INTERACTION NOTES
Note 261

December 1975

NUMERICAL SOLUTIONS TO THE PROBLEMS
OF ELECTROMAGNETIC RADIATION AND SCATTERING
BY A FINITE HOLLOW CYLINDER

by

Wllliam Arthur Davis
University of Illinois
Urhana, Illinois

ABSTRACT

Numerical techniques for solutions to the problems of
electromagnetic radlation and scattering are consildered for =
finite, hollow, c¢ilrcular cylinder of radius a. The singular-
integral equations of electromagnetic scattering theory are
derlved along wilth their extensions to thin surfaces and sur-
faces with edges. In addltion, constraints are presented which
are necessary for a unlgue solution to the scattering problems
of thin structures. The equations for a finite hollow cylinder
are obtalned by expanding the field quantilities 1n Fourler series
about the cylinder axls giving rise to a separate set of sing-

ular integral equations for each harmonic.

The method of moments 1s presented as the baslic technigue of
digitizing the integral equations for numerical solution. It 1s
found that the variational interpretation of the method of mo-
ments can be used as a gulde for choosing the basls and testing

functions. Of particular 1nterest as basis functlons are the



spline functions of finlte support. The spllne function pro-

perties of smoothness and best fit are also presented.

It 1s shown that Hallen's and Pocklington's formulations
for the thin wire problem are equivalent numerically for
appropriate testing functions. It 1s also shown that the
Pocklington form is more desirable when smooth basls functions
are used in conjunction wilth pulse or delta testing functions.
In this context, the second-order sinusoidal spline 1is found to
be an excellent current representation for both the scattering
and pulse-feed problems. Slope discontinuilties are easily
included to approximate a delta-feed problem. Approximate
operators are also consldered with emphaslis on the equivalence

of the finite difference approximation and piecewise silnusoidal
basis functions.

The problems of coupling in the higher harmonics are inves-
tigated for the first-harmonic problem. It 1s shown that min-
imum coupling of the equatilons 1s desirable 1n addition to the
dominance of each equation over the entlire structure by 1ts
respective current component. These features are obtailned
using a new set of equatlions obtalned from the combination of
the equatlons for the tangentlal electric field and the normal
magnetlc field. These equatilons are related to the normal deri-
vative of the tangentlal magnetic field equations which are

well-behaved for thick structures. The solutions of these



equations are in excellent agreement with the results of other

workers. Varlous operator approximations are also considered.
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1. INTRODUCTION

Numerical techniques for electromagnetic problems are not new,
but have been in existence almost as long as electromagnetic theory
itself. 1In fact, Maxwell (1879) presented a numerical technique, known
as the method of subareas, for obtaining the capacitance of a rectangular
plate. With the advent of digital computers and space technology,
numerical technqiues in electromagnetics began to blossom. The computer
was the tool that had been needed for the analysis of the complicated
structures often encountered in electromagnetic scattering theory.

Until this time, other approximare techniques were classically used,
including physical optics, geometrical optics, and other approximate
analytical techniques such as the King-Middleton theory for the linear
antenna (Xing, 1956).

Electromagnetic scattering problems are boundary-value problems which
may generally be formulated as integral equations. Integral equation
techniques have been discussed by several mathematicians including
Kellog (1953), Morse and Feshbach (1953), Courant and Hilbert (1953),
and Stakgold (1967). Special emphasis has been given to singular
integrals and singular integral equations by Hadamard (1952),
Muskhelishvili (1953), Mikhlin (1957), and Gakhov (1966)., Numerical
techniques for solving integral equations are discussed by Crout (1940),
Hildebrand and Crout (1941), Young (1954 a and b), Kantorovich and
Krylov (1964), Krylov (1962), and Vorobyev (1965) with excellent
bibliographies given by Ncble (1966) and Walther and Dejon (1960).

In Chapter 2, integral equations for electromagnetic scattering
problems are developed. Of particular interest are the integral

equations for thin, perfect electric conductors. These equations are
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specialized to hollow circular cylinders An Chapter 3. The equations
are obtained by expanding all of the field quantities in Fourier series
about the axis of the cylinder as has been done by Andreason (1965) and
Kao (1969). The resultant equations are found to be harmonically
decoupled. For each harmonic, additional deqoupling is obtained for
the axial and transverse components of currents; the decoupling is
found to be advantageous for numerical solution. For thin structures,
constraints are obtained which are necessary to guarantee the uniqueness
of the solution to Maxwell's equations. In addition, a new method for
extracting the singularities of the kernels used in the integral
equations 1s presented using the technique of Krylov (1962).

A basic history and an introduction to numerical solution techniques
in electromagnetic theory have been presented by Tanner and Andreason (1967).
A straightforward presentation of the method of moments and its
application to electromagnetic field problems have been given by
Harrington (1968) with an extensive set of examples.

The method of moments and its variational interpretation are
developed in Chapter 4. A guide for choosing the expansion functions
of the method of moments is obtained from the variational interpretation.
Spline functions (Ahlberg, Nilson, and Walsh, 1967 and Greville, 1969)
are introduced as basls functions for the unknown currents; theorems
are presented on the best approximation properties of splines.

In Chapter 5, numerical results are obtained for the linear antenna.
Numerical equivalence is shown for both Hallen's and Pocklington's forms
of the problem in addition to essential equivalences for various
approximate operators. There is also a discussion of the choice of

expansion functions for both the feed and scattering problems.

11



Various sets of equations and appropriate constraints for the first-
harmonic problem are considered in Chapter 6. The problems of strong
coupling between integral equations are observed in addition to various
operator approximations. The necessity of choosing appropriate

constraints for a particular set of equations is also considered.

12



2. ELECTROMAGNETIC FIELDS: INTEGRAL EQUATIONS

2.1 1Introduction

The realm of scattering problems has led to a wide variety of
solution techniques. These techniques include variation, perturbation,
and integral equation methods. Common to these methods 1s a need for a
representation of the field quantities in terms of currents, charges,
and scattering bodies. If such a representation is given in an integral
form, we may obtain integral equations for the induced currents and
charge on scattering bodies by locating the field observation point at
the scattering surfaces and enforcing appropriate boundary conditions.

Integral equations have been obtained for scattering problems by
several methods. For scattering geometries which lie in coordinate
planes, one can use Fourier transform methods such as in the Wiener-Hopf
theory (Mittra and Lee, 1971), or as in the work of Kao on the hollow
cylinder problem (Kao, 1969 and 1970). A second method used by
Thiele (1973) describes the field quantities, E and H, in terms of
electric and magnetic vector potentials, A and F (Harringtonm, 1961).

A third method involves the theory of Green's functions in conjunction
with an integral Green's identity. The presentation of the Green's
function method in this chapter 1s based on the work of Poggio and
Mitler (1973).

The resultant equations are singular integral equations* and require
integral definitions if the differentiations involved are included on the
kernels (or Green's functions) of the integral equations. This aspect will
be discussed in Section 2.3. The integral equations will also be developed

for thin structures and edges.

* Several authors refer to the equations as integro-differential equatioms.
Since the integration and differentiation operate in a multiplicative manner
rather than additive, this author prefers the singular integral terminology.

13



2.2 Integral Representations of the Total Electromagnetic Fields

The bases of all electromagnetic field problems-are Maxwell's
equations. These equations and appropriate boundary conditions may be
used to formulate integral equations for the solution of electromagnetic
scattering problems.

Maxwell's equations may be written in differential form as (ejmt

time variation deleted)

(2.1a)
7V x E= —jwuﬁ - K
VeE=ple
(2.1b)
VeH=m/u

where E and H are the electric and magnetic field intensities, J and K
are the electric and magnetic currents, and p and m are the electric and
magnetic charge densities. The charge and current are related by the

continuity equations

]
<
.
ol

~juwp
. (2.2)

It
<
Fall

-jwm

It has been assumed that the medium is homogeneous, linear, isotropic,
and time-invariant for which € and p are scalar constants. Combining

Maxwell's equations, one can write vector wave equations for E and H as

kzﬁ - 7xK- jwuj

t=il
1

VxVx
. (2.3)

WCH+ 7 x 3T - juek

jasl}
[l

vV x 9 x

To obtain integral representations for the fields E and ﬁ, we make

use of the vector Green's theorem

14



f Q-+ 9vx9x P-P.vxvx Q) dv = f ®PxVxQ-QxV x P)dS
v av
(2.4)
where P and 6 are two vector functions which have a continuous second
derivative in V and on the bounding surface 3V (Stratton, 1941l). This
restriction may be relaxed if the derivatives are interpreted in the
sense of distributions and the resultant integrand is integrable in the
sense of distributions (Arsac, 1966).
By setting 6 = Eq, where a is an arbitrary constant vector, we may

rewrite Equation (2.4) as

f [qv x Vv x P +'P'v2q + (VqQ)(V - P)] dv
'

=- [ [-(VQ) x (nxP)+ (a-P) Vqg+nqx (VxB)lds (2.5
v
where n is the inward normal on 3V. Since q is arbitrary, we choose q
to equal the free-space Green's function given by
—' _—-'
_ ikl |

B(E,E) m e, 2.6)
4m|r - T

L
[

The function ¢(r,r') is a well-known solution to the equation (Collin, 1960)

W% + k%) 6(F,T') = -8(F - T') . (2.7)

Replacing P. by E(r'), one has

E(r) = -f [0(7" x K) + joued - v'0(v' + E)] dv'
v
+ [ [@' xE) xV'e+ (@' - E) V'¢ + on' x (V' x E)] ds' .
v (2.8)
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Using Maxwell's equations and the theorem of the rotational (Korn and Korn,

1967), Equation (2.8) becomes

E=-f [Kx9'0+ juusd - 7'¢ p/e] dv'
v

- f [juuén' x H- (@' x E) x v'o - (n' - E) v'0] dS' . (2.9) .
3V
It is assumed that K, J, and p are the sources that produce the
incident fields for a scattering problem and that 3V may be given as
two surfaces s and Si» where s is a surface surrounding a scattering
object and S, encloses s, S tending to infinity. If V contains all of

the sources, then one can write

. 7' e J
= = =inc - = = s
= - - + V' + V' ——2

E(r) = E (1) £ [qu¢JS K ox v's ? —o

ds' (2.10)

where js’ Rs’ and Py represent the equivalent sources on the surface s

(Jordan and Balmain, 1968). These sources are given by

35 =na' xH,
Rs =-n' xE,
and V' - J_ = -jwen' - E

One may rewrite Expression (2.10) as

1

Einc i
Jwe

E(y) = (r) + [ [Ks X Vo + ®% + vv.) 33@] ds'  (2.11a)
S

and by duality

AT = 87T - £ [35 x 70 - ﬁ: % + vv-) Rscp} ds' . (2.11b)

16



These expressions have been derived for ;‘ﬂzs, 8 being a closed
surface. If the body is thin and 38 and Rs include currents on both
sides of the surface, the expressions are still valid since 35 and Rs,
normal to the surface edges, which appear in the line integral resulting
from the integration by parts, must vanish due to conservation of
energy (Mittra and Lee, 1971).

2.3 Integral Equations for Scatterers

The integral equations obtained in this section are applicable to
general scatterers including dielectric bodies, The latter are usually
formulated using either an impedance boundary conditiom or a two-region
formulation in which the fields are matched at the boundary.

In this section one deals with smooth surfaces in the neighborhood
of singularities. To obtain the desired integral equations and the
corresponding integral definitions, the limit shall be taken as the
observation point r" approaches the point r on the surface. Although
other authors use surface deformation in taking the limit, the more
rigorous limiting procedure has been used here to ensure a consistent
development of the Hadamard principal value (Hadamard, 1952) which is used.

Equation (2.1lla) is rewritten as

Feo") = sinc -, b4 1 _1-_ 2 wo,y J 1
E(r") = E (r)+S£S [stv¢+jwe(k +VV')JS¢>]dS
A

"e __l_ 2 g, 3 1 t
+ j’[l( x Vo + oo (k° + 9" )Jsch ds (2.12)

where Sy is a patch on the surface surrounding the point r on the surface

to which " shall converge. Since the integral over s - Sy contains no

kernel singularity, the limit of r" to r may be taken on this integral

without special handling.
17



For simplicity, because the surface patch S, is assumed to be
sufficiently small, it may be considered as locally planar. The patch
is circular of radius A with its center at the origin of the coordinate
system as shown in Figure 2.1, where r = 0. The integral over Sy is

given by IA and is written as

; / \ :
) o o ' e J ! 2 J 2 ;
I = I \lK U_‘:I_K _a%\z.*.u( _\:'_‘_+_X_ k2¢+a®)+_'_y__a'_'cb_”1;(
A . 1 x oy y 9x y 92 juwe nl jwe 9x" oy
DA i L Ix i |
: J 2, J 2 5
+ -K msql)r + _L kz(:) + 0 2 3"“I> [ il y
X oz jwe nl Juwe ay"ax" |
l_ 9y J
r 2 2 3
1 3% e L. >
+ «! ' . .
* jwc’_ \Jz{ Az ex! Jy az”ay”l z dx dy (2 13)
Taking the limit of r'" tending to r as is done in the Appendix,
cne has
I=-1“-l‘ﬁx_l((;)—-—!‘-—v-3(—f)}— L3 @ + o)
A 2 s jwe s 4jwed s

Substituting expressions in terms of E and H for Es and V - 35, the

integration result may be rewritten as

1
4iwed

I =%E(E)—

A
[aY

35(2) + 0(a) . (2.14)

Equation (2.14) may also be written in terms of surface integrations as

[ [K x Vs +_i (k2 + vv-) 3 ¢] dS! 5 (2.15)
s Juwe s

where the symbol "r"——ﬂ" refers to the Hadamard principal value

-2
(O8]



—p N>

Figure 2.1. Coordinate system for the surface patch Sy
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(Hadamard, 1952) and means ''the finite part of." To simplify notation,
we shall use a double bar through the integral sign in lieu of this
symbol to denote the Hadamard principal value.

In general, the Hadamard principal value may be evaluated in the
Cauchy sense with the exception that the infinite parts thereof are
discarded. In this sense the Hadamard principal value 1s more general
than that of Cauchy and in fact includes the latter as a form of
integration interpretation,

Using Equation (2.15), one writes the limiting form of Equation (2.12)

on the surface as

=,=, _ .zinc, - = 1 2 T '
E(r) = 2E7 7 (¥) + 2 i {KS x Vo + EBE-(k + VV.) JS¢] ds' . (2.16)

By duality, H(r) is written as

0E) = 28°°@) - 2 i [35 x Vo - 3%3 a’ + vve) RS¢} ds' . (2.17)
Although Equations (2.16) and (2.17) have been developed for a locally
planar structure, the equations still apply for surfaces which are
locally twice differentiable in the sense of the corresponding surface
defining equations. The resultant quadratic terms in the integrand do
not change the above results.

It should be noted that the Cauchy principal value or integration
in the normal sense may be used if the derivatives are taken on the
currents or taken outside the integral, respectively. In the latter,
other vector-differential identities must be used to obtain the residue

terms of the Cauchy or Hadamard forms of integration.
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2.4 Integral Equations for Thin Surfaces and Surfaces with Edges

The extension of our results to thin surfaces is straightforward.
A thin surface is defined as a surface that does not enclose a volume.
This classification can also be used for surfaces that satisfy this
agsumption in only some regionms.

If the surfaces of s are designated as s, and s_, the Rs and 39

+

are written as

K =K +K
] ] ]
= -a_x [EG,) - EG)] | (2.18a)
and
I =3+ 73
-] s -]
=4, x (B - BE)] . (2.18b)

The residue of the Hadamard principal value becomes 1/2[§(§+) - i(;_)]
when the surface is approached on the s, side. Using this residue for

Equation (2.12) gives

= = = = =inc, - = 1 2 3 1
E(r)) + E(x)) = 2E7 (¥) + 2 ¥ [KS X Ve + oo (K7 + 99.) J 0| dS
s (2.19a)

and by duality

= - = - —inc - = 1 2 N ,
H(z,) + H(r ) = 20 " (r) - 2 i [Js x Vo Jur (k° + 9v.) KS¢] das' .

(2.19b)

For a perfect electric conductor, Equations (2.19) may be simplified

to

inc ﬁ+x 2
a2 0 E pot — - I '
0=n_xE" (1) + Tuc i (& + v9-) J ¢ ds (2.20a)
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and

2 3t - 37) = a, x B@ -4, x § T x ) s’ (2.20b)

+ s s
in addition to the equations for the normal components. Equation (2.20a)
is a Fredholm equation of the first kind for the sum current (3: + 3;)
while Equation (2.20b) is an integral expression for the difference
current (J: - J;}. The latter is usually of no interest since it does
not enter into the calculation of the fields away from the surface of
the scatterer, Hence, for thin, perfect electric conductors only the
equations due to the boundary conditions on tangential E and normal H
are used.
In addition to thin structures, a scatterer may have an edge.

When one approaches an edge on a scattering surface, one finds, in
general, that only the fields parallel to the edge are bounded (Collin,
1960), In fact the fields parallel to the edge tend to zero as one
approaches the edge. Hence, the integral equations that correspond to
these fields are the only ones that exist at the edge. The additional
equations needed at the edge are boundary conditions on the currents
such that the currents perpendicular to the edge must be zero. These
latter two conditicns are also necessary for the fields parallel to the

edge to be zero.
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3. INTEGRAL EQUATIONS FOR A HOLLOW CIRCULAR CYLINDER

3.1 Introduction

The structure of interest in this paper is a finite, perfectly
conducting, hollow, circular cylinder, which is a member of the larger
group of structures, bodies of revolution. Due to the circular symmetry,
the corresponding scattering problems are often solved using a Fouriler
expansion of the fields and currents.

Bennett has investigated general bodies of revolution in the time
domain using the tangential H-field equations (Bennett, 1970). He
considered only axial incidence and needed only the first-order harmonics.
Harrington has solved the problem of an infinite cylinder (Harrington,
1961), and Kao has considered the finite hollow cylinder (Kao, 1969 and
1970). The work of Kao will be used for comparison in a later chapter.

In this chapter, the incident fields and surface currents are
expanded in Fourier series and the corresponding integral equations
obtained for each harmonic.

3.2 Incident Field and Current Expansions

Any incident field distribution and associated surface currents on
a body of rotation may be expanded in Fourier series representations.
For simplicity, the incident field will be expressed as a uniform plane
wave with propagation direction given by k in the x-z plane as shown in
Figure 3.1. The given incident plane wave is further specified to be a
linear combination of E- and H-polarizations defined with total E and H,
respectively, contained in the x-z plane.

=inc

To develop the expressions for E*™C and ® , the following vectors

are defined as
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Figure 3.1. The propagation vector k with respect to the finite
cylindrical structure.
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k = p sin ei cos ¢ ~ ¢ sin ei sin ¢ + z cos e£}

ee = p cos Gi cos ¢ - ¢ cos ei sin ¢ ~ z sin ei
éh = —(p sin ¢ + & cos o) . (3.1)
he = —eh

For the electric field strengths for E- and H-polarization given as

1nce—Jk-r 1nce-Jk-r

Ee and Eh » respectively, one may write the incident
fields as
=inc _ { inc- Jinc- ] -jk-r
E Ee o Eh h e
and _
—jker

(3.2)

where k = kk and k = 27/ Expressing r by the cylindrical coordinate
triple, (p,¢,2), one has

—jkosinaicos¢ —jkzcosei

e—jk.r = e e . (3.3)

The Fourier series in ¢ for the exponential term in cos ¢ is well-known
and is given by

~jxcosé ) Nt jn¢

e = ) (-3) Jn(x) e (3.4a)
n:—m
where Jn(x) is the Bessel function of the first kind with order n and

argument x. Two other series needed are

o
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e-jXCOS¢ cos ¢ =j z‘ (—j)n Jl;(x) ejn¢ (3.4b)

n=—w
and
s ® nJ_(x) .
e~ J¥cosd sin ¢ = Z (—j)n ——f%——— eI (3.4c)
n=-co

where the prime denotes derivative in x.
Substituting Expressions (3.1), (3.3), and (3.4) into Expression (3.2),

the incident field expressions become

=inc —jkzcosei p n - inc inc an(x)
E = -e Z (-3) o -jEe J;(x) cos ei + Eh _
n=—oo
+ 4 Einc Ei&ifz cos 8, + 1 incJ'(x) + EEincJ (x) sin 6 ejn¢
e X i JEh n e n i
(3.5a)
and
-jkzcost
. i nJ (x)]
=inc -e .1 ~l, _inc_, inec n
= —— - — <4 ——
H ; ng_w (-3) {:p‘;Eh Jn(x) cos Bi Ee
. nJ (x) .
~ 1 _inc n _ splnc, ~_ine , jn¢
+ ¢[Fh —  cos ei JEe Jn(xJ + th Jn(x) sin 6%} e
(3.5b)

where x = kp sin ei. These expressions can be written in the form

_ -jkzcoss © [ . . .
Einc - e i Z pEinc + ¢Einc + innc] eJn¢
n=—o L Pn - ¢n n
and
_ -jkzcosg o r . . .
Hinc - e i z pHinc + ¢Hinc + zHinC Jne (3.6)
n=-wo | °n ¢n n

where the coefficients are functions of p only and the variation with

respect to ¢ and z appears explicitly.
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The currents on the surface of a perfectly conducting hollow

cylinder of radius "a'" can also be expanded in a Fourier series as

I =) [$J¢ (2) + 23 (z)] L 3.7)

5
n=-—« n n

Since the surface is perfectly conducting, the magnetic surface current,
Ks, is set to zero. It will be shown in the next section that the
currents of harmonic n are associated only with the incident fields of
the same harmonic. In addition one should note that Jz and J are

n n
even and odd, respectively, for E-polarization and odd and even,
respectively, for H-polarization. Hence, one only needs solutions for

the harmonic currents with non—-negative n.

3.3 Integral Equations for a Hollow Cylinder

Since the scattering structure is a thin surface, the tangential
electric and normal magnetic integral equations will be used as
explained in Section 2.4. Equation (2.20a) and the normal H equation

from Equation (2.19) are rewritten on the cylinder surface as

=inc 2

-jwep x E =5 x f (k" +vv-) J o ds' (3.8a)
s

and

o« B =5 .4 J_ xve) as’ (3.8b)
S

2 /2-

where ¢ = e-ij/AnR, R = {(z - z')2 + p° + p’z - 2p9"' cos (¢' - ¢)]l

Noting that V¢ = -V'¢, one writes
_jng;nc(a,¢,z) = k2 f [J¢(¢',z‘) ¢(r,r') cos (¢' - ¢)] a do' dz’
s

2 - - 2, .= =
v o1y L 37¢(x,T") . . 1 379(x,x") ' '
- f [J¢<¢ 2 Tgrhe T3 (87520) a—a—zTa’q,—'] 2det a2
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-jueE " (a,6,2) = KX [ [3_(s",2") ¢(F,ED)] a do' dz'
S

2 - - 2 - =7
v oy 1 9379(x,x") ¢ 1y 0 @(x,r") ' .
- i [J¢(¢ 22') 3 T aetaz T I (%,2T) T g a det dz

and

Hénc(a,¢,2) = { [J¢(¢',Z') QE%ELELL cos (¢' - ¢)
S

§2§§4£ll] a do' dz'

W |-

- JZ(¢‘ ,Z')

(3.9b)

(3.9¢)

where the Cauchy principal value and standard integral interpretation

have been used for the appropriate integrals.

The difference form of ¢ with respect to ¢ and z enables one to

simplify Equations (3.9) by replacing the differentiations in ¢ and z'

by the negative of the differentiations in ¢' and z, respectively.

To complete the simplification, one may integrate by parts in ¢' to

obtain
-
i // 2 1 32 \
-jwsElnc(a,¢,z) = f Plk"J (¢ + ¢,2') cos a +—=— J (o + ¢,2") \a do dz'
¢ j\ ¢ 2. 2% /
s a  da
Loz 2] .
+ S i v Jz(a + ¢,z') 32 ¢! a da dz (3.10a)
inc 2 82
—wa:EZ (a,¢,2) = f J (¢ + ¢,2'") k"o + — ¢| a do dz!
s z o0z
i [jL ry 9 ] '
+ 3 i = J¢(a +¢,2") 55 ¢) a du dz (3.10b)
and
inc - 1y O s L 3 1 ] 1
Hp (a,$,z) i [J¢(a + ¢,2z") 2 $ cos a ¢ : 3a Jz(a + ¢,z')| a da dz
(3.10c¢)
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where a =.¢' - ¢. The integration by parts is valid since the current
is differentiable in ¢ and the operation is done prior to taking the
limit of the principal value. All of the corresponding Hadamard principal
values are thus reduced to those of a Cauchy type since the end terms
on the limiting curve surrounding the singularity correspond to the
infinite terms of the Hadamard principal value.

Upon substitution of Expressions (3.6) and (3.7) for the incident
fields and currents on a hollow cylinder of length L, Equations (3.10)

decouple for each harmonic to give

inec -—jkzcosei L/2 1 2 n2
-jweE e = / J. (zY)]|k Gln(z -z') - = GOn(Z - z') ydz!
®n -L/2 %n a
i 2
] — - (] 1
+ - { J_o(2') 556, (z - 2")| dz (3.11a)
-L/2 n
-jkzcos8, L/2 2
-jweEince = f J (") k2 + Jii- G0 (z - 2z")} dz'
Zh -L/2 *n 2z o
in ,’2/2[ 2
+ J (') — G, (z - z'")| dz' (3.11b)
a _L/2 ¢n oz On |
and
-jkzcos® L/2
uitCe Le f o, @ 2e -2 -85 @)oo -2 a
P ~-L/2 ¢n o %n
(3.11c)
where the kernels, Gon(z) and Gln(z)’ are given by
1 2m {e_ij m
Gmn(z) ~ % g R cos @ cos nal a da (3.12)
Ty 2 o 1/2
with R = Lz + 4a sin-i] Hence, the cylinder problem becomes an
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infinite set of one-dimensional integral equations with two coupled

unknowns for each harmonic set.

The distinct advantage of such an

approach is the reduced complexity of the integral equations and the

rapid convergence of the truncated series representation (Kao, 1970).

Equations (3.11) consist of three

dependent equations of which

only two are needed to obtain the currents on the surface of the

cylinder.

a z-derivative.

The coupling between equations is strong, being dominated by

To obtain further decoupling, which is advantageous for

numerical solution, one combines Equations (3.11) to obtain an integral

expression for [jweﬁt +n x VtHn] (Mittra et al,, 1973), where t indicates

the tangential component.

The equations thus obtained for the cylinder

are
inc inc —jkzcosei
~jweE - jkH cos 6 e
¢ ol i
n n
;/2 }, 2 32 n2
= J ")k +——=| G, (z =-2') = —G, (z - z") dz'
-L/2 \\¢n az2 In aZ On
(3.13a)
and
. . -jkzcosb
[—jmsElnc _ JE_Hinc} e i
2z a p
n n
L/2 2 2
= # J_(2") (kz - EE +'jL5 GOn(z - z'){ ydz’
-L/2 %h L a 9z
4n L/2 3
1 — - 1 - - 1 ]
+ L _L/£ J%(z ) = [Gon(z 2') - G (z - z )] dz' .
(3.13b)

These equations may also be obtained by setting the p-derivatives of Hz

and (pH,), respectively, equal to zero.

¢
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Equations (3.11) and (3.13) are defined only for z in the interior
of the interval (-L/2,L/2), except Equation (3.1lla) which is defined in
the closed interval [-L/2,L/2]. 1In certain instances, the latter may

be used to insure a unique solution to Maxwell's equations, as discussed

in Section 3.5.

3.4 Kernel Evaluation

The kernels of Equations (3.11) and (3.13) were expressed in (3.12) as

1 2m [e-ij m ]
Gmn(z) = g R COs o cos na| a do . (3.14)

Another representation may be obtained by expanding e—JkR/R in a Fourier

series of a and using the addition theorem for Bessel's functions. One

obtains
Gyp(2) = % j'w [H§2>(¢£2 - ¢ a\’ Jn("éz - ¢? a)] eI%% 4t
— (3.15a)
and
6, () = Z1J_ _£°° [HrEZ)' | 22 a) J;(éz _ .2 a}
2 .
ek AU SRR BN L o] ¥ ac
) Tt (3.15b)

Both Expressions (3.14) and (3.15) are equally valid, where the «
integration in (3,14) has been replaced by an inverse transform in z

in (3.15). Kao has used the kermnel representations of (3.15) in
conjunction with the electric field integral equations (EFIE) given by
Equations (3.11 a and b) to solve the problem for the harmonic currents

(Xao, 1969 and 1970).
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In this paper, the representation of (3,14) will be used in the
integral equations. Since the integral of Gmn(z) times a set of basis
functions can not, in general, be done in closed form, it is desirable
to expand Gmn(z) as suggested by Krylov (1962). The expansion consists
of singular and residual parts which may respectively be integrated in
closed form and by numerical methods to produce an accurate scheme of
integration.

A standard technique for this expansion has evolved through the
years for Goo(z) (Poggio and Mayes, 1969) where a three-term Taylor

series is added and subtracted to give

2m 2 2w -jkR ] 2.2
_ 1 i_ .. _kR 1 e - 1+ jkR + k"R7/2
Goo(z) = an é [R jk ———] ado + — é [ ] ada .

(3.16)

The second integral is easily evaluated numerically while the first
integral gives rise to a constant and the elliptic integrals of the
first and second kinds. The latter may be expanded to extract the
singularities.

A more straightforward technique for extracting the singularities
involves adding and subtracting a three-term Taylor series times the
Jacoblan arising from the transformation of an integration in o to an
integraﬁion in y = 2a sin % . For Gmn(z) this becomes

a [/ -jkR __m
Gmn(z) = ar _f e cOos 0 COS no - [l - jkR - —

2a
2 1 . 2« o 1
- Z(m +n° - 4) sin 2} cos 2j}/R da + o f

-2a -
1 2 2 1 \
k“a®™ +m + n” - =
2 1y z° |1 G|
. 1+ + n - = = - jk - R /d
(m n 4) zaZJR J 5 a2 ) y



which may be written

2
4
81Ta2

1 2.2 2 .1
Gmn(z) = -z—ﬂlnlzl + (k a~  -m-n +-Z) | z| +Rmn(z) .

(3.17)

The residual, Rmn(z), has a continuous second derivative and is

expressed as

2.2

m .
Rmn(z) = —:—n £ {e_JkR c:t:'sm o cos na - [l - jkR - kZR

2 1 . 2 o o)
_2(m+n —4) sin 2] cos 2}/R do

2 I
+—;- [l - (kza2 -m- n2 +l} i—-} in|2a + 4a2 + 22[

2n 4 4a2
/2 2
. ka 2 2 2 1 ba” + z
-3 - (k a“ +m+n" - 4’ ima (3.18)

The residual is simply evaluated numerically and the first and second
derivatives may be evaluated by finite differences as long as the sample
distance in z is much less than 2a.

Equation (3.17) and the derivatives may be written in final form as

- 1 0
G (z) = - o enlz| + R (z) , (3.1%a)
4 = _i (L
iz Gmn(Z) = Tz + Rmn (z) , (3.19b)
and
d2 1 kza - m - n2 + %) (2)
—3 G (z) = + anz[ + R (z) (3.19¢)
mn 2 2 mn
dz 21z 4Ta

where the residuals are given by

33



) (kza2 -m - n2 +-%] 2

0)
R (2) 7 z on|z| + Rmn(z) ,
8ta
R(l)()_(kzaz_m-nu%)( s semnlely + L5 ¢
n z) = 3 z ziniz 3z Rmn z) |,
8ma
and
2) 3(k2a2 -m - n2 +-%} d2
R (z) = — + R (z)
mn 2 2 "mn
8ma dz

Figures 3.2 and 3.3 are plots of the real parts for the components of
2

d d .
Gml(z), iz Gml(z), and dzz Gml(z) for m equal to 0 and 1, respectively,

with ka = 1. The residuals have been approximated by piecewise linear
functions and the logarithmic terms have been normalized to the sample
distance in z.

It should be noted that the singularities dominate only for |z| < 2a
and cancel with terms in the residuals for |z| > 2a. This property

enables one to approximate Goo(z) for 2a small as

-]
ae
G..(z2) = =
00 2 R
~ 2 2,1/2 .
where R = [z" + a“) . In the numerical problem, 2a small corresponds

to 2a much less than the sampling distance in z.

3.5 Additional Constraints Required for a Unique Solution

Equations (3.11) and (3.13) consist of five integral equations
derived from Maxwell's equations for the harmonic currents on a hollow
cylinder. Several authors have shown for a variety of structures with

edges that Maxwell's equations are not complete (Mittra and Lee, 1971;
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Collin, 1960; Jones, 1964), In order to obtain a unique solution, a
condition for finite energy must be imposed resulting in specific
asymptotic behaviors of the fields and currents, requiring that the
fields parallel to the edge asymptotically approach zero.

To complete the statement of the hollow cylinder problem, E¢ and H¢

n n
must be set to zero at the ends of the cylinder. H¢ equal to zero
n
directly implies that Jz must be zero, while E equal to zero provides

n n
two additional constraints necessary to constrain the two degrees of

freedom that occur for J, . It should be noted that the latter condition
requires the asymptotic bZhavior J¢ = 0\1/vL/2 - 'z|) with respect to
an edge at z = + L/2. With the cor:ect asymptotic behavior for Jz and
J¢ , one finds that 1im Hp (z) = 0 is consistent with E¢ (iL/2)n= 0.
n z»+L/2 “n n
Both the constraint on the behavior of E¢ , and Jz (xL/2) = 0 will
henceforth be referred to as the constraizts for t;e cylinder problem.
Any two of the five integral equations in Section 3.3 might
conceivably be used to solve for the harmonic currents. The only
requirement is that the equations in conjunction with their constraints
be independent. For n = 0, it is clear that either Equation (3.11b) or
(3.13b) be used in conjunction with one of the other three equations.
For n # 0, any of the ten combinations may be used.
In Chapter 6, four particular combinations will be considered for
n = 1 that give an insight into the numerical difficulties that arise
for various sets of equations and constraints. The sets to be considered
are Equations (3.11 a and b), Equations (3.11b) and (3.13a),
Equations (3.1llc) and (3.13a), and Equations (3.13 a and b).
Equations (3.11 a and b), the electric field integral equations (EFIE),

and also Equations (3.1lc) and (3.13a), n # 0, are complete if

37



Jz (xL/2) = 0 and E¢ (tL/2) = 0 are enforced. The other two sets of

n n
equations require different constraints.

Consider Equations (3.11b) and (3.13a). For z £ (-L/2,L/2), the

equations have homogeneous solutions given by H A cos kz + B sin kz
n
and E¢ = jn(A sin kz - B cos kz). If we require Jz (xL/2) = 0 and
n n
A = B = 0, then homogeneous solutions do not exist and the solution is

unique since the constraints are also satisfied. To assure that A and B
are zero, E, (#L/2) = O may be used if the structure length is not a
n

multiple of A/2. To avoid the half-wavelength anomaly, one may instead

require Hp and E@ to be zero at the same point .in the open interval

n n
(-L/2,L/2).
Equations (3.13 a and b) have homogeneous solutions such that Hp ,
2 \ n
E¢ , and Ez each satisfy the equation k2 - EE + di Y = 0., The
n n \ a

homogeneous solutions are zero and the original constraints are satisfied

if H is set equal to zero at two distinct points zq and z, in

p———

n
(-L/2,L/2) where /{2 - |z

> - zl[ # pmr, p # 0. One can also satisfy
a

2
the above conditions by setting E and H to zero at the same point

n n
in the interval (-L/2,L/2). This latter form of constraining the problem

does not have anomalies as do the conditions on H
n

To emphasize the need for choosing constraints consistent with the
equation set to be solved, consider the set of Equations (3.13 a and b)
for n = ka = 1 and normal incidence of an E-polarized plane wave. 1In
this instance, Equations (3.13 a and b) have forcing functions
identical to zero. I1f E is set to zero, one obtains no information on
. n
inc
’ = 0, and Hp equal to a constant becomes a

bn n
homogeneous solution of the problem. Hence, one must choose a consistent

the currents, since E

set of equations and constraints to assure a unique solution to the

hollow cylinder scattering problem.



4. THE METHOD OF MOMENTS FOR THE SOLUTION OF SCATTERING PROBLEMS

4.1 Introduction

The integral equations of Chapter 3 are linear integral equatioms.
A formalism has evolved that encompasses most of the techniques for
solving linear integral operators in addition to linear differential
operators. This formalism, called the method of moments, has been discussed
by Kantorovich (1964) in the context of degenerate or separable kernels
and has been the subject of lengthy treatises by Vorobyev (1965) and
Harrington (1968). Vorobyev based his treatment of the subject on the
theory of degenerate kernels, including a section on singular integrals,
while Harrington presented a brief discussion of the method with a
wealth of examples in electromagnetics. There are also excellent
discussions of the topic by Thiele (1973) and Poggio and Miller (1973).
The presentation in this chapter will be based on the work of
Harrington with an extensive discussion of the variational interpretation,
particularly with regard to the choices of the basis and testing
functions to be defined. Equivalence of various combinations of basis
and testing functions will be discussed in addition to the implicatioms
of using approximate operators. The final topic, of special importance
with its best approximation property and smoothness features, is an
introduction to the spline theory of approximation.

4.2 The Method of Moments

Consider a linear operator L operating on a response function £
defined in the domain (a,b) and equated to a source function g defined
in the range equal to the domain of £, This linear operator equation

is written as

39



Lf =g (4.1

where usually g is a given function and f is the unknown of interest.
If the solution for f in Equation (4.1) for a specific g exists

and is unique, then we may write

£=1L"g (4.2)

where L-l is the inverse operator. In many problems, an explicit form
of L--l can not be obtained and it becomes necessary to solve the problem
in an approximate manner. Both the approximate and exact solutions may
be obtained in the context of the moment method.

Define the inner product of the functions £ and g as

b
<£,8> =] f(x) gx) dx . (4.3)

a

. . . . . s a
Associated with the inner product is the adjoint operator L~ of the

operator L satisfying the relation

e = LS (4.4)

It is clear the inner product of the source of the equation Lf = g with
the function h corresponds to L_lg if 1L%h is the Dirac delta function.
The inability to obtain an explicit form for L“l or a.closed form for h
is consistent.

To apply the method of moments to Equation (4.1), one expands the

unknown function f in the complete series

f=)a f (4.5)
n



where the fn are called the basis functions. Equation (4.1) may be

written
rZ1 aann =g . (4.6)

In most numerical problems, one truncates the summation, in which case,
Equation (4.6) may be written as
N
I oLE =g+e (4.7)
n=1
where e represents the error in the truncation.
To solve for the @ , one takes the inner product of Equation (4.7)

with the weighting or testing functions W to obtain

N

21 o wLE > = <v,e> + w,e> , m=1, .. M. (4.8)
n=
If the scalars, <@m,§>>, are set to zero for each m, Equation (4.8)

may be written as

N

21 o) wpLE > = < .e> (4.9)

n=

or in matrix form as

G —~ —~
P P R T
L1 %22 S | g
i ) A I (4.10)
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where 'Q'mn = <wm,Lfn> and g, = <wm,g> . If the matrix [Zmn] is
nonsingular, then the a are given by

lo ] = D2, 1 "[g ] - (4.11)

In Equation (4.11), it was assumed that M = N. For M # N, one may
calculate the @l by taking the pseudo~inverse which consists of
multiplying Equation (4.10) by the conjugate transpose of [lmn] before
inverting. The underdetermined system, M < N, is often found to be
poorly behaved or ill-conditioned and is rarely used in this form. The
overdetermined system, M > N, is usually well-behaved and represents a
least-squares solution to Equation (4.10). A thorough discussion of
this topic has been presented by Rao and Mitra (1971). This paper deals
with the case M = N, for which Equation (4.10) is used directly.

4,3 Variational Principles

The moment method is equivalent to Galerkin's method as presented
by Stakgold (1967). Historically, Galerkin's method has been restricted
to the case woo= fm for which equivalence to the Rayleigh-Ritz
variational method for linear operators is well known (Kantorovich, 1964).
It will be shown that the moment method is identical to the
Rayleigh—Ritz variational method.

Given the operator equation Lf = g, it is desired to calculate the

functional
p = E,> . (4.12)
One shall need to introduce the adjoint problem

%« =h . (4.13)



1
In the context of the calculus of variations, a variational form of p,

which is stationary when f and w are respective solutions to Lf = g

and L% = h,is given as

o= <?’ﬁ> + <3’i> - <@f’£>

or in the scale-independent form (Schwinger~Levine, 1948) as

_ <i,b> g%,w>
P = <LE W *

If £ and w are expanded as

then one obtains an approximate expression for p. Applying the

Rayleigh-Ritz conditions to p, one has

e 0, i=1, , N
i
and .
20 o, 1i-=1, , M
9B,
i S

These conditions for the p of Equation (4.15) are implied by

Equation (4.9) for the problem Lf = g and a similar equation for

L%w = h. The conditions are identical to Equation (4.9) and the

adjoint equation when p is defined as in (4.14). Hence the method of

(4.14)

(4.15)

(4.16)

(4.

1

moments and Rayleigh-Ritz variational method are equivalent for linear

operators.

7)

This variational equivalence can be useful as a guide for choosing

the testing functions LA Harrington (1968) suggests that the Vi be
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chosen to closely represent the adjoint response w. If p represents
the response f to the original problem, then w corresponds to a Green's
function. He concludes that since a Green's function is usually poorly
behaved, one should expect slower convergence of the solution than for
computation of a continuous linear functional,.

If the operator problem Lf = g has been solved by the moment method,
then Expressions (4.14) and (4.15) reduce to the original functional

which may also be written

6 = <W,g> . (4.18)

This form is useful since the knowledge of the adjoint operator is not

needed and the associated adjoint problem does not have to be solved.
Equation (4.18) leads toc a straightforward procedure to aid one in

choosing both Wo and fn. Typically, W is obtained by shifting a

function w aboutr the point X such that

wm(x) = w(x —~ xm) . (4.19)

The function w(x - y) should be chosen such that p(y) is a continuous,
or at least bounded, function of y for a given source g. If this is
not done, one may obtain a substantial error in the solution as the
X approach the discontinuity or singularity. For an isolated
discontinuity, one may want to use smoother testing functions in the
region of the discontinuity than used elsewhere.

In a similar manner, we define the functional

o <w,Lf > . (4.20)

[
£ 1
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Expressing w in terms of (x - y), the fn should be chosen such that the

behavior of Pe approximates the behavior of p. In other words, one
N

( z aann) is a reasonable representation

n=1

of g. This criterion for choosing the basis functions is in general

should choose the fn such that

more stringent than only requiring a reasonable representation for £,
but is a more consistent choice and should give faster convergence.

For example, a series of pulse functions may nicely represent a
function f, but has no meaning when operated on by a second order
differential operator L and then set equal to a continuous function g
at N points. The equation does have meaning if the weight functions are
continuous, but one could just as easily solve the problem using piece-
wise quadratic functions with a continuous first derivative. In the
latter, Lf is represented by a series of pulse functions which may
adequately represent a continuous g.

Hence, the variational interpretation of the method of moments is
an important guide for choosing the basis and testing functions to be
used in the moment method.

4.4 Basis and Testing Functions with Comments on Approximate Operators

Both basis and testing functions are described in terms of either
entire-domain bases or subsectional bases. Entire-~domain basis functions
are defined in the entire domain of the operator L. Representative
bases are Fourier, Chebyshev, Maclaurin, and Legendre series consisting
of the corresponding trigonometric and polynomial functions. Such bases
provide fast convergence if they reasonably represent the response
function, f, but have a major drawback in the computer time required to

calculate the matrix elements due to the entire domain integration.
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The matrix elements for subsectional bases are efficient to compute
in contrast to the entire-domain bases. In addition, subsectional
bases may be used for problems in which entire~domain bases are not

suitable. The basic form of subsectional bases is defined by

E;(x) , X in An
fn(x) = (4.21)

0 s X not in A
n

where the various types of subsectional bases are thus defined by the

functions pn(x). It is sometimes convenient to let the subsections,

An’ overlap as for the B-splines to be discussed in the next section.
Examples of subsectional bases presented by Thiele (1973) are

Piecewise uniform (pulse function):

1, |x| < a/2
E(x) = P(x3;0) =¢ (4.22)
\o. Ixl > ar2

Piecewise linear (triangle function):

1 - |x|/a, |x| <o

- =/
f(x) = T(x;48) = (4.23)
\\ 0 s |x] > A

Piecewise sinusoidal:

sin k (A - |x|)/sin ka, |x| <A
f(x) =1 (4.24)
‘ 0 , x| > 8

k‘

Quadratic interpolation:

{A + Bx + Cx2, |x| < a/2
£(x) = (4.25)
' 0 , | x| > a/2

Sinusoidal interpolation:

A + B sin kx + C cos kx, |x| < 4/2
f(x) = < . (4.26)
L 0 , |x| > a/2
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These are currently the most commonly used bases in numerical methods
for electromagnetic field problems. The first three examples are
B~splines, while the last two examples are B-splines only if continuity
of the function and its derivative are enforced.

The spline form of sinusoidal interpolation 1s particularly
advantageous for the wire problem (zero-order harmonic) if the
k2 + Ji%) operation is transferred to the current [gsee Equation (3.11b)].

3z
v
The resultant matrix elements become an integration of the kernel over

a subsection plus the end terms of the integration by parts. The use
of subsectional bases is referred to as subsectional collocation
whereas the use of the Dirac delta is referred to as point-matching.

Although a guide has been given in the last section for choosing
the basis and testing functions, it is helpful to consider equivalences
of various combinations of the subsectional basis functions. For this
purpose, the discussion is restricted to convolution or difference
operators typical of electromagnetic scattering problems which are
given by

a0

LE(x) = [ K(x - x') £(x') dx'

a4

=K®f (4.27)

where the basis functions, testing functions, and source are assumed
to be identical to zero outside of the domain (a,b) of the original

operator, L. The method of moments is thus expressed as

N
nzl a [w - (K ® £)l=w -gm=1, ..., M . (4.28)
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Changing the degree of smoothness of L makes only minor changes in
the source vector of Equation (4.10) as long as the continuity is retained

as discussed in Section 4.3. One defines

fn(X)

and (4.29)
wm(x) = w(x - xm)

flx - xn)

where the support of both fn(x) and wm(x) is contained in (a,b) for all

m and n. The matrix elements are written as

P
[}

v (K® fn)
w®K® f . (4.30)

X=X =X
m n

It is clear that the matrix will not distinguish the basis and testing
functions from the use of (w ® £) as a basis set in conjunction with
point-matching of the source.

As a specific example, consider the thin-wire scattering problem

for which Equation (3.11b) is rewritten as

L/2
~jweEC = £ [(kz + dz) G(z - z") I(z')] dz' (4.31)
2y -L/2 z
where
2m i
G(z) = —lf f e—JkR/R da
8t~ 0O

Equation (4.31) is commonly referred to as Pocklington's integral

equation. The basis and testing functions are given as
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sin k (A - |z|)/a sin ka, |z} <A
f(z) = (4.32a)
0 y |z > &

and

w(z) = P(z;A)/A . (4.32b)
The current I1(z) is expanded in terms of f as

N

I(z) = | I_£(z - nA) (4.33)
n=-N n

where A = 1/2 L/(N + 1). The boundary condition I(#L/2) = 0 is satisfied

by this expansion. The testing functions are similarly given by

wm(z) = w(z - mA) for m = -N, . . ., N. The matrix elements are given by

vo= [y + Y - 2p  _ cos kA] S (4.34)

mn m,n+1 m,n-1 wm,n 2 '

A" sin kA
where
(mrtl/2)A
mn - f G(z - na) dz .
? (m-1/2)A

The same matrix is obtained when the definitions of w and £ are
interchanged and also for point-matching with basis functions given as
the convolution of the previous f and w. In the latter case, f and w

are given by

cos k(z + A/2) + cos k(z - A/2) - 2 cos kA 2] < A
kA sin KA » 121 273
B 1 - cos k(|z] - 34/2) A 3A
£(z) = kA sin kA » 72 ° 2] < 2 (4.352)
. 3A
“ 0 T < Izl
w(z) = 6(z) . (4.35b)
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For normal incidence on this scatterer, the source term is a constant.
Hence the source vector obtained using Expressions (4.32b) and (4.35b)
is the same. The expression obtained using (4.32a) as a testing
function form differs by the constant multiplier [l + O(szz)] where
"0" is defined in Chapter 2 and is read "the order of." Since it is
usually desirable for kA to be much less than 1, the three methods are
essentially equivalent.

In many problems of interest, the matrix elements lmn can not be
written in closed form or require an unreascnable amount of computer
time for calculation. This problem is often circumvented by
approximating the operator., Harrington comments that any such
approximation has a corresponding moment method solution using
approximation of the response f. A classic form of such an approximation

is the finite difference method used for differential operators.

2
Consider Equation (4.31) with k2 + JLE described by finite
dz
differences and f and w given by
f(z) = &8(2)
w(z) = P(z)/A (4.36)
The matrix elements are given by
L= (p +y - 2p_)/a° . (4.37)
mn m,n+l m,n~1 mn :

Expressions (4.34) and (4.37) differ by a constant multiplier

(1 + O(kZAZ)] and are essentially equivalent for kA small. One can
obtain exact equivalence 1f piecewise sinusoidal basis functions are
used over the entire domain (-»,»). In this case, the response f would

be approximated by piecewise sinusoids in the domain of the original
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operator, and by simple sinusoids outside of this range. The resultant

2
operation of (kz +-jLE) on the approximation to f gives a series of

Dirac delta functiozz in the interval of the domain of the original
operator and zero elsewhere.

Hence one finds not only an equivalence for various combinatioms
of basis and testing functilons, but also an equivalence of basis
functions and approximate operators. The knowledge of such equivalences
along with an appropriate choice of either entire-domain or subsectional

bases leads to a tractable problem for computer solution.

4,5 An Introduction to Spline Approximation

Currently the trend of the method of moments for electromagnetic
scattering problems is toward the spline form of approximation. To date,
this trend has not been expressed in the context of spline theory. An
introduction is provided here so that the use of splines in later
chapters will be clear in addition to giving one an understanding of the
features of such an approximation and how it might be implemented.

Spline theory in its current form was introduced by Schoenberg (1946).
This original work was based on the cubic spline,which is a mathematical
model of the draftsman's spline, hence the name. The basic principle of
the latter is to constrain the spline to go through several points in
a plane. The curve is mathematically approximated by a cubic between
constraints and has a continuous second derivative at the constraints.

The basic principle of splines has been extended in two basic
directions. The first extension was to several dimensions, while the
second extension was to more complex forms than polynomials, referred
to as generalized splines. Rigorous treatments of this topic are found

in the books by Ahlberg, Nilson, and Walsh (1967) and by Greville (1969).
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The treatment presented here is for generalized splines; the reader
is referred to the above texts for the proofs of the theorems.

Define a linear differential operator L by

n-1

_ n
L= an(x) D+ an_l(x) D + . ..+ ao(x) (4.38)
n a“* n *
where D = — each aj(x) is in C"'[a,b] , and an(x)~does not vanish
dx

in [a,b]. The formal adjoint of L is written as

n-1 Dn—l

L = 17 D" {a_(x)+} + (-1) fa_ (O3 +. .. +ayx .

(4.39)

If the constraining points are defined as a mesh A:
a = x < x) < .. < Xy = b, then the generalized spline SA(x) in

Kzn-l(a,b), the class of functions with an absolutely continuous

(2n - 2)th derivatives on [a,b] and with the (2n - 1)th derivative in

Lz(a,b) normed space, satisfies the equation

LaLSA =0 (4.40)

between constraint points. This is a spline of odd order (2n - 1) with
continuity through the (2n - 2)th derivative. An even order spline may
also be defined. The even order spline SA(x) in Kzn(a,b) satisfies the

equation

DLaLSA =0 (4.41)

between constraint points.

* denotes space of nth differentiable real functions on [a,b].
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The two most attractive features of splines are the minimum norm
and best approximation properties. For the odd order spline the minimum

norm property is stated in the following theorem.

Theorem 4,1: Let A and Y = {yil i=20,1,...,N} be given.
Then of all functions f(x) in Kn(a,b) such that f(xi) =¥y
(i =0,1,...,N), the generalized spline SA(Y;x) in Kzn-l(a,b),
when it exists, minimizes
b
[ e 1? ax . (4.42)
a

If g(x) also minimizes (4.42), then g(x) and SA(Y;x) differ

by a homogeneous solution of Lf = 0.

This theorem implies that splines would not, in general, have the
oscillatory problems characteristic of entire~domain bases.

The property of best approximation is stated in a similar manner.

Theorem 4.2: Let A and £(x) in Kn(a,b) be given. Then, of

generalized splines SA(x) on A, SA(f;x) with SA(f;xi) = f(xi)

(i1 =0,1,...,N), when it exists, minimizes
b 2
[ [LE(x) - LS, (x)]% dx . (4.43)
a

if SA(X) also minimizes (4.43), then SA(X) and SA(f;x) differ

by a homogeneous solution of Lf = 0.

Theorems 4.1 and 4.2 also hold for the even order spline SA(x) in
Kzn(a,b) if one equates integrals of the given function and the spline
between the constraints rather than equating the function and the spline

at the constraints.
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The simplest way to incorporate splines as basis functions is to
represent the basis splines as the B-splines discussed by Greville (1969).
These are simply splines of minimal and usually finite support. The
piecewise sinusoidal bases in Equation (4.24) and its second-order form
of Equation (4.35a) represent generalized splines of the first and second i

order, respectively, where
L=k+j< (4.44)
R .

4.6 Conclusions

The method of moments has been developed in this chapter, with an
extensive discussion of closely related topics. It was found that the
moment method may be interpreted in the variational context of Rayleigh—-Ritz.
The resultant stationary functional provides the worker with insight
for choosing the basis and testing functions of the moment method.
Several bases were discussed along with comments of equivalences of
various basis and testing combinations in addition to approximate
operators and smoother bases.

The final topic considered was an introduction to spline theory.
It is found that most of the subsectional bases currently in use are
splines, but have not previously been presented in the context of the

extensive theory of splines.
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5. ZERO HARMONIC PROBLEM

5.1 Introduction

The zero harmonic problem gives rise to two classic problems, the
loop antenna and the linear antenna. These problems are dominated
respectively by the ¢— and z-components of the current that are decoupled
for this harmonic. The linear antenna and the associated z-~component
of the current will be of interest in this paper.

The equation for the linear antenna was originally presented by
Pocklington (1897); a variation of Pocklington's equation was developed
by Hallen (1938). Hallen's method solves Pocklington's equation in two
steps. The first step is to obtain the solution of the differential
operator equation in terms of the source and two homogeneous solutions.
This solution has the form of a Fredholm integral equation of the first
kind having a weak kernel singularity with the conditions that the current
be zero at the structure ends. The latter is necessary to determine
the amplitudes of the differential operator homogeneous solutions. The
solution of the resultant integral equation is the second step.

An extensive treatise on approximate analytical techniques for
solving the integral equations of linear antennas has been presented
by King (1956). 1In addition, numerical techniques have been considered
by Mei (1965), Harrington (1968), Poggio and Mayes (1969), and
Thiele (1973) for linear antennas.

In this chapter, the equivalence of the numerical formulations for
Hallen's and Pocklington's equations will be presented along with a
discussion of the thin-wire kernel as defined in Section 3.4. Numerical
results will be presented as well as a discussion of other equivalences

and operator approximations.
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5.2 Hallen's Formulation

For the zero harmonic, Equations (3.11b) and (3.13b) are identical

and may be written as

_ dinc, . |2 . 4&* L/2 : , .
—JmEEzO (z) = |k +;—2 /é [I(z') K(z - 2z')] dz (5.1)
z -L

where I(z) = Zﬂan (z) and the kernel K is given by

0
K(z - z') = —l—-G (z - z")
2ra 00
2T -jkR
= do . (5'2)
8n2 0 R

Equation (5.1) is referred to as Pocklington's integral equation,
One defines the z-component of the vector potential as

L/2
A _(z) = [ [1(z') K(z - z')] dz' . (5.3)

-L/2
Hence, Equation (5.1) may be written as a second-order differential

equation for Az with the solution given by

?/2 [Einc

) 2 (z') sin k |z - z'q dz'
=L/2 0

z 2n

+ B sin kz + C cos kz (5.4)

where n = vu/e and the last two terms of the expression are homogeneous
solutions of the differential equation. It should be noted that the

Green's function (sin klzl/Zk), denoted by g(z), for the differential

equation is not unique since boundary conditions for Az are not given.
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Substituting Expression (5.3) into Equation (5.4) gives

L/2 . L/2 .
[ [1z") K(z - 2")] dz" = -5 [ [Elnc(z') sin k|z - z‘q dz'
-L/2 T .L/2 0
+ B sin kz + C cos kz . (5.5)

This is a Fredholm equation of the first kind for the unknown I(z)
commonly referred to as Hallen's integral equation. The constants B
and C are determined indirectly by enforcing I(zL/2) = 0.

5.3 The Equivalence of Pocklington's and Hallen's Formulations

The analytical equivalence of Equations (5.1) and (5.5) is clear
since each can be derived directly from the other. The numerical
equivalence in the context of the method of moments is not as
straightforward. 1In fact, Mei concluded that they were not equivalent
and that Hallen's formulation is preferred (Mei, 1965). However, his
conclusion was based on a particular choice of testing and basis
functions; these were Dirac delta testing and pulse basis functions in
both cases.

Numerical equivalence does exist when the same basis functions are
used and the Pocklington testing functions are obtained from those of
the Hallen's form by convolution with piecewise sinusoids. For example,
consider pulse bases in conjunction with Dirac delta and pilecewise
sinusoidal testing functions for the Hallen and Pocklington forms,
respectively. Tne Green's function of the differential operator may be
represented as

sin k|z — ma|
2k

gz = ma)

n—mSA(z - nd) (5.6)

1
| 0
8

w
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where Bn = sin (k|n|A)/2k and SA(z) is the piecewise sinusoid given by

(sin k(A - {z])
sin kA ’

lz| <&

SA(z) =< . (5.7)

0 R ]z| > A

-

Hence, linear combinations of the moment method equations for the
Pocklington formulation may be equated to the point samples of the
Hallen formulation. In the latter, the homogeneous terms may be written

as

: d d L/2
B sin kz + C cos kz gz - 2'") — A (2') - A (2'") — g(z - 2z") z'
dz z z dz

-L/2 . (5.8)

With the homogeneous terms of Hallen's equation defined as in
Expression (5.8), the currents at the ends become unknowns rather than
boundary conditions which is consistent with the Pocklington formulation.
In general, one would impose the boundary conditions on the current
and solve Hallen's or Pocklington's equations only on the interior of
the structure, This is necessary since the matrix elements corresponding
to a non-zero current at the structure ends are infinite. In addition,
the homogeneous terms of Equation (5.5) are generally used for the
solution of Hallen's equation in lieu of-obtaining the derivative of
Az at =L/2.
For a thin linear antenna consisting of thirty-five sections in
addition to two half-sections at the ends, the coefficients of the current

for both formulations were identical to eight significant figures for
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structure lengths of A/2, A, and 2A. These results are plotted in
Figure 5.1 along with the results of the Hallen formulation using
sixty-one sections (Poggio and Mayes, 1969) and the King-Middleton
second-order theory (King, 1956) for a center-fed half-wavelength dipole.

An additional equivalence occurs for the Dirac delta source in
the Pocklington formulation. In this instance, the forcing vector of
the matrix equation is identical for both piecewise sinusoid and pulse
testing functions. Since the matrix due to a pulse expansion and
piecewise sinusoid testing is the same as for the piecewise sinusoid
expansion and pulse testing, the latter is equivalent to Hallen's
formulation for determining the coefficients. It should be noted that
although the coefficients are identical, the current has a more
realistic behavior for the piecewise sinusoid expansion,

5.4 Operator Approximations

Various forms of operator approximation are generally implemented
either to enable one to evaluate terms that do not exist in closed form
or to simplify the problem for easier handling. The evaluation of terms
not existing in closed form was introduced in Section 3.4 by approximating
the kernels of the integral equations as the sum of singular and
residual terms, the latter to be treated numerically. This form of
approximation will not be discussed here. Operator approximations that
are intended to simplify the problem at hand will be considered in this
section.

The most common approximation for the thin linear antenna problem,
which is used in this chapter, is the use of the thin wire kernel given

in Section 3.4 as

59



09

MAGNITUDE (ma/volt)

10.01 TN Q=21inL/a=10 - 180
" inc
E, =8(2)
L=x/2
8.0
7. 1 90
KING - MIDDLETON
i/
HALLEN AND POCKLINGTON FORMS
6.0f 77
{
-’.
POGGIO - MAYES M 0
i/ ——— i
4-0,_ -r Nttty saveme. « e "-H
.
l/
= |
|7 1-90
2.0 {
i—l
:/
/

O‘O-lllllllllllljll_lljl PR U RN SR RO SN B WU N 1_|80
-L/ 0 L/2
POSITION
Figure 5.1. Solutions for the current on a center-fed, half-wavelength dipole using the Hallen formulation

of Poggio and Mayes, the King-iddleton theory, and the forms presented in this paper.
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K(z - 2') =

(5.9)

4

where R = [(z - z')2 + az]l/2 . Expression (5.9) is the exact kermel
for the extended boundary condition of problems for which the currents
on end caps are included (Al-Badwaihy and Yen, 1974). King (1969) has
also commented that this kernel yields essentially the same results for
the tubular antenna as does the exact kernel.

Consider the diagonal matrix elements of the Hallen formulation in

Section 5.3 given by

1
fm = T3

o gt —a/2

A/2 r21r [e—JkR
0 R

] da dz . (5.10)

Expanding the exponential, one obtains

AJ2 27 .
= —55 - QEEQE - %%? + 0(k2a%) . (5.11)
8n" -A/2 0
The first term may be written as
1 2m A+ Véz + l6a2 sin2 % an(A/a)
-3 f Ln da = R T 4a << A (5.12)
47" 0 | 4a sin-%|

where the only approximation is the omission of the sine term under the

radical. The same result is obtained using the approximate thin-wire

kernel, expanding, and neglecting similar second-order terms. Hence,

the integrations of the thin wire and exact kernels differ by O[(4a/A)2].
Another type of operator approximation often used in the Pocklington

formulation is the finite difference approximation to derivatives. This
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approximation with delta expansion functions was shown in Section 4.4
to differ from a piecewise sinusoid in the Pocklington formulation by
O(szZ). The comparison of the finite difference approach and the use
of piecewise sinusoids is shown in Figure 5.2 for both half-wavelength
and two wavelength wires having thirty-five unknowns in each case. The
maximum percentage error in the current coefficients for both lengths

was less than k2A2.

In using finite differences, it is common practice to take forward
or backward differences adjacent to the ends rather than central
differences used in the previous approximation. This approach defines
the derivatives in terms of the function entirely in the domain of

interest. For the center-feed problem, the source is zero near the

ends and one has numerically

AZ(iL/Z) = Az[t(L/Z - 4A)] . (5.13)

King (1969) argues that since the kernel is so highly peaked about

z=2z', Az(z) varies in much the same way as does I(z). Hence

v(2)[I(z) - I(L/2)]

Az(z) - AZ(L/Z)

T Y[I(z) - I(L/2)] (5.14)

where ¥ 1s the approximately constant value of y(z). From this argument

one finds
I(xL/2) = I{+£(L/2 - A)] . (5.15)

This is found to approximate the numerical results as shown in Figure 5.3
where comparison is made to the solution obtained by using central

differences over the entire structure.
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Figure 5.2. Comparison of the finite difference approach to the use of piecewise sinusoids. The phase is
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5.5 Basis and Testing Functions: Choice and Interpretation

Equation (5.1) has the form Lf = g where f represents the current I
and g represents the incident electric field. The operator L is a
linear singular integral operator which may be separated into a second-
order differential operator and a singular integral having an essentially
logarithmic kernel. A guide for choosing the basis and testing functions
for the moment method solution of Lf = g was given in Section 4.3 in
the context of variational properties.

The three choices to be considered are pulse, piecewise sinusoid,
and second-order sinusoidal spline basis functions in conjunction with
piecewise sinusoid, pulse, and delta testing functions, respectively.
Since the operator is essentially a second-order differentiation, the
testing and basis functions were chosen such that convolution would give
a function with a bounded second derivative in the domain of the operator.
In terms of the variational interpretation, these choices give statiomnary
forms for the vector potential, voltage, and electric field, respectively,.

The first two choices have identical coefficients for a delta
source, as indicated in Section 5.3,while no solution exists for the
third choice of expansion functions. Though the coefficients are
identical, the second choice would seem to be a more accurate representation
due to the current continuity as shown in Figure 5.4. For a pulse source,
the solution for the second choice is the same as for a delta source with
new solutions for the other two choices as shown in Figure 5.5. The
third choice would seem to give the most accurate representation for
the pulse source since it gives the only bounded approximation to the

source.
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It is desirable to obtain some additional insight into the problem
for various types of feeds in order to estimate which solutions are the
best representations of the actual current and associated source. In
terms of the continuity of weight and source convolution, the first
choice will offer the most stable current coefficients with respect to
the source description, but the pulse representation of the average
current will give the worst representation for g.

Since the choice of piecewise sinusoids with pulse testing
functions has the same solution for both pulse and delta sources, it is
desirable to determine which of these sources is best represented by the
piecewise sinusoidal expansion of the current. For a thin wire with
sample distance much greater than the radius, Lf becomes a series of
highly peaked functions which have the appearance of a delta type feed.
If one considers w ® Lf, one obtains approximately a pulse function as
would result from convolving the pulse testing and delta source functions.
Hence, the second choice is the best representation for delta sources
with the above restriction on radius.

The Lf obtained from the third choice approximates a series of
pulse functions and is thus well-suited to pulse feed and scattering
problems. The smoothness of the current expansion makes it the most
desirable for all but the delta feed problem. A slope discontinuity may
be included along with a pulse sample at the feed point to make this
expansion also consistent with a delta feed. In addition, this expansion
gives a reasonable representation of the near fields which are often the
desired quantities. As shown in Figure 5.6, the point-wise values of
current are essentially identical for the scattering problem for all
three choices, but with the second-order sinusoidal spline having the

desired smoothness.
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The currents for pulse feed and scattering problems of A and 2A
wires are shown in Figure 5.7 using the second-order sinusoidal spline.
5.6 Conclusions

In this chapter, the Hallen and Pocklington formulations have been
shown to be numerically equivalent for appropriate choices of testing
and basis functions. Equivalences that result from operator approximations
have also been discussed.

In comparing various combinations of basis and testing functioms,
it was found that a delta testing function in conjunction with a
second-order sinusoidal spline offers the best representation of both
the current and electric field for all of the sources considered except
a Dirac delta feed. The latter can also be included in this expansion
scheme if a slope discontinuity in the basis functions is incorporated

at the feed point along with a pulse testing function.
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6. FIRST HARMONIC PROBLEM

6.1 Introduction

In this chapter, the first harmonic problem is investigated to
obtain insight into the nature of coupled integral equations. Particular
interest will be given to the comparison of the various sets of integral
equatioﬁs. The currents on an infinite cylinder in addition to the
results of Kao (1970) will be used to verify the numerical results.

Other considerations of importance are the uniqueness constraints,
the description of the edge behavior, and finite difference methods.

6.2 The Infinite Cylinder

The currents on an infinite cylinder are derived for both E~ and
H-polarized incident plane waves as done by Harrington (1961)., It is
assumed that no fields exist inside the cylinder and that all field

~-jkzcoso,

A .o i .
quantities have the variation e that 1is suppressed.

For E-polarization, the z-component of the electric field is given by

. ~jk pcos¢
inc _ . 0
Ez EO sin ei e (6.1)
where kp = k sin ei . Using Equation (3.4a) one has
EI"C = E_ sin 6 OZD N I (ko) &I7? (6.2)
z 0 i n p

n=—o

where Jn(kpp) is the Bessel function of the first kind. The scattered

field may be represented by outward-traveling waves as

=]

s _ . T (2) jno
E, = Ejsin 6, ) (-§) oH (kp) e (6.3)

n=-—w
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where Héz) is the Hankel function of the second kind. The sums of the

scattered and incident field components comprise the total fields.

Since the total tangential electric field is zero at the surface of the

cylindexr, the a are given by

., -Jn(kpa)

n . (6.4)

PN
Hn (kpa)
The nth harmonic component of the surface current is given by

oE
z

_ + __L' n +
Jz = H¢ (a) = Jon 30 (a)

which becomes upon substitution

" 2E,
J = o)) . (6.5)
2 mnkaH (k a)
n P

sin ei

In a similar manner, one may expand Hz in a Fourier series and set the

p~derivative of the total magnetic field to zero at p = a to obtain

0 2m .
J, = : . 6.6
¢n wkaH(z) (k a)
n [

It is convenient to normalize the harmonic current components to an

incident electric field of n/4 for the same harmonic. In the case of

normal incidence, one has for E~polarization

J = 1
z (2)
n 2ﬂkaJn(ka) Hn (ka)

(6.7a)
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and for H-polarization

J = i ] (6.7b)

¢n 2wkaJ;(ka) Héz)'(ka)

6.3 The Finite Cylinder

Five integral equations were obtained in Section 3.3 for the currents
on a hollow cylinder. The constraints for four sets of these equations
were considered in Section 3.5. These sets of equations are designated:
I, Equations (3.11 a and b); II, Equations (3.1lc) and (3.13a); III,
Equations (3.11b) and (3.13a); and IV, Equations (3.13 a and b). It

can be shown that Kac (1969, 1970) solved equation set II using the

o 4
k° + —5 and the Bessel's
dz

function product form of the Green's function given by Expression (3.15).

Hallen's formulation for the operator

The resultant matrix equation was obtained using point-matching with
piecewise quadratic basis functions, which are continuous functioms,
but do not have continuous derivatives.

The numerical results obtained by this author have been determined
by point-matching with a quadratic spline basis set. The basis set is
modified in the end sections in the same manner as Kao (1970) by using
a quadratic times 1// L/2 - |z| . The currents are normalized to the

incident E-field and expressed in series form as

(z) = Nerl J £ (2 6.8
YO b Ty "
m mn

with the basis functions given by
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-
Q(x - n) . forn € [-(N - 2),(N - 2)]

(v = 1/2)°
pl(y) : », n=zxx(N+1)
y + 1/2 y=L/2A-1/2-| x|
2
fn(x) =< y=L/24-1/2~] x|
| n = =N
ho -0 ol -3« 3+ 4T 2,00] ,

y=L/28-1/2-|x|

n=x(»N-1)

\.
where 9 is the Heaviside function, Pl is the pulse function of unity

width, and the function Q is the quadratic B-spline given by

/
3 2 L
Z'x ’ lxlff

(M N PENIPE

Q(x) = s o

e

< |x|

-
For clarity, the fn(x) are plotted in Figure 6.1 for o € [-(N + 1),-(N - 2)].
The kernels of the integral equations are expressed in the forms of
Expressions (3.19) with the residuals approximated by piecewise linear
functions.

Equation set I is the well-known set of electric field integral
equations (EFIE) which is solved in conjunction with the constraints
Jz (xL/2) = E¢ (xL/2) = 0, For ka = |n|, the kernel on J¢ in

n n n
Equation (3.1la) is bounded and both Equation (3.1la) and Equation (3.1lb)
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are dominated by the behavior of Jz . Hence the evaluation of J¢ may
n n
become ill-conditioned as shown in Figure 6.2 for the first harmonic with

ka = 1 as compared to ka = 10. The conditioning becomes even worse for

axial incidence as shown in Figure 6.3. Though J¢l shows poor behavior,
le appears to be well-behaved and compares well to Kao's results.
By eliminating Jz from Equation (3.11a), one obtains Equation (3.13a)
that should be well—cozditioned for evaluation of J¢ as long as the
n

second derivative is adequately described for numerical calculation.
Solving this equation in conjunction with Equation (3.1llc), the
normal~H equation, and the same constraints as used for set I, one

obtains a different type of conditioning problem. Since the J and
Jz components are unbounded and bounded, respectively, at the ans of
thz structure, J¢ dominates Equation (3.1lc) near the ends. Hence,
the evaluation ofnJZ near the ends becomes ill-conditioned. This
behavior appears as z rise in the Jz current near the ends as shown
for the first harmonic in Figure 6.4nfor ka = 1 and 10. In comparison

with the results of equation set I, the behavior is worse for ka = 10
as would be expected since the contribution of Jz in Equation (3.1lc)
varies as (1l/a). ?

To avoid the ill-conditioning of equation sets I and II, consider
set III with the constraints JZn(iL/Z) = 0 and E¢ and Hp near one end

equal to zero. Equation (3.13a) was found to be well-conditioned for

the J¢ computation in set II. Equation (3.11b) is dominated by Jz

n n
due to the second derivative term. Since neither current component is

dominated by the other component in both of these equations, one might
expect good behavior for both components. This is indeed the case for

the first harmonic as is shown in Figure 6.5 for a length of A,
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Equation (3.13b) has the same features as Equation (3.11b) for the

Jz component, but lesser coupling from the J¢ component due to the

coztinuity of the coupling term kernel. The szlution to this set of

equations, set IV, in conjunction with the constraints Jz (xL/2) =

Hp [+(L - A)/2] = 0 is plotted in Figures 6.6 through 6.8nfor E- and

H-golarization of normal incidence and for axial incidence, respectively.
It has been shown that equation sets I and II are not well-suited

in general for determining the currents on a hollow cylinder. Sets III

and IV produce well-behaved results that are nearly identical with

additional decoupling being a desirable feature of set IV.

6.4 Additional Observations

In Section 3.5, it was pointed out that homogeneous solutions of

the form H = A cos kz + B sin kz and E¢ = jn(A sin kz - B cos kz)

n n
may exist for equation set III. Hence, the constraints must be chosen

to eliminate such solutions. 1In the previous section, it was found that
the boundary conditions on JZ and the zero constraints of H and E¢

n °n n
in the same section gave well-behaved solutions. If the latter two

constraints are replaced by E, (£A/2) = 0, which permits a homogeneous

¢

n
solution, then the solution obtained by matrix methods may not have the

proper behavior. This is indeed the case as is shown in Figure 6.9 for
a length of A, Hence, one must choose the constraints on the problem
in a manner to not only satisfy H¢n(iL/2) and E¢ (#L/2) equal to zero,
but to force all homogeneous solutions to also bz identically zero.

Up to this point, it has been assumed that the correct asymptotic
behavior will be used in the current expansion. It would computationally

be desirable if the square root behavior were replaced by a simple

polynomial. Quadratic splines have been used in place of the quadratic
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Comparison of properly and improperly constrained first-
harmonic solutions for a one~wavelength cylinder using equation
set III with ka = 1. The phase is plotted on the right with
figures a and b representing Jz and J¢ , respectively. The
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incident field is E-polarized and normally incident.
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functions times inverse square root functions for equation set IV,

The results are not encouraging as shown in Figure 6,.,10. In most of

the cases considered, the polynomial current amplitudes were substantially
less than the currents with the correct asymptotic behavior, but had

a similar phase behavior.

Due to the complications of the numerical development, it is often
desirable to approximate the derivatives with finite differences. The
use of finite differences is reasonable for observation points internal
to the surface edges where the fields are analytic along the surface.
Finite differences were applied to equation set II, for ka = 1., Delta
testing and pulse expansion functions were used in conjunction with
two section central differences for both the first and second
derivatives on the interior of the structure. Equation (3.13a) was
not enforced in the end sections in lieu of setting JZ in the same
sections to zero. Equation (3.llc) was enforced in thz last sections
using both central and shifted differences. The shifted difference,
which was required to obtain a reasonable solution as shown in
Figure 6,11, uses only samples on the structure. A method of employing
the difference routine in a manner more consistent with the other
investigations would be to use half-sections at the ends and enforce
E¢(iL/2) = 0 or other appropriate constraints where derivatives do not
even occur at the ends of the cylinder.

6.5 Conclusions

In this chapter, the first harmonic problem has been investigated

to understand the characteristics of coupled singular integral equations.

The solution of the infinite cylinder problem was developed for

87



MAGNITUDE
o)
(8]

Asymptotic ~-90

h‘/\ Polynomial
o
0,0 = ol ) . ,-|80
4./2 o L/2
POSITION
(b)
.or 1 180
I -1 90
=
2| 2
Z 05 1 O
O I — a
§ P — =
--90
s -
//&Polynomial
o.o VRS YT NN S VY U U YUY GO SUAT S VN SN WA SN S SR SR S SN U YA SN '80
-L/2 0 L/2
POSITION
(a)

Figure 6.10.

Comparison of the first-harmonic solutions for a one-wavelength
cylinder with ka = 1 using both the correct asymptotic current
behavior at the ends and a polynomial behavior. The phase is
plotted on the right with figures a and b representing
Jz and J¢ , respectively. The incident field is E-polarized

1 1
and normally incident.

88



oser 180
-1 90
| 5
o w
g " o
203 - - ‘);E
E e z
S Shifted Differences -
=2 - .90
Central Differences
J l -180
-L/72 0] L/2
POSITION
(b)
06 -1 180
| 90
5 r-n-— Central Differences N
a ] ]
203 T\‘ KAQ 41 o<
= | Shifted Differences a
<<D s + —— v s — —. ::?::.:‘.-n
= —-90
00 1 -180
-L/2 0 L2
POSITION
(a)

Figure 6.11.

Comparison of the first-~harmonic currents using both central

and forward (or backward) differences at the ends of the

cylinder for solution by finite differences. The structure

has L = A and ka = 1. The phase is plotted on the right

figures a and b representing Jz and J¢ , Yespectively.
1 1

incident field is E~polarized and normally incident.

89

with
The



comparison with the solutions of the finite cylinder problem. Several
sets of integral equations were investigated, with the conclusion that
those arising from the p-derivative of both Hz and (pH¢) had the
minimum coupling and hence the best numerical conditioning.

Additional conclusions are that the constraints must be chosen in
the proper manner for uniqueness, the asymptotic behavior of currents

must be used, and finite difference schemes may be used in a judicious

manner.
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7. CONCLUSIONS AND RECOMMENDATIONS

In this paper, the integral equations for a hollow circular
cylinder and the numerical techniques involved in the approximate solution
of such equations have been investigated. The integral equations for
three-dimensional scattering structures were derived by evaluating the
fields in a source-free region not including the scatterer and by letting
the observation point converge to the surface of the scatterer. The
integral equations thus obtained make use of the Hadamard principal value
form of integration (Hadamard, 1952) which allows more highly singular
integrands than the Cauchy principal value. The integral equations
were also obtained for thin scatterers with edges.

All of the field quantities for the hollow circular cylinder were
expanded in Fourier series and the corresponding integral equations
were obtained for each harmonic. A new efficient procedure was presented
for extracting the singularities and residuals of the kernels in the
integral equations which may be integrated respectively in closed form
and by numerical methods. Constraints on the integral equations were
also presented and found to be necessary for obtaining a unique
solution to Maxwell's equations.

The method of moments was used to obtain numerical solutions to the
integral equations. The fundamentals of this method were presented along
with the variational properties of the method. It was found that the
variational interpretation could be used to gain insight into the
choice of both the basis and testing functions. Several common expansion
functions were defined in addition to a brief introduction to spline
functions. The spline functions have desirable continuity built-in,

with the B-splines being useful as subsectional basis functions.
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The linear antenna (or zero harmonic) problem was investigated to
obtain insight into the choice of expansion functions and operator
approximations. It was found that the Hallen and Pocklington formulations
for the linear antenna are both analytically and numerically equivalent
for appropriate combinations of weight and basis functions. The finite
‘difference approximation for the derivatives of the Pocklington
formulation was found to be equivalent to a piecewise sinusoidal basis
set on the order of (szz). It was concluded that for most problems
of interest the most useful and easily obtained solution to the linear
antenna problem is obtained by point-matching Pocklington's equation
with second-order sinusoidal spline basis functions.

The first harmonic problem is representative of the higher
harmonics and has been solved using point-matching with quadratic spline
basis functions, modified by the asymptotic behavior in the end sections.
Of particular interest were the problems of strong coupling between
equations. Such coupling was found for the electric field integral
equations when ka = ]n|, where n is the harmonic number, and for a set
of equations involving the normal H-field. The strong coupling leads
to poor behavior of the numerical solution. Maximum decoupling was
obtained with a set of equations obtained by setting the expression
[jweﬁt +n x VtHn] equal to zero. The weak coupling resulted in a
well-behaved solution. Additional facets of the first harmonic problem
that were considered showed that the constraints on the integral
equations must be chosen in an appropriate manner to suppress homogeneous
solutions of the problem, finite differences may be used to describe
the derivatives if end behavior is taken into account, and the replace-
ment of the asymptotic current behavior by polynomials is not well-suited

to the first harmonic problem.
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The feed modeling and near-field calculations for the linear
antenna with the second-order sinusoidal spline basis expansion are
recommended for further investigation. For the first harmonic problem,
the finite difference operator approximation and the necessity of the
analytic asymptotic behavior in end sections are suggested areas for

future study.
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APPENDIX: LIMITING PROCEDURE FOR INTEGRALS

In this appendix, the limits of the various types of integrals
involved in IA’ Section 2.3, are derived. These limits lead to three
types of integral interpretations, the Hadamard interpretation being
the most general.

To take the limits, various degrees of differentiability are

required. These requirements enable one to make use of a remainder

theorem (Davis, 1963).

Theorem: Let £(x) be n + 1 times differentiable at x = xo. Then,
f(n)(xo) n
= ' - + -
f(x) f(xo) + £ (xo)(x xo) . . .+ o~ (x xo)
+1
(x - x)"
0 [ (n+l) ]
Al e LY Y f (x9) + (%) (A.1)
where
lim e(x) = 0 .
x+x0
The integral IA is given by
I = I K ¢ K 3d + Jx 82¢ Jy 82¢ ;
L. x 3y" y ox"  juwe 3z"3x"  jwe oz"ay"
A
i J 2 J 2
w22 X %+ 22|+ X 82 ) 3
y 9z jwe "l jwe 3x"ay
'_ ox J
J 2 J 2
3¢ x 3% y .2 3% |1 - ¢ s
- +
+ x 3z" jwe 3y"ax" jwe k7o ay,,2 yp dx' dy (A.2)
where one is interested in the limit of IA as § tends to zero. IA

consists of six basic types of integrals for which the limits as & tends

to zero shall be derived.
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The six basic types of integrals comprising IA shall be considered
individually using £(x',y"') to represent the current. The first type

is written as

- 2m A e—ij
1,(8) = [ £@x',y") ¢@",T') ds' = [ [ £(p',0") S 0" do' d¢'
Sy 0 O
(A.3)
*
where § = |2" - z|. If f is finite in the A region, then
. AN .
= 4 (-JkA+o — o—dke
11(6) e |8 e + 0(a)
Hence, one obtains
1,00) =0(@) . (A.4)

It should be noted that this integral may be evaluated directly on the
surface since the 1/R singularity is integrable.

The second type may be written as

() = [ £G',y) 5n dx' dy'
a
21 A
+ 4 s
=f f £(',9")|e" sin ¢' -l——%ﬁ e IKR p' de' do'
0 0 4mR
(A.5)
¥For f differentiable in the & region, one can write
I,(8) = 00) . (A.6)

Unlike type 1, this integral must be done in the Cauchy sense on the surface.

* f(x) = 0{g(x)] as x ~ Xq implies that lim ]f(x)/g(x)‘ = A,
XX
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Type three integrals are given by

o

1,(8) = /O£,y —a?rdx' dy'
S
A
2m 4 1 + jkR| -jkR
-/ f(p',¢'->(-6 L JR) IR Gy ggr @.7)
0 0 4R

For f differentiable in the A region, I3(6) becomes

{e—jk/62+A2 z . 2

£ JV/e + A% - e'jkdla} + 0(A)

_£(0,0)6
1306) = ==~

-—f-(%LQ+0(A) as 6§ >0 . (A.8)

As a result, the type three integral must be evaluated as a Cauchy
principal value plus the residue [-£(0)/2] for r on the surface.

The remaining three types of integrals involve the second
derivatives of ¢ and will be derived for f twice differentiable in the

A region. The type four integral is given by

3 + i3kR - K°R%] -jk

I4(6) = f £x",y") [x'y! B e R dx' dy' . (A.9D)
S 4R
A
To obtain a non-zero integration, f must be odd in both x' and y'. The

lowest order terms in A would be due to a product x'y' term in f. Hence,

one obtains

14(6) = 0(a) . (A.10)

The expression for 15 is

. 2.2y
I(8) = [ £Cx',y") |-x's 3+ 33kR5' KR ) IR g gy L oal1l)

s 4R

A
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Constant and quadratic terms in addition to the y' linear term integrate
P s f

to zero over Spe The remaining terms are the é%T » x' term and the

higher order terms which integrate to 0(A). Hence, one can write

Equation (A.1ll) as

" A . 2.2 .
1.(8) = |2£ (of (~g) f 3 IMR-KR IR 4+ 0@)
5 9xX 5
0 4R
- _ 15of
=" 3% () +0¢a) , as & +~0 . (A.12)

In this case one obtains a residue in a manner similar to the Cauchy
residue of the type three integral.

The final integral type may be written as

. . 2.2 .
1.(8) = j’ £(x',y") |- 1 + jkR + }"2 3 + 3j3kR - k'R e jkR ax' dy' .
6 3 5
SA 47mR 4R
(A.13)

The linear terms of f integrate to zero in s, and the quadratic and

A

higher order terms give 0(A). Thus, Equation (A.13) may be written as

A . . 2_2 .
I(6) = £(0) f -2 1 + jkR + p2 3+ j3kR - kR o jkR o dp + 0(8)
6 4 0 R3 RS

—f(O)LZZJLA-e—jkA+O(A), as & + 0

This may be rewritten as

S 4 (*))
16(6) YN

+ 0(a) . (A.14)

Substituting these limits into Equation (A.2) for IA’ one has
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I, = [ﬁ x R_(0) - ﬁ v . 38(0)] /2 = 3_(0) /6wt + 0(8) . (A.15)

The first two terms are the residues of the surface integration, the
last term is dropped as A tends to zero, and the third term cancels.
with the remaining surface integral evaluation over s - 8, at the

curve bounding Sy
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