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Abstract

Integro~differential equations are formulated for the
general problem of a finite-length wire excited through an
arbitrarily shaped aperture in a conducting screen. The wire
is assumed to be electrically thin and perfectly conducting,
and it is arbitrarily oriented behind the perfectly conducting
screen of infinite extent. A known, specified incident field
illuminates the perforated-screen/wire structure. The integro-
differential equations fully account for the coupling between
the wire and the aperture/screen. They are specialized to the
case of the wire parallel to the screen with the aperture a
narrow slot of general length. These special equations are
solved numerically and data are presented for wire currents
and aperture fields under selected conditions of wire/slot
lengths and orientation. Data indicative of the coupling
between the wire and slot are presented.
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INTRODUCTION

The purpose of this paper 1s to present an analysis of the
problem of a wire excited by an electromagnetic field which
penetrates ah aperture—ﬁerforated, conéﬁcting screen., General,
coupled integro-differential equations are formulated in the
paper with the wire current andvapgrture electric field (or
eduivalent aperture magnetic current) as unknowns. The coupling
between the aperture and the wire is accounted for fplly in
the derived equations. These equations are specialized to the
case in which the aperture is a narrow slot and the wire is
parallel to the screen. Under these restricted but practical
conditions, the appropriate equations are solved numerically

and data are presented. Based upon the calculated results,

the slot/wire problem is discussed in detail.

The general problem to be considered here is illustrated
in Fig. 1 where one sees a finite-length wire which is arbi-
trarily oriented behind a planar conduﬁting screen. The screen
is assumed to be perfectly conducting, vanishingly thin, and
of infinite extent.r The wire is also perfectly conducting
and is thin relative to 1ts length as well as to the wavelength
of the electromagnetic field. There is an aperture A of general
shape in the screen of Fig. 1, and an incident field (Ei,ﬁi)
is seen impinging upon the structure. The wire is excited by

the electromagnetic field which penetrates the aperture.
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Conducting
Screen

Fig. 1. Wire Illuminated through Aperture-Perforated Conducting
Screen.
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The only previous literature which has a bearing on the
present work comprises one moderately related paper by King and
Owyang [1], one by Lin, Curtis, and Vincent [2], and a prelimi-
nary version of the present work by Butler [3]. In the first
paper above, the authors treat an array consisting of two
driven dipoles symmetrically-located on either side of a slotted
screen. Lin, Curtis, and Vincent consider a wire excited through
an aperture but, since they calculate aperture fields in the
absence o0f the wire,rtheir theory does not include the complete
coupling between the wire and aperture. As substantiated
in the discussion below, the energy scattered back into the
aperture by the wire, which is ignored by Lin, Curtis, and
Vincent, can be quite significant and can strongly influence

the aperture fields.

FORMULATION

In the boundary value problem under consideration here,

A
t

one observes that there exists some total electric field E
in the aperture A and tangential to the aperture/screen plane.
This electric field is, of course, unknown a priori and, in

fact, is the quantity which is to be determined as a solution
to the problem. In terms of this aperture field Eﬁ, the inci-

i), and the geometry of the structure, as depicted

dent field (Ei,ﬁ
in Fig. 1, one can express the magnetic field in each half-space
in such a way that Maxwell's equations‘'are satisfied in each

half-space and boundary conditions are satisfied on the screen
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and on the wire. The magnetic field in each half-spaée is writ-

ten as a function of ﬁi, which is common to both half-spaces, ‘
ensuring continuity of electric field through A. Equating the

transverse components of these two expressions for magnetic

field enforces continuity of magnetic £f£ield through the aperture

and leads directly to desired equations for the problem under
investigation.

Fig. 2 depicts schematically* a step-by-step reduction of
the left half-space (z<0) problem to a simple equivalent pro-
blem in a form which readily suggests how one may develop an
expression for the left half-space total magnetic field H .

In Tig. 2a is seen the original problem while in Fig. 2b the
aperture/screen is replaced by a perfectly conducting, contin-

uous planc (aperturé shorted) with the original tangential

electric field ﬁi in the aperture restored at z=0 , (x,y)e€A,
by an appropriate magnetic surface current ﬁs which is specified
=A X . - =A X .
to have a value -E i ,i.e., M_=-E 4 . Notice that this as-
t z s t z
of-yet undetermined magnetic current, which resides on the
illuminated side of the shorted screen, radiates in the pre-
sence of the screen and that (ﬁl,ﬁi) of the original problem
in Fig. 2a illuminates the shorted screen. Next, in Fig. 2c¢,
one appeals to image theory which enables him to remove the

conducting screen entirely and which requires that he include

the image magnetic current plus (Er,ﬁr), the field reflected

*Directions of vector quantities shown in Figs. 2 and 3 are
adopted for illustrative purposes and are not intended to
indicate properties of final results.




from the shorted screen, so that the total electromagnetic field
in the left half-space is unchanged from its value in the orig-
inal problem (Fig. 2a). These last modifications leading to
Fig. 2c simply serve to preserve the boundary conditions on

the xy-plane in the absence of the conducting screen, which are
guaranteed by the presence of this screen in Fig. 2b. The
equivalent problems illustrated in Figs;,Zb and 2c are valid

only in the left half-space so the fields (Ei,ﬁi) and (Er,ﬁr

)
plus that radiated by the magnetic current and its image, are
to be calculated only for z<0. Furthermore, since in the final
equivalence of Fig. 2c¢ all currents and fields exist in a homog—
eneous medium of infinite extent, one may use only the particular
integral solutions of the wave equation for vector potential
to calculate fields radiated by the magnetic current.

The total magnetic field H in the region z<0 of Fig. 2c¢
is the sum of that radiated by ZES, the incident field ﬁi,
and 1", If one defines the so-called short-circuit field (ESC,

ﬁsc) to be the sum of fherincidence and reflected fields,:

E°C=E'+E" and ﬁsc=ﬁl+ﬁr, in the half-space z<0 with the aper-

ture shorted, he may construct the total magnetic field at a

point T in the left half-space as

H (r) = 8°%(%) —j—w—z[kzF(;) + grad(div F(I-))] , z<0 . (1)
k

In Eq. (1) w is the angular frequency of the surpressed harmonic

jwt
eJ

variation in time, , k is 2m/wavelength X and F is the



electric vector potential:

F(r) = f—w fzﬁs(i')c;({-,z')ds' (2)
A

where € is the permittivity of the medium of Fig. 1 and where

L g
G(r,r') = € (3)
. |x-7"]
with
5
|x-x'] = [(x~x')2 + (y-y) o+ Z?] » (x',yN)ea , z<0 . (&)

Next, attention is turned to the equivalences illustrated
in Fig. 3 and the formulation of equations peculiar to the

right half-space (z>0). The unknown aperture electric field

E» common to the left and right half-space problems, is again
postulated as illustrated in Fig. 3a. Fig. 3b depicts the

conducting screen with the aperture short-circuited over which

is impressed a surface magnetic current-ﬁs(=ﬁﬁ><ﬁz) that serves

to maintain the original value of tangential electric field by

A
t

In the equivalent problem depicted in Fig. 3b, the wire remains,

supporting a discontinuity from zero at z=0 to ET at z=0+ in A.

and both the wire current and the magnetic current radiate in
the presence of the conducting screen. The final equivalence

is the model shown in Fig. 3c from whiech the conducting screen ,
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has been removed. The boundary conditions on the electromagnetic
field due to the presence of tpe conducting screen are main-
tained after the screen has been removed in Fig. 3c by the
inclusion of the images of the wire and of the magnetic current.
One may look upon the conducting wire's being replaced by an
imaginary cylinder bearing an equivalent electric current, on
whose surface one requires the total tangential electric field
to be zero. For a wire satisfying the traditional assumptions
of thin-wire theory, as is the case considered here, one ne-
glects all but the axially directed surface current, which is
assumed to be circumferentially independent, and accounts for
it by a total axial current I. Furthermore, thin-wire
assumptions permit one to require only that the axial component
of electric field be zero on the wire surface. Subject to the
qualifications above and the equivalence of Fig. 3c, one has
achicved in the region 2>0 a model having currents (both elec~
tric and magnetic) radiating in a homogeneous space of infinite
extent. Again, such a situation permits one to employ only the
particular integral solutions of the wave equations for the
magnetic and electric vector potentials.

The total magnetic field in the region z>0 is denoted gt

and can be written

gt O

= +jk2 [sz‘ + grad(div f’)] + ﬁl— curl & , 2z>0 , (5)

where F is defined in (2) and where u is the permeability of

the medium. A is the magnetic vector potential due to the wire
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current plus its image:

A(Y) = f—w & '[I(;;])G(;,'E‘L)dl'

n

Hooa o | o | 1
+ e 9 fI(ri)G(r,ri)dJL s (6)
L

where @ and Gi are unit vectors in the wire and wire image
directions, respectively. The wire is of length L and radius

a, and the vector ré locates a source point on the wire while

ri locates a source point on the wire image.

As a part of the right half-space problem, one must enforce

the appropriate boundary condition on the wire by requiring that

the total electric field in the axial direction on the wire's

gsurface be zero. To this end, one requires
"'A _i =S ~ *
[E + E 4+ E ] +d = 0, on wire (7)
W W w

where Ei is the field due to the aperture/screen, Ei is that

due to the wire image, and E; is that due to the equivalent

sources on the wire. The terms in Eq. (7) can be written
~A 1 -
Ew =+ 7 curl F, z>0: (8)
ES + it - —jJ&-[ ZK + rad(divlﬁ)] z>0 (9)
w w k2 g ’ : ’
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so that (7) becomes

L

fscurl ¥ -j
k2

G.[ k2E + grad(div K)] = 0, on wire (10)
an equation which demands that the wire boundary condition be
honored.

One observes that the formulations bf Eqs. (1), (5), and
(10) are based on the magnetic and electric vector potentials,
A and 7, which implies that ﬁ+ and H satisfy Maxwell's equa-
tions and the radiation condition in the appropriate half-spaces.
Boundary conditions on the screen are satisfied because (1)
and (5) are based upon the models of PFigs. 2c¢ and 3¢, and
Eq. (10) ensures that the tangential electric field along the
wire surface be zero. Et is common to both half-space formu-
lations (through ﬁs and F) so the final remaining condition
that must be enforced is continuity of the total transverse mag-
netic field through the aperture, which serves to couple the
two Individual half-space formulations.

The continuity requirement on tangential magnetic field
is
2im H ~ §_ = %im H

z40 z zv0 2

which, in view of Eqs. (l) and (5), becomes
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3225 [K%F + graa(atv F)] 7 4, % (cur1 &) "4, = 8°°7q_, (11)

k Z

in A
z = 0
‘Since ﬁsc)<ﬁz=2ﬁl)<ﬁz at' z=0 on the shorted screen, Eq. (11)
reduces to
O a3 =\ X A 1 Tu X A o=ix o,
i [°F + grad(daiv F)] "6, + oy Ceurl B) " & = H "4, , (12)
in A
)
z =0
which can be written in scalar form,
2 2 2 .
.a.____. ” 2 a ._Uig .§___.. _a__. = —'_]:S-—- 1
<3x2 *ok > Fx F 9x0y Fy *t 37 (EZ‘Ay T 3y Az) % By oo
' (132)
z =0, (st)EAa
2 2 2
) 2 5 we (3 LI WS S
<8y2 + ok ) Fy dydx Fx ) (Sx Az 0z Ak) - Hy ’
(13b)

z =0, (x,y)eA,
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where .

L/2

WUe 0,
= “j"f%—./}(s') [zc cosfB + (y—yc)cosY] G(x,y;s')ds' (l4a)

st'==L/2

and

wef 9 _ 9
J2 ( ax Az 9z AX)

L/2

= +j%ﬁ§ ‘l;(s‘) [zc cosqo + (x-xc)cosY] E(x,y;s')ds' (14b)

s'=-L/2
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with

-ikd .
E(x,y;S') ="<?E'+ JL) e”d : (15a)
. g2 a3

and
d(x,y,s') = [[x - (xC + s'cosoc)]2

1
2

+ [y - (yC + s'cosB)]2 + (z, + s'cosY)z] . (15b)

Fx and Fy are components of F defined in (2) and the geometric

quantities of interest in (14) and (15) are listed below.
Center of wire:
(xc’yé’zc)
Unit vector along wire with sense of I:

1

8§ = coso G_ + cosB 4. + cosy
X y z

Direction cosines of wire:

cosa = {i*{
X

cosB = Q-4
y

cosy = ﬁ-ﬁz

15



Also, (10) can be written as a scalar equation which appears .

on the following page and in which

e—ij(s,s')

g(s,s') = R(S,S') (173)

with

Y
R(s,s') = [422 + 4zc(s+s‘)cosY + 4ss'coszy + (s—s')Z] . (17b)

16



(91) ‘2aImM dYy3 uo ¢ Asoo AN& fe _ mm MMV +

¢/ 1~-=,8
£ =z :
0802 g e gsoo Nm e muyf- = ;sp(,s°s)8¢( 8)1 48P ¢ _ ~
€ € . : ! P €
/1
¢/1~=,58
\ ) mNA.mlmv + NNH N\Al"-w
. S s°8)3(,;s - 5 o€
1SP(S 8)B(S)T [ (1-h 500 7). % + ,sp—7 5 Gor) (1 + &
[,Gs=5) + _=lxf- z®
&
¢/ ! ¢/1



Specialization of Aperture to Narrow Slot of Finite Length

Without the wire, Fig. 1 would depict the traditional, 0
general aperture/séreen problem, and (13) with terms involving
components of A deleted would be the appropriate set of integro-
differential equations. Recently, a few researchers [4,5] have
undertaken to solve numerically various non-circular
aperture problems and have found éompﬁter storage and run times
to be very high; the problem under consideration here of a wire
excited through a general aperture is even more demanding of
storage and time. Therefore, in order to reduce the present
problem to a feasible size computer-wise and yet to retain the
fundamental features of practical interest‘totally accounting
for the coupling between the wire and the aperture, we next
specialize the aperture geometry to be an electrically narrow
slot of width w and length £. The slotted screen is shown in : °
Fig. 4 with the wire of length L and radius a centered at
(xc,yc,zc) in the shadow half-;pace and having arbitrary di-
rection specified by the unit vector 4.

Narrow-slot assumptions, similar in principle to those
invoked in thin-wire theory, can be employed here to simplify
the analysis. When the slot is very narrow relative to the.
wayglength and long compared to its width, the electric field
in the slot is principally transverse to the longer slot dimen-
sion (transverse to x in Fig. 4) and hés a known transverse
variation. This transverse variation qf electric field, or
equivalent magnetic current, can be determined via electrostatics

and is found to be simply (see Fig. 4)

18
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1/w
E(y) = (18) ‘

w 2

5) ->
provided the slot excitation does not possess an appreciable
component which is an odd function with respect to y. Ignoring
the axial (x-component) electric field, or, transverse equiv-~
alent magnetic current, in the slot, whiph, of course, implies
Fy=0, and evaluating quantities of interest along the slot
axis (y=0,2z=0), one reduces thelsurviving component of the

.electric vector potential Fx to

Il

~ /2 5,
ikl-xn? 4y
F (x 0,0) = —* m(x') E(y") T dy'dx' (19)
2
Yee /2 yle-w/2 Lox-xt)? '] o

where m(x) and £(y) are the axial and transverse variations,

respectively, of the slot magnetic current:

M (x,y) = n(x)E(y) . (20).
X

" Subject to the above expression for MS and the integration
X
variable transformation,

Eq. (19) becomes
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/2

Fx(x,0,0) = é%;l%(x')K(x—x';z)dx' (21)
x'==2/2
where the kermnel is
U 5
-5x[z? + 4a®sin %]
1 e
K(‘:;a) = ’é‘."‘? T da (223.)
[CZ + 4a2sin Q]Z
==T . 2
%
mikle? 4 a?)
= I . (22b)
2 2,° '
27 + a”]

Fx of (21) with K of (22) is recognized to have the form of the
magnetic vector potential associated with a thin wire of radius
%. The same result relating the width to an equivalent radius

may be obtained in a different way [6]. |

The above simplifications enable one to reduce Egqs. (13) to

2 2
3 2 we [ 3 9 . i
(-—--axz + k ) F o+ 3% (“—az Ay - 35 Az) o H. . (23)

Eq. (16), with Fy=0, applies to the present case., Finally,
under the further specialization that the wire be parallel to
the screen, the particularly simple coupled integro-~differential

equations below are obtained:

21



2 .
3 + k2 m(x')K(x—x';E) dx'  +iTw 2 A = =j2rwy H:L , on slot (24a)
3x2 4 9z 'y X
x'=-2/2
i
Ny
N
L/2
32 2 9
- + k I(s‘)[K(s—s‘;a) - K(s-s8';22 )] da' +j4mw cosB w—— F_ = 0 , on wire. (24b)
3s> c’d € 3z 'x
8"‘—,1./2




RESULTS

Eqs. (24) have been solved numerically by the standard
moment method [7] and selected results are presented below.
In the following explanations of results, an effort is made to
provide sufficient data to characterize the ﬁroblem under study
and, in particular, to outline how quantities of interest de-
pend upon important geometric feattires of the slotted screen/wire
problem. Also, the manner in which the incident field influ-
ences the elect?ic currents on the wire and magnetic currents
on the slot is mentioned.

In all cases for which results are given below, the wire

).

is parallel to the screen and its center is designated (xc,yc,zc
The slot center is at (0,0,0) and its longer dimension is along
the x axis as showﬁ in Fig. 4. In the following discussion of
results, the angular rotation of the wire about its cenfer is
in a plane parallel to the screen and is measured by the angle
B defined as the angular displacement from the y axis as 1illus-
trated in Fig. 5. When the narrow slot is viewed as the dual
of a thin wire, subject to the usual thin-wire/narrow-slot
assumptions, one readily sees that the wire 1s not excited by
the fields which penetrate the slot whenever the two are
parallel and, élsb, that the coupling betwéen wire and slot is
maximum when they are perpendicular.

It can be shown easily that, if the excitation of a thin

wire or a narrow slot is an even function of axial displacement

measured with respect to the center of the element, the current

23
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.must be even too and, also, if the excitation is odd, so must

be the current. In the case of a half-wavelength wire or slot,
the resonant current is nearly cosinusoidal whereas, in a one-
wavelength element, the antiresonant current is approximately

a gsine function. Hence, an odd-function excita£ion cannot

excite a significant resonant component of current in a half-
wavelength wire or slot, and an evean-function excitation cannot
excite an appreciable antiresonant component of current in a
one-wavelength element. These observations, made relative to

a wire in free space or a single slot in an infinite screen, also

hold for a thin wire parallel to an infinite screen.

Half-Wavelength Slot, Half-Wavelength Wire

Fig. 6 shows the current I on a half-wavelength wire, as
a function of position along the wire, induced by the field
which penetrates a half-wavelength slot; this current is given
for selected values of the'angle B. When cosB=1, the wire and
slot are perpendicular, and the coupling is seen to be maximum
as expected, while there is no coupling (hence the wire current
is zero) when the wire and slot are parallel (cosB=0). The
wire current distribution is essentially a cosine function as
one would expect for resonant length. As seen in Fig. 7 there
is a small component of odd-function curreﬁt on the resonant
wire due to the. asymmetric coupling to the slot caused by dis-
placement of the wire center from the z axis. Also, since the
wire is closer to the slotted screen in the case for which the

data of the latter figure are given, the current is slightly

25
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‘ Fig. 7. Curren t on Wire Illuminated through Slotted Screen
. - (w/A = 0.05, /X = 0.5; a/) = 0.001, /X = 0.5; -
xc/x = 0.125, yc/A = 0, zc/x = 0.125; norma 1 incidence)
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greater. With the wire center above the slot axis but not on
the z axis, the illumination of the wire is always an even
function with respect to ite center whenever cosB=1 but not for
other angles. Hence, as seen in Fig. 7, I is strictly even
only for cosf=1l; in Fig. 6, with the wire center on the z axis,
the excitation of the wire is always even producing an even-
function current. As pointed out subsequently, this effect is
quite dramatic when the length of either the wire or the slot is
one wavelength.

Figs. 8 and 9 depict the dependence of wire current on the
location of the wire center.

In Fig. 10 is shown the axial distribution of magnetic
current m(x), or, equivalently, electric field, in the slot for
several values of cosf. Here we note that, when the wire and
the slot are perpendicular (cosf=1), the magnitude of the real
part of the magnetic current is approximately twice that for the
cosf3=0 case. The wire and slot are uncoupled when cosBf=0, and
the curve so~designatedrepreeentsthe slot magnetic current in
the absence of the wire. One readily appreciates from Fig. 10
how serious the errors may become in a two-step analyses in
which, first, the slot field or magnetic current is calculated
in the absence of the obstacle behind the screen and, second,
induced current on the obstacle is calculated on the basis of
illumination determined from ;he slot field of the first step.
Not only does such a procedure lead to errors in magnitude but

also to errors in phase (Fig. 10).

28




~ Fig. 8. Current on Wire Illuminated through Slotted Screen
(w/A = 0.05, /X = 0.5; a/A = 0.001, L/Xx = 0.5;
xc/)\ = 0, zc/}\ = 0.25; normal incidence)
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Quarter-Wavelength Slot, Half-Wavelength Wire

Figs. 11-14 illustrate results for a quarter-wavelength
slot and a half-wavelength wire, From these data we see, in
general, that the shorter, quarter-wavelength slot passes less
radiation than does the resonaﬁt, half-wavelength slot: Although
a small degree of asymmetry is seen in Fig. 13, the current
deviates only slightly from the resonant distribution. The
scattering from the wire back into the quarter-wavelength slét
is significant as seen in Fig. 14 but is not as significant as

in the case of the half-wavelength slot (Fig. 10).

Half-Wavelength Slot, One-Wavelength Wire

In Figs. 15-20 are given data for the situation of a half-
wavelength slot and a one-wavelength wire. The current displayed
in Fig. 15 is on a wire whose center falls on the z axis (O,b, a
0.125)) so for any value‘oﬁ B the slot radiation gives rise to
an even—-function excitation of the wire which, in turmn, causes an
even-function current. If the wire center is displaced from
the z axis along the slot axis to the point (0.25X,0,0.125}),
the current is seen in Fig. 16 to be quite different. Still,
for cosfi=l1, the excitation and, hence, the current are even, but,
for any other value of cosf, the excitation is not entirely an
even function and, thus, the odd function ;ntiresonant current
is strongl§ excited on the one-wavelength wire. With the wire
axis not above the slot axis, the wire excitation is never an
even function and a strong antiresonant current is excited for

all angles B (Figs. 17 and 18). The axial magnetic current m(x) Q
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Fig. 11. Current on Wire Illuminated through Slotted Screen
(w/A = 0.05, /1 = 0.25; a/Xx = 0.001, L/)\ = 0.5; .
xc/}\ = 0, yc/}\ = 0, zc/k = 0.125; norma 1 incidence)
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Fig. 12, Current on Wire Illuminated through Slotted Screen
(w/A = 0.05, &/X = 0.25; a/X = 0.001, L/A = 0.5;
xc/A =0, y /A =0, zc/k = 0.25; normal incidence)
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Fig. 13. Current on Wire Illuminated through Slotted Screen
(w/X = 0.05, &/XA = 0.25; a/A = 0.001, L/A = 0.5;
x /X = 0.125, yc/A = 0, zc/l = 0.25; normal

incidence)
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Fig. 14. Axial Distribution of Slot Magnetic Current (w/A = 0.05,
L/A = 0.253 a/X = 0.001, L/X = 0.5; xc/A = 0, yc/A = 0,

zc/A = 0.125; normal incidence)
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Fig. 15. Current on Wire Illuminated through Slotted Screen

(w/A
xc/X

0.05, 2/A = 0.5; a/X = 0.001, L/A = 1.0;
0, yc/k = 0, zc/l = 0.125:; normal incidence)
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Fig. 16. Current on Wire Illuminated through Slotted Screen
(w/A = 0.05, &/x = 0.5; a/A = 0.001, L/A = 1.0,
xc/x = 0.25, yc/A = 0, zc/k = 0.125; norma 1 incidence)
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Fig. 17. Current on Wire Illuminated through Slotted Screen
(w/x = 0.05, &/A = 0.5; a/X = 0.001, L/X = 1.0;
XC/}\ =0, yC/X = 0.25, zc/l = 0.25; normal incidence)
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Fig. 18. Current on Wire Illuminated through Slotted Screen
(w/A = 0.05, &/X = 0.5; afA = 0.001L, L/X = 1.0; ‘
xC/A = 0.125, yC/K = 0.25, zc/A = 0.25; normal incidence)
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Axial Distribution of Slot Magnetic Current (w/\
2/AX = 0.5; a/A = 0.001, L/X = 1.0; XC/X

zc/X = 0.25; normal incidence)

= 0, Yc/)\ = 90259
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Fig. 20. Axial Distribution of Slot Magnetic
= 0.5; a/x = 0.001, L/A = 1.0; xc/l = 0.125,

L/

2x/ %

yc/A = 0.25, zc/l = 0.25; normal incidence)
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in the half-wavelength slot (Fig. 19 and 20) is predominately
resonant due to the plane wave excitation, which is normally
incident and an even function, and the radiation scattered back
from the wire has relatively little effecg on this distribution.
However, the coupling does influence the magnitude of the slot

magnetic current.

One-Wavélength Slot, One-Wavelength Wire

Distributions of wire current and slot magnetic current
are very sensitive to the location of the wire center and to B
when the length of both the slot and the wire is one wavelength
(Figs. 21-29). Figs. 21 and 22 depict current on a wire cen-
tered on the z axis at different distances behind the slotted
screen. If the wire center is moved away from the z axis to
a point still above the slot axls, again the one-wavelength
antiresonant current is excited whenever cosB#1 (Figs. 23 and
24). The data of Fig. 25 are for the same case as are thoée

of Fig. 22 and they depict the behavior of slot magnetic current.

Figs. 26 and 27 display slot magnetic current and pertain

to the same wire/slot configurations as dq Figs. 23 and 24 with
the wire centers located at (0.251,0,0.125X) and (0.25X,0,0.25X),
respectively. The dominant i1llumination of the slot is the in-
cident field with a smaller excitation caused by scattering from
the wire. The.normally incident illumination is an éntirely
even-function excitation of the slot and, thus, gives rise to

a slot magnetic current having a shifted cosine (forced response)

distribution and having no odd-function antiresonant component.
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Fig. 21. Current on Wire Illuminated through Slotted Screen
(w/X = 0.05, /X = 1.0; a/A = 0.001, L/A = 1.0;
xc/k = 0, yc/A =0, zc/A = 0.125; normal incidence)
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Fig. 22. Current on Wire Illuminated through Slotted Screen
(w/X = 0.05; /X = 1.0; a/A = 0.001, L/A = 1.0;
XC/A = 0, yc/A = 0, zc/k = 0.25; normal incidence)
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Fig. 23. Current on Wire Illuminated through Slotted Screen
(w/A = 0.05, &/x = 1.0; a/x = 0.001, L/A = 1.0;
xc/X = 0.25, yclk = 0, zc/X = 0.125; normal incidence)
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Fig. 24. Current on Wire Illuminated through Slotted Screen
(w/A = 0.05, 2/X = 1.0; a/X = 0.001, L/X = 1.0;
xc/)\ = 0.25, yc/)\ = 0, zc/K = 0.25; normal incidence) ‘
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Fig. 25. Axial Distribution of Slot Magnetic Current (w/X = 0.05,
/X = 1.05 a/X = 0.001, L/X = 1.05 x /X = 0, y /A = 0,

zc/A = 0.25; normal incidence)
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. Fig. 26. Axial Distribution of Slot Magnetic Current (w/A = 0.05,
2/XA = 1.0; a/A = 0.001, L/\ = 1.0 xc/l = 0.25,

yc/A = 0, zc/K = 0.125; normal incidence)
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Fig. 27. Axial Distribution of Slot Magnetié Cuffént (w/X - 0.05:A :
2/X = 1.0; a/A = 0.001, L/X = 1.0; xc/k = 0.25, yc/k =

zc/A = 0.25; normal incidence)
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Fig. 28. Axial Distribution of Slot Magnetic Current (w/A = 0.05,
£/X = 1.0, a/A = 0,001, L/A = 1.0; xC/A = 0.25, y_ /A =0,
z /X = 0.25; 60° - incidence angle)
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Current on Wire Illuminated through Slotted Screen

= 0.001, L/Xx = 1.0,

(w/A = 0.05, /A = 1.0, a/\ =
0 zc/A = 0.25; 600 - incidence angle)

xC/A =

0.25, yc/l =
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Fig. 30. Axial Distribution of Slot Magnetic Current (w/A = 0.05,
L/x = 1.0, a/A = 0.001, L/XA = 0.5; xc/X = 0.25,

yc/A = 0, zc/k = 0.25; normal incidence)
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For cosB=0, there is, of course, no coupling between the t

wire and slot, so one observes in Figs. 26 and 27 the anticipated

shifted cosine distribution, which is due only to the incident
field forcing function. Even though the wire receives even-
function excitation from the slot when cosB=1 and the wire

center is over the slot axis, the field scattered back from the

e

wire to the slot does not represent an even excitatiom to the

slot whenever the wire center is not on the z axis (regardless of the value

of B). Thus,'in“figs. 26 and 27 oné'ob;;rves for cosf=1 the g
combination of a large forced magnetic current due to the in- ] | :
cident field and a smaller antireéonant current due to the back
scatter from the wire; the greater asymmetry oBserved in the
curves of Fig. 26 compared to those of Fig. 27 is readily attri-
buted to the differences in distance from the wire to the slotted 0
. . '

screen in the two cases. ’ -

All results discussed above pertain to cases where the plane
wave 1llumination is normally incident upon the slotted screeﬁ.
An antiresonant magnetic current can be excited in a one-wavelength
slot by an obliquely incident plane wave, and Figs. 28 and 29
display slot magnetic current and wire current under such con- '
ditipns of illumination in which the apgle between the z axis and

the direction of propagation is 60°. The slot magnetic current
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is seen in Fig. 28 to be strongly antiresonant, while the wire
current in Fig, 29 contaiﬁs an antiresonant component only when
cosP#1 with the wire center at (0.25X,0,0.25)1). Such is exactly
‘wbat one anticipates, since with the center of the wire above
the slot axis aif with cosB=1, the wire excitation is an even
function indepeﬁaent of the slot magnetic current distribution.
To assess the influence of the angié of incidence of the plane

wave incident fleld, one should compare the curves of Figs. 28

and 29 to those of Figs. 27 and 24.

One-Wavelength Slot, Half-Wavelength Wire

As a final facet in the characterization éf the present
problem, we turn to Figs. 30 and 31 which show that, even with
normally incident illumination, the non even-function excitation
of the slot from the large resonant current on the half-wavelength
wire is sufficiently large to cause significant antiresonant
magnetic current in the one-wavelength slot to the extent that
the resulting asymmetry in the distribution 1s quite noticeable.
One should compare the data of Figs. 30 and 31 to thosé of
Figs. 27 and 24 and observe the greater asymmetry in the curves
of Fig. 30 than in those of Fig. 27. The larger asymmetry is
due, primarily, to the greater current in the ﬁalf-wavelength
wire (Fig. 31) than that in the one-waveleﬁgth wire (Fig. 24)
and, secondarily, to the fact that the current is maximum in
the center of the half-wavelength wire nearest to the slot
while the current in the one-wavelength wire is minimum at ifs

center.



2s/L o

Current on Wire Illuminated through Slotted Screen
(w/A 0.05, &/X = 1.0; a/x = 0.001, L/A = 0.5;
Xc/k 0.25, yC/A = 0, zc/k = 0.25; normal incidence)

Fig. 31.
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