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ABSTRACT

A solution to Maxwell's equations subject to boundary con-
ditions on counter-wound helical wires is achieved. The helices
are contained in a cylindrical surface that is concentric to a
perfectly conducting center conductor of circular cross section.
The permittivity of the annular region may be different from
that of the external region. The excitation is taken to by
symmetrical about the cable which leads to a considerable sim-
plification of the formulation. The key step 1s to recognize
that the assumed form of the current on the thin helical wires
is a spatial harmonic expansion that leads to a doubly infinite
expansion, in such harmonics, for the resultant fields. The
inherent complication of the problem results from the inter-
coupling betwen the spatial harmonics of the helix currents.

Various generalizations of the theory are also Indicated.
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INTRODUCTION o

A braided coaxial cable can be envisaged as a composite counter-wound
helical structure with a concentric center conductor. While the actual
geometry varies greatly from one cable to another, the basic concept is
that each helix carries a current that interacts with neighboring helices
and with the center condﬁctor and the insulating dielectrics. Much progress
has been made in understanding the operation of braided coaxial cables by
postulating equivalent circult or transmission line parameters that char-
acterize, in some sense, the mean electrical properties [1,2]. An example
of this approach is to represent the.braided wire sheath by a thin uniform
cylindrical shell with a specified transfer impedance that relates the dis-
continuity of the tangential maénetic field {3,4]. Obviously, such a para-
meter has great utility when the performance of the cable in a complicated
environment is to be determined. While the surface transfer impedance of '
the sheath and related parameters can be measured, it seems that a basie
electromagnetic analysis of some idealized cases is badly needed. It is
reall§ surprising that such a general analysis has not been attempted
before now although some related theoretical work in connection with
travelling wave tubes has been performed [5]. Also, we should call
attention to some important studies by Latham [6] and also by Lee and
Baum [7] who put thé transmission line theory on a firmer basis.

Our immediate purpose, then, is to formulate the problem of a ¢ylin-
drical structure that consists basically of a dielectric coated conductor
that is ‘sheathed by a finite number of counter wound helices., Our first
task will be to obtain the fields of a single helix that carries a filamental
current that can be represented by a spatial harmonic expansion. We then o

add the fields of the counter-wound helix and the pfescribed incident field.




An impedance boundary condition at the surface of the helical wires is

- then applied. The resuiting infinite set of equations can be solved, in
principle, for the amplitudes of the individual spatial harmonics of the
filamental currents. In concept, this aspect of the problém is the same

as used for determining the currents induced on a rectangular wire mesh by
an incident plane wave [8,9]. Also, it should be mentioned, that Casey
[10] has solved a similar problem as posed here but he assumed initially
that the filamental currents were uniform. The validity of this assumption

could be questioned in the general case of counter-wound helices.

BASIC FORMULATION OF PROBLEM

With respect to a right-handed cylindrical coordinate system (p,$,z),
we can define a single thin-wire helix by the equation ¢ = (z/po)tan Y.
Here Py is the radius of the cylindrical surface that is common to the
helix and V¥ is the pitch angle as illustrated in Fig. 1. The center conductor|
of radius a 1s assumed to be perfectly conducting. As indicated below, the
heli# wires may be imperfectly conducting and characterized by an appropriate
impedance parameter that relates the filamental current to the tangential
electric field. The region external to the helix (i.e. p > po) is taken
to be free space with permittivity €° An insulating dielectric of per-
mittivity € dis assumed to occupy the concentric region pO >p > a. Thus
we neglect any external dielectric jacket and possibly lossy external
coatings although they would not introduce any new basic difficulties (just
more complexity). The whole region external to,the center conductor and
the sheath wires is taken to have the same magnetic permeability u. In
Qhat folléws, all field quantities will be taken to vary with time accordiné

to exp(lwt).




_ [T
X7\ \XJ

C
N
S
-~

-

]
]
N
/
s

Fig. 1 Perspective view of counter-wound helices and planar'
development of the cylindrical surface.
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In accordance with the previous discussion and for reasons that will
become evident below, we adopt the following representation for the current

I(z) in the helix at the axial coordinate z:

o

I(z) =m=§® Im exp(—iBoz)exp(-i >

2Tm

z) (1)

where the summation over m extends over all integers, including zero,

from -~ to -+, We note here that Bo is the mean propagation constant

in the z direction for the current while p 1is the axial period or pitch

of the helix. The coefficients Im are to be determined later but for the

time being we will consider the fields that result from this helical current.
To facilitate the analysis, we now observe that the components of the

surface current density in the cylindrical surface at p = p, are

3,(6:2) = I()cosk(L/p )89 ~(21/p)z ) (2)

and

i

3o(822) = T(2)sinp(1/0,)8(¢ ~(21/p)z) €)

where the Dirac or impulse function can be written in its spectral form

+co .
5(¢ -(2n/e)z) = = ] e in{6 - (2n/p)z) )

n=—

where the summation over n extends over all integers including zero. Thus,

on combining (1) to (4), we obtain

3,(9,2) = gﬁgf— I I I, exp(-if  »)exp(ing) (5)



and

stny o

j¢(¢,2) = 7mo, PL I exp (18 z)exp(ing) (6)

where Bm 0= Bo 4+(27/p) (m + n). The double infinite summations over m
E ]

and n, in (5) and (6), and in the subsequent equations are understood.

FIELD REPRESENTATIONS
In general, for a homogeneous reglon, we can express the vector fields
E and ﬁ in terms of Hertz vectors of the electric type ﬁ and of the

magnetic type ﬁ*. Thus

E = -iuw curl T* + (k* + grad div)ﬁ (7)
and
ﬁ = iew curl T+ (k% + grad div)ﬁ* (8)

1
where Lk = (su)fw is the wave number for the homogeneous region under con-
sideration. TFor cylindrical structures, it usually seems most convenlent Q
to choose these so that =z components, denoted by II and * respectively,

are non vanishing [11]. Then the field components can be obtained from

_ ciuw I 2 _iew 3L . 3% o
E, 55t 3052 1 (9a) H = 2555 * o5 I (9b)
_Looem 1 9 L oW, 1 3% &
E¢ W 53 + o a(j)az I (10a) Hd) = =1l —3‘5 + o a¢az II (lOb)
2 2
E = (kz + —-—3—~)H (11a) H = <k2 + —Q—)H* (11b)
z 9z2 z 8z°

These will be the appropriate forms to employ for the homogeneous region
a<p<x< po. In the external region p > po, we replace € by Eo and

1
*5
k by ko where ko (sou) w.




Taking a hint from the forms adopted in (5) and (6), we choose

= }7} To,n exp(-18  z)exp(ind) (12)

and
T = z z H;,n exp(—iBm’nz)exp(in¢) (13)

where II and I
m,n m

are functions of p only. Since (V% + kg)ﬂ =0

Y]

in the region p > po, it 1s evident that an appropriate solution is

I =A K (v. p) (14)

m,n M, N m,n
where Kn is the modified Bessel function of the second type of order =n

and
1

o (r2  _p2Ve - ifn2 _ a2 Y2
Vi,n (Bm,n ko) - 1(ko 8m,n)

The coefficient Am 0 is yet to be determined. In a similar fashion, for
-

p > po, we can also write

% %

1
m,n m,n n(vm,np) (13)
In seeking the appropriate form of the solutions for the region

a<pc«< po, we require that both E, and EZ should vanish at p = a.

¢

This leads to the adoption of the following forms for this region:

IIm,n B Bm,nzn(um,np) (16)
where

Z (up) = I (up) = [I (ua)/K (ua)]X (up)

and

% _ ook %

Hm,n - Bm,nzn(um,np) an
where

Zy(p) = I_(up) - [T (ua) /K’ (ua)IK (up).



Here u = (B% - kz);‘E = i(k? - g? )55 and we have also introduced the
myn m,n july s}

modified Bessel function of the first kind In. The prime over the Bessel

functions indicates differeniation with respect to the indicated argument

or more precisely I;(ua) = dIn(x)/dx evaluated at x = ua.

APPLICATION OF SHEATH BOUNDARY CONDITIONS
Now the conditions at the sheath are that the tangential electric
fields are continuous and that Lhe tangential magnetic fields are discon-

tinuous by the amount of surface current. An explicit statement is

~ +
Ez(oo) = Ez(po) (18a)
- + .
HZ(DO) = Hz(po) + J¢(¢’Z) (18b)
7y = E.(pF 18
E¢(po) = ¢(p0) ( C)
Hy(0)) = Hy (o) = 3,(0,2) (184)

these lead easily to the following set of equations

—-u2z%p* +‘v2KA* = J siny, (19b)
1wz BY + (mB/p, )ZB = ipwvk' A% + (mB/o, KA, (19¢)

~iewuZ B + (nB/po)z*B*

+ieova'A - (@B/p YKA* = -J cosy (19d)




where A=A , B=B8 A¥ =¥ [ B*=B ,u-=

’ u ’ = ’
m,n m,0 m,n m,n m,n m,n
1 1 % o *1
7 = = = =
Zn (um,npo) s Z zn(um,npo) s Z zn (um,npo) s Z (um’npo) » K Kn (Vm,npo) H
'
K = J= : i i
n(vm,npo)’ B8 Bm,n and Im/ (Zﬂpo) The four linear equations (19a)

to (19d) may be solved explicitly for the coefficients A, B, A* anga B¥

in terms of J. Thus, for example,

*l
A = |ipwv (E Z—*— K - K o8 5 siny - J cosw>
v Z uzp

0

(20)
2 .
—SEK(L— )1“‘” £ 3 sinp D7t
o u? e Z
and )
kv %1 '
A*:[-C-’—- Z_ <—€—- Y ~Z~I(—K')Jsiml)
u ® € u Z
Z o
2 -
—( nf JsinlI)—Jcosd))E—B-K Y. 1)D1 (21)
u?p o u?
(o]
where
D=k22[z Zf'K—K'][g— v -;—‘K—K':l-— nd )2 LA
[o] u Z>-: o po u2
(22)

The tangential electric fields in the region external to the sheath

(i.e. p > po) are given by

% r 1

E¢ = z z [iuwvm,nAm,nKn(Vm,np) + 3 an,nAm,nKn(vm,np)]
*x exp (in)exp (-iB nZ) (23)




and

B, = -] ) V5 A K (v 0)exp(indlexp(-iB _z) (24)

m,n m,n 1

where the coefficients Am and A; n are given in terms of the current
b 9
on the right-handed helix via (21) and (22)., Also, we should remember that

= (B k)% and B =B+ (21/ +
Yoo ( m,n o) an m,n 0 (21/p) (m + n).

To obtain the fields of the current on the corresponding lefi-handed
helix we can proceed precisely in the same fashion. This helix is defined
by ¢ = -(2n/p)z at p = Py- Also, for the case of usual concern, the
current I(z) on this helix will be the same as for the right-handed helix
given by (1L). The exception discussed later is when the excitation is not

locally uniform about the cable. Thus, for this symmetrical situation, the

sheath current densities, corresponding to (5) and (6), are

32(¢,2) = %%%%‘ ) I eXP(-iém’nZ)exp(in¢) (25)
and
3y @2) = - %%%f 111, exp(-if, =dexp(ing) (26)
where
B = Bo,n = Bg + Q1/R)(@ - )

As indicated, we place a circumflex over the quantity when it refers to the
changed form needed for the left-handed helix. The tangential electric

fields in the region external to the sheath, that are analogous to (23) and

(24), are
A~ _ ] g 'Y -‘]; A
E¢ B 2 z {luwvm,~nAm,nKh<Vm,—np) + ) an,~nAm,nKh(vm,~np)]

(27)

X exp(ind)exp (-1 _ =z)

10




and

v = e 2 A ——
E, ) Vi, 0,080 Vi, nP)exp (ind)exp (-18  _ 2) (28)

The coefficients K and A* are given by (20) and (21) with the reversed
sign for U (i.e. replace siny by ~-sind). We also should note that K and
Z are replaced by K and Z defined by K = Kn(vm,—npo) and Z = Zn(um,—npo)'

It is useful now to note, according to (20) and (21), that

A =P I , A = p*
m,n m,n m m,n m,n m
and (29)
~ A A ~N
A =P I , A*¥ =pP% 1
m,n m,n m m,n m,n m

where the P's are explicitly known in terms of the counter-wound helix geo-

metry and the specified value of the axial wave number Bo.

APPLICATION OF WIRE BOUNDARY CONDITION

We are now in the position to apply the impedance condition at the
helix wires. Since the wires themselves have already been assumed to be
very thin, the longitudinal electric field at the surface of the wires is
sensibly uniform around the wire circumference. Thus, for convenience, we
choose to apply the impedance condition at the top of the ﬁires which by
definition is the spiral z = (p/27)¢ + c/sin¥ where c is the wire radius.
This is indicated in the sketch in Fig. 2. Also, because of the assumed
rotational symmetry we need only apply the condition on one helix. The
corresponding condition on the other helix will be automatically satisfied.

Thus, we need to apply

[(Ez + ﬁz) cosy + (E¢ + gd))sim{) + Ez cosd)} = I'(z)ZWIE 30)

11




Fig. 2 Microscopic view of segment of helix wire. |
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at p = Py and ¢ = (2n/p)[z - c¢/(siny)]. Here EZ is the axial compon-
ent of the "primary" field; it is the resultant field that would exist at

the surface p = po for the same cylindrical structure but in the absence
of the helix wires. As mentioned above, Ez can be regarded as invariant
to ¢ when o, is much less than the free space wavelength (i.e. kopo <<
The series impedance per unit length ZW is determined by the local prop-
erty of the wires and treated as if they were straight [11]. This appears

to be justified always when ¢ << e Thus, if the electrical constants of

the wires are Ow, E:w and uw we would use the usual relation

z, = [n,/@me)lT (v c)/I, (Y ) 31)

b

' . L.
= + = . -+
where nw [iuww/ (cw 1eww)] and Yy [iuww (cw + 1€ww] As w *+ 0

this reduces to the expected DC form, namely ZW > (Owﬂcz)—l.
Using (23), (24), (27), (28), and (29), the impedance condition (30)
now takes the form

. 21c ) 4 2T
IZII}I:I ImRm’nexp(_ in D siny exp< i > mz).

~

. 2Te . 4w , 2T
+ rzl TEH' Imemv n exp(—-ln m\)exp(ln ;'- z) exp(-—l 5 m z) (32)

P _q 2Tm ) - . 2Tm
+Tanz Sm,o exp(l o z ,cosgb—ZW rzn Im exp<—1 > z>

where we have used m' in place of m din the second term for convenience
in the subsequent manipulation. The coefficients R and R are defined
by
R = —y2
m,n Vm,ncosw Pm,nKn(Vm,npo)
(33)
+ iuwvm nsinkb p* ' v. p)+ Z—iwns P K& p)

s m,n n° M0 0 m,n m,n n m,n O

13
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and o

R =2 P
m,n Vm,-n cosy Pm,nKn(vm,—npo)
(34)
~ 1 siny ~
-1 13 -
uuNm,--n siny m,nKn(vm,-npo) Py an,—an,nKm(vm,—npo)

Now in (32) we replace m' by 2n + m which,means that factor
exp (—i(ZTr/p)mz) is now common to all terms. Then, since (32) is to hold

for all z we obtain

v : 2Tc PAPS 2me
[DF_Z_OO Rm,n exp (—-in psiny ]Im * [n=§oo R2n-l-m,n exp(—ln psiny )] Lontm
| (35)

P cosYy = Z 1
+E 8 1 T

which is to hold for all integer values of m from - to <. This, of
course, is then an infinite set of equations that must be solved, after a

appropriate truncation, for the current coefficients Im'

THE SPECIFICATION OF THE PRIMARY FIELD
At; this point we should obtain the appropriate expression for the
primary field Ez that is mentioned above. The incident plane wave is
defined by

E = Eo exp[io&opcos¢]exp (—iBoz) (36)

where ozo = (kcz) - 802)1/2. Here we can identify Bo with ko cosf® where

8 1is the angle subtended by the wave normal and the negative z axis. Now,
in the vicinity of the cable, we can assume for purposes of simplicity that
aop or kopsine is much less than one. Also, under the same condition,
we only need to be concerned with the axial component of the incident field

since the transverse components have a negligible interaction. This leads ’

14




us to use a quasi-static analysis [4] in order to determine the primary
field Ez. Thus, the required field forms for the coaxial structure, in

the absence of the helix wires, are

E_ = o?[p + % Q %n 0.89 op] (37)
for a<p<p
Hy = -(2/m)iewq/p © (38)
and
EZ = Eoz[l + R(1 - i(2/m)%n 0.89 aop] (39)
for p > po
H¢ = —Eoz(z/w)sowR/(agp) (40)

1
where o = (k? - 82)6. We now apply the boundary conditions that Ez is

zero at p = a and that both Ez and H, are contlnuous at p =p

¢ o’
Thus we readily deduce that

P=-(2/m)Q n 0.89 ca (41)
= 2
Q= -i(e /e)R/IG)DE (42)
and
€ 2 p -1
R = ~ [i zZ ° & on -2+ 1-4 g-Zn 0.89 o p ] (43)
LU S a il o o
o
Then, in fact
p 2 2 po
E¥ = E = g° = Q 4n — (44)
z zl L a
o Do
or, more explicitly
2 €o a? po
ire o
Ez ui
E;% ) 2 (% o2 Po “
l+i—————2n———£n0.89ap>
mT\E OL2 a [e o]
o

15



GENERALIZATIONS AND CONCLUDING REMARKS
- There is a generalization as illustrated in Fig. 3 that we can mention
briefly. If we have Q right-handed and Q left-handed spirals, that are
equi-spaced, the formulation is only slightly more involved. For example,

the equation for the right-handed helices is

¢ = 2r/p)(z -(q/Q)) at p=7p (46)

o}

where ¢ = 0,1,2,3,.... Q -~ 1. If the helices are all made of identical
wires, then the current.on each can still be given by (1) in view of the
assumed azimuthal uniformity of the excitation. But now, for example, the
z component of the surface current in the sheath for the right-handed

helices has the form

Q-1
j<¢z>=1<z>ﬂs—‘ﬂ )2 6(¢~———z—§“q) (47)
O

in place of (2). Then, using the spectral representation for the impulse

functions, we find that

Q-1 e

j (cb z). = %:riplg. Z Z ZI exp(—:LB z)exp(—lzﬁnq/Q)exp(lncI)) (48)

q=0 m=-% p=-w

with a similar form for j¢(¢,z). Thus, on comparing with (5) and (6), it
is evident that the essential modification of the formulation is to introduce
the factor exp(~-i2mnq/Q) with a summation over the number of separate
helices. 1In dealing with the left-handed helices, we introduce a corres-
ponding factor exp(+i2mng/Q).

The boundary condition indicated by (30) still may be applied at the
one helix only. The resulting coupled equation to determine the coeffi-

cients Im is again given by the following modification of (35):

16
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Q-1 4
2 D Ran eo(-in s ews(- BT,
q=o

n:—OO
~+co
2Tc 2Tng
+ — <
E R2n-{-m,n exp( in psinc ) exp <+i Q )12n+m} (49)
= =00 i "

+ 8P ¢ cosp = 7 I
b4 m,o W m

Actually there is some simplification to (48) and (49) by noting that
Q-1 _ Q if n = 2Q
Y exp(¥i2mnq/Q) = { (50)
q=0 0 if n # 2Q
where £ = 0, %1,+2,%3...

Another generalization that does not lead to any basic difficulty, at
least for symmetrical excitation, is to remove the assumption of local
uniformity of the excitation field. This amounts to representing Ez
itself as a harmonic expansion in the azimuth direction about the cable
axis. Such a modification is only necessary, however, when the cable cross- 0
section becomes comparable with a wavelength. In that case, we would also
need to account for the presence of the transverse components of the
excitiﬁg fields in which case the filamental currents on the counter-wound
helices are no longer the same. In this situation, we would also need to
be concerned with whether the counter~wound helices were bonded at their
intersections. Irn analog to the work on planar wire meshes (e.g. Hill
and Wait, [9]), the difference between bonded and unbonded wire inter-
sections could be significant for the non-symmetrical component of the
excitation field. One method to analyze this situation is to allow the
right-handed and the left-handed helices to have slightly different radii. For
the symmetrical excitation, which in fact is a good approximation at low
frequencies, the final results would not be very sensitive to the difference Q
between the helix radii. Thus, we should not expect the bonding to have a
major influence on the low frequency performance of the cable. WNevertheless,

this is a subject that should be investigated in a quantitative sense.
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The influence of a dielectric jacket and/or lossy external coating on
the cable can be considered in a straight-forward manner. Basically, this
amounts to introducing radial wave functfons in the region external fo the
sheath that satisfy the appropriate boundary conditions at the one or more
new cylindrical interfaces. Finally, we should mention that the correspondingf
natural modes of propagation on the composite structure are obtained by simplyﬁ
letting the incident field be zero and then setting the (infinite) deter-
ninant of the coefficients of Im in (35) or (49) to zero and solving for
the propagation constant(s) iBO. Such solutions would include the surface
waves that have their energy confined to the region of the sheath.

In Part II, we consider the numerical aspects of this general problem

and the results are applied to specific cable configurations.

APPENDICES

a) A NOTE ON CONVERGENCE
The series over n have the following form
e 27¢
S = Z An exp[~in ~—-~—~J (51)

oo p siny

The convergence may be very poor since ¢ is small., Thus, as in other sim—
ilar problems, there is some merit in summing the higher order terms in closed
form by making use of the fact that the coefficient An admits to an asymptotic
expansion of the type

Lim A vtan (A(O) + A ) (52)

(,nl+w) 02

This suggests that we write

oo}

&y
= 0 _ AT g 2TC
§=A_ + Zl (An - nAT - ) exp[ in sinll)]

n=

o0 (1)
+ nzl (A_n - nA - = ) exp[+1n > sind}] + AS

19




where

p siny p siny

oo
Here we have utilized the fact that Z n exp(Finx) = 0 for all real

n=-
x > 0.

s = 240 ¥ Lcosn 2 = . Wy, (2 sin —23‘——-) (54) o
1

b) FIELD AVERAGING
In general, a field component ¥ " has the following doubly-infinite
series representation

+oo ~+
Y = X E wm,n exp —iBm’nz) exp(ing) (55)

n=—% n=-—c

where wm,n is a coefficient that does not depend on the coordinates ¢
and z. ©Now when dealing with a coaxial cable with electrically small

radius and for the case where the axial period of the braid is small, the
far-field scattered from the cable only involves the term for n =mn = 0.

It also follows rather simply that the "average" field ¥ near or at the

cable also can be described by this term. This follows from the fact that
5 ° o
-=_ 1 1 iBoz =
V=3 [?_ﬁ I wdcb]e az =Yy (56)
o o

In view of the above reasoning, it follows that a suitable definition

of thé effective axial impedance Ze(iBo) of the cable is
Z,(i8) = E_/ (2wpu¢) lp=p

(57)

2
- ,
Eoz o,vo,oKoCVo,opo)

2mie wA
[o] o]

R

where v = ig
0,0 o
s

This quantity is a useful description of the cable when its behavior in a

more complicated environment is to be comsidered. It is stressed that

%e(iBO) is a function of axial wavenumber.
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