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An exact formula for the current distribution /(7)) along an unloaded (short-circuited terminals)
prolate spheroidal receiving antenna of arbitrary eccentricity is derived when the incident field is a
plane wave with the electric vector directed parallel to the major axis of the sphervid. A knowledge
of the current /(Q) and the input impedance Z,. derived earlier by Chu and Stratton. completely deter-
mines the receiving characteristics of the antenna when it is loaded by impedance Z, at =0. The
current distribution along the antenna is obtained from Ampere’s law by integrating the magnetic field
at the surface of the spheroid around cross sections perpendicular to the major axis. This integration
removes the azimuthal angular dependence providing sufficient simplification in the mathematies. so
that the exact current distribution may be obtained from an equation involving a single infinite sum.

The plane-wave scattering problem is completely formulated. It is shown that the solution for
the scattered fields can be obtained vnly by solving simultaneous infinite matrix equations.

Numerical results are presented that compare spheroidal antenna receiving current distributions
to cylindrical antenna current distributions. Also the induced center currents are compared for a
number of antenna-shape parameters. These reveal that thin cylindrical antenna theory may be ex-
tended past its theoretical limits of validity.

1. Introduction

In a recent paper (Duncan and Harrison, 1963) it is shown that external RF energy leakage
into a missile containing a slot (or access door) depends upon three factors: the induced exterior
surface current density, the transmitting admittance of the slot, and an eigenfunction expansion
of the interior field when unit voltage is impressed across the slot. To the present time there has
been no theory to accurately predict the axial current density induced by an incident plane wave
on cylindrical antennas with total length/radius < 16.5. Unfortunately, this excludes most missile
structures. Although a missile is approximately cylindrical in shape, it is felt that the geometry
of a prolate spheroid more nearly represents a missile surface. In this paper an exact expression
is obtained for the induced axial current distribution on any prolate spheroidal structure when
it is illuminated by a plane wave with the electric field directed parallel to the major axis of the
spheroid. This method involves the solution of a set of simultaneous infinite matrix equations.

Ordnance engineers, when supplied with the total induced axial current distribution on a mis-
sile (or prolate spheroid eounterpart), can predict with reasonable accuracy, on the basis of a few
tests, the current that will flow in the interior electroexplosive devices when slots and other RF
leaks are introduced in the missile’s surface. In the past this total induced axial current distribu-
tion on a missile was estimated from cylindrical antenna theory. However, there was no reason
to expect more than qualitative results from this approximation.

Also, in this paper an analysis of a prolate spheroid as a receiving antenna is given. This is
provided by the solution for the short-circuit current. i.e., the total induced axial current at the
midsection of the antenna, and the input impedance obtained from the work of Chu and Stratton
(1941). The receiving circuit consists of Zy and Z,, in series. The driving voltage V,.=1(0)Z,.

The complete solution of the problem of scattering from an imperfectly conducting prolate
spheroidal shell is of interest, as well as a determination of the shielding qualities of such struec-
tures. From a solution of the latter problem an estimate may be obtained for the shielding charac-
teristics of missile silos. These interesting topics are reserved for discussion in later papers.
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2. Steady-State Electromagnetic Wave Scattering in Prolate Spheroidal
Coordinates

A prolate spheroid is formed by rotating an ellipse about its major axis. The coordinate
system along with the unit vectors is shown in figure 1. The prolate spheroidal coordinate system
£, 7, ¢is defined as follows:

x=F V(£ —1)1—7% cos ¢
y=FV—1H{1—7") sin ¢

z=F¢n

(D

p=Vx+y=FV(E-1)l—m)

where £ ranges from 1 to ®, 7 from — 1 to +1, and ¢ from 0 to 27r. The surface ¢ =constant is
a prolate spheroid with interfocal distance 2F, the surface n=constant is a hyperboloid of revo-
lution with foci at z==F, and the surface ¢ =constant is a plane through the z axis at an angle ¢
from the x, z plane. The family of prolate spheroids given by surfaces of constant £ have semi-
major axes of £F and semiminor axes of F V£2—1.

The difficulty in treating problems of electromagnetic wave scattering in the prolate spheroidal
coordinate system is compounded by two factors: the vector Helmholtz equation is not separable
in these coordinates, and it is impossible to obtain a solenoidal solution of the vector Helmholtz
equation, which is tangential to one of the coordinate surfaces (Morse and Feshbach, 1953). With-
out these solenoidal solutions that are tangential to the boundary one does not have the orthog-
onality conditions ordinarily used in evaluating the expansion coefficients of the general solutions
for the fields.

Generally, the solving of an electromagnetic wave scattering problem in the prolate spheroidal
coordinate system is a Sisyphean task. The general solution of the vector Helmholtz equation
can be constructed from solutions of the scalar Helmholtz equation. This procedure is given by
Schultz (1950), where he treats the problem of the scattering of a plane electromagnetic wave
incident upon a perfectly conducting prolate spheroid with the direction of the propagation of the

FIGURE 1. The prolate spheroid with the incident plane-
wave field showing the prolate spheroidal coordinate system.
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wave parallel to the major axis of the spheroid. This problem is considered later by Siegel et al.
(1953, 1956) who discuss the more general aspects such as the convergence of the scattered field
expansions and the completeness property of the general solutions of the vector Helmholtz equation.
Both Schultz and Siegel et al., obtain in matching boundary conditions a pair of simultaneous infinite
matrix equations for the unknown expansion coefficients of the solutions for the scattered fields.

Page (1944) treats the prolate spheroid as a receiving and scattering antenna excited by a plane
wave linearly polarized with the electric field directed along the major axis of the spheroid. How-
ever, he obtains only a few approximate results for the case & =1.

3. Plane-Wave Scattering from a Perfectly Conducting Prolate Spheroid

3.1. Incident and Scattered Fields

The scalar Helmholtz equation is separable in prolate spheroidal coordinates. These well-
known solutions are, in Flammer’s notation (1957a),

U =SmAMRIYO $5 mp,  h=1.2,3,4,. ... @

For a general discussion as well as the tabulation of the above prolate spheroidal wave functions
the author defers to Flammer’s text.!

The electromagnetic fields are considered to have the harmonic time dependence ¢*! which is
suppressed. The expansion of a scalar plane wave traveling in the negative x direction given in
terms of prolate spheroid wave functions is according to Flammer (1957a)

ebr= i Ameelhdin, €, D). @
m=0

=0

27, .
where 8=—s the propagation constant,

A
_ 2j{€msm( (0) _ 2j(€msm((0)
A ST RRmE e Ne @
25 2m+2n+ Dn! n
en=1 m=0
(5)

=2 m>0

The functions e‘I’,‘n” are defined in (2) and normalization constants N, , are tabulated by Flammer.
A very extensive tabulation of the expansion coefficients dj*, is given by Stuckey and Layton
(1964). These coefficients are also used in computing the spheroidal wave functions. The nor-
malization of the S_,(m) functions is

=T+ m)!

(5 (5

S,..(0)= (£ —m) even (6)

t In the attempt to maintain simplicity of notation. frequency dependence of the wave functinns is not explicitly shown sbuve and in the subsequent development.
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r—m~1
d . _ = tm+ D! _ -
dnb”"(o)_z,(/ p—— 1) ,(/+m+ 1) ~ (@ m)odd. ‘7
2 ’ 2 :
Since Pl .an.l0)=0. then S,, (0)=0 fur odd values of (¢ —m). Thus "
An =0. (£ —m) odd. 8)

Consider the plane-wave electromagnetic field incident upon the perfectly conducting spheroid
to have the electric field polarized parallel to the z direction, i.e., along the major axis of the prolate
spheroid. Then the plane-wave fields can be written

E! = E,eBr3
(9)
Hi= % B3,
where Rc=\/€£. Using (3) the magnetic field can be written
H‘=[§—CE0 S Ancelhiin, & 9 (10)
Since E=—j % R.V X H. the incident electric field is N
Fi=—j Z?l_ Ee 2{ At MY, (1)
where YMR, = Vel Xy, (12)
By defining YN, = ng V XYM (13)
the incident magnetic field can be written
Hi= 213- 'IIE &y "% AmANGY. (14)

Each of the two sets of functions, (M2, YN, 2M2) and (EN(,,’PA 5”N(n',"h %Nn':’}l

e

0 0 0o

forms a complete set of solenoidal vector wave functions, i.e., they can be used to represent any
solenoidal solution of the vector Helmholiz equation (Siegel et al., 1958), where %

FY -_—
ML= Vel X i U=x,y.z
0 0

™

(15)

1
YN, =— V X EME), u=x.y.z
o 9
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The scattered fields are required to satisfy the Sommerfeld radiation condition. Since only the
radial function R®-4(£) has the proper radial asymptotic behavior,

m

s 1 : + 1
RA(&)FBE= = F—ﬁftﬂ (FBE- "= ) (16)
only these radial functions must be utilized in the scattered field expansion. The functinnal
dependence of the scattered field components on the variable ¢ must be odd or even corresponding
to the dependence of the incident field components. Since there are two boundary conditions to
be satisfied it is to be expected that the scaitered electric field may be represented by two series

of vector functions each with undetermined coefficients (Siegel et al., 1956),

E: =E {a, M+ B ¥MD}, (17)
The corresponding magnetic field is
.1
H=) 25 {am3My +B8,, M9} a8)
m. ¢

Delineative expressions for the vector wave functions are found in Flammer’s text (1957a).

3.2. Boundary Equations

The boundary condition on the electric field at the surface of a perfectly conducting prolate
spheroid is

2 x [Ef+Ef];s, = 0. (19)

This boundary condition gives two equations,

L

JGE Ay, m€eS, (MR (€ sin ¢ sin md+ (E5—1)S,, (MR cos ¢ cos mg]

= z {a,, [ mé&oS,, (MR 8(&) cos ¢ cos mp—(£5— 1)S,_, (MR V(&) sin @ sin m]

+ B, [mé&S,,, (MR (&) sin ¢ sin md +(£5—1)S,,, (MRE'(£0) cos ¢ cos mp]}. (20)

j%Eoz A e [0(E— DS, (MRULEo) sin ¢ cos m+ £ol1 — nIS,, (MRY(£0) sin ¢ cos mp]

=2 {e, [&— 1S, (MR Y(&) cos ¢ sin mep+ &l — 1S (MR D (&) cos ¢ sin m]
m. ¢

+ B m.[EE—1)S,, MR (&) sin ¢ cos mo+ ol —n2)S,, (MR (£o) sin ¢ cos mp]}. (21

me
The following notation was used in (20) and (21):

S’ () =-2

T S (22)
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and R,',,(f)=d% R_(®). (23)

From these equations it is found that a solution for the scattered field involves solving simultaneous
infinite matrix equations. An approximate solution to the infinite matrix equations can be obtained
by truncating the infinite matrices at a large order. That was the technique used by Schultz
(1950) and Siegel et al. (1956).

Some of the expansion coefficients of (17) and (18) can be obtained without having to solve
infinite matrix equations. From (20) using the orthogonality properties,

™ sin sin T
fo cos b cos mebdp = 2 Bme

f “cos maode = w8mo (24)
0

+1
[7's, ostman=5,,N,

the following relation is obtained

_ . 1 [£oRD(£0) + (£ — DR\ (£0)]
(e —Bis) 7 B E, [EOR(l?(fo)"' &= l)R(,‘)"(go)] Ay, (25)

3.3. Induced Current Distribution

The incident plane-wave field induces on the prolate spheroid a surface current density given by
J=EX[H +Hk=eo. (26)

To obtain this surface current density would involve the solution of the set of simultaneous infinite
matrix equations discussed in the previous section. If the induced current distribution on the
prolate spheroid is defined as in the case of linear antennas. i.e., as the total current through a
cross section perpendicular to the antenna being a function of the position of the cross section, the
current distribution can be obtained exactly.

Using Ampere’s law it is easily shown that the current density I(n) is

2
Ten=ptm) [ (Hb+ Hekeedo, @7)
where
pM=FVEE—1)(1—7%. (28)

From the substitution of (14) and (20) into (27), the following is obtained after the indicated inte-
gration:

Im=mp(n) R}-— i {AAESidAmRD(E)] — jBlae — B )IS1 (R £} . (29
c /20

To reduce (29) to this simple form the defining equations for the wave functions were used.
The substitution of (25) into the previous equations yields
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RM(£0) + (£3 — DR (o)
‘ I——E( A1/S, [R‘)R” o ]
o () op(n) 2 Su () | RikEo)— R (%) 2 Rd(&o) F (€3 — DR (&) (30)
'4‘
‘ Equation (30) can be simplified by use of the Wronskian relation (Flammer, 1957a)
1
RI(ER 2 (£0) — RV (£ R B E0) = B—F"(&f—:T) (31)
) to yield
Eo(fz"' D] — iz = A Sy ()
I
M= BRe =5 [ERP(E) +(E— DR (£)] (32)
for the axial current distribution. Since S,,(4 1)=0Q, the current vanishes at the ends of the
prolate spheroid.
4. Prolate Spheroidal Antenna
It is of interest to see how the spheroidal coordinates relate to the antenna dimensions:
1
h =3 antenna length = Fé&,
a=antenna midsection radius = F(£§— 1)v2
( . (33)
o h
h fo _ a
and P = N T
@ -1]
The structural shape parameter ) common to cylindrical antenna theory is
0N=27¢n -2—11
n=2[/n 2£0) —% fn (53— 1)} 34)

The prolate spheroid was treated by Chu and Stratton (1941) as a driven antenna obtaining its
input impedance and the driven current distribution. The antenna is considered to be ¢-symmetri-
cally driven by a delta gap voltage ¥. The driven current distribution obtained is

__:mVBF ., _ vz A JTRP(E)SK ()
{q and the input impedance obtained is
_V _.2 = A\ j 'R2&)S, (0 }-!
2o~ % BEE 1){2 EoR3£0) + (&3 — DRV (Eol] (30)
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Chu and Stratton point out that the series in (35) for =0, and the series in (36), do not converge
for any & because of the assumption that the antenna is driven by a delta gap voltage. They
carefully state that the introduction of a finite driving gap considerably decreases the higher order
terms of the series and fortunately produces no appreciable change for the lower order terms.
This is shown to be true by the results of Flammer (1957b) who obtains, using a variational method,
the input admittance of a prolate spheroidal monopole antenna driven by a coaxial line. His results
show good agreement with the results of Chu and Stratton when the series in (36) is truncated
after four terms. However, for large values of BF and 2 < 9.9, Flammer's input admittance in
both real and imaginary parts is less than that obtained by Chu and Stratton. Because of the
simplicity of the expressions Chu and Stratton give, only their work is presented in this paper.

A knowledge of the current at the center of the receiving antenna, /(0), and the input impedance
Zp of the transmitting antenna completely determines the receiving characteristics of the antenna
when it is loaded by an impedance, Z, at n=0. The equivalent circuit of the receiving antenna
is the load impedance Z, in series with Z,; and the ideal voltage source V,.=1(0)Zy accounting
for the excitation of the antenna.

It is of interest to obtain simplifying special forms of (32). To that end suppose that 8F = n7/2
where n is some odd integer, then, according to Flammer (1957a),

S, (m=S§,(0) A= (37)

Substituting (37) into (32) yields
I(m)=1(0) cos LF, (38)
or I(z)=1(0) cos g--}z—l (39)

Note that (39) is the predicted induced current distribution occurring on a very thin eylindrical
antenna that is illuminated as the spheroid.

5. Numerical Results

Fortunately, the series solution for the current distribution (32) is highly convergent. In fact,
using only the first four terms of the series will yield results that are accurate to four significant
figures. By using the wave functions tabulated by Flammer (1957a) a few center currents were
computed and presented in table 1. For a direct comparison the corresponding currents in a
cylindrical tube are also presented in table 1. The data for the cylindrical tube were obtained
using the theory of Harrison et al. (1967). It must be expected that the cylinder theory does not
hold for the smaller ) because 1t considers (as does all existing cylindrical receiving antenna
theory) the cylinder to be sufficiently thin so that the incident radiation is azimuthally symmetric.
Also it considers that the cylinder is an infinitesimally thin, perfectly conducting cylindrical tube.
However, this is also the model taken in all other cylindrical receiving antenna theory. Evidently
when these considerations are no longer valid it will be necessary to use the prolate spheroid theory.

The current distributions induced on cylinders and corresponding prolate spheroids are shown
in figure 2. Although extended past its theoretical limits of validity, the cylindrical antenna theory
is shown to yield reasonably accurate results for the magnitudes of the currents. However,
there is considerable error in the computed phases.

Clayborne D. Taylor
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\\ TABLE 1. Short circuit current in milliamperes for Ec= 8
Bh Prolate spheroid 1(0) Cylindrical antenna 1(0)
=990 1=9.90
1.200 1.662+ j7.306 3.852+j10.45
1.571 27.37 —j0.04285 17.96 —j12.20
2.000 7.200—j10.86 5431 — 9.754
2.356 4633— j9.001 4.023— ;8470
2.500 4.232— 38640 3.791 — jB.255
2.800 3.787— jB8.283 3.543~ j8.143
3.000 3.640— 1B.278 3.469— jB.279
3.142 3.573— jB.365 3.436— jB478
3.200 3.551 — 8.425 3.424— 8.590
-
=5.31 f1=3.31
1212 8.136 +)14.39 27.12 + j2.128
15586 27.37 - j0.2501 16.60 —j10.95
2.020 18.23 —;10.08 12.82 —;10.91
» 2.380 15.19 —;10.55 12,34 —j11.13

2.525 14.65 —310.60 1236 —j11.44
2.828 14.11 —}10.85 1243 —jl12.63
3.030 13.99 —;l1.22 12.23 —;14.01
3.173 13.94 —j11.64 11.69 —j15.35
3.232 13.91 —j11.85 11.30 —;15.99

30.0 l

CYLINDER PROLATE SPHEROID
ra —_——_ %950 .<n-5.3|; 9.90
20.0 =
= \‘:t\\ . . .
S CYLINDER FIGURE 2. Comparing the current distributions induced on
ll(})l ~ Q=53] cylinders and spheroids.
= Ey= B, and the ordinaie is in units of nilliamperes per volt. When f2=9.90,
10.0 N Bh=1.571 and Q=5.31 Bk = 1.586.
NS
N
NS
( \
- o}
0.2 0.4 0.6 0.8 1.0

;/h

6. Conclusion

It has been shown that the axial current distribution induced on a prolate spheroid by a
plane-wave field can be obtained in exact form. The resulting expression is in terms of the com-
plicated spheroidal wave functions, but these have been tabulated to a large extent.

The main applications of the work presented here are in receiving antenna theory and missile
vulnerability studies. This theory is of particular interest since there exists no cylindrical antenna
theory that holds for thick structures, i.e., h/a=16.5. To aid in the application of the results,
an analytically simple limiting form of the induced axial current distribution is presented.

The writer thanks Dr. Charles W. Harrison, Jr., for suggesting this problem, and Marcella
Luna for typing the manuscript.
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