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to tactical nuclear threats could be significant in vulnerability
assessments of critical equipment. The objective of the work dis-
cussed in this report was to develop physical intuition and ana-
lytical approximations that would be useful in these assessments.

Emphasis is placed on the analytical description of the
salient physical phenomena that may dominate the electromagnetic
response of an ideal "gamma-thin" obstacle subjected to a tactical
nuclear threat. The charge and current on a gamma-thin conducting
sphere over a.ground plane were determined via the following
analyses: (a) an early-time analysis wherein the ground plane is
ignored and the transient air conductivity is replaced by an
average value over an interval, and (b) a late-time analysis
wherein the ground plane is accounted for and conduction current
is assumed to dominate displacement current in the air. In both
analyses, the Compton-current density and the transient air con-
ductivity were taken to be independent of the obstacle.

In the early-time approximation, the total charge on the
sphere was found to be identical to the total charge that would
have been present in the volume of conducting medium excluded by
the sphere. Furthermore, when the sphere was small enough, its
polar surface current was shown to exactly cancel the corre-
sponding flow of source current in the air at the sphere's surface.

In the late-time approximation, the total charge on the
sphere was shown to comprise an induced charge, which is not zero
because of the presence of the ground plane, and a deposited
charge, which gives rise to the sphere's potential. Knowledge
of the quasi-static surface charge density was used for deter-
mination of the total polar current flow on the sphere in the
steady state. For consistency in the late-time approximation,
the total charge on the sphere was found to be proportional to
the time derivative of the Compton-current density, thereby
leading to a specification of the sphere's potential with respect
to that of the ground plane.
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. ( 1. INTRODUCTION

The detonation of a nuclear weapon near the earth's surface yields
neutrons, x rays, and gamma rays, which all interact with the air,
ground, and other matter. The interaction of prompt gamma rays from the
weapon with air molecules produces Compton-recoil electrons, each of
which, in turn, produces thousands of secondary electrons via collisions
with other air molecules. The source-current density composed of these
Compton-recoil electrons and the air conductivity arising from the
secondary electrons govern, in general, the generation of the
electromagnetic pulse (EMP) at ranges where x-ray contributions are
insignificant. At later times, air-inelastic and ground-capture
collisions of neutrons provide the dominant source of gamma rays for
production of Compton-recoil electrons.

The electromagnetic response of a military system in a source region
of a nuclear weapon is gquite complex, due to several interrelated
factors: {a) the presence of ionizing radiation, a current density of
Compton-recoil electrons, and a time-varying air conductivity; (b) the
"near-~zone" character of the source~region electromagnetic field in
contrast with radiated plane~wave character; and (¢) time histories of
field components (in the presence of ground) with significant spectral
content from 0 to about 100 MHz. The interaction of ionizing
radiation with the system itself produces local sources that also
contribute to the electromagnetic field that ultimately drives the

‘ ( system,
’ ' The scope of the present study is now delimited since extrinsic
currents and voltages appearing in the circuits of a system may be
produced by at least three nuclear weapon effects: gystem~generated EMP
(SGEMP), EMP, and internal EMP (IEMP). For the purpose at hand, SGEMP
effects on a svstem are associated with charge and current on the
exterior surface of the system, due solely to the direct interaction of
ionizing radiation (x rays, gamma rays) with the system itself. EMP
effects on a system in the Compton-current region are associated with
induced charge and current on the exterior surface of the system due to
the interaction of electromagnetic fields with the system in the
presence of a nonlinear, time-varying air conductivity. Lastly, IEMP
effects on a system result from the penetration of ionizing radiation
into a cavity within the system. This radiation produces an internal
Compton~current density, which, 4in turn, gives rise to localized
electromagnetic fields in the cavity. Attention is focussed here on EMP
interaction phenomena that must be understood if the electromagnetic
responses of military systems involved in tactical scenarios are to be
assessed. Hopefully, this effort will contribute to the definition and
evaluation of dominant EMP interaction phenomena associated with system
configurations and environments peculiar to tactical scenarios.



The purpose of this paper is to analytically describe salient
physical phenomena that dominate the electromagnetic response of an
idealized gamma-thin system subjected to close-in EMP environments of
tactical interest. Regarding the nature of tactical threats, since
tactical operations involve men and equipment, man's susceptibility is
the predominant factor that governs the levels of most nuclear weapon
environments of interest in tactical warfare. This predominance is
necessitated by the following considerations: (1) Man is relatively
susceptible to most nuclear weapon environments, and this susceptibility
is relatively invariant. (2 If man can survive all of the nuclear
weapon environments associated with a given threat, the equipment he
operates should also survive these environments. That 1is, 1f certain
nuclear weapon environments, e.g., the blast wave or total radiation
dose, are severe enough to kill all personnel able to operate the
equipment, then the corresponding EMP effects on that equipment are not
of interest, On the other hand, EMP effects on equipment should be
evaluated for the worst-case EMP environment that is compatible with
those nuclear weapon environment criteria that govern man's

survivability. Specific magnitudes and time histories for EMP
environments associated with specific tactical threats are not presented
here. However, assumptions in this study were motivated by

characteristics of these environments, which are described in general
terms, as the need arises.

2. APPROACH

Early theoretical efforts!-3 concerning EMP interaction with a
conducting body in a Compton-current source region were, perforce,
numerical. The conducting body was treated as a scatterer of the
incident electromagnetic field that would have been present in the
absence of the body. The scatterer was immersed in a transient air
conductivity that was alsc assumed to be that present in the absence of
the body. Maxwell's equations for the scattered fields, in the presence
of the time-varying air conductivity, were solved numerically by a
finite-difference technigue or an eigenvalue technique with the boundary
conditions at the surface of the body. This work was directed at
missiles in flight that traverse the high-altitude Compton-current

le, b Taylor, D. H. Lam and T. H. Shumpert, Electromagnetic
Scattering in Time Varying, Inhomogeneous Media, Interaction Note 41,
Air Force Weapons Laboratory, Kirtland Air Force Base, NM
(15 November 1968).

2p, P. Toulios, Missile Flying through a High-Altitude Source
Region, Interaction Note 58, Air Force Weapons Laboratory, Kirtland Air
Force Base, NM (19 February 1970).

3p. E. Merewether, Time Varying Air Conductivity~=Results,
Interaction Note 59, Air Force Weapons Laboratory, Kirtland Air Force
Base, NM (19 February 1970). i
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source region resulting from an exoatmospheric nuclear burst. The
Compton current was accounted for in these studies through the incident
fields. Furthermore, the presence of a ground plane was not necessary
for the intended applications.

Kennedy“ employed the assumptions of Taylor and Toulios to calculate
induced currents on a plane and a sphere. That is, incident fields were
scattered from the obstacle in the presence of a time-varying air
conductivity. Time histories of the currents were dnalyzed in two
distinct phases: (a) wave phase, wherein displacement current dominates
conduction current, and (b) diffusion phase, wherein conduction current
dominates displacement current. Toulios' eigenvalue technique provided
solutions in +the wave phase (early times and low air conductivity),
whereas solutions in the diffusion phase (later times and higher air
conductivity) were obtained from a diffusion equation for the magnetic
field by use of Laplace transforms. Kennedy's results indicated that as
the skin depth in the air became small with respect to the obstacle’s
radius of curvature, the induced current became less dependent on the
geometry of the obstacle. Although useful physical insight of this kind
came out of the study, numerical results and conclusions were directed
at hardened strategic systems expected to survive source-region EMP
environments which are much more severe than those for unhardened
tactical systems. Consegquently, late-time responses of obstacles in
proximity to ground due to tactical threats were beyond the scope of
Kennedy's efforts.

The steady-state response of a conducting, gamma-thick prolate
spheroid in a high-altitude EMP source region has been analytically
investigated by Mo.% Laplace's equation for the electrostatic problem
of a charged spheroid immersed in a wuniform field is solved by
separation of variables and application of the boundary conditions.
This charge on the prolate spheroid is assumed to be due solely to the
Compton current that is collected by the obstacle's exposed surface area
during the relaxation time of the ambient conducting medium. The
spheroid is immersed in the saturated electric field that gives rise to
a conduction current in the medium that 3Jjust cancels the Compton
current; that is, noc magnetic field (driven by the currents in the
medium) is present in the absence of the obstacle. The total electric
field in the presence of the prolate spheroid, however, does drive a
magnetic field, which, in turn, engenders a surface current on the
obstacle; a differential equation for this steady-state surface current

Y®. C. Kennedy, Currents Induced on a Plane and Sphere Immersed in a
Time-Varying Conductive Medium, Interaction Note 127, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM (26 April 1972).

S5p, ¢. Mo, Analysis of the Response of a Conductor Immersed in an
EMP Source Region~-The Steady State, RDA-TR-2301-009, R&D Associates,
Santa Monica, CA (24 January 1975).
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is presented and solved by Mo. Analytical and numerical results for the
steady~state surface charge and current densities are derived and
discussed for a missile-like body subjected to typical threat levels of
EMP environments in a high~altitude source region. The steady-state
approach, as applied by Mo, is also used in the present study to
generate a late-time approximation for a gamma-thin sphere over a ground
plane.

Recently, considerable attention has been devoted to direct
numerical solution of Maxwell's equations with the appropriate Compton
currents that are produced by the interaction of gamma rays with the
air, ground, and obstacle.® Two- and three-dimensional numerical
calculations for various obstacles, with and without the presence of the
ground, have been made for strategic systems/subsystems subjected to
relatively high radiation levels. Such finite-difference numerical
treatments are feasible and, indeed, quite appropriate for the intended
applications because of at least two factors: (a) the high conductivity
of the ambient medium about the obstacle and (b) the time frame of
concern. For high air conductivity, the electromagnetic response of the
obstacle is due primarily to 1local Compton currents in a relatively
small volume about the obstacle; namely, a small skin depth in the
ambient medium implies that "local effects dominate" the response of the
obstacle. Consequently, if only early-time responses are of concern, an
ocuter boundary condition can be implemented in a numerical approach that
does not necessitate excessive computer memory. The efficacy of such an
approach for unhardened tactical systems must yet be demonstrated,
particularly since the time frame of concern may extend into
milliseconds. g

In this study, as well as in most of the work reviewed above, the
Compton~current density and the transient air conductivity were assumed
to be independent of the obstacle. Implicit in this assumption are
several ramifications that may or may not significantly distort the
physics of EMP interaction phenomena for tactical situations of concern.
That is, a conductor subjected to bombardment by Compton-recoil
electrons emits electrons back into the ambient transient plasma through
various elastic and inelastic scattering reactions in the metal surface.
Therefore, in general, a region of highly nonuniform conductivity exists
close to the conductor. For simplicity, the existence of such a
transient boundary layer is specifically ignored here. Furthermore, if
the source region is indeed unperturbed by the obstacle, motions of
Compton-recoil electrons and the mobility of secondary electrons are
necessarily independent of the obstacle's contribution to the total
electromagnetic field. That is, under these conditions, the reactive or

-

GS: J. Dalich, B. C. Goplen, and E. k. Parkinson, Analysis of
Close-in Coupling Effects, SAI74-509-2Q, Science Applications, Inc.,
Albuguerque, NM (September 1974). :




scattered electromagnetic field due to the presence of the obstacle can
be determined in the «c¢lassical manner., In view o©f the above
considerations, the assumption of an unperturbed source region is
clearly a convenience, rather than a justifiable premise, and EMP
interaction phenomena associated with tactical engagements must be
analyzed more rigorously, so that the validity of such a supposition can
be delimited.

Even though the Compton-current density and the transient air
conductivity are taken to be independent of an obstacle, numerical or
analytical solution of a boundary-value problem involving an obstacle
over a ground plane (with or without the presence of transient air
conductivity) is still a rather formidable task. So, for wuseful
approximations and development of physical 4intuition, additional
assumptions are necessary to render such a problem analytically
tractable, The following analyses were conducted in this vein: (a) an
early-time analysis, wherein the ground plane is ignored and the
transient air conductivity is replaced by an average value over an
interval, and (b) a late-time analysis, wherein the ground plane is
accounted for and conduction current is assumed to dominate displacement
current in the aix. In general, one would expect the early-time
approximation to break down at times later than the minimum transit time
required for electromagnetic radiation from surface current on the
obstacle to scatter from the ground plane and illuminate the observation
point. Similarly, one would expect the late-time approximation to break
down at early times when displacement current in the air and the tim%
derivative of the magnetic field are significant. An accurate numerical
solution to the problem at hand is necessary so that the limits of
validity for these approximations can be quantitatively established.

3. EARLY-TIME APPROXIMATION

A perfectly conducting sphere of radius "a" can be considered
imbedded in a finitely conducting medium of infinite extent that is
characterized by the electrical parameters <o> (a time- and
space-averaged conductivity) and €4 (the permittivity of free space).
If o(x,t) is the transient air conductivity (in the absence of any
obstacle) for an actual tactical EMP threat of concern, then

1 - >
<g> = T f-j.o(r,t)dr dt ,
v T

where T is typically the maximum time of validity for our early-time
approximation and V is of the order of the obstacle's volume. Since
o(Z,t) is essentially uniform in space over the dimensions of typical
tactical equipment, <0> reduces to a simple average over a time




interval. Accounting for conduction currents in the ambient medium via
the above simplification facilitates analytical treatment and,
hopefully, does not preclude adequate engineering estimates for many
practical purposes.

As depicted in figure 1, a perfectly conducting spgere is subjected
to a current density of Compton-recoil electrons, j(r,t), which flows
through the ambient conducting medium at a velocity v (which is nearly
c, the velocity of light in free space, because of the average energy of
the Compton-recoil electrons). This Compton~current density is assumed
to be uniform in the xy plane and to flow unattenuated in the direction
of increasing values of z:
>
j(r

(r,t) = ?(z,t) = £(t - z/viu(t - z/v) éz ’ (1)

where £(t) is a given time history, & is a unit vector in the positive
z-direction, and ‘ z

olrt)— <o>

Figure 1. A perfectly conducting sphere subjected to a source-current
density in an ambient conducting medium of infinite extent.
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Maxwell's equations are as follows for the situation at hand:

> > > 3 > >

V X E{r,t) = - 8_1; B(r,t) ,

> > > > > > 3 > >

V x H(r,t) = j(r,t) + <o> E(r,t) + 7t D(xr,t) ,
> > > ->

V .« D(r,t) = p(xr,t) ,

and

with the constitutive relation

(w3
It
o
1

and

wi
I

=
oy

(3)

(4)

(6)

(7)

Maxwell's equations in the above form are driven by the source-current

density of Compton-recoil electrons; that is, an electromagnetic

does not exist in the absence of the source-current density.

field

For convenience, the problem is analyzed in the frequency domain, so

that the appropriate Fourier integrals must now be introduced, e.q.,

L -
- > e -3
i(r,t) = ;L.f. g(r,w)e iwt dw
anJ =
and
4o .

> +3 + R
5 (%, ) =f JE ot = £ etV &

-0

11
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A tilde wused as an underscore denotes a frequency-domain function.
Maxwell's equations in the frequency domain become

Vx B0 = den HEw (10)
Vx EEw = J@e) 4 (<05 - iwe)E(E,0) ,  (11)
> > >
Vo« E(r,w) = p(r,w)/eq , (12)
and
> > >
V ¢« H(r,w) = 0 . (13)

In that which follows, analytical solutions of equations (10) to (13)
are developed for the appropriate boundary conditions at the surface of
the sphere.

As the first consideration, the electromagnetic £field (in the
absence of any obstacle) arises solely from the source-current density
prescribed in eguation (9). In the absence of an obstacle, a magnetic
field does not exist in the conducting medium (demonstrated in app A);
.an electric field 1is present and 4is thus a consequence of vanishing
total current density in the medium. This situation is essentially that
described by Cohen’ as a "P" (plasma) mode.

The total electromagnetic field arising from the flow of
source-current density about our perfectly conducting sphere can be
readily determined from equations (10) to (13) by use of spherical
vector wave functions. The source-current density can be represented as
follows:?®

«©
> > +1 -1 =1
TEw = t@e™ 8 0 sy P hen s M, a9
- n=0 n
>(1) | . . . 8
where Qn 1s an irrotational vector given by
rd 3 . 1 3
7 (1 - A o P Kh
(1) (8) erPn(cos 8) e jn(Br) &y L (Bx) 36 Pn(cos 8) . (15)

‘Mo Ho Cohen, Radiation in a Plasma. I. Cerenkov Effect, Phys. Rev.,
123, No. 3 (1 August 1961), 711-721,

Jo A, Stratton, Electromagnetic Theory, McGraw-Hill, New York
(1941), 420. ’
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P, and j are the Legendre polynomial and spherical Bessel function of
nth ordér, respectively. Since  the source=-current density is
irrotational, the magnetic field is a solution of the homogeneous vector
Helmholtz equation. Thus, the azimuthally symmetric magnetic field can

be expressed as

- = n-1 3
B(F,0) = - (BK) lf<w)g;l i on 1) [}nﬁg Y k) + bn%é3)(kﬂ . (16)

where a and bn must vet be determined through boundary conditions. The
undefined vectors in eguation (l6) are necessarily selencidal and can be

calculated from

+(3) PR € 2
. (k) = e¢hn (kr) SB.Pn(COS 8) (17)
and
>(3) _ 2 nm+ 1) . (1)
n_ (k) = e, ——~E;———-hn (kr)Pn(cos g) +
~ 1 3
&5 % 3z Echr(ll)(kr)] % Pn(cos 8) , (18

with hr(ll) denoting the spherical Hankel function of the first kind.

The coefficient an can be evaluated directly from equation (16),
since the radial magnetic field must vanish at the surface of the
conducting sphere; that is,

. -
& + H(r =a,f,w =0 (1¢

leads to

a =0. (2

ZApparently, then, the magnetic field is purely azimuthal, anc
equation (16) reduces to

HEw = - o0 ) " en+ 1 aP e . (2
n=1

n

13




The value of bn results from the boundary condition on the theta
component of electric field,

N >
&g ° E{r = a,68,0) = 0 . (22)
By use of the relation
Txalw =xdP e, (23)
n n

equation (11) yields the total electric field:

E(f,0) = E (Z,0) + B (F,0) , (24)
where
EN(F,0) = - (<0> - iwey)  '3(F,w) (25)
and
1 -1 = 1 3
o > - -1 - -
ES(F,0) = - (0> - doey) 8T EW Y i"Hen + 1wy E P o (26)
n=1

The solution to our boundarv-value problem is, therefore, embodied in

s e |2 T a® ]l
bn = -k jn(Ba) |:8r [r hn (kr)]] . (27)

r=a

\
The total charge on the perfectly conducting sphere, Q, can now be
calculated from Gauss's flux theoremn:

2T

0 =ff & - D(x=a68,0) (2% sin 6)a0as . (28)

[oJae]
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Similarly, if the sphere is not present, the total charge 90 contained
in the excluded volume of conducting medium is given by

T 27
% =6f fo & [eogl(r = a,e,w)] (a? sin 6)dedé . (29)

Evaluation of the integrals in equations (28) and (29) reveals

-1
Q=0 = —4ﬂa280§(w) BiB) (<c> - iweo)] [g%'jo(Brﬁ] / (30)

= ~o r=a

so that the total charge on the sphere is identical to the total charge
that would be present in the volume of conducting medium excluded by the
sphere. If wa is small compared to v, the charge density in the volume
of conducting medium excluded by the sphere (eg (AR-2)) is essentially
uniform, and Q or Q is simply this uniform charge density times the

volume of the sphere.

-
The surface current on the perfectly conducting sphere, K, is
defined as

= a,b,w)é, =K (6,w)ee ’ (31)
such that

K (8,0) = 87 ()} 7L D ey [ [ o ] ]
K, (8,0) = 8 g(w)l:éll (20 + Dh " ka) |57 [r 0,7 )

. jn(Ba) g%— Pn(cos 8) . (32)

If both fka[ and [Ba] are small compared to unity, the following small
argument approximations are useful:

a% [u hr(ll) (u)] > - hr(ll) (1)

and

j () > w?/[13+5 . . . (2n - 1) (2n + 1)]

15



for Iu[ << 1. By use of these approximations and only the first term of
the sum in equation (32), the surface current reduces to

Ko (0,0) > = al-f(w) sin 8] = - a J (r = a,8,0) . (33)

At long wavelengths, then, a surface current on the sphere is
established that exactly cancels corresponding Compton-current £low in
the air.

4. LATE-TIME APPROXIMATION

EMP environments of tactical interest in Compton-current source
regions exhibit, in general, steady-state or guasi-stationary behavior
for times greater than about 1 usec. That is, time histories of typical
electromagnetic fields and transient air conductivities decay slowly.
So at these later times, total conduction current in the air dominates
displacement current. Furthermore, the predominant components of a
typical late-time electromagnetic field at or near the earth's surface
are the vertical electric field and horizontal magnetic £ield. The
transient air conductivity 1s essentially uniform in volumes of
practical concern. These considerations constitute the physical basis
for the analytical formulation and subsequent results developed below.

In figure 2, a perfectly conducting sphere, at a height h above a
perfectly conducting ground plane, is immersed in a uniform, transient

o (rtl— o(t)

Y

xf\
7777777777777 S S
T —s (O

Figure 2. A perfectly conducting sphere over a ground
plane subjected to a source-current density
and uniform electric field in a transiently
conducting ambient medium. '
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air conductixigy and subjected to a current density of Compton-recoil
electrons, Jj(r,t). This current density flows in the positive
y-direction at velocity v and is assumed to be uniform in the xz plane:

3Tt = £(t - y/v)ult - /e, (34)

In contradistinction to the previous early-time approximation, the
source-current density flows in a direction transverse to the z axis of
the sphere in this analysis.

Maxwell's eguations for quasi-stationary electromagnetic fields and
the Compton-current density specified in equation (34) take the form

> o > '
V x E(z,t) = 0 , (35)
VxHE,E = (&8 + ow)BE ) (36)
V. EEt) = (T t) /e, (37)
and ’
V. H(E,t =0 . (38)

The Compton-current density, transient air conductivity, and charge
density are all assumed to be known in the absence of the sphere, but
only the first two must be specified explicitly. Our objective is to
determine the surface charge density, total charge, and surface current
on the sphere in the presence of a perfectly conducting ground plane.

"To achieve this objective, equations (35) to (38) are solved by use of

bispherical coordinates as described in appendix B.
The electric field in equations (35) to (37) can be represented as
the sum of a primary field due solely to volume charge density in the

air, E , and a secondagy electric field due only to surface charge
density on the sphere, ES:

BE(Y,t) = B (F,¢) + E_(F,0) . (39)

17



The primary field is a solution of

> > >
vV x Eo(r,t) =0 (40)
and
ff* . .E‘:O(;,t) = p(;,t)/eo . (41)

whereas the secondary field is a solution of
VxE (T,t) =0 . (42)
and
VeE (f,0) =0 . (43)

The primary and secondary fields are derivable from scalar potential
functions, i.e.,

E (r,t) = -V¥ (T,t) (44)
(e} [}

and
é’s(?,t) = -str‘,t) , (45)

which, in turn, can be obtained from
vzwo(?,t) = -p(?,t)/ao (46)

and

vzws(?,t) =0 (47)

with the appropriate boundary conditions. The surface charge density
and the resultant total charge on the sphere follow directly, then, from
knowledge of these potential Ffunctions.

18
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The magnetic field can be obtained from knowledge of the electric
field via equations (36) and (38). Knowledge of the magnetic field
everywhere in space, however, is not necessary to determine surface
current on the sphere. As is demonstrated in appendix C, equation (36)
can be reduced to a differential equation that specifies the sphere's
surface current in terms of the normal component of the total current
density at the sphere's surface. So once the electric field is known,
the surface current on the sphere can be obtained by integration of

-1 1 3
hn (uo,n)h¢ (uo,n) 5;-[h¢(uo,n)Kn(n,¢,t)} (48)

= 3 +
Ju(uo,n,¢,t) c(t)Eu(uo,n,t) ,

where Kn is assumed to be the only component of surface current.

Regarding the primary electric field and its adequate representation
for this study, the late-time approximation, knowledge of the volume
charge density in the air allows a determination of the primary
electrostatic potential, by use, for instance, of the electrostatic
Green's function for an dinfinite ground plane. State-of-the-art
numerical predictions of close-in EMP environments of tactical interest,’
however, indicate that the primary electric f£field is principally
vertical to the ground plane, particularly at times beyond 1 usec.
Furthermore, this primary vertical electric field is taken to be’
essentially uniform over spherical volumes of concern here:

+ - - -
yo(r,t) - —Eo(t)z = —Eo(t)a sinh ¢ (cosh u - cos n) ! (49)

as u +~uo, where Eo(t) is a known function of time.

For azimuthal symmetry, a solution of equation (47) for the
secondary electric field is of the form®

L o
WS(?,t) = (cosh 4 - cos n)* z: {Aap(t)expl(n + X%)u)
n=o0o
+ Bn(t)exp[-(n + %)u]}Pn(cos n . (50)

where An and En must be determined from boundary conditions on the total
electrostatic potential. Denoting the total potential by ¥, viz.,

Sp. M. Morse and H. Feshbach, Methods of Theoretical Physics,
McGraw-Hill, New York (1953), 1299.
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(51)

¥(¥,t) = \yo(?,t) + ‘Ps(?,t) ,

the boundary condition at the ground plane is
Y(o,n,t) = 0 , (52)

whereas the sphere is taken to be at a known potential V(t},
W(uofn,t) = V(t) . (53)

V(t) is due to total charge induced on the sphere by Eo(t) and charge
collected by the sphere from the air.
Equation (52}, with equations (49) to (51}, leads to

Bn(t) = —An(t) = —Vn(t)/2 (54)

so that

L E: Vn(t) sinh t(n + %)U]Pn(cos ny . (55)

Ws(?,t) = (cosh 4 - cos n)
n=0

The remaining boundary condition can be implemented with the aid of the

following identity:

exp(-(n + })u 1P _(cos n) , (56)

s

% _ 3

{cosh H, - cos n)

o]
il

O

where Hy is positive. By equation (53},

=23

2 V_(t) sinh [(n + %)p 1P _(cos n) =
o' n
n=o

~1s
[Y(t) - 2E (t)a —3—] (coshp - cosn) 2
o) Bu o}

0

and, therefore,

v (t) = VZ [Eo(t)a(2n + 1) + V(t)lexpi~(n + %)uol/sinh [(n + %)uol . (57)
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The surface charge density on the sphere, ps(n,t), can now be
specified as

ps(n,t> = —eoEu(uo,n,t) = (eo/a) {-Eo(t)a cosh g

+ [V{(t)/2] sinh po + [3B5(t)a/2] sinh? Ho (cosh Uy - cos n)
(58)

+ (cosh pg, - cos n %2 2 V. (t) (n + %) cosh [(n + ByuylPp(cos M},
n=o

since the outward-directed normal to the conducting sphere at u = Mo >0
is as defined in equation (C-10). This surface charge density is
integrated over the entire surface of the sphere in appendix D for the

total charge, Qsphere:

Q (t) = Q. (t) + Qq(t) (59)

sphere

where Qi is the total induced charge,

@

Q, (t) = 8me_a? Eo(t)g_:o (2n + 1)/{expl(2n + 1)uyl - 1} , (60)
and Qd is the total deposited charge,
Q4 (t) = Bmesav(t) ) fexpl(2n + Llugl - 1371 . (61)
n=o

The total induced charge on the sphere is nonzero because of the
presence of the conducting ground plane. The induced charge on the
ground plane due to the presence of the sphere, in turn, is clearly
equal in magnitude and opposite in sign to the total charge on the
sphere.

a1l that remains to be done in our late-time approximation is the
determination of the surface current on the sphere by use of
equation (48). Instead of actual determination of the surface current
per se, convenience motivates solving for the total current flow across
a circle on the sphere that circumscribes a plane area parallel to the
ground plane:

2m
It =[ K (n,¢,t)h

d)(uo,ﬂ)dtb . (62)
(o]
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Since the surface current must be finite at all points on the sphere,
the total current defined in equation (62) must wvanish at the poles,
namely.,

I (o,t) = I (w,t) =0 . (63)
n n

Integration of equation (48) and use of eguations (62) and (63) leads to

n 2m
I (ne) ={of 3, (o rMrb e (4 Wb (Mo, m)ands = [0(8) /eg1Q(n,8) , (64)

where

n 2w

Q(n,t) ={{ ps (N, (g, M, (tg,m) ANdY (65)

The total charge on only a portion of the sphere's surface, Q(n,t), is
evaluated explicitly in appendix E, but

QM) = Qe (®) - (66)

Since t > y(ug,n,$)/v for situations of interest, the mu component

" of the Compton-current density at the surface of the sphere can be
expanded as

. ¥Y{uo,n,o)
Ju(uoln,‘#:t) = - "‘"-R__ £(t)
) v(Hg N, ¢) af (£)
v dt
2
+_1_ [_ y(uo.n,cb)] a2£ (£) 7)
> - ac2 e e e

f

where R, as defined in appendix B, is the radius of the sphere. The
Compton-current density also decays slowly at later times, so that only

the first derivative in equation (67) contributes significantly to the
integration in equation (64); consequently,

_ 1 df(t) _
In(n,t) =T T T(n) [o(t)/eqlQ(n,t) ., (68)
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where
;vn 21
1
(n) = E'Cj,’{ y2(‘Uom,‘b)hn(Uo,n)h¢(uo,n)dnd¢
or
-3
T(n) = ma*R™1{[-(1/3)sinh? u, + (cosh uy - 1)1 (cosh py - 1) (69)

-3
+ [(1/3)sinh2 Uo = cos n (cosh uy - cos n)] (cosh U, = cos n "}

For consistency in the late-time approximation, the total charge on the
sphere (and thus the sphere's potential V(t) must be defined through
equation (68) at n = w:

= o(t) £}/

at Qsphere eOTsphere (70)

with

= = 3
Tsphere T(m) 4TR°/3 . (71)

Hence, the total current becomes, finally,

()T (n) /T - Q(mt)]/{eo/o(t)] . (72)

In(n't) = [Qsphere sphere

5. CONCLUSION

Since the source-current density and the conductivity of the ambient
medium were assumed to be independent of the obstacle in the early-time
approximation, the early-time analytical results were obtained,
essentially, by solution of a classical electromagnetic scattering
problem. The total charge on the sphere was found to be identical to
the total charge that would have been present in the volume of
conducting medium excluded by the sphere. Furthermore, if the sphere
was small enough, the theta component of surface current on the sphere
was shown to exactly cancel the corresponding flow of source current in
the air at the sphere's surface.

In the late-time approximation, the surface-charge density on a
sphere over a ground plane was obtained by solution of an electrostatic
boundary-value problem; this density, in turn, led to the total charge
on the sphere in terms of its unspecified potential. The total charge
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on the sphere was shown to comprise a total induced charge, which is not
zerc because of the presence of the ground plane, and a total deposited
charge, which engenders the sphere's potential. Knowledge of the
surface-charge density was then used to evaluate the total polar current
flow on the sphere in the steady state. For consistency in the
late-time approximation, the total charge on the sphere was shown to be
proportional to the time derivative of the source-current density,
thereby leading to a specification of the sphere's potential.

An attempt has been made, therefore, to generate approximate
analytical results for the electromagnetic response of a conducting body
over a ground plane subjected to source and conduction currents in the
air. To the extent that the body is transparent to 1- or 2-MeV gamma
rays, the early- and late-time approximations may adequately describe
salient interaction phenomena associated with tactical EMP threats to
electronic equipment housed in conducting enclosures aboveground.
Finally, as pointed out previously, an accurate numerical solution,
experimental data for the problem treated here, or both must be obtained
for comparisons, so that the limits of validity can be gquantitatively
established for the early- and late-time approximations.
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APPENDIX A. THE ELECTROMAGNETIC FIELD DUE TO THE SOURCE-CURRENT DENSITY

Equations (10) to (12) in the body of this report can be manipulated
in the usual manner to yield the following inhomogeneous vector
Helmholtz eguation:

> > > > . > - > >
Vz@(r,w) + kzg(r,w) = - iwygj(r,w) + g; Vp (r,w) , (a~1)
(o]
where
k? = iwpg (20> - iwey)

The charge density appearing in equation (A-1l) can be obtained from the
divergence of equation (1ll1) and is given by

>
p(r,w) = p(z,w0) = (So/eg - 1w ilz,w) (a-2)

where

Since the source-current density is in the z-direction and depends
only on z, equation (A-1l) becomes

a2 2 - o _ B2 /12y = _
7 gz(z,w) + k gz(z,w) = 1wuo(l B/k“)j(z,w) (a=3)

and it is easy to demonstrate that the solution of this equation is

lwu
k2

gz(z,w) jlzw) . (a-4)

Substitution of this electric field into equation (10) yields a magnetic
field that is identically zero.
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APPENDIX B. BISPHERICAL COORDINATES

The bispherical coordinate system is described in many books on
mathematical physics and electromagnetic theory. Bispherical and many
other orthogonal coordinate systems, with informative applications to
electromagnetics, are discussed thoroughly by Moon and Spencer.l 1If the
z-axis is the axis of rotation for a bispherical system, rectangular
coordinates (x,v,z) can be expressed in terms of bispherical coordinates
(u,n,¢) as follows:

\
X = a sin n cos ¢ (cosh u ~ cos n)-'1 , ‘
. . -1 >
y = a sin n sin ¢ .(cosh nu - cos n) , ‘
z = a sinh u (cosh y - cos n)~ ! , y (B~1)

where ta are points on the z-axis corresponding to pu = = and

=00

IA
T~
A

+o

(@}
IA
=
IN

T

0 < ¢ < 27 . (B-2)

Surfaces for constant coordinate wvalues in the bispherical systems are
shown in figure B-1; a sphere with its center on the z-axis can be
generated whenyu is a constant, an apple-shaped or spindle-shaped surface
results whenn is a constant, and a meridian plane corresponds to a
constant value of ¢. The Xy plane also is a constant coordinate surface
in the bispherical system (i.e., u = 0).

> . . . .
If r is the position vector of an arbitrary point in space,

-
r = X ex + vy ey + z ez ' (B=3)

lp, Moon and D, E. Spencer, Field Theory for Engineers,
D, Van Nostrand (1960), 376=384.
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Figure B-l. Constant coordinate surfaces for
the bispherical coordinate system.

The unit vectors in the bispherical system can be obtained from )
NP -4 -1 R R
po du | Bu hu(u,n) du
- > -
. dr |or |1 1 dr
& (W,n,d) = == |— = — =,
p Hon ¢ n |an hn(u,n) on -
> > -1 >
o dr | dr 1 3r
a , = — | = = — = B~4
g Mm@ = 35 |55 h (en) B9 (B=4)
A
wherein the "scale factors" are readily found to be
hu(u,n) = a (cosh u - cos n)~1 ,
hn(l-l,n) = hu(Uln) I
. -1
h¢(u,n) = a sinn (cosh u - cos n} . (B=5)
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‘The unit vectors éU’ &n, and & are in the directions of increasing

values of u,n,and ¢, respectively. 1In particular, if u is a positive
constant, such as ug4, éu(uo,n,¢) is an inward directed normal to the
spherical surface of radius R = a/sinh ug.

The gradient and Laplacian of a scalar function and the divergence
and curl of a vector function expressed in general orthogonal
curvilinear coordinates are well known.? These general expressions can
be readily particularized for bispherical coordinates, as defined in
equations (B-1l), through the use of equations (B~5).

2See, for instance, Murray R. Spiegel, Vector Analysis, Schaum
Publishing Co., New York (1959), 137.
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APPENDIX C. DIFFERENTIAL EQUATION FOR SURFACE CURRENT

In the absence of displacement gurrent, the magnetic field ﬁ is
related to total conduction current J through

- 5> > > -+
V x H(z,t) = J(r,t) . (C-1)

Now let # ?s be an outward-directed normal to a+perfectly conducting
surface S at "a point on that surface denoted by ¥ . On the perfectly
conducting surface, the normal component of the magnetic field vanishes,
namely,

. > -
n(rg) « H(rg,t) =0 , (C-2)
while the tangential magnetic field gives rise to surface current:
> > > > >
fi(rg) x H(rg,t) = K(rg,t) . (c-3)
A well-known vector identity provides the relation

Ve EE x (0] =8 @) -+ T x EE0] - HED - 1T x 8y

or, by use of equation (C-1},

Voo [H(T,t) x éu(;” + H(r,t) - [V x éu@)] = Ju(r*,t) i (c-4)

The gradient can be expressed as

~ ->
s_ S 5 o
- h () 3y ne ' (C-5)
where
& (7) &, (¥)
e
Vo= —n 2, _¢ 3, (C-6)
né h_(4,n) 3n  h, (u,n) 3¢
n ¢
so that equation (C-4) becomes
Vet HE® xeu®1 + BT - T xe D] = 3Gt . e
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Therefore, on the surface 5 defined by u = yg, eguation (C-7) becomes

> > > -
V » K(rg,t) = J (rg,t) (C-8)
u
(2)
where
> > s
v . E(?S,t) = $n¢ . E(?s,t) + [K(rg,t) x fi(rg)] -
(2)
CVx e (Dl (c-9)
M r=rqg
since for u, > 0,
e N ->
fi(rg) = —eu(rs) (C-10)
and
> > -+ &> >
K(rg,t) x fi(rg) = H(xrg.,t) . {(C-11)

If there is only one component of surface current, namely,

> - -
Kirg,t) = K (rg,t) &, , ) (C-12)
n

then

=-> -> _ -1 -1 -1

V'ﬂ(fp . K(rS't) = hu (]Jorn)hn (Uoln)h¢ (uorn) .

. ¢ -
'a;[hq)(lloln)hu(l—‘oln)l{n(rs:t)]

or

.%- . I—E_). _h"l -1 9
no (rs,t) = h (uo,n)h¢ (o rn} grlhg (ug /M) Ky (2, t) ]

-1 -1 T o
+hu (Ko n)hy (uo,n)Kn(rs,t)an hu(uo,n) . (C-13)
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Finally, since

> o, Z g
[K(rg,t) x fi(rg)] » [V x eu(r)]?f*:_?;s

-> N -> N -> -1 _
= [Kn(rs;t)e¢(rs)} * [-e(b(rs)h“ (Uoln)hnl(UOIn)
L2 hu(uo,n)] , (C-14)

the differential equation for surface current is given by

3 -> ->
hoL(ug b3t o g Thy (o mIK (g, )1 = T, (xg,t) (C-15)

¢ ¢
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APPENDIX D. TOTAL CHARGE ON THE SPHERE

For the total charge on the sphere, ©Q + the following surface

integration must be carried out: sphere
wo2m
Qsphere(t) =_/'~/'ps(n,t)hn(uo,n)h¢(uo,n)dnd¢ ' (D~1)
o o

where the surface charge density, Psr is defined in equation (58) in the
body of the report. Consequently, the total charge can be expressed as

(2neoa)'1Qsphere(t) = [-E(t)a cosh gy + V(t) sinh uy/2]F; (1o)

+ [(3/2)Eq(t)a sinh? u 1F; (uy)

+ 2 V() (n + %) cosh [(n + B)ugle(uy) ,  (D-2)
=0

wherein

m

Fl(uo) =_/- (cosh g, - cos n)'2 sin n dn
o}

2(sinh uo)'2 , (D-3)

it

a
Fy (11,) =_/. (cosh u, - cos 1'])_3 sin n dn

2 cosh p, (sinh uo)"L+ r (D-4)
)

and

T

Gn(uo) =6/.Pn(cos n) f{cosh U, = cos n)

[}
o

sin n dn

= V2 (n + %) " lexpl-(n + %) 1) (D-5)

Some mathematical manipulation is

now necessary to simplify
equation (D-2). First, S is defined as

=]

S(6) =2 V(&) (n+%) cosh [(n + 3,16, (i)

(D-6)
n=o
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and then S; and S are defined as

S1(£) = 2Eg(t)ay, (2n + 1){exp[-(2n + 1)uo]
n=o

+ 1}/{expl2n + l)uo]-l}

with

Sy (t) = 2v(t) o, {expl-(2n + LIugl + 1}/{expl(2n + L)yugl-1}
n=o

so that

S(t) = Sp(t) + Sy(t)

Mext, use of an identity (along with its first derivative) ,

E: expl-(2n + 1)ygl = (2 sinh uo)'l ,

n=o
leads to
S;(t) = -Eq(t)a cosh U, (sinh Uo)—
+ 4 Eg(aY (2n+ L/{expl(2n + Dol = 1)
n=o0
and

S,(£) = =v(t) (sinh ug) ™"

+ 4 vty {expl(2n + Lyl - 137
n=o
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The total charge on the sphere becomes, therefbre,

-1 . _
(Zﬂsga) Qsphere(t) = E4(t) a cosh yy(sinh pg)~2
- 4 V(&) (sinh Ho) 1+ s(t)
or
Qephere (&) = 8Tr€oa2Eo(t)nZ=O(21}7+ 1)/{expl(2n + 1)y 1 - 1}

+ 8Teya V(t)z: {expl[(2n + Lyl - 13-
n=o
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APPENDIX E. TOTAL CHARGE ON A SEGMENT OF THE SPHERE'S SURFACE

The charge defined in equation (65) in the body of the report becomes

(2ﬂeoa)‘1Q(n,t) = [-Eg(t)a cosh ug + V(t) sinh py/231f,(m)
+ [(3/2)Eq(t)a sinh? pylf,(n)

+ 2, Vo(t) (n+%) cosh [(n +%)u,lgy(n) , (E-1)
n=o

where
£1(n) = (1 - cos n)[(cosh uy - 1) (cosh py - cosh n}171 ,  (E-2)
£2(n) = (5 [(cosh uy - 1)72 = (cosh y, - cos n) 2] , (E-3)
and
1 .
gn(n) =_/~ Pn(u)(cosh Uy = u) “du . (E~-4)
cosn

The function g, can be expressed as an infinite series:

gn(n) =v2 %Z% exp[-(m + %)uolhmn(cos n (E-5)
where
h . (cos n) =/;L P (uPp(u)du . (E-6)
cos n
41
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When m and n are different integers, equation (E-6) reduces to!l

_ sin n 4a
hmsafn(cos n = (m - n) (m+n+ 1) [Pm(cos n) dn Pn(cos n)

s}
_ Pn(cos nl aﬁ Pm(cos nﬂ - (E-7)

When m = n > 0, equation (E-6) has been cast into the form of a recursion
relationship:?2

hnn(cos n) = (2n + 1) Y (2n = l)hn_l,n_l(cos n)
- cos n[(Pn_l(cos n» 2 4 (Pn(cos n))z]
+ 2P, _j(cos n)P,(cos nr o, (E-8)

which can be implemented for any positive integer starting with

h (cosn) =1-cosn. {(E-9)
oo
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