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ABSTRACT

The analysls deals with the excitation of coaxlal structures
wlth perilodic apertures in the outer cylindrical shield. These
apertures are taker to be finite clrcumferential slots of thin
width. A quasi-static method is employed that reduces the prob-

lem to a field matching of angular wave functions over the angular

extent of the slots. An approximate averaging technique is then
used to obtain expressions for the effective admittance of the
cable. It 1is then argued that this can be used to characterize
the cable in more complicated environments.

INTRODUCTION

There 1s a need to understand how electromagnetic waves
interact with leaky coaxlal cables [1-47. Whether such leakage
through the cable shield is intentional or not, it is desirable
to have a theoretical basls for specifying the cable's charac-
teristics when 1t 1s located 1n a reallstic environment. With
this motivation, we have chosen an i1dealized model of a cable
that has a perfectly conducting sheath or shield with periodic
apertures. Such a structure 1s non-uniform in both the axlial
and azimuthal directions and, in this sense, the analysis 1s
more general than most previous attempts to deal with such
problems.
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FORMULAT ION

The geometry of the posed problem is shown in Fig. 1. The coaxial
cable consists of a cylindrical structure of iInfinite length with a solid
perfectly conducting core of radius a with a shield of radius b. The
cylindrical shield is perfectly conducting and with negligible thickness;
it is continuous except for a periodic array of narrow circumferential
slots of arc length b¢o and with axial spacing £. The concentric
region between the inner core conductor and the shield is a homogeneous
dielectric with permittivity €. The external region is free space with
permittivity € As indicated in Fig. 1, a cylindrical coordinate system
(p,$,z) 18 chosen to be coaxial with the cylindrical structure.

One convenilent artifice for dealing with a field analysis of this
type of periodic structure is to imagine it to be excited by an external
plane wave whose wave normal, for example, subtends an angle 6o with the
negative z axis. Now if thils induces a voltage Vo at the center of the

0, it follows that the voltage at the center of the adjacent

#

slot at =z
slot at =z = % is Voexp(—isol) where Bo = ko cosBo. In fact, the
voltage at the center of the slot.at z = p, where p = #1,%2,%3,..,..,
is Voexp(—isopz). OuE first task will then be to deduce expressions for
the fields internal to and external to the shield due to the array of
circumferential slots with such an excitation. Because of the periodic
nature of the solution, we need only work with the reference "cell" that
extends from =z =-2/2 to =z = +2/2.

Of course, if we wish to obtain the naturai propagation constants for

the structure we let the excitation vanish after the problem has been for-

mulated in the manner described above.
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A coaxial cable with a periodic array of circumferential

slots cut in the shield.
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THE HERTZ POTENTIALS
As usual in problems of this type, we express the fields in terms of
electric and magnetic Hertz vectors that have unly z components, N and

H*, respectively. Thus, for the region a < p < b,

92m  _ ipw 3I* 32m* iew 3l
By = 3poz ~ p 30 @) By = 3poez > 3 )
1 920 ¥ 1 9Tt oIl
E¢ 0 a¢az + ipw 5-5 (2) H¢ = 0 ad)az . icw a—p— (5)
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E, = (k?- +_a—-)H 3) H = (k2 + 2\ 6)
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where k? = €um2 and U is the magnetic permeability. In order to
satisfy the boundary conditions that E¢ = 0 and Ez =0 at p=a

suitable expansions for this concentric dielectric region are [5]

= Y] A _ Zn(ump)eimbe_ismz )
nm >
and
¥ = Z z A; n Z:(ump)ein¢e—ismz (3
nm ’
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where Bm Bo + 2mm/%, u (Bm k ) i(k Bm) . The summations
here over m and n extend from -« to +» through all integers including zeco.
The radial functions are expressed in terms of conventional modified

Bessel functions and their derivatives as follows:

In(ua)
Zn(up) = In(up) - W Kn(uo) s 79)
. I;(ua)
zZ (@p) = I (up) -~ ———K (up) . (10)
Kh(ua)

These forms permit the satisfaction of the boundary condition E¢ = Ez = 0

at p = a.




The coefficients A and A* are as yet undetermined.
m,n m,n

APPLICATION OF FURTHER BOUNDARY CONDITIONS
To simplify the analysis we now argue that the circumferential slots
are sufficiently thin that E¢ = 0 at all points on the inside of the

shield at p = b. This means that

* an Zn(umb)
A = —A (11)
m,n m,n iuwumb Z*'(u b)
n " m
*! *
where Z (u b) = dZ (x)/dx evaluated at x = u b.
n = m n m
On the other hand, the axial electric field in the section
- %'< z < %— at p=b>b 1s given by
VO -ifi 2
E () = 52 £(@)g(z)e 0 (12)

but vanishes outside the region -¢ /2 < ¢ < +p /2 and -8/2 < z < §/2.
o o

Here we normalize the dimensionless functions f£(¢) and g(z) such that

8/2
£(0) = 1 and (1/9%) f g(z)dz = 1. Jow, according to (3) and (7),
- -8/2
- - ind -1Bpz
E_(b) —” g E u;Am’nZn(umb)e e R (13)

Then, on utllizing the usual orthogonality properties, we find that, on

equating (12) and (13), that

§/2 $o/2
v
1 i(2Tm/2) =z ~in¢
Amn“’2ma6 %mﬁ)fg&k dzfﬂ@e a0
2812 5, /2 @

Thus, the fields in the dielectric region (a < p < b) can be expressed

in terms of the slot voltage Vo via (1) to (8). In particular, the

resulting field on the inside of the shield is to be obtained from




H£(b b,z) = E E A —— Z (ub) - A iewu Z' (u b)
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(15)
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GREEN FUNCTION TYPE REPRESENTATION
For later application, (15) is conveniently written in the equivalent
form §/2

V t 1 1 -
Hy(0,0,2) = 505 | 80 )G(b,037,2" )z’ o HBo% (16)

_/2

where the "Green's function'" is
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Since we will need to use (17) in the region where z-z is small (i.e.
within the slot) it is desirable to convert the m summation to a different

form. This is simply accomplished by noting, as |m| > =, that

T
Zn(umb)/zn(umb) > 1
and

2 2
Am,n + n“/(kb)

where n 1s regarded as a finite integer. This immediately suggests

writing (17) in the form
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where the prime over the summation sign indicates that the

to be excluded. The latter summation over

form by noting that

s COSmX
A

1]

-~ 2n x where

Thus, if |z-z |/% 1is a

in the very convenient form

(20)
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m =0 term is

m can be expressed in closed

= - %-Qn[Z(l - cosx)] where 0 < x < 27

(21)

0 < x << 1

sufficiently small parameter, we can write (20)
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REPRESENTATIONS FOR THE EXTERNAL REGION
In dealing with the fields produced in the external region (i.e. p > b)
by the same array of circumfercntial slots, the procedure is almost identical.

Now, however, the appropriate Hertz potentials are

- ing -iB,z
Ho Yy Bm,n Kn(vmp)e e (24)
nm
and
* _ * ing —iBpz
- = ) Ban KpvgPle " e (25)
nm
where

wm (- ) T -1 - 8)°
These have the required physical behavior as P > < provided we always
choose Re v > 0. The task again amounts to determining the coefficients
Bm a and B; in terms of the slot voltage "o.

Assuming that Eo¢ = 0 for the entire surface p = b, we easily find

that
%
B o4 _ nd Er(vmb) 26)
Bm,n iuomvmb K;(vmb)

Again we require that the axial field Eoz at p = b should have the form

given by (12). Thus,.it is found that

§/2

v F v
B . o n g(zl)ei(Zﬂ/Q)mz

2WV£2 Kh(vmb)

az' (27)
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where Fn is defined by (18). The corresponding field components Eop’
Eo¢’ etc. in the region p > b can now be expressed in terms of V0 by

operating on (24) and (25); here we use (1) to (6) with 1 and € replaced

by uo and 80, respectively. In particular, we find that
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For |m| + » we now note that

L
Kn (vmb)/Km(vmb) - -1
and

2
Qm’n -+ nZ/(kob)

Again, for the case where |z—z' |/2, is sufficiently small, we are led to

the representation of the form
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FIELD MATCHING IN THE APERT[URES
We are now in the position to match the tangential magnetic fields in

the aperture of the reference slot at 2z = 0. Thus

H¢(b-¢,z) = H0¢(b’¢’z) + Ha¢(b’¢yz) (33)




for Izl < §/2 and |¢| < ¢o where Ha¢ is the applied magnetic field
due to the external excitation. By definition Ha¢ is the value of the
field on the outer surface of the shield if there were no slots present
(i.e. in the limit § »~ 0). We can always write

Hy(b0,2) = g Hpeip¢ e 1Boz (34)

where Hp is specified by the form of the excitation and p = 0,%1,%2,...
For present purposes, we do not need to give the explicit form of Hp.

Using (16), (28) and (34), it follows that (33) is equivalent to

§/2
1 ' ' - ipd
5 |82 [C0hd32,2 ) ~ G (b,¢52,2 )1dz = 21 ] He (35)
P
-8/2

that is to be satisfied for |¢l < ¢0/2 and |z] < §/2. By using (22)

and (32) the following integral equation is obtained from (35):

ing - ipo
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and therefore we deduce that

8/2
w[(8/2)% - ("))

gz') = for lz'[ < d8/2 (40)

This, of course, has the correct edge behavior as Iz'l + 8/2. Furthermore,
we can confirm that the "constant" on the right-hand side of (38) is

n(w8/22) by making usglof the integral formula [6]

.[ 2n(l + x) + 2;(1 - x) dx = - T % 2 41)
a - x%)
Thus, , .
Z (ub) € K (v b)
- £ n. o _ .0 n o _
Jn B iﬂ){u 2 Z (ub) v 2 K (v_b) + €An gan
o n o o n o

(42)

2 2
+%€(— n)+&:(1— L )Q,n%}
k2b 2 o k;bz

Using this formula for Jn’ the next step is to solve (36) by requiring
that it be satisfied for all |¢] < ¢0/2. In principle, this process
determines the functional form of £(¢) which is the azimuthal distribution
of the vertical electric field in the slot. Various numerical procedures
such as point matching could be used to perform this operation. For the

present discussion, we assume that the field distribution in the slot is

given by

£(¢) = cos(mp/p ) for |[¢| < ¢ /2 (43)

which, of course, means that £(0) = 1 and f(i¢0/2) = 0. f[Actually, any
other smooth distribution could be assumed without changing our conclusiors].

Thus

11




¢ /2

o
cos(n¢ /2)
F o= | £ s = ;f)l 2
o (W/¢°) - n?
'¢0/2

and, in particular, Fo = 2¢o/n. To obtalin an explicit, albeit approximate,

(44)

expression for the slot voltage Vo, we now equate the average values of

the two sides of (36) over the range —¢O/2 < ¢ < ¢°/2. Thus, we easily

sin(pd_/2) sin(nd /2)
Vo = |27 g HP p¢°/2 g Fata n¢0/2

where Jn is given by (42) and Fn is given by (44). In the usual situ-

find that

(45)

ation where the cable diameter is electrically small (i.e. kob << 1), we
only need retain the p = 0 term in the above summation. In the discussion

below, this 1s assumed to be the case.

EFFECTIVE AXTAL, ADMITTANCE
To interpret the present results, we definc an effective admittance

Yeff as follows

eff HodJ/Eoz (46)

Y

where E;z and §;¢ are the average fields evaluated at the outer surface

Pp = b of the cable shield. For example

2/2 il
E_ = 2 dz do E ) iBoz 7)
oz 218 ¢ 0z(b’¢’z e
which reduces to -2/2 -
= ,
(s} 4 ng)o /Tl' 2 (48 )

Also, it easily follows that

_ 1€ w VOK; (v b)F_
H, K = + H (49)
oo 2ﬂv02Kb(vob) o
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Here Ho is the average value of the azimuthal component of the "applied"
magnetic field at =z = 0; 1t corresponds to the value computed for a cable
with no slots in the shield.

We now complete the calculation by noting that

= - 2
Yeff Ye + (HO/VO)Tr SL/¢O (50)
where ,
ieow Ko(vob) ieow Kl (vob) ieom
Y = - = ® —— /K (v_b) (51)
e v, Ko(vob) v, Ko(vob) véb o' o

is the usual external wave admittance for cylindrical waves of order zero.

Then it follows that

Yeff = Yi + YL (52)
where .
iew zo(uob) icew
Lt N T en T (53)
o “Vo uobln(b/a)

is the corresponding internal wave admittance and

sin(n¢o/2)
Y= (Y, 4 Y+ ) £ W 3 % (54)
' -1 n)
where fn ="Fn/Fo = Iri (1:— - nz) cos 72' (55)‘
05 \ 9,

Here (ZﬁbYL) 1 can be interpreted as the effective transfer impedance of

the sheath per unit length as usually defined [4]. Using (54), with some

rearrangement of the terms, we can write

YL= oL + fwC + AY (56)
where
| sin(ng /2)
L. 2 fr L N2y g ——0 " 2 57
L T w2 (u+u°) “FS;E n o @/ " &7




sin(n¢o/2)

L 22x
C= — - .o
and
sin(n¢o/2)
AY = E fn _—(}W [Yi,n + Ye,n + iu)l(E:An - eoﬂn)] - (Ye + Yi)
(59)
where '
v = iew Zn(uob) (60)
i,n u Zn(uob)
and .
ie K (v b)
e,n v, Kh(vob)
Here we note'that Y =Y and Y =Y .
i,o 1 e,o e

The summations indicated in (57) and (58) are effected by using [7]]

o)
nsinny _ T sin a(m - y) 62)
E : (n2 _ az) 2 gin am
n=1

that is valid for 0 <y < T where a is not an integer, and the derived form

sin ny _ 1 |m™ sina(m-y) _ T -y
T, [2 sin am 2 (63)

=1 n(n? - a?) a

valid under the same conditions. Thus

2 |
L = &_(i+§—)"— m 2| (64)
b2 U o ¢3 i
(o]
and
22 22 i
c= = 2%y
¢O (e + so) n s ‘ (65)

Evidently, if (kb)° << 1 and (kb)? << 1 the contribution from fuC is
negligible compared with (iwL)-l. Of course, there may be a non—neglible

contribution from the AY. In general, it depends on the axial wave number

B . , 14
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FINAL REMARKS AND CONCLUSIONS

An Interesting special case of the preceding development is to let

¢° = T corresponding to a slot that extends one-half way around the cir-

cumference of the cable shield. 1In this case, we note that

sin n¢o/2 1
fn ———n—q)-oTz-— = 5 for n=1 (66)
= 0 for n= 2,3,4,...
Then (59) reduces to
AY = Yi,l + Ye,l + iwﬂ[E(Ao + Al) - SO(QO + Ql)] 67)

If we now consider Iuob] as a small parameter and, at the same time, we

neglect the contribution from the latter term in (67), we see that

AY = 150 {b * a:] + 1 wb (68)
2 b - a o
u“b
o
where, for Uy = uo,
2ie w
1 o 2 22

N - = )& == (69)

Thus it appears that AY d1s small compared with (:L(UL)'-1 when

b+ a k? (b/2)
K2 - Bz n(22/7m6)
(o]

< 1. (70)

This obviously appears to be not the case when the axial propagation con-
stant iBo is comparable with the propagation constant 1k of the di-
electric insulator in the cable. Thig condition is less stringent, how-
ever, in the case where &/b is a large parameter.(i.e. slot spacing is

much greater than cable radius).
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In general, it appears that the effective transfer impedance YL of
the cable will indeed depend on the axial propagation constant. This is
particularly the case when we are dealing with modes that are similar to
the conventional TEM-like mode in the cable. In spite of this fact, the
transfer impedance concept is useful when we wish to characterize the
cable in relation to its environment. In principle, there is no reason
why the Bo dependence of the effective transfer impedance could not be

Incorporated in such analyses.
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