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Abstract

A simple way of calculating the transient responze cf a2 thin wire is
presented. The method 1is based on (i) the asymptotic antenna theory for thin
wires and (1i) an expansion of the induced current in terms of the so-called
natural modes. An explicit series representation of the transient Induced
current In terms of the resonances of the wire 1s obtained and this represen-
tation is used to numerically evaluate the wire curreat using a desk calculator.
A comparison 1s made between the results obtained using the asymptotic theory
presented here and those obtained from a numerical solution of a space-time
Integral equation. Good agreement between the results is found except for
early times. The method points to a fast way of estimating the transient
induced currents on more complicated structures such as a stick model of an

aircraft.




I. Introduction

So many papers have been written about scattering and radiation from thin
wires since Pocklington [1] presented his in 1897 that one more paper on this
topic is hard to justify. Almost all work done in recent years involving tran-
sient scattering and radiation from thin wires has been based on numerical
calculations on a computer [2]}-[5]. These numerical calculations tend to become
very complicated and there are many cases where a simplified analysis yields
sufficiently accurate results. A simple and physically appealing way of calcula-
ting the radiation field from a pulsed antenna is presented by Franceschetti
and Papas [6]. The simple results so obtained are valid only in a time scale
which is large compared to the transit time across the antenna, and thus fail

s to give the correct early-time response. However, the early-time response of
a linear antenna has already been evaluated by Latham and Lee [7] in their study
of the transient properties of an infinitely long cylindrical antenna.

In this paper, a technique based on the natural-mode method [8] 1is used
to obtain approximate anmalytical expressions for the time history of the current
induced on a thin wire when it is excited either by an incident step—function
plane wave or by a slice generator whose output voltage is a step-function in
time. The advantage of the method lies in the fact that all expressions are of
simple analytical form and can be evaluated using a desk calculator. The method
is currently being used to obtain the currents induced on a thin wire when a
charged particle moves near the wire. It is also used to study the external
resonances of crossed wires (a simplified model of an aircraft) and two parallel

wires (staggered and nonstaggered).



II. Mathematical Formulation

The induced surface current density Jj on a conducting body satisfies

the integro-differential equation

£ = - se_pxaxE™,  £-3 = nxax(s?/c? -vv.) f Gjds' 1)
S
where
G(z,r") = (4n|r-r'|)7! exp(-s|r-r'|/c)
is the free space Green's function, g}nc is the incident electric field, n

is the outward unit normal to the surface S of the scattering body and the
time dependence exp(st) 1is understood. It is known that the singularities in
the complex frequency (s) plane of the surface currents induced on a finite-
size, perfectly conducting body can be identified either as the singularities of
the incident field or as poles [8]. The locations of the poles are uniquely
determined by the shape of the perfectly conducting scattering body. These
properties of the induced current have been shown using the magnetic field
integral equation and they imply that the inverse operator £-l(s) is a mero-
morphic function of s and that the locations of its poles (the natural fre-

quencies) are given by all those sn for which the homogeneous equation

£(s )1 =0 (2)

has a nontrivial solution Jn'

The operator L(s) 1is a symmetric operator when operating on functions

that are tangential to S, 1i.e.,

£s) = £(9) 3)

where the '"transposed' operator £T(s) is defined from the identity




<£(3)';f_.g> = <£,£T(S)'g> (4)

and the scalar product is defined by
<f.g> = I £(o)-g(x)as.
]

To show that &£ 1s a symmetric operator onme merely uses the definition (1) of

& together with (4) and some simple vector-algebraic manipulations. The proof
is given in Appendix A. Using the fact that £-1 is symmetric (an immediate
consequence of the fact that £ is symmetric) and assuming that £-l has only
simple poles (which has been substantiated in all cases investigated numerically),

we obtain the following forced solution of (1) by using the Mittag-Leffler
theorem, cf. [8]:

1= 53X [(s—sn)"lq:' (s )1 ,1 > T<ETS,1 >3+ mn<s>-§i"°]
- eoss(s)-génc (5)

where (' = dL/ds, mn(s) is an operator-valued polynomial of s and E&(s)
is an entire operator-valued function of s. The quantity in is thke current
distribution of a natural mode and it has the gharacteristics of a standing wave.
Some comments are in order here concerning (5). First, the expression (5)
is valid provided there is no degeneracy, i.e., for each s, there is only one
linearly independent current distribution 1n that satisfies (2). The case of
degeneracy can easily be incorporated into the series representation (5) of the
induced current in the same way as degeneracy was incorporated into the corres-
ponding expression in ref. [8]. It is however left out here since degeneracy
does not seem to occur in the case of a thin wire. Second, the solution of (2)
gives both the exterior and interior (cavity) resonances. On physical grounds
it is also clear that én is purely imaginary for interior resonances and that
Re{sn} < 0 for exterior resonances. The fact that Re{sn} # 0 for exterior
resonances is an immediate consequence of the following two observations (cf.

[9]1): (i) the eigenvalues of the scattering operator have poles at the exterior



resonances, and (ii) the scattering operator of a lossless object is a unitary
operator for real frequencies (s purely imaginary). Also, the interior
(exterior) resonances do not contribute to the sum (5) if the sources of the
incident electromagnetic field are inside (outside) the scattering object. In
fact, when the sources are outside the object it is shown in Appendix B that the
scalar product <§inc’ in> vanishes at the interior resonances showing that the
residues of the interior modes vanish. This in turn implies that the sum (5)

can be limited to include only the external resonances.




ITI. Resonances of a Thin Wire

The vector equation (1) can be reduced to a scalar equation for the total

axial current 1I(z) when the scattering object is a wire of length £ and
radius a,

(-ifi - EE-) Jz K(z-z') I(z')dz' = - s¢ Einc 0szs ¢ (6)
dzz c2 0 oz ’
where
2% 2 -1
RK(z=z') = I (87"R) ~ exp(-sR/c)d¢
]
and

Rz = Aazsin2(¢/2) + (z—z')z.

Equation (6) can be solved asymptotically in terms of the "antenna parameter"

Q =2 2n(2/a) when £ >> a. Fromthis asymptotic solution the natural frequencies
of a thin wire are found to be [10]

s_ = (c/W){int -2 Y [2a(2|a|sT) - CL(2n7) + 1S1i(2nm)] +0(n'2)}, n o= £1, £2,...(7)

where [ = 1.78l.... 1is the exponential of Euler's constant, and Ci(x) and Si(x)
are the cosine and sine integrals, respectively. Also, to the first approximation,

the current distributions of the natural modes are given by
In(z) = 27a jn(z) = gin(nnz/L) + 0(9-1), 0 zs 2. (8)

Expressions for the natural frequencies which are asymptotically correect up to
and including order 9-2 can be found in ref. [11] where expressions for In(z)
up to order Q_l also are presented.

To get some quantitative information about the accuracy of the asymptotic
expansion (7) we have in Fig. 1 graphed three different representations of the

fundamental natural frequency of a straight thin wire, namely (1) the asymptotic



1 (labeled 18t order appr.), (ii) an asymptotic

nd

form (7) correct up to order Q-
form correct up to order 9-2 (labeled 2 order appr.), and (iii) the numerical
results obtained in ref. [3]. We note that for a/f = 0.01 (@ = 9.2), the
natural frequencies calculated from these different methods all differ about 20%
from each other. We also note that the second order approximation gives too
large a value of the damping constant IRe{sn}| whereas the first order approxi-
mation yields a somewhat too large value of Im{sn}. Since the convergence of
the asymptotic series is doubtful [11] and judging from the results presented

in Fig. 1, it is questionable if the accuracy of the approximate solution would
be improved by including the 9-2—order term when a/f% = 0.01. For that reason
and also for the reason that the calculation of the 9-2-order term is rather

involved for more complicated structures we choose here to include only terms

of order Q-l in s and terms of order 1(==QO) in all other quantities.

Some comments are in order here concerning the expansion parameter
Q2 = 2 tn(f/a) that is used in this paper. This parameter is not the only
expansion parameter that has been employed in the asymptotic solution of
cylindrical antenna problems. The expansion parameters used in refs [12,13]
depend on the frequency and they may lead to more accurate expansions of the
induced current in certain cases. Since this approach is intended to be a simple
way of solving transient thin-wire problems (but not necessarily the most
accurate one) we find Q to be the most convenient expansion parameter. It
should also be mentioned that expressions similar to (7) for the complex
resonance frequencies of a thin wire have been calculated by Weinstein [14]
who used the Wiener-Hopf technique to obtain approximate expressions for the

induced current on a finite-length wire.
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Fig. 1. The fundamental natural frequency sl of a thin wire. The

natural frequencies for a/2=10"10, 1072, 1074, 1073, o.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 are

indicated in the figure.



IV. Current Response of a Thin Wire

Using the approximate expressions (7) and (8) one can evaluate certain
scalar products in (5) to get the following expression for the induced current

on a thin wire:

2
1(z,s) = ;:gz 2 Sn(;iSn) [Iosin(nvz'/L)E:nc(z',s)dz'] sin(nwz/L)-bO(Q-z)
9

where the quantity Einc(z,s) is the z-component of the incident electric field.
In this expression we have deleted the polynomial operator mn and the entire
operator £ for two reasons: (1) the expression (9) directly leads to the
quasi-static solution for low frequencies and (ii) in the limit of a very thin
wire so that sn = inme/%, (9) is a solution of the differential equatiom
(d2/dzz-52/c2)1 = -4nﬂ-lss°E:nc, 0<zs 2 (10)
with the boundary conditions I(0,s8) = I(L,s) = 0. Proofs of these two proper-

ties are given in Appendix C.

A. Gap Excitation

When a wire is center-driven by a slice generator whose output voltage
is a step-function in time and has strength Vo, one obtains the following

expression:

8v ® n
-9 N (-1) (2n+l) 7z _
I(z,t) = 74 U(ct-|z-2/2]) n‘éb o sin T sin(u, . tlexp(-o, .t) (11)

where —on-+imn==sn and U(t) is the Heaviside unit step function. In Fig. 2
we graph the time history of the current at z=2%/4 and z=2/2+e, ac<<e<<®,
A comparison is also made with the results obtained by numerically solving

a space—time domain integral equation [2]. The approximate solution obtained
here agrees with that in ref. [2] within 25% for ct/%>1/4. It should be
pointed out that the early-time response where the asymptotic theory yields poor

accuracy can be obtained from the results for an infinitely long cylindrical

10
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Fig. 2. Step-function response of the current at z=2/2 and z=2/4 for a wire center-driven
by a slice generator with output voltage Vo' Also included for comparison are the

corresponding results obtained by numerically solving a space-time domain integral equation.



antenna excited at a d&-gap ([7].

B. Plane Wave Excitation

When the wire is excited by a step~function plane wave whose direction
of propagation makes the angle € with the positive z—-axis and is so polarized
that the electric field vector (strength Eo) makes the angle w/2-9,
8 < /2 with the positive z-axis, one gets the following asymptotic expression

for the induced current:

8E 2
o

W U(ct=z cos 8)

I(z,t) =

. El{;]—'z— sin r_11;_z_ [sin(mnt)"(-l)n sin(w t -nw cos e)]exp(-gnt)}_ (12)

We note that the time origin is so chosen that the wavefront hits the wire end
point z=0 at t=0. The asymptotic expression (12) was used to numerically
calculate on a desk calculator the time history of the induced current at
different positions on the wire and at different angles of incidence of the
plane wave. A comparison between these results and those aobtained from a numer-
ical solution of a space~time domain integral equation [2] is shown in Fig. 3
for two angles of incidence, 8 = 30° and 90°. It is observed in Fig. 3 that
the asymptotic theory results exhibit faster oscillations than those of the
numerical solution. The oscillations are due mainly to the fundamental resonance
mode. An inspection of Fig. 1 reveals that indeed, the fundamental natural
frequency of the asymptotic theory has a larger imaginary part, implying faster

oscillations than those obtained by numerically solving the integral equation.

12



€1

8 I T | I | | | 1 |

Asymptotic Numerical -

Q2Z,1 ' e 20 o — e
E,2sin8 '

-6 1 1 i | ] ] ] ] 1

ct/2

Fig. 3. Step-function response of the mid-point current for a wire illuminated by a plane
wave with electric field strength Eo' The cases 0=30° and 90° are shown. Also
included for comparison are the corresponding results obtained by numerically solving

a space-time domain integral equation.



Appendix A

In this appendix we show that the operator £ defined by (1) in the text
is a symmetric operator when operating on vector functiomns that are tangential
to the closed surface S. Let f and g be two differentiable vector functions
on the surface § such that n-f = n*g =0 on S where n is the outward unit

normal to S. We then have

<L-f,g> = J {_q(g)x[g(z)X(szlcz-W-) [ G(r,_{')i(z_')ds'] }-3(_1;)ds
S S

= - V! VG(r,r")-£(xr")dS'+ s°/c G(r,r')Ef(r')ds'] -g(xr)ds
S S S

= - f [z, z")V-£(x")V-g(z") + s2/c? G(z,r")f(x')-g(r) ] dsds’. (A1)
xS

where f denotes the principal-value integral. In view of (Al) it is clear that

<£.£’§> = <f,L.g> (A2)

for arbitrary differentiable functions £ and g that are tangential to the
closed surface S. Equation (A2) shows that &£ is a symmetric operator, i.e.,

£=ot.

14




Appendix B

<Einc

In this appendix we show that the scalar product ,jﬂ> vanishes
at the interior resonance frequencies when all the sources of the incident field
are located outside the scattering body.

Let in denote the surface current density on S of an interior mode,
and En’ gﬂ the corresponding electromagnetic field of this cavity mode in V,
t::cregig: inside S. The incident field evaluated at s=s is denoted by

En s ﬂn . Some vector algebraic manipulations combined with Maxwell's equations

then give
ine inc
= 10f, [ B waes
n S
= - f HiPC. (nxE )dS - f iinc.g gv. (B1)
g 1 = - y B

where iinc denotes the sources of the incident field. The surface integral of
the last expression in (Bl) vanishes since the tangential electric field of the
modes is zero on S. When all the sources of the incident field are outside S
we therefore have
<g™MC, in>|5n = 0. . (B2)

Equation (B2) shows that the solution of the integro-differential equation
(1) can be viewed as a superposition of an "interior solution” and an "exterior
solution”. The interior (exterior) solution -3 due to sources inside (outside)
the surface S. Another way of expressing the result (B2) is to say that all
Interior modes are orthogonal to any incident field whose sources are outside
the scattering object. Finally, we also point out that the left—hand—-side of
(1) is the same for both the exterior and the interior problem. It is therefore
to be expected that the inverse operator £—1(s) is singular at both the interior
and exterior resonances of the body. The result (B2) shows however that there

always exists a solution of (1) even at the interior resonances when the sources

15




of the field are outside the object. The solution of (1) is of course not
unique at these resonances although on physical grounds we define (5) to be

the forced solution of (1) even at the interior resonances.
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Appendix C

In this appendix we give two reasons for deleting the polynomial operators
:nn and the entire operator & in (9) for the case of a thin wire.
To see that the expression (9) reduces to the quasi-static solution when

s >0 one lets s, = inme/%, n = +1,+2,... in (9) and obtains

2
I(z,s) = %15% f E:nc(z',s) 2: sin(nw;'/z) sin(;wz/&) dz'. (c1)
o 0 n>0 3° + (awe/L)
The series in (Cl), after dropping the 32 term, can be summed as [15]
¥ 2 L
-2 (2-2z)z'/2c, z>z
2: (amc/L) “sin(awz'/L2) sin(nwz/L) = (Cc2)

n>0 _ (2-z')z/2c2, z<z'.
Thus, (Cl) becomes

- -1 z ' ine, , ' 2 . inc, , '
I(z,s) = 4we°sQ z (l-z/R.)Ez (z',s)dz' + z(1l-z /z)Ez (z',8)dz (C3)
0o - z '

and in the time domain we have

-1 3 z 1 L i
[(z,t) = bme @ o= [on z'(l-z/l)Eznc(z',t)dz'-PJZ z(l-z'/l)Eznc(z',t)dz'].
(ca)

To show that (C4) is the correct quasi-static expression for the induced current
we note that the linear charge density t(z,t) induced on a thin wire by a quasi-
electrostatic field with potential ¢(x,y,z,t) 1is given by [16]

T(z,t) = 4ne°n'1[¢o(c) - 9(0,0,z,t)], Oszs 2 (€5)

where@o(t) is a function so that the wire has no net charge, i.e.,



L .
f t(z,t)dz = 0, (C8)
0 , .
Using the continuity equation we obtain the following expression for the induced
current:
s (%
I1(z,t) = - 5—-J t(z',t)dz"' cn
t
0
which upon using the fact that Einc(z,t) = - (3/3z) 9(0,0,z,t) reduces to (C4)
after integration by parts.

To see that (9) with s =inrc/% satisfies the differential equation

(10) we simply note that the Green's function

g_ 2: sin(arz/2) sin(nwz'/z) (8)

G(z,z') = 5
n>0 3 -+(nwc/2)

satisfies the differential equation

dz 32 1 '
(—2 - —2—) G(Z,Z ) = - §(z-2') (C9)
dz c

and the boundary conditions G(0,z') = G(2,z') = 0. In view of (C8) and (C9)

it is now clear that the expression (9) with s =inre/2 satisfies (10). It
has to be emphasized, however, that (10) together with the zero boundary condi~
tions gives only undamped oscillations which are exactly the same as those given
by (9) provided that ra&iation damping is neglected.

Finally, we mention that the polynomial operators mn and the entire
operator £ are not present in the series representation of the induced surface
current density in the following cases: (i) all interior (cavity) scattering
cases, (ii) scattering from a sphere and (iii) scattering from a thin wire
(in the asymptotic sense). Without a mathematical proof, we expect this to be

the case for any finite-size perfectly conducting scattering object.
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