - after = in (19b,¢), (21b), (38a-d) , (80a-d), (D-2),(D-3).

Delete - after = in (30a,b), (33a,b). In (37a-d) change + to - before ¥ in
N i - F = i a a . - i 3

1128399235353, insert - after = in a;,,85738q,33;3 In (48) insert [l+nl]

between bi and ) with i = 1,2,3,4. Line after {(50): change (42a) to (42a-d).

In (54a,b) change second, third and fitth - to +; change third + to -,

In (59) replace 6'(z) by 8'(z)/k. In (63) delete - before ¥. 1In (64) add =

before ¥. In (67) insert - after first and last =. In (753) delete - after = in
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two places. Three lines before (85a): imsert - after first and third =. 1In
(88a) change first l/all to l/a33. In (89a£ change s:.nkx/all to sinkx/a33.
In (B-4), (B-5), and (B-b) change jkA to jk“A. In (B-7) insert k before A.
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' Glossary

1. Expansion parameter when kzaz << 1,

h2 2/h1h2
- ' - - -
y _}f] K,(0,2") dz 2 20— Cin kh; - Cin kh,
1
where Cin x = C + &n x - Ci x. When kh, > n/2, kh, > n/2,

1 2

¥ = 2[2n(2/ka) - 0.5772]

2, Particular integral Tl(z).

b A
T,(z) = jka [ [si k(h; + 8) + 81 k(b - 8)]sin k(z - s) ds = -At, (2)
0

tl(z) = -j{si k(h1 + z) = (1/2)sin 'k(hl + z)[Cin 2k(hl +2z) + 2 81 khl sin khl

- Cin Zkhl] - (1/2) cos k(hl + z)[si 2k(h1 +2z) +2 81 khl cos khl

- 81 Zkhl] + Si k(h2 - z) - (1/2) sin k(h2 - z)[Cin 2k(h2 - z)
. + 2 81 kh, sin kh, - Cin 2kh,] = (1/2)cos k(h, - 2)[S1 2k(h, - 2)

+ 2 st kh2 cos kh2 - Si 2kh2]}

3. Particular integral Tz(z).

Tp(2) = -A[C36 (Z,L)) = C;G (Z,L,) + CyG_ (Z,L)) + C;C_(Z,L1,)]

where
f)

L z A -j/S“+x2+A2
G_(z,L) = [ sin X dX [ sin(z - S) = £ ds
§ 0 0 38 5T

Js?+ %% +a

L z \ e-j/Sz+X2+A2
G (Z,L) = f cos X dX f sin(Z - §) —~— ds
c 5 5 S

. /5% + x2 + A2

These integrals give
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G_(z,L) = (3/2)sin z [Cin 2L + j Si 2L] + § cos Z [sin L sinh™1(z/L) + 81 22]
+ 3 sin Z [Cin 22 + Cin 2L - cos L Cin L - sin L S L] - § Si 2
- (1/2)ejz{Cin(—L +Z+U)+ 3 Si(-L+2+U) +Cin(L+ 2Z + U)
+ 3 SI(L + 2 + U) - [Cin(Z + U) + j S1(Z + U)]cos L}
+ (1/2)e3%{Cin(-L - Z + U) + § Si(-L - Z + U) + Cin(L - Z + U)
+ j Si(L -~ Z + U) - [Cin(-Z + U) + j Si(~Z + U)lcos L}
G, (z,1) = -sin Z sinh™Y(L/A) + (1/ )sin Z [Cin 2L + j S1 2L] - § cos Z

x (1 - cos L)sinh™1(z/L) + J(1 - cos Z)sinh™F(L/Z) + j sin 2

x

[sin L Cin L - cos L Si L + Si 2L] =~ (j/Z)ejz{Cin(-L + Z 4+ U)

+ 3 S4(-L+Z2+U) =Cin(L+ 2+ U) - J Si(L + 2z + U)

“32{cin(-L - z + V)

jlCin(z + U) + j Si(Z + U)])sin L} + (j/2)e
+ 3 S1I(-L -2+ U) =Cin(L-2+U) -3 Si(L -2+ U)

- 3[Cin(~Z2 + U) + j Si(-Z + U)]sin L}

In these formulas U = (22 + L?')l'l2

and Z = kz, L = k&, A = ka; Si v =
fg [(sin v)/v]dv, Cin v = fg [(1 - cos v)/v]dv, Note that Si(-v) = - Si v,
Cin(-v) = Cin v. Also, '

GS(-Z,L) = -GS(Z,L) . Gc(—Z,L) = —GC(Z,L)

GS(O,L) = 0 s GC(O,L) =0

4, Particular integral T3(z).

T,(2) = =(3uw/k) {[q(hy)] Kz, h,) - [a(-h))]g#(z,-h)))

where
2 2
2 -jkv/ks - hy)" + a

$(z,h) = [ & sin k(z - s) ds
0 V/(s - h,;)2 + a2
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. -jkﬁs + hl)2 + a2

Hz,-h)) = [ = sin k(z - s) ds
0 /?; + hl)2 + a2

These integrals can Le expressed as follows:

$(z,h,) = {stab™ [(h, = 2)/a] - sinh™}(n,/a) }sin k(hy = 2) = (1/2)[S1 2k(h, - 2)
- 81 2kh, - § Cin 2k(h, - 2) + j CinvZkhz]exp[jk(hz - 2)]

Similarly,

Hz,-h)) = {sinh™ [(n) + 2)/a] - sinh ™ (h /a) bsin k(hy + 2) = (1/2)[Si 2k(h + 2)
- §1 2kh) - 3§ Cin 2k(h) + z) + § Cin 2kh;Jexp[jk(h, + 2)]

Note that
d(-z,h) = F(z,-h) ; I(-z,-h) = Hz,h) ;
4(0,th) = 0 3 J(-h,-h) = $(h,h) ; F(-h,h) = H(h,=h) ;

&(hz,hz) = (1/2)[81 2kh, - j Cin 2kh,] 3
J(-hy,~h;) = (1/2)[Si 2kh, = § Cin 2khy] 3
&(-hl,hz) = {n{l + hZ/hl)sin k(h; + hy) - (1/2) st 2k(hy + hy) ~ Si 2kh,
=3 Cin 2k(hy + hy) + j Cin 2kh Jexp[ik(h; + h,)]
Hhy,~h;) = (1 + hy/h,)sin k(hy + hy) = (1/2)[S1 2k(h; + h,) - si 2kh,

- ¢ ,
j Cin Zk\hl + hz)‘+ j Cin 2t<h2]exp[jk(hl + hz)]
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