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Abstract

Using the singularity expansion method a circular loop
structure is characterized and its current response is given
treating it both as an antenna and as a scatterer in free space.
The extension of the solution for dissipative medium is also
discussed.
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SINGULARITY LXPANSION OF
CIRCULAR LOOP ANTENNA

A circular loop structure is characterized using SEM to treat
a loop antenna and scatterer in free space. Because of the rotational .
symmetry of the circular loop, a Pocklington type or E-field integral
equationcan be formulated and approximately solved using a Fourier
series representation for the current induced as discussed by Wu [1 ],
The loop structure happens to be an important case for SEM analvsis,
wherein the choice of Fourier series for the current representation

diagonalizes the matrix corresponding to the integral operator and

hence simutaneously demonstrates that the current basis functions
are the modal currents. The fact that the modal currents are all of
the form exp(jné) makes it possible to tabulate once and for all,
for various loop sizes, simply the resonant frequencies of oscilla-
tion and the corresponding residues which are the basic SEM char-
acteristic results for constructing either the frequency or the time
domain solution.

As will be demonstrated, the method of analysis can be con-
veniently extended to the case of a circular 1loop in a dissipative

medium without re-solving the original problem again.

1. Integral equation for the circularloop

Assuming an St time dependence, an integral equation of the

~
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Figure 1  Geometry of the circular loop.




Pocklington E-field type for the current I(¢,s) induced on the circular
loop is formulated in an infinite isotropic homogeneous medium of per-
meability u, permittivity e, and conductivity o The loop structure

is in the xy plane with the z axis coinciding with its center, Figure

1, and has a loop radius b and wire cross sectional radius a. Based on

thin wire assumptions

2 2 S
a“ << b“, ]Ea] << 1 (1)
If Ei(¢,s) is the tangential component of the incident electric field
on the surface of the perfectly conducting circular loop, then an in-
tegral equation for the current induced I(¢,s} on the circular loop

[2]1 is given by
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The integral eqution (2) for the current on the circular loop could,
of course, be solved using the method of moments and SEM used to char-
acterize the circular loop structure as has been done for the circular
cylinder and the L-wire strucutres. But the rotational symmetry of
the loop makes it expedient to expand the kernel function M(¢-¢',s)
and the current distribution I(¢',s) in Fourier series and with an
appropriate choice of weighting functions, hence we write the following

Fourier series expansions

+oo

M(¢-¢',s) = ] a (s)e
n=-

-jn(¢~¢') (8)
I',s) = I I (s)e ™’

== (9)

Substituting (8) and (9) into the integral equatioh (2) , we

obtain
i .s +co -'n¢)
LACDI PEENOINOLE (10)
and finally
s (Fm . .
a (s)I (s) = E%-[ bE;(¢,s)eJn¢d¢ | (11)

-
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where the Fourier coefficients

2
&

-jyb .
a (s) =a_(s)= -%SL-E51+1 + Kn_il + 3{%5 K, (12)

For a thin wire loop, the coefficients Kn are given by

-32vb
1 8 1 (73 :
K, = =0 = - i'J [95(2) +j Jg(2)]dz (13)
0
Kn+l = Kn + An’ K =K

n en (14)

&, = an_,,l(‘JZYb) + J2n+l(—JZYb) (15)

where J2n+l(z) and QZn+l(Z) are the complex Bessel and the Lommel-Weber
functions respectively of order (2n + 1).
Further the incident field is also expanded in a Fourier series
i Ay ming
E,(¢,5) =n£_m Ejn(s)e (16)

Comparison with (10} and observing the orthogonality of the functions

exp(-jn¢) permits us to write

: EL (s)
_ -] 2b “¢n
I(s) = —% a_(5) (7)

Assuming that each of the functions an(s) has distinct zeros, we
conclude from (9) that the spatial dependence of each natural mode
(corresponding to a zero of an(s)) is of the form exp(-jn¢). It is
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convenient to view the function l/an(s) as a transfer function which
relates the output In(s) to input Ein(s).

For an antenna problem, the coefficients of the current dis-
tribution on the circular loop structure corresponding to a delta-gap
excitation at ¢ = 0, Figure 2, are simply

i Vo(s)

Een(S) = 75~ (18)

and hence the current coefficients are

For a scattering problem excited by an incident plane wave
traveling along the direction Tos ¢q» and making an angle & with the

z axis, Figure 1,
i _ gl , 20
E¢n(s) Ej(s) £, (s) (20)
where Eé(s) is the incident field term referred to the center of the

loop and

- -jn¢
£(s) ="t cosye 0J(-jyb sin e)

-jn¢0 an(-jyb sin 6)

.n .
+ - —
j  sin y cos 9 e S TN
On substituting (20) into the equation (16) , the coefficients
In(S) of the current distribution on the circular loop scatterer can
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Figure 2 Geometry of circular loop antenna.




be obtained by (11}, which yields

32b i )

In(S) = T_ EO(S) EnTéT (22)

2 Application of SEM to the circular loop antenna in lossless

free space

The induced current distribution I(¢,s) on the circular loop antenna
structure, Figure 2, corresponding to the delta-gap input excitation

is given by equations (8) and (19)

-V (s) += g-ing

I(¢,s) = (23)
w2, an(s)
where in the equation (1%), y = s/c and £ = n are substituted for
the lossless free space medium and
1/2.
n = [wel® = 120n (24)

The expression (23) 1is in a form suitable for SEM analysis. Every
Fourier coefficient an(s) = 0 has zeros at s = Shi which are resonant
frequencies of oscillation of the circular loop structure and the term
l/an(s) can be expanded in a residue series (Appendix A and expression

56A)

- Z ni
a (s . S-S (25)
n i ni

where Rni is the residue of l/an(s) at the pole s = Shi Hence for



the circular loop antenna excited by a time-domain delta function input,

the expression for the induced current becomes

R |
’ nmooo 5 StSy {26)

The frequency domain solution corresponding to the time harmonic in-
put voltage Vo(jm) is obtained easily by substituting s = jw in the
equation  (26). We should further note that at ¢ = 0, equation (2¢)
gives the inputadmittance of the circular loop antenna with delta-gap
input excitation. If G(jw) and B(jw) are the input conductance and
susceptance at the delta-gap terminals
. . 1 Rhi
Y(ju) = G(Gw) + jB(ju) = =) § - (27)

T °s_.
ni ¥ Sni

=

The time domain solution for the current on the circular loop
antenna can be obtained by taking the Laplace inverse of the

equation (26)

V.(s) R . . .
. 1 - t
oty gy [ Dy B e e
1

21j nm -S_. s (28)
c ni
B
where CB is the Bromwich contour, Figure 16,in the complex s-plane.

If the antenna gap is excited by a time-domain delta function of

strength VO at t = 0, then
\
i _ 0
¢n 27D (29)




which is independent of s and Qe note that the only singularities in
the integrand of (28) are the simple poles at s = Shi and they are all
located in the left half of complex s plane. Hence closing the contour

Cy, for t < 0 by C: in Figure 1§ gives zero current response and for

B

t > 0, the contour C, is closed along C; enclosing all the pole

B
locations in the left half of the complex plane, which results in the

time domain current response

o«

V

i(6,t) = 2 ]

*i% -jne
X g R;e ™ e u(t) (30)

-0

where u(t) is a Heaviside unit step function. The fact that there
must necessarily be a time delay between the time the loop is excited
at ¢ = 0 and the time the response appears at other points on the loop
requires that the sum in (30) sums to zero before the excitation
reaches the observation point.

For ény other general excitation in time at the gap viz., the
step function or the pulse function in time with a finite width, the
corresponding Laplace transform of Vo(s) is substituted in (28)
and the contour integral may be evaluated either directly or by convolv-

ing in time with the delta function response.

3. Numerical results for circular loop antenna in free space

In this section the numerical results of the application of SEM

to the circular loop antenna in free space are presented. The pole
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plots, the pole trajectories, and the residues for the various loop
sizes, and the time domain current corresponding to the delta function
and the pulse function inputs are given. Since the modal current
distributions are all of the form exp(jné¢) where n is the mode number,
the§ are not shown here. In the frequency domain, the first few l/an(s)
Fourier coefficients are constructed corresponding to a time harmonic
input excitation. The results of input admittance calculations for .
the circular loop are omitted here, but are given in the latter sec-
tion on the circular loop antenna in dissipative medium.

The distribution of the pole locations for the circular loop
strucutre shown in Figure 3 is somewhat different from the previous

cases analyzed, viz., the circular cylinder and the L-wire strucutres.

Furthermore, corresponding to each Fourier mode n, there exists an
infinite set of poles. This is in contrast to the other cases con-
sidered a unique modal current is associated with each pole.

The pole locations for each mode may be divided intc the following

three catagories:

i) Roughly, the poles are all located in layers parallel to the
jw-axis. There is a pole very near the jw-axis at approximately
w = n. This pole is the principal contributor to the time domain re-
sponse of the loop at late times and the imaginary part of the pole
location corresponds closely to a resonant frequency of the loop for
an excitation of the form exp(jwut - jn¢).

ii) There are (n + 1) poles (including conjugate pairs) which lie

roughly on the left hand side of an ellipse centered at s = 0 and with ‘
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Figure 3 . Natural frequencies of the circular loop,
Q= 12.0.
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a semi-major axis somewhat larger than n.
iii) There is a third group of poles lying almost parallel to the
jw-axis. This layer contains an infinite number of poles and they are

spaced approximately Aw = mc/b units apart.

The pole plot of Figure 3 also shows the indexing scheme used

which is summarized as follows:

Poleindex: n 2 p

n : Mode number of the Fourier coefficients
0, *1, +2, .

g : 1 type (i) pole
2 type (ii) pole
3 type (iii) pole (not shown in figure)

p : Sets of poles in a layer

There is a simple pole at the origin corresponding to the zeroth
mode and every even mode contributes a pole on the negative real axis.

Figure 4 shows all the pole locations of the third mode 33(5)'
The layer of poles running parallel to the jw-axis are infinite in
number and are basically the same for all odd modes for large frequen-
cies. Another set of poles for the even modes exists approximately in
between those of the odd modes. In Appendix A, a simple asymptotic
formula which permits accurate calculation of the locations of these
type & = 3 poles is given.

The plot of the pole trajectories of the principal poles (& = 1)

closest to the jw-axis are shown in Figure 5 as a function of loop

14
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size Q. As the loop becomes thicker in cross section the poles move
away from the jw-axis exhibiting increased damping. FIigure 6 gives

the pole trajectories of the third mode (n = 3) poles as a function of
the loop parameter. We note that the pole trajectories corresponding

to secondary layers (& = 2) move towards the jw-axis as the loop becomes
thicker in cross section,

Even though asymptotically there exists only two sets of poles of
the ¢ = 3 type corresponding to even and odd Fourier modes, at lower
frequencies the poles are distinct as shown in Figure 7 corresponding
to loop size @ = 12.0 for modes n = 0 to n = 10.

Figure 8 gives the real and imaginary parts of the residues of
the poles in the primary layer & = 1 closest to the jw-axis as a
function of loop parameter @ for various Fourier modes. The residues
monotonically increase for increasing wire radii. The residues of the
poles in secondary layers & = 2 are similarly shown in Figures 9-11 .
The residues of poles in layers far away from the principal layer lie
almost in straight lines as a function of loop size and mode number.
Figure 12 gives the residues of a few of the poles of the third layer
2 = 3.

Using the poles and the residues, the various Fourier coefficients
l/an(s) can be readily constructed in partial fraction form for time
harmonic input excitation and Figures 13a,b show the real and imaginary
parts of l/an(jw) for the first three modes as a function of frequency.
The real part of l/an(jw) is in very good agreement with those obtained
by Wu [1 ] using equation (12) directly for the various Fourier coef-

ficients at every real frequency. But the imaginary parts of 1/an(jw)

17
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obtained by SEM are not in good agreement with those obtained by direct
calculations, but appear to differ by a single constant at all fre-
quencies for each of the Fourier modes. Since it is known a priori
that these curves should approach zero as s tends to zero, this constant
may be found by evaluating the partial fraction at s = 0 and subtracting
the resulting constant from all subsequent calculations. While much
effort has been expended in attempting to resolve the reason for the
constant error, the following explanation is considered the most likely.
We note that according to the residue series expansion (equation

25),

-7 = Z Rnl
an(S) ;S-S

ni

where the summation i is over an infinite number of terms including
the conjugate pole locations. While calculating 1/an(s), the series
expansion must be truncated in the sumation over the infinite number

of poles in the £ = 3 layer. At s = ju =0

I ) ni

8,(0) & -sp5
and this infinite summation should sum to zero if all the poles and
the residues have been accurately calculated. The poles and the re-
sidues were calculated accurate up to eight decimal places for poles

such that wb/c < 30 but the poles and residues far out in the layer
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2 = 3 were calculated using asymptotic formulas(equations 41A and

48} developed in Appendix A. The poles and residues calculated by the
asymptotic formula differ only in the second decimal place for wb/c < 30
and yet a summation over a number of them with a small error can in-
troduce a significant constant error in the imaginary parts at all
frequencies. This error should then be subtracted out in the numerical
processing. It was further verified numerically that the error at s = 0
gradually goes to zero for thin loop structures @ » 18 and becomes
somewhat large for very large sizes of the loop @ < 10. This is in
apparent agreement with the fact that the asymptotic formula for poles
and residues is more accurate for Ehin loops.

The input admittance of the circular loop antenna (Figures 21-22)
excited by a delta gap are given in a later section along with the
results obtained for the case of dissipative medium. There, the con-
ductance part of the input admittance is shown corrected because of
the term -j appearing in the series which causes the imaginary part of
the Fourier coefficients to be reflected in the conductance. Further
we note the input susceptance is in very good agreement with the re-
sults [2].

Figure 14 shows the time domain current on the circular loop
antenna corresponding to a unit delta function in time excitation at
the input gap terminals turn on at t = 0. It is a difficult process to
construct a delta function with a set of Fourier modes. The first peak
shown in the figure gets larger while it. width becomes narrower as the
number of poles corresponding to modes close to jw-axis are gradually
increased. This time domain plot is constructed by including all the
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poles and their conjugates given in Figure 3 . We further note the time
delay of ct/mb = 0.5 corresponding to the observation point at ¢ = 90°.

The oscillations before the wave reaches the observation point corresponds
to the principal resonance 2 = 1 of the highest mode included in construct-
ing the current response, and the oscillations become smaller and

smaller as the number of modes are increased.

The time domain current on the circular loop antenna for a finite
length unit pulse function in time (constructed by the superposition of
two unit step functions) exciting the gap at t = 0 is shown in Figure
15. Instead of observing the current response at a single point, the
response is shown observed at constant time intervals all along the
loop structure. The pulse width is T = 0.5 where T = 1.0 corresponds
to the time necessary to travel half way around the loop at the speed
of light. In the current response at time T = 1.2, the two pulses
traveling in opposite directions around the loop have summed to ap-

proximately double the current magnitude.
4, Application of SEM to the circular loop scatterer in free space

The induced current distribution on the circular loop scatterer,
Figure 1, corresponding to a plane wave excitation is obtained by
equation (9) and (21) with y = s/c and £ = n the impedance of
free space

s . +o f (s) e-jnd)
I(,s) = A2 Ele) | B
n

n=-w

(31)
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function in time excited at the delta gap at t = 0 and
) ¢ = 0‘



We note in the eduation (31) the specific advantage of expanding the
incident field in a Fourier series in ¢ (equations (16) and (21),
i.e., the nth harmonic component of the plane wave excitation couples
with only nth component of the current Fourier coefficients. Replac-
ing l/an(s) by the residue series (24) , the equation 31  becomes

R, ¢ In¢

. + .
I(o,s) = LEG) ] ] Be— £ (32)
n=-« 1 nl -

It is now relatively straightforward to obtain the frequency domain
solution corresponding to a time harmonic plane wave incident by sub-
stituting s = jw in the equation (32} . To obtain time domain current
for plane wave scatﬁéring, the:Laplace iﬁvefse of the equation (32)

must be taken,

1 2b L1 = Rnie-J \ st
16,0 =77 [2R® L £ (5o as (53
CB n 1

where fn(s) are the nth coefficient of the incident plane wave excitation
defined in the equation (21) .

Depending on the incident angles, the coefficients (from equation

(21),

v ros asby .n-1
I3 =) ]

£.(s) = { and/or

. b .
Jn(-J C_x%_ I '—JD-(;’D
——s5— J sin ¢ cos 8 e

c

-jng
cos ¢ e 0 -

\




To Laplace invert the equation (33) term by term, the asymptotic
behavior of fn(s) is required. If o = sin 6 is the direction cosine
of the incident field with respect to the plane of the loop, the time

domain Fourier components of the current

R
.1 [
W) = 7y | Al - e e (34)

and asymptotically fn(s) [ 31 can be written as

v2jc/masb cosh gép-+ 34 + j(n-l)%l

f (s) .;_:o 32 (35)
VITTE nE‘z—E:[ cosh|222 + §T 4+ jn-’ﬂ
Since
e , as s»= in R.H.P.
3% cosh E%P.w ~2sb oy (36)
e © , as s»~ in L.H.P.

The contour may not be closed for [t|<ab/c in either half-plane,
Figure 16c. There are at least three alternative methods to resolve

this difficulty, all resulting in different representations.

METHOD I

We shall express the term Jn(-J 0‘Sb) in terms of two Hankel
functions
33
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3.5 8Dy = i (5 25y 4 (D) (5 ashy (37)

Hence as s+ [ 3]

asb + st
st (1) ._. sab. ¢ .-n_C 33
SEHY 5 5 o g e (38)
and a5b+st
t 2 . b -2c :n_ C
T 2 i e (59)
For the terms
(1)
Hn
(2)
Hn

we now close the contour CB in left half plane for (Figure 17b)

ab

t>"c—

40
b (40)

t > +—
c

Unfortunately, Hél) and Héz) have branch cuts along the negative real
axis as shown in Pigure 17a, and one has to evaluate the branch cut con-
tributions in addition to the poles contribution for the time interval

Itf<ct/b.

METHOD II

To get rid of branch cut integral contributions, we note that the
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incident field due to plane wave excitation could just as easily have

been expanded in terms of spherical harmonics

5,03 2y = D 2Dy 5P g ey (41)

The contour closure is the same as in the previous method, hence [4 ]

| asb | gt
oSt HIgl)(_j g%QJ N _j-n+1 e C
asb
~ -— + st
St Héz)(‘j E%Pa v jn+1 e © as s (42)

and Hél) has no branch cuts in the complex s plane. We still have,
however, the inconvenience of using different representations for the
response over certain time intervals. In the following method, this

difficulty is alleviated.

METHOD III

Instead of Laplace inverting the series (33) term by term, we
consider the asymptotic behavior of l/an(s) as a whole in the equation

(33). It is shown in the Appendix A, equation 39A,

1
2sb 2
sb sb n+l /fcn ===
Plam s (VY Fe ]

S

1
ENON s (43)

37



1

. 4m , &S S 1n R.H.P.
c c .2Sb
1 c .
: 1)n+1 S})JQﬁ? e , as s+ in L.H.P. (44)
) “cvsb

\

Hence, we could have closed the contour in the left half plane 2b/c

seconds earlier than the times stated in the previous two methods as
shown in the Figure 17c. Since the incident wave first excites the

loop at t = -ab/c, the contour CB can be closed in LHP for all times
t > -ab/c.

It is interesting to point out that in the time interval (-2+a)b/c<
t<-ab/c, the contour may be closed in either the right or left half plane.
Since the excitation does not begin until t = -ab/c, the residue series
must sum to zero during this time interval. These examples clearly
point out a non-uniqueness feature in the representation of time domain

results.

5. Numerical results for circular loop scatterer in free space

The equatiohi (33) for the time domain current on the circular
loop scatterer for a step function plane wave excitation is evaluated
for incidence angles ¢, = 0°, 8 = 30° and ¢ = 60° (Figure 1). The
contour CB in the complex s plane is closed according to the method
III described in Section 4 and the timeAdomain current result ob-

served at ¢ = 90° is shown in Figure 18 . The incident wave front first
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Figure 18. Time domain current, step plane wave incident,
Q= 12.0, t = 0 at the origin.



excites the structure at t = -b sin 6/c and reaches the center of the

loop at t = 0. PFor large values of time, the time domain current gradually
decays to zero. Because the observation point is at ¢ = 90°, there

is no contribution from any of the modes with n odd (Equation 31 ).

The response is seen to consist primarily of a contribution from the

principal pole (£ = 1) for n = 2.

6. Circular loop antenna in dissipative medium and application

of SEM

The analysis of the circular loop in lossless free space medium
was carried out in previous sections and using SEM we were able to
characterize the structure as to its transient scattering behavior.
The analysis can be simply extended to the situation wherein the medium
is dissipative. We demonstrate in the following how conveniently one
can characterize the loop antenna structure in a dissipative medium with-
out re-solving the problem again, i.e., the frequency and the time
domain results can be obtained by making use of the resonant frequencies
and the corresponding residues obtained for the lossless free space
medium. While this method can be used for any perfectly conducting
object, it is particularly simple to illustrate for the loop.

The current distribution on the circular loop antenna is given

by equations (9) and (19)

40

I(¢,s) = In(S)e'jm" (45)

n=-e
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and
'jvo (S) 1
gra [y(s)] (46)

I.(s) =

In equation (46), we write the Fourier coefficient a, as a function

of y(s), where y is the complex propagation constant of the medium given

by
. 1
Y =a+ jg = [us(es + oc)]2 (47)

where . is the conductivity of the medium assumed to be independent of
s, and again u and ¢ are the (frequency independent) permeability and
the permittivity of the medium.

For the lossless free space medium 7. = 0 and therefore, vy = s/c.

In the equation (46}, the term
1_1vcec -~ (48)
£ n

where n = vu/c is the impedance of the lossless medium with parameters
u and €. We have also introduced the normalized conductivity of the

medium

The residue series developed in Appendix A, equation (56A} can be
substituted into (46) with the s/c variable in the equation (56A}

replaced by y which amounts to stating that the poles and the residues
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already determined for the lossless free space case correspond to the
v plane. We note referring to equation (48) , that the s plane has a
branch cut singularity on the negative real axis, Figure 19, between
the two branch points s/c = 0 and s/c = -A. If y = Yﬁi are the pole
locations in the y plane for l/an(y) for the lossless case (A = 0),
these poles are shifted to new locations for a given A in the s plaﬁe,

which may be found as the solution to therquadratic equatidn

Sni ‘ Shi 2
= *AT| "m0 , (50)

where the appropriate choice of the root must be taken.
Hence' in the vy plane, by equations (45) , (46), (47), and
(48) ~, the Laplace current transformed current distribution on the

circular loop antenna excited by a delta gap at ¢ = 0, is given by

VO(S) R ./c

- ni -jn¢
L) = = g g v (51)

By substituting s = jw, the current distribution on the loop can be
calculated in the frequency domain corresponding to time harmonic input
excitation. The normalized input admittance at the delta gap terminals
is obtained by substituting ¢ = 0, V,(s)} = V,, in equation (51)  and

rearranging the terms (Figure 20)

(52)




where [2 ]

j -1
y=Ivle® , e=ta g (53)

8 = [e /u.]? cosh[} sinhp] (54)

€ and W, are the relative permittivity and the permeability of the
medium, and p = oc/we 1s the loss-tangent.
The time domain current for the circular loop antenna in the dis-

sipative medium is obtained by Laplace inversion of the equation (51}

resulting in

+o

SOCEN i (t)e In? (55)
where
i@=LTt10s) - f I,(5)e%" ds (56)
C
B

For a step function delayed in time exciting the gap terminals

at ¢ = 0, t = 1t then

=ST
€

Vo(s) =Vy —s (57)

and substituting into equation (56) , yields

e[ Yo Rui/e T/ A glet - ety
ln(t) = '2?3- -n—TT Z e —_—

! Sy 2 c
i [s.s =
CB E(E *A) - Yni ¢
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We note that all the singularities including the branch line are to

the left of CB in the left half plane so that for ct < ct, the contour

B

C, is closed in right half plane and in(t) is zero. For ct > ct, the

contour Cgp is closed in the left half plane as shown in the Figure 19,

so that the branch line is never crossed.

the contour CB’

where

(1)

(i1)

(iii)

(iv)

Hence

the pole of 1/aO at the origin in the y plane shifts to
a pole at the branch point s/c = -A

no poles exist for any mode in between the branch
points

there is a double pole at the origin

poles on the negative real axis in the y plane shift to
poles on the negative real axis in the s plane, but

away from branch point s/c = -A.

according tc¢ the residue theorem, the time domain current

L) = i 0t) + 1 (8) + i (6) + i () (59)

inl(t) = contribution due to the shifted simple
poles including their conjugates

S_.
VO ——TCI—JL[Ct - c1)
— ' -

— ; Rl; ulct - ctle

(60)
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We further note while closing




Figure 19. Branch cut in s-plane.
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and s = s, are the zeros of the equation (50) and Rﬁi are the new

residues at s = Shi given by

R, = «

nx
]

“c (61) .

inz(t) = branch cut contribution obtained by integrating
along CD and FG

JA ) "Yni,R’ni/C Yo (A-0) e-o[ct - Cr]dg (62)

0 i o(A-0) + Yii 02

i
';"’iNlo(:

which can be conveniently evaluated numerically. The integrand has a

smooth variation and is zero at both the limits of integration

i

inS(t) contribution due to the integration GIC -

around the branch point s/c = -A

0 for all n (63)

and

in4(t) = contribution due to the integration DEF

around the branch point s/c = 0
" R i/c

0 since we must have } =0, n#0.

i 'ni

[}

But when Yni 0 (pole at the origin in the y plane due to l/aO)
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Vo

in4(t) = EF[ROO/C][Ct - ct]ufct - ct], n =0 (64)

Hence the time domain current in the dissipative medium is given by

substituting (59) into the equation (55)-

7. Numerical results for circular loop antenna in dissipative

medium

The input admittance of the loop antemna placed in dissipative
medium for time harmonic excitation at the delta gap terminals are
presented in this section. Also given are the time domain currents for
the loop antenna in a lossy medium for finite width pulse excitation
(as a superposition of two step functions displaced in time).

Figure 21 gives the input conductance of the loop antenna as a
function of Im¥= 8 with the ratio of o/f held constant. The case
o/ = 0.0 corresponds to lossless free space. The computed results by
SEM according to equation 52 , have been corrected for the constant error
which appeared in the partial fraction expansion (equation 25 ) at
all points in the y-plane according to the discussion in Section 3.
For the lossy cases with a/8 = 0.05 and 0.1 only the corrected SEM
results are shown. The correction term is found by summing the series
at 8=0 and applied to all the curves in Figure 21. These SEM corrected
results are in good agreement with those obtained by King § Harrison
[ 2]. Figure 22 shows the corresponding results for the input suscep-
tance. The above results are computed by SEM making use of all the

poles shown in Figure 3 plus as many as 15 poles of the type (iii),
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Figure 20 Radial line in y-plane for a given o/B ratio.
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Input conductance as a function of real frequency,
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% = 3 and their complex conjugate pairs. We note that for a given
ratio of a/8, the corresponding values of y used simply lie along a
radial line from the origin of the y-plane as shown in Figure 20.

In computing time domain currents for a given normalized conduc-
tivity A, one notes that the poles in the s-plane are shifted to new lo-
cations which may be found by solving (equation 50 ) for s and re-
taining root which approaches the lossless case for A = 0. Figure 23
shows the trajectories of a few of the poles closest to the jw-axis
as a function of A in the s-plane. As A increases, poles move away from
the jw-axis almost parallel to the o-axis. Hence the principal effect
of the lossy medium is to increase the damping constant of all the
resonances. The pole at the origin shifts to the left end of the
branch cut.

The time domain current is shown in Figure 24 , for a pulse
excitation at the gap (¢ = 0) at t = 0 and observed at ¢ = 90° on
the loop. The pulse width is ct/«b = 0.5. It is interesting to note
that as time increases all the curves approach the same constant value
and as the magnitude of A increases the current response quickly ap-

proaches the final value.
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APPENDIX A

ASPMPTOTIC FORM FOR a_ (s)

The induced current distribution on the circular loop structure is

given by the series expression

+ o

I(¢,s) = ] I (s)e ™

NS -

where the current coefficients are given by

F_(s)
L) = a5y

n

(1A)

(2A)

Fn(s) are the components of the input excitation coupling to the n-th

mode and an(s) are the corresponding Fourier coefficients in the series

expansion

and

(13).
a
n
K
K =K =
n -n

) =

With the substitution

S —
c =k
2
kb n
= (K1 Kn-l] "B
_ 1. 8b _

0

1
T

[F, G G + C,] - S,y (2Kb)
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1 (2kb o)
s, (2kb) = »TJ [2,(2) + 33, (2)]dz -

0
n-1 1
Cn = Yo + n(4n) - 2 I%:O T (8A)

Yol Euler's constant = 0.5772 ...

where JZn(z) and QZn(z) are the complex Bessel and Lommel-Weber functicns
of order 2n and similarly in the expression (6D),JGD and 30 are the
modified Bessel functions of zero order respectively. These functions
are extensively tabulated in [3 ] for real arguments. For complex
arguments a convenient algorithm [ 5] is used to generate these functions
wherein the accuracy of the evaluation is tested by using their
associated wronskians.

The expressions for Kn ( 14, 15) defined in Section 1 are
different from the ones defined in equations (64, 74). In fact this
has been verified numerically for thin wire circular loop structures,
both give same results accuracte up to seven or eight decimal places.

In the following an asymptotic expression for a (s) is developed
which is essential in the application of SEM. According to the

equation (7A)

. 22
5u@ = § [ 1,000 + s (ae (98)
0
where the Weber function E_(¢) = -o_(£) (104)
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The asymptotic forms of the integrand of (10A) can be found in [4 ]

m N
T(6) * JEg(8) % y(6) - 3%, - § F O

-J [ g -] \m
" ‘/?Zr‘f,”e aman “l_""%l_)._,,g (11A)

larg ¢] <«

Because of the presence of the term involving 1/¢, the integral
expression (10A) is not convergent as z» for even values of m. DBut
it is convergent for odd values of m as is seen by comparing the in-
tegral (10A) to the Fresnel types of integrals [3:. lowever, we make
the following rearrangement by splitting the integration limits and

adding and subtracting the terminvolving 1/5 within the integrand

.ol . rlz
5,20 = 3 [ [, + sEg@]ar + § | [Jm(e:) NG
0 1

(-7 1+(-1)" i}
* J-Hdi Ml el LR (128)

With this rearrangement the second integral is convergent as z--

-and hence can be written in the form

. (27 ’ m
ey E’m(&;) + JE, () + j-l—*—gj—)—]da
1

| peo 22z m
. E L (1)
= %—j + J Jn€) + JE (&) * J—x ]ii (134)

1 ®
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For large z, the integrand in the second integral may be replaced

by its asymptotic form (11A} and integrated term by term

2z
-] E () + JE, (&) + —1—*-(—&-1-)—-}&;

O

Y K4
v %f Z/(;; © R , Jarg z] < (14A)

«©

T, 2

now changing integration variable g = 7t and splitting the integration

® to /%bywtoOandOto 2/-_12;—, we have

il5
Im[Z -32-+S(Zy/_)+ C(Zv/—] T , larg z] <« (15A)

where C(z) and S(z) are Fresnel integrals

z 3
C(z) = [ cos (tH)dt

and 0 r (160)

(z
S(z) = J sin(%tz)dt
0

as defined in [ 3 ' where the following asymptotic forms are given
3\

C(z) ~ %. + % sin(-127—22) + O(;-%-)

- S8(z) ~ %— - ?r% COS(%-ZZ) + @(71.) (17A)
z

J

larg z| < 121
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Hence 1 o
-1 ~Jlez A -Z] T
e , larg z| < > (184)

and using (12ﬁ0; (124 and (184A), we may write

. 1 T
e-}[Zz -y - 7]

1+ (- m
Sm(Z)me*%(ﬁ—U—mz- , larg z] <7 (19n)

2Vrz

where Pm is a constant,

ped | Em(s) . jEm(a)}ia 4 rEmCa)
1

0

m m
¢ JE(E) + jl%;—l—)—]ds P B an 2 (200)

To evaluate the constant Pm consider (from the equation 19A)

. m
P = iig[sm(z) - ;iééll—-zn z] (21A)
Therefore
p =g gy L BCLTT (224)
m-2 z+w[sm-2 z) - 2T n z] T

Substracting (22D) from equation (21D)

P -P = i;”g[sm(z) -5, (@) (234)
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According to equation (9A)

2z T X
5,(2) = %-J %-J QI Mo - & sin Blyq|gg (240)
o Lo

Hence by (24A) the bracketed term in the equation (22A) becomes the

recurrence relationship

S ,.(2) -8 (2 =-j[J_(2z) + jE (22)] - 1"
ml m-1 m Voo mm (254)

Substituting m = m-1 in (25A) and taking its limit as z»e

) 1-(-1 m-1
o P2 70 'T%TT%F" (26A)

Further rearranging the terms of Pm in the expression (20A) and

noting [ 2]

J JaE)de = 1,
0

. . Z m
Pm = %— - i’f: %—J Em(g)dﬁ + ——T——l+(-1];) n z (274)
0

which gives for m= 0 and m = 1, [ 22]

j 1 (1
- ed

(28A)

This leads us directly to write down the general m-th term
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b BT

where
1
v = Yo = 2202

GmD) = y(m) +

We note further the constant Py given by equation (2CA) indeed satisfies

the equation (26A). From (29 A)

. m-2
P - %_ - 1+(-1) w(mél)

m-2 2m (30A)

subtracting (30A) from equation (294 in fact gives equation (26A). Thus
from equations (194, (264 and (29A), the asymptotic formula valid in

the region |arg z| < 7 of the complex plane is given by

s @ v d e DT o @)

. 1 .
L eﬂ[ZZ T larg z| < =
Y1z ’ (314)

The analyticity of Sm(z) ensures that the above asymptotic formula
can be continued onto any desired sheet in the complex plane.

With this formula for Sm(z), we are now ready to consider the
terms an(kb) defined in the expressions (44) to (74). Note that for

n small and a/b very small, the term

L B9, + C ]~ -Em— 2 z T—_] (324)
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which is just the first term of K0 if the sum is equal to zero when the

upper index is negatiVe. Asymptotically, this becomes

. J[F - 2Kkb]
KO = }—E,n-z—b- -~y - 2nkb:[ - %—"‘ 1 e 4 (334)
T a e 2/7Xb

K=K = S EDGED + m n - an kbl

n -

P
. n — - 2kb
S NG g - 2] : (34A)
2/7kb
where we have made use of the relationship from (314},
| n & - 2kb]
i 1 1 (-1) 4
S, ~v&+ =[ankb - y(ntx)] - e 35A
Zn %- ki +-2- Z/T?EE ( )
Note that
na na 0" . v 2b
}COQB—JSb(B—J +4nn=-n 7%-- Ye +4nn =N " Ye
which is a useful approximation for small na/b and shows that
_ 2im '
Ko = no0 %n | (364)

For kb large, the last term in expression (4A} or a,
_ kb n
AL VS T ST B <

may be neglected since it is of order 1/kb and the first term is of

order kb. Hence
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jlF ~ 2kb]

3 2 2 2
a) v 52 m 2% - Ve * Ko GG + o 2
jlz - 2kb]
-Z2+Mmkb - jm+y %B-e (38A)

and

a_ n %%”ka{gngl)a go[Engl)%I {En+1) (n+l)%]

. ‘ﬂ'
il T 2kb]
¢ an(n®-1) - 2 kb - jo o+ (DN Loe (394)

?T‘

larg z| < =

T (ngl)a , (ngl)a small, the latter can be written as

jlg - 2kb]
a, v %9-2 n zb-— Zy - 2 &nkb - jmw + (-1)n+l / %B-e 4 (40A°

A-1 Roots for large values of kb

The roots of a, for lafge values of kb may be found by setting
the term in the brackets of the expression (3A)} equal to zero and

rearranging the terms to solve for kb in the exponent,
kb = 18r— Rn[( l) V [2 in — - Z'Y - 2 ¢nkb - _')TT}I (41A)

Note that there are only two sets of roots, those for n even and those
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for n odd. Purthermore, one has to be careful about which branch of

the outside logarithm is used in the calculation. This formula is relatively
insensitive to kb on the right hand side (because it appears only as

snkb and vkb, both slowly varying functions) and hence should be highly
suitable for calculating kb by iteration. A guess nf kb may be inserted

in the right hand side to generate an improved value. If the above

formula is written as

= £(kb) (424)

then the iterative algorithm is
: klb = f(kOb),
kyb = f(klb), ..... cees

where kob is the initial guess. The iteration is carried out until it

converges.

A-2 Asymptotic formula for residues of 1/an(s)
At zeros of a s, we have

"k .b 2

an(kb) - _I%;_ n+l(k ;b * n l(k ;0) PT_WS Kn(knlb) =0 (43A)

where kni is a complex zero of a . Thus l/an has a (simple) pole when

a, has a (simple) zero. The residue can then be written as

1 1
Qm =
ok (kni)aR6y = @& (448)
dk k=kni
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More precisely, we wish to find the residue

- 1 1
£1m - . =
s (s-s ;)7 (sy  da
ni n ‘251
S S“Sni

where s = jkc, but this can be found simply by noting that

d_ jd
ET X

From the expressions (34A) and (42A), for large k = kni’Kﬁ behaves

like

n- ni BE_'k=kni “kni

jlr - 2k_.b] .
R L [ e R
1

thus the residue is
. T -1
N =.¥HP/§HﬁT4%N
ni J ™

If we are able to form a residue series of the form

z Rni .
-1 E“E a

where

and if the poles k = kni behave approximately like
64
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(46A)

(47A)

(48A}

(49A)

(50A)




Elll—i = @(—}f) (51A)

Then the residue series terms

R,
e On™% (524)

-

ni

which is a convergent series.

A-3 Expansion of l/an(s) in a residue series

Let us consider an(s) in the s = jkc plane. [xamination of the
asymptotic behavior of the poles (both numerically and observing the
asymptotic form of an(s)), we form the approximate picture below (Figure
1A) of the pole distribution with poles at ¢ = Shit

We shall draw a circular contour centered at the origin and passing

between two poles as shown. Now consider the following contour in-

tegral in the &-plane

;T§ dg :
&3 c P (g-5)a, (&) (58
and depending on the nature of the behavior am(g), the value of the
exponent p is selected. For the present problem we chose p = 0 and
since a&l(g) =CDC%) for £ on Cn’ according to the asymptotic formula

the integrand is 8(5'2) and hence

gim 1 dg =
e 77 § GO (544)

“
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Figure 1A, Contour Cy in complex z-plane.
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But the integral is alse the sum of the residues of the integrand, which

yields
1 . z 1 2im S“Sﬂi =0
5, (8) {578 w5y 3 ()
ar

R .
ni
~S_ .+

1
RO
ants i °"°ni

where Rni is residue of l/an(s).
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