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ABSTRACT

A new set of integral equations for electromagnetic

scattering problems, the "hybrid" equations, are presented.

The advantages of these equations for thin conductors are

discussed in comparison to the magnetic and electric field

integral

solution of the electric field integral

hollow cylinder.

equations.

Specific comparisons are made with the
equation for a finite

The hybrid equations are also obtained for

&mP 326
AP

flat plates with solutions available elsewhere in the literature.



INTRODUCTION

Since the advent of the digital computer and associated numerical
techniques, integral equations have gained a significant place in the
solution of electromagnetic scattering problems. The primary sets of
equations used for solving perfect conductor scattering problems have been
the magnetic and electric field integral equations (MFIE and EFIE). The
difficulties associated with solving these equations for thin surface
structures will be presented in addition to a new set of equations developed

by the author {1] which alleviate the difficulties of the previous equations.

INTEGRAL EQUATIONS

The total fields due to an induced electric current J on a surface S ‘

may be written
A(F) = B5(3) + vX J F(EY) o(T-3') ds' (1)
S

and

E(T) = BN (D) + 5%; J (k2 3G oG-T) + GEND D) ve(E-t") [ ds' (2)
o

where the superscript i indicates the incident field and ¢ is the free

space Green's function
-ikR

4nr ?

o(x-1') = = R=|2-7'|. (3)




[f the surface is thin, then j'represents the sum of the currents on both

sides of the surface, J = J+ + J_. Approaching the (+) side of the surface,

(1) becomes

A ]

———==n, W -1, X f [J XV o] ds' (4)
S

where 3+ = ﬁ+ Xﬁ(§+) by equivalence and the integral is written as a Cauchy
principle value with the residue J/2. It should be clear that (4) cannot
be used to solve for the required current J on a thin scatterer, but is
simply an expression for the difference current in terms of the sum current.

The EFIE to be obtained from (2) does not suffer from the same diffi-
culty as the MFIE in (4). To show this, we again approach the (+) side of
the surface to obtain

—ﬁ+ XET = ii_f % [kz Jo + (J+V) v¢] ds' (5)
juwe s

where the integral is interpreted as a Hadamard principal valuel. One may
also exchange the differention and integration or integrate by parts to
obtain more conventional integral definitions. Indeed, (5) is an integral
equation for the current J over the entire scatterer except at corners and
edges for which only the component equation of E parallel to an edge exists.
To complete the description at edges, one can include the zero edge behavior
of the current component perpendicular to the edge.

The difficulty in using the EFIE is directly related to the stability
of the solution. The difficulty arises from the strong coupling between the

two component equations of (5). Such coupling may cause one of the current

1. For simplicity, the Hadamard principal value may be obtained by taking
the finite or convergent part of the Cauchy principal value [2].



components to dominate both equations in certain regions of the scatterer
and thus cause instability in the solution for the other current component
in these regions. To be more explicit, let us consider a finite, perfectly
conducting, hollow cylinder of radius "a" extending from z = -L/2 to L/2.
Separating (5) into its Fourier components in terms of the spatial angle

¢, we obtain the following equations for the n th harmonic with

z e(-L/2, L/2):

L/2 5
A 3 2 n2 in  on ] ' 6
-jue, = [Jcpn " e - - Cod ¥ 3 Tpn 5. 1 42 (6a)
~-L/2 a
L/2
2 3G
U S 2 .3 in On '
jueE_ = % [Jzn (k° + —_-Bzz ) Gy, * 3 Jon 2 ]dz (6b)
-L/2
where
2w
Gmn(z—z') = J ¢ cos(ma) cos(na) ada, o =¢' - ¢
o
= . L '
= -5 In !z—z I + Residue (7)
and

1f k = + n/a, then the kernel on J _ in (6a) is bounded and Jzn becomes the

én

dominate behavior in both equations, though J, may still dominate (6b) in

¢n
the regions about the ends due to edge behavior. The oscillatory behavior
which characterizes the instability of J¢n is clearly observed in Figure 1,
while Figure 2 shows the instability in a more pronounced state. It is
reasonable to assume that these problems may also occur for other structures,

such as plates, with the appearance of either oscillatory behavior or

incorrect edge behavior.
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Figure 1. First-harmonic currents on a one-wavelength cylinder using
the EFIE's for ka=l. The incident field is H-polarized
and normally incident with E(171 = n/k.
+
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Figure 2. First-harmonic currents on a one-wavelength cylinder using
the EFIE's for ka=1. The incident field is axial incident
with Epl = n/4 at z=0.
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We can minimize the coupling and resultant problems of the EFIE by
combining the EFIE with the tangential components of the curl of the normal
magnetic field. This combination results in the "hybrid” equatioms given
by
. ﬁi) - jmgﬁij

n, X fV X n, (n+

~ { 2 - - Ao -
_ . |
= n, X T (k% Jo + v(v-3¢) +V X 0, (n, -TxVe) | ds'. (8)
S

From Maxwell's equations, the left~hand side of (8) may be written in terms
of the tangential magnetic field as ﬁ+X[—VXﬁti]. Hence, the hybrid equa-
tion is nothing other than the normal derivative of the MFIE in the sense
of the curl. To point out the dominate behaviors in (8) we rewrite it as

—ﬁ+x[vxﬁti] = ﬁ+x % [i(kz + vt2)<1> - (ﬁ+-3) (VX(ﬁ+XVc1>))
S

- (G, AXTXT) + (B, -70) (T-7) A, ] as’ (%)

Where Vtz is the 2-dimensional Laplacian form given by Van Bladel.2 We
observe that the last three terms only require a Cauchy principal value,
whereas the first term requires the Hadamard principal value. Moreover,
the last three terms drop out for a flat surface and result in no coupling.
Hence the first term is the dominant term of thé equation. |

To demonstrate the stabilization that may be obtained, consider (8)
for the finite, hollow cylinder solved previously using the EFIE. The

hybrid equations for this case are

2. Van Bladel [4] defines Vtz in curvilinear coordinates with 63 as the
normal by

h h
2L 93 (.2 ._i§>.+ - (ifL _of )]

t hlh2 -Bvl hl vy v, g 3V,
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2 2
1 8 iy 2 2 _n__4d
0o ap (OH(Ln) T [Jzn (k a2 dzz ) GOn
~L/2
in d _ ' (10a)
+ " J(bn Cm (Gon Gl ) ]dz
L/2 2 2
o 4t o 2 .4 .o '
o U T {J¢n [(k“ + 2 ) G =55 Gon}} dz', (10b)
—L/2 Z a

where Gmn is defined in (7). The decoupling is apparent with Jzn eliminated

from (10b) and J 0 occurring in (10a) with a bounded kernel. Hence Jzn

¢
and J, dominate (10a) and (10b) respectively. The implication of this

¢n
decoupling is to stabilize the current solutions as shown in Figures 3 and
4 for the same cases previously shown in Figures 1 and 2 respectively.

For the EFIE,the behavior of the’perpendicular component of current
at the edge is specified to complete the problem since one of the EFIEs is
not defined at the edge. This behavior must also be specified for the
hybrid equations in addition to a second constraint, since neither of the
hybrid equations are defined at the edge. This latter requirement is
consistent with enforcement of the boundary conditions on tangential E and
normal H. In fact, without the constraint the normal magnetic field may

+

be a homogeneous solution to
[k + 9 2 + &+ (VXA )XV — 5, - (VXVER.)JH_, = O (11)
t + + + + 't

The constraint needed is to force the solution to (1l1) to be zero, thus
implying zero tangential electric fields. For the hollow cylinder, (11)

becomes

2 n2 82
(k™ - ~§-+-——§-) Hpn =0 (12)
a 0Z
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Figure 3. First-harmonic currents on a one-wavelength cylinder
using the hybrid equations for ka=l. The incident

field is H-polarized and normally incident with E¢1 = n/4.
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Figure 4. First-harmonic currents on a one-wavelength cylinder using o
the hybrid equations for ka=l. The incident field is axial

incident with Epl = n/4 at z=0,




with a solution of the form

j ;2 Y’;‘_~7?
H = A cos k< - B 2 4B sin k- & ., 13)

pn 2 2
a a

Hence one only needs to set Hpn = 0 at two values of z not separated by an
integral multiple of Wﬂ/kz - n2/a2 . To stress the need for this constraint,
consider E -~ polarized normal incidence with n = ka, ka not a Bessel function
zero. In this case both the forcing functions of (10) become zero. Without
setting Hpn = (0, one might incorrectly assume that the current solution is
zero. Such an assumption is avoided by application of the constraints.

In addition to the hollow cylinder problem, the hybrid equations have
been used for the thin-plate scattering problem. In the latter, only the

first term of (9) remains and the equations may be written as

oH

X _ 2 2 '
- = &+ VD J (Jy@) ds (14a)
X,y
and
oH ) 5
= 1
-—53 k" + V.9 JX , (Jx¢) ds'. (14b)

These equations were solved using a Hallen's type of approach with the
Z2-dimensional Helmholtz operator, using the constraints on J and Hz to
relate the resulting coefficients of integration. Further information on
the thin plate problem is available in a previous article by Rahmat-Samii

and Mittra [3].

CONCLUSION

It has been shown that the hybrid equation; offer a significant advan+

tage over other equations in decoupling the unknowns for integral equation
solution. The only constraints on the problem are applied to the normal

magnetic field and the current perpendicular to the edge. The hybrid
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equation approach is potentially capable of stablizing the solutions for 0
many of the thin surface problems currently being considered in the industry.
The hollow cylinder and thin plate scattering problems have been treated

here to explicitly demonstrate the advantages of decoupling.
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