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Abstract

The general problem of a permeable body in external magnetic
fields is formulated as a two-dimensional Fredholm integral equation of
the second kind. Using the method of averaging fuﬁctional corrections,
the equation is solved approximately for a highly-permeable rectangular
solid (a) in a uniform field and (b) in the field of a rectangular current
loop wound around the midsection of the solid. A large magnetic flux
concentration is found in both cases for a thin solid. The results are
applicable to the analysis of an aircraft lVLF magnetic loop receiving

antenna.
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I. Introduction

One VLF magnetic ldop receiving antenna on the EC-135 aircraft

consists of two orthogonal conductor coils wound around a rectangular
slab made up of two arrays of thin ferrite rods. The rod assembly is
mounted flat on the metallic skin of the fuselage. Essentially the func-
tion of the ferrite is to concentrate the magnetic flux of the incoming

y VLF signal. The receiving antenna is completely characterized by

(a) the input impedance Zin which is mainly the coil self-inductance,
and (b) the open-circuit voltage Voc which is proportional to the mag-
netic flux. These two quantities can be calculated by solving two quasi-
static boundary value problems of a rectangular ferrite slab in applied
magnetic fields.

In this report the general problem of a permeable body in an exter-

@

nal quasistatic magnetic field is first formulated as a Fredholm integral
equation of the second kind. For a uniform external field this integral
equation is solved approximately by the method of averaging functional

(1]

corrections The flux enhancement factor of a highly-permeable
rectangular slab is determined for a wide range of the thickness-to-
length ratio. The same approximation method is also used to calculate

the self-inductance of a thin-wire current loop wound around the mid-

section of the rectangular slab.




II. General Integral-Equation Formulation
Let there be a static magnetic field y_inc(;) in free space. Suppose
a finite solid of uniform permeability u is introduced into this field. We
wish to calculate the induced field H"%(z).

Let the space outside the permeable solid be designated as region 1,

and that inside as region 2. Then on the surface S of the solid the total

magnetic field
H%) = 5% + 5%y) (1)

satisfies the two boundary conditions for the tangential and normal com-

ponents:
1) = B ) 2)
“o[ ;nc (r) + Hind< ] = u[Hmc r) + H;nd( )} (3)

We introduce the induced magnetostatic potential ¢> (r) such that

Hind(E - Vd)md (4)

The conditions (2) and (3) then imply that d)md(_x_') is continuous across the
boundary S but that its normal derivative has a discontinuity. It is well
known that these behaviors are inherent in the integral representation

ind 1 pm(E')
: ()—Mé-mdsl (5)
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for r lying both inside and outside the solid. That is to say, the in-
duced potential is considered to arise from induced magnetic charges of
surface density pm(g) on the solid's surface. Expression (5) is clearly
a solution of the Laplace equation,

_The induced magnetic field is given by (4) and (5). As the field
point r approaches the surface S we have the following two well-known

(2],

limits in potential theory

ind, ,_ 1 1 n 9 1
Hln (_-7;_)‘ -:Z—pm(_{) - 4"prm<£ ) an <m)ds
S — pulil

ind 1 1 n 9 1
HZI‘I (_{‘)-—Epm(ﬁ) - EP/Pm(ﬁ ) ’n <_——l—>ds

4 |z - x

(6)

where n denotes the outward normal at the field point r on S. The
symbol P in {ront of the integral denotes the Cauchy principal value
whereby we must exclude from the integral an infinitesimally small cir-
cular disk centered at r. Ifis precisely the integration over this disk

that gives rise to the term :tl

5 pm(g) in (6). Substituting (6) into (3) we

obtain a Fredholm integral equatioh of the second kind for the induced

(I‘)[B]:

charge density P L

TR H =M i
u IJO 3 I£ ~ £|l - M I-‘o

(7)

The solution is closely related to the total normal magnetic induction on

S. Eliminating the integral between (6) and (7) we obtain
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III. Rectangular Solid in a Uniform Field
Let us specialize the integral equation (7) to the case of a highly-
permeable rectangular solid placed in a uniform magnetic field. The
situation is depicted in Fig. 1. We set up a rectangular coordinate sys-
tem such that the origin coincides with the center of the solid and that
the coordinate axes are parallel to its edges. Let the edges parallel to

the x, y and z directions be respectively 2a, 2b and 2c in length.

Hence the six faces of the solid are defined by x =+a, y=+b and z = xc.

Since any uniform field can be resolved into three independent orthogonal
components, we can, without loss of generality, take the incident mag-
netic field to point in the positive x direction,

From the symmetry of the probl’em we need only consider the values
of pm(g) on three faces of the solid, It is convenient to introduce three

functions f, g and h such that

(%, y) Z = %cC
pm(z) = ¢ xgly, z) X = ta (9)
h(z, x) y = b

These functions are odd in x, and even in y and z, In practice, the
permeability p is usually made very high, so that thc_e factor (u - uo)/

(B + uo) in (7) can in most cases be replaced by 1. For example, if

u > 100u0, this factor differs from 1 by less than 1%. Furthermore we
define HPC(r) = Hogx. Then (7) is equivalent to the set of three coupled

integral equations:



Fig. 1.--Geometry of the problem,
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1 -
‘ gy, z) - 5= /dy‘ /dz' gy, z") ——«——— 2a 573
-b -C [43_2 + (y - yl)z + (Z - zl)z]
a b
1 / / a-x'
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. =3
h(z, %) - o= /dz' /dx' h(z!, x") 2b 75
-3 [(x -.x')2 + 4b2 + (z - z')zl

-C

a b
1 . 1 1 1 ' b"y'
_E;/dx /dy f(x', y") ; ) 23/2
-a -b [(x-x') + (b - y") +(z—c)]
b - y'
' 2 2 213/2
- 20 + - 302 + 2+ )7
b c
1 b - v!
- .2_7? _/-dy' /dz’ g(yl’zl) Z 2}’ 3/2.
-b -c [(x-a) + (b -y" +(z-z')2]
- b -y =0

3/2
[(x+ a)2 + (b - y')2 + (z - z')z]
(12)

Note that the principal value integral in (7) vanishes when both r and r'

lie on the same flat surface.

In practice we are often interested only in the total magnetic flux

passing through the midsection of the solid shown as the shaded area in

Fig. 1. This total flux is

b ¢ tot
$ = fdy fdzB (x = 0) (13)
2x
-b -C

Since B is divergenceless, each flux line crossing the shaded area must
eventually come out through the faces of the solid for x> 0. Therefore

(13) can also be written as

-10-
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2 P tot fb € _tot
iI>=2fdx dszz(z=c)+ dy dszx(x=a)
0

¢ 2 _tot
+ 2 fdzfde (y = b) (14)
C 0 2y

If we introduce the average values

1 a fb
Sab fdh dy f(x, y)
0 -b

|
1]

oal
I

1 b ¢ |
= m fdy fdz g(y, z) (15)
-b -C

1 c a
h = — fdzfdx h(z, x)
2ca

then by (8) and (9), for u>> M, expression (14) simplifies to

D = 4abu0(f + (186)

pio
oa |
+
olo
o]
S——
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IV. Method of Averaging Functional Corrections

-

We have on hand a rather formidable system of coupled two- i
dimensional integral equations in (10), (11) and (12). One method to de- ‘
rive an approximate solution is obviously to replace these equations
with a set of algebraic equations by applying a suitable numerical inte-
gration formula, And yet, in practice, unless the problem exhibits a
large amount of symmetry, as in the case of the electrostatic analog of
a dielectric cube[4], we have to set up quite a large number of algebraic
equations in order to obtain reasonable accuracy. Their solution is
likely to tax severely the capacity of all but the largest computers. This
undesirable state of affairs is especially true of the inductance calculations
in later sections, where the incident magnetic field is not uniform but

rather produced by a current-carrying thin wire wound around the rec- .

tangular solid. A purely numerical solution will be greatly disadvantaged
since the field is singular at the wire, and a high-order numerical inte-~
gration formula must be used to ensure good accuracy.

In this work we shall employ an analytical approximation procedure
known as the method of averaging functional corrections[ ]. | Essentially
this method consists of a self-consistent iterative calculation of the
average values of the unknown functions over the intervals of integration,
As such, it is ideally suited to calculating the total flux in (16), since in
each order of the iteration the method yields directly the average values
f, g and h.

-12-
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The method of averaging functional corrections is actually quite
simple in principle. In the first approximation we replace f, g and h
under the integrals in (10), (11) and (12) by their average values defined

in (15). Specifically we let

f x>0
fi(x',y" —~ { —
-f x' <0
gy, z') - ¢
h x'>0
h(z', x') = { _ (17)
~-h x!

since f and h are both odd in x'. Under these replacements the three

equations (10), (11) and (12) can be subsumed under the matrix equation

F—gK'F=FO (18)
where
£(x, y) T 0
F = » ’ .F—‘ = o N 1 =
gly, z) E F_ ZHO (19)
h(z, x) h 0
and K is a 3X3 matrix with elements
a b
2¢c
—’ = d_X' 1
Kll(x y) / dy '_ Z n Z 373
0 -b [(x -x") + (y-y") + 4c ]
_ 2¢c
3/2

[(x+ X')2 + (y - y')2 + 4c2]

-13-
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! 1 c - z'
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2
')]

A 4 [x- 2%+ 7-y0% + (c-2

K, (%, y)

c - z!
N 372
[(X + a)2 + (y - y')z + (c - z')z]
c a

_ . . c - z!
KlS(X’ y) = /dz /dx g 5 ; 373
[ - %)% + (7 - b) + (e - 207

-C 0

c - z!
i 372
[(x + x‘)2 + (y - b)2 + (¢ - z‘)z] '

+ c - z'
3/2
[(x - x‘)2 + (y + b)z + (c - z‘)2J

c - z!
) 372
[(x + x')z + (y+ b)2 + (c - z')ZJ

b .
K21(y, Z) = /dxl /dyl a - x' 3/2
[ 2 2 2
(a - x') )

+ (y -y +(z-c)]

a + x!
- 372

[a+xn® + v - 9% + (2 - ]

a - x!

3/2
[(a - x‘)z + (y - y')2 + (z + c)2]

_ a + x!
373
ka+wﬁ+(y~w9+(z+dﬂ
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b c

Kzz(y,z) =- /dy' /dz'- -

-b -C

C a

2a_7

3/2
[43.2 + (y - y')2 + (z - Z')2]

- 1
K,y 2) = /dZ‘/dX' ' — 2‘ 2 }2{ 23/2
-c 0 [(a-x') + (y - b) +(z-z')]
a + x!
- . 3/2
[(a.+x')2 + (y - b)2 + (z - z')zl
+ — & _,__x'
3/2
[(a - x')2 + (y + b)2 + (z - z')2]
o a + x'
- T - 3/2
ka+xﬂ2+(y+w2+(z-zﬁﬂ )
e a b
. i ' ' b~y
‘ K31(z.x) = /dJU /dy 2 — . 23/2
0 -b [(X-—X') + (b-y" +(z-c)]

b_—- y!

3/2
2 + (z - c)2]

[(x + x')2 + (b -y")

+ b -y

3/2

[(x - x')2 + (b - y')2 + (z + c)2]

3/2

b - y!

{(x + x’)2 + (b - y’)2
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b c

b -y'
= ! 1
KSZ(Z’ x) /dy /dz 7

3/

-b -c [(x - a)2 + (b - y')2 + (z ~ z')2]

b -y

- 372

[(x ra) s b-y)? 4 (z- z')zj

c a
r = 1 H ,,,2b, —
K33(z, x) = /dz /dx . Z 5 373
-C 0 [(x-—x') + 4b +(z-z')J

2b
- 372
[(x + x')2 + 4b2 + (z - z')2] '

(20)

These matrix elements are explicitly odd in x and evenin y and z. The

averages f, g and h, up to now unknown, can be determined self-

consistently by evaluating the average of (18). A set of three linear

algebraic equations result:

(1-_1_'12)-‘f=f (21)
2T o}

We have introduced the obvious notations

_ 1 a b
Ky * 2% vo/dx{dy Kli(x’ y)

Al
"

1 (2 e '
2 " Te {dy{dz K2i(y,z) i=1223

. 1 c a
K31 % b/dz{dx KSi(Z’ x) (22)

-16-
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Substituting (21) into (18) we obtain the first iterated solution of (10), (11)

and (12):

-1
F =F +——K-(1--——I_{) - F (23)
T 2T

In thg present case Fo = Fo .

There are systematic procedures to improve the solution by itera-
tion. But in the present work we shall not go beyond the first iterated
solution (23). We can expect considerable local difference between the
exact solution and (23) at various points on the surface of the rectangular
solid. On the other hand we are interested mainly in the total flux (16)
which is a global quantity, and is obtained by integrating the induced mag-
netic charge over the solid's surface. We believe (21) gives us a good
approximation to the flux. The present situation may be compared with
that of calculating the capacitance of a conductor where a rough approxi-
mation to the surface charge density often leads to an accurate value for
the capacitance. Our approximation scheme is akin to the Hartree-Fock
approximation in atomic structure calculations and the Vlasov approxima-
tion in plasma dynamics. The idea is to replace an unknown local or
microscopic quantity under an integral by its global c.')r macroscopic
average. This average is then calculated self-consistently from the inte-
gral or integro-differential equation thus approximated.

For a detailed discussion on deriving higher-order approximations

as well as on all other aspects of the method of averaging functional

-17-
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corrections, the reader is referred to the monograph of Luchka ~". In

this book the method is attributed to Yu. D. Sokolov,

~18-



V. Numerical Results of Flux Calculations
The flux & can be obtained from (16) and (21) by working out the

averaged matrix K. Its nine elements are really four-dimensional inte-

grals. Let us first evaluate the set of nine two-dimensional integrals K
in (20). It is clear that this is an enterprise that takes anybody no small
amount of effort. We shall not write out the resulis as they are exceed-

ingly lengthy, but shall only note that they can be expressed in terms of

the following four types of integrals:

a b
C
dxf dl .
f .[ 7 2 2 3/2
0

-b [(x- x4+ (y-y") +C2]
- -1 (x - a)(y - b) _ -1 x(y - b)
( e 2 o o]t? e 2 s ot/2
‘\ C[(x—a)+(y-b)+C] C[x +(y-b)+C]
_ tan-l (x - a)(y + b) + tan” x(y + b)
2 S 2 I e
C[(x-a) + (y + b) +C] C[x + (y + b) +C]
b .C
dy' | dz' z-2
'/ f 2 2 2 3/2
-b -c [A +(y-y) +(z-2") ]
9 1/2 5 1/2
[A +(y+b) +(z-c) ] +y+b [A +(y-b)" +(z+c¢) ] +y-~b

[A +(y+Db) +(z+c)] +y+b [A +(y- b) +(z - c)] +y-b

[ U N
\».)

-19-



C a

- 1
fdz'fdx' 2 -z 373

-t 0 [(x - x’) + B + (z - z')]

9 1/2 9 1/2
[x +B%4+(z-0) ] - X [(x 2)%+B +(z+c) } +x-a
9 /2 9 /2
[x +B +(z+c)] [(x a) +B +(z - c)] +x-a
a b
- !
dx' dy! x-x
2 2 2132
0 -b {(x -x") +(y-y) +C ]
: 1/2 1/2
2
[x2+(y—b)2+C2] +y-b [(x-a)2+(y+b)2+C ] +y+b
= —Qn .
2 2, .2 2 2, .2 1/2
[+ rmPec®] ayrp -’ y-wZ4c? 4yob o)
Next we must integrate these complicated expressions over the solid's ’

surface to calculate K, in accordance with (22). The integrals can proba-
bly be done analytically, but the amount of algebra involved must be truly
enormous. Since the expressions (24) have only logarithmic singularities
at the edges of the solid, we decide to perform the remaining two-
dimensional integrations numerically.

For a case of immediate practical interest we choose a = b, and

define a thickness-to-length ratio

(25)

=
1
(W e)

-20-
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The values of K for various k are shown in Table 1. Note that Kzz is
negative. Then f, § and h can be obtained by solving the set of three
linear algebraic equations (21). The solutions are shown in Table 2 to-

gether with the flux enhancement factor ¢I>/<I>o, where

$® = 4bcu H (26)
o oo

is the total incident flux through the shaded area in Fig. 1 in the absence
of the rectangular solid, The ratio @/éléo is also plotted versus k in
Figs., 2 and 3. We see that there is a dramatic flux enhancement for a
thin rectangular slab. But the divergence of <I>/fI>0 at small k can only be
logarithmic. This becomes evident when we plot out the quantity K@/@o

in Fig. 4 and find that it approaches 0 with k. Since, by (25) and (26),

o _ D _
Kg— = —5—— a=>o (27)

o} 4a2u H
oo

it is really the total flux in units of 4a2uoHO .

F“or the case of a cube (k = 1), we obtain a value of 3. 57 for <[>/<I>o,
This may be compared with the exact value of 3 for an infinitely perme-
able sphere. The value for a cube is bigger probably because of the edges
and corners. We have also applied the method of averaging functional cor-
rections to the integral equation for a sphere. Comparing the first
iterated solution with the exact result, we find that the total flux is smaller
than the exact value by about 8. 3%. We hazard a guess that our flux re-

sults in Table 2 are smaller than the exact values by about 10%.

-21-




Table 1. Elements of the averaged matrix K as a function of

k =cfa for a

-zz—

.01 .02 . 04 .06 .08 .1 .2 .4 .6 .8 1.
5.604 | 5.144 | 4.439 |3.892 .443 |3.065 |1.809 L7279 | .3310 | .1656 | .0896
.0568( .1157| .2275 | .3321 | .4302 | .5223 | .9053 |1.388 . 643 . 782 . 860
.0552| .1102| .2102 | .2990 | .3786 | .4504 | .7224 |1.015 . 151 . 221 . 260
16.47 .72 .99 . 415 . 312 . 489 . 970 .836 . 884 .371 |1,063

.0083| .0166{ .0331 | .0497 | .0662 | ,0827 | .1642 |{ ,3202 | .4622 | .5877 | .6967
.0912] .1593] .2679 | .3557 | .4300 | .4945 | .7230 | .9437 1,029 . 058 . 063
15, 61 .90 .24 . 736 . 699 .918 .B77 . 845 . 022 . 5586 . 260
.1020( .1809| ,3110 | .4202 | .5159 | .6017 | .9343 [1.345 . 590 . 749 . 860
.0012] .0023] .0046 | ,0069 | .0093 | .0115 .0229 | ,0440 | ,0622 | ,0774 | .0896




B o

Table 2, Magnetic flux enhancement factor Q/Qo as a function of kK = ¢fa for a=b and u =,

_Sz -

K .01 .02 . 04 . 06 ] .08 .1 .2 .4 .6 .8 1.
f/H . 296 .367 . 443 . 493 E 531 . 961 .658 | .738 | 764 | ,770 | , 767
g/H | 2,178 2,81 2.80 2,171 | 2,13 2.70 | 2,55 .34 | 2,20 | 2,10 .03
h/Ho . 181 . 834 | . 862 . 872 . 876 .878 | ,813 . 841 .811 ,.786 | .767
o/ |33.2 22,0 14.8 11.9 10. 2 9.19 |6.71 .03 4,28 | 3.85 .57

K<15/<I>o . 332 . 439 . 990 .11 .820 | .919 11,34 .01 2.57 | 3.08 .57
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Fig. 2.--Flux enhancement factor &/ versus
k =cf/a for a=b and u =o.
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Fig. 3.--Flux enhancement factor &/% versus
k =cfa for a=b and u =,
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Fig. 4.--—K¢/¢o versus k =c/a for a=b and 4 =,




VI. Rectangular Solid in the Field of a Rectangular Current Loop

Consider a thin-wire current loop wound tightly around the midsec-
tion of the rectangular infinitely-permeable solid. In Fig. 1 it is to be
represented by the perimeter of the shaded area. We want to calculate
the self-inductance of such a current loop. As is well known, our task
amounts to calculating the total magnetic flux passing through the loop at
unit current.

For a rectangular loop in free space lying in the y-z plane, defined
by y = +b' and z = +¢', and carrying a current I, the vector poiential

is easily found to be

A= AyEy tAs, (28)
with
1/2
HOI X2+(y+b')2+(z+c')2 + y + b
A(X!yyz):'_‘—'ﬂn - e
y 47 9 o 1/2
x + (y+ b") +(z-c')J + y + b
1/2
XX2+(Y-b')2+(z-c')2 + vy - b!
[ 2 9 ° 1/2
x + (y-Db") +(z+c')] +y - b
1/2
2
uOI x + (y - b')2 + (z + c')2] + 72 + ¢!
A (xr yo Z) = —_— —Qn —_— - i = o - -
z 4m 9 ) 112
x + (y+b")" + (z%—c')] + z 4+ ¢!
1/2
xz + (y+b')2 + (z - c')2] + 7z - ¢!
X N T - 17/2 (29)

-27~



It is clear that for an infinitely thin wire, A diverges logarithmically at

the wire. In order for (29) to represent the vector potential of a loop of

small but finite wire radius R and wound tightly around a rectangular

solid of cross-section b by c, we set
R=b'-b=c -c (30)

The magnetic field due to such a loop in free space is the incident field in

the present problem, and is given by

B () = ui v X Alr) | (31)
(o]

It is clear that this problem possesses the same type of symmetry
as the case of a uniform incident field treated in Section III, namely, the

induced magnetic charge density on the solid's surface is again odd in x

and even in y and z. The only difference is in the value of the incident
field, Therefore in calculating the first iterated solution by the method

of averaging functional corrections, we again arrive at (21) but with fo

given by

F o= | oH | (32)

The averages are over the faces of the solid:

-928-



-b
—inc _ 1 D ©  _inc
HX —m dy fdz HX (x—a)
-b -C
=in 1 © a inc :
H1c=—fdzfdxH (y = b) (33)
y 2ca 2 0 Yy

Using (31) and Stokes' theorem, we obtain

b
= - 0 1
. 2abuo :b/- dy [Ay(a, v, ¢) Ay( , ¥, ¢)

—inc | 1 ¢ fb
Hx = 2bcuo _.C/.dz Az(a, b, z) - R dy Ay(a, v, c)>

i

1
y 2cauo

®"
o]
(2]

!

filz [AZ(O, b,2) - A_(ab, z)] (34)
-t

For Ay and Az given by (29) and b' and c' by (30), the integrals can be

worked out analytically. We have

b uoI
fdyA (a,y,¢) ==—— W(a, c, b, R) _ (35)
% y 4T

where

-29-



1/2 1/2
[az + (2b + d)2 + dz] +d [a2 + 2d2] -d =N
[a +(2b+d)+d] [a +2d] +d
1/2 call/2
[a2+(2c+d)2+d2J +2c+d [a2+(2b+d)2+(2c+d)2] -2c-d

-e L )
+(2c+d)fn . — T . 2 7
[a +(2c+d) +d] -2c-d [a +(2b+d) +(Zc+d)J +2c+d

- 2<[a2 +(2b + d)2 + d2]1 & - {az + 2d2]1/2 + [az +(2¢c + d)2 + dzll 2

1/2
- [az +(2b+ d)2 + (2¢ + d)z] > (36)

The self-inductance in free space LO is the total flux through the loop at

unit current and in the absence of the rectangular solid. We obtain
®

uo b ¢ inc
—_— fdy fdz H (x =0)
o) I X
~-b -C

-
n

"

c b
2
T <_’c/.dz AZ(O, b, z) - -b/‘dy Ay(O, Y, c)> (37)

or, by (35),

o™

(38)

L = 5 [W(0,b,cR)+ WO, cb, R)]

o

T

On the other hand, by (16), the self-inductance L with the permeable core is

4abl~1O
I

(?+ §‘§ + H) (39)

oclo

I =
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VII. Numerical Results of Inductance Calculations
For a case of immediate application we take a =b and R = a/900,
and calculate the averaged vector fo in (32) and L, in (38) numerically
as a function of the thickness-to-length ratio k = c/a. The results are
shown in Table 3. We then solve for T, g and h from (21) and (32). The

matrix K is as given in Table 1. The self-inductance L in (39) becomes

in the present case

4a2u
- °F (40)

]
on

[f + x(g + h)] a

(
1

The numerical results are shown in Table 3. We also plot Lo in Fig. 5,
and L in Figs. 6 and 7.

The curve for L exhibits a broad minimum at k ~ 0.3 and a sharp
rise as k - 0. This behavior is at first puzzling since we more or less
expect on intuitive grounds a monotonic dependence on k. However, it is
important to realize that the effect of k on L arises from two sources:
one dire_ctly from the geometry of the rectangular solid, and another indi-
rectly from the incident field which varies with the loop geometry. To
study the effect due purely to the solid, we must factor out that portion
due to the incident field, Accordingly we calculate and plot the inductance
enhancement factor L/Lo in Table 3 and Fig. 8. We see that this factor,
purged of the K—d.ependence from the incident field, i's indeed a monotonic
function of .- It in fact closely resembles the flux enhancement factor

<I’/<I>0 in Fig. 2. This result is remarkable since for @/fbo the incident
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Table 3,

L and L, in units of pyaf4rw).

g,

h and Hmc are in units of 1/4ra,

Self-inductance enhancement factor L/L, for a rectangular loop of wire radius R as a function
of k=cl/a for a=b, R=2a/900 and u = (T,

K .01 .02 .04 . 06 .08 .1 .2 .4 .8 .8 1.
2’ﬁiznc 11.74 | 14.37 | 17.00 | 18.52 | 19.57 | 20.37 | 22.63 | 24.32 | 24.91 | 25,17 | 25.29
2ﬁ:‘nc .0795|  .1510|  .2935| 4346 5739  .7107| 1.343| 2,268 2.793] 3.075| 3.227
2ﬁiyn° 11.21 | 13.55 | 16.01 | 17.46 | 18.48 | 19.26 | 21.56 | 23.52 | 24.43 | 24.95 | 25.29
Lo | 23,71 | 20,20 | 35.31 | 39.19 | 42.19 | 44.73 | 54.41 | 69.26 | 82.49 | 95.18 |107.6
T |i91 142 103 85. 9 75.6 68. 8 52.9 | 43.5 | 40.2 | 38.6 | 37.6
z 1508 1317 188 136 108 | 89.5 49.8 | 27.9 | 20.4 | 16.6 | 14.4
T 495 314 194 146 120 104 68.6 | 49.6 | 43.0 | 39.6 | 37.6
L 805 1618 474 411 | 376 353 | 307 298 313 334 359
L/L, | 34.0 21.1 13.4 10. 5 8. 90 7.88 | 5.63 4.30| 3.79 | 3.51 | 3.33
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Fig. 5.--Self-inductance in free space L, versus

k =c/a for a

=b, R=2a/900 and u =ow.
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Fig. 6, --Self-inductance with rectangular core L versus
k =cf/a for a=b, R=2a/900 and u =w.
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Fig. 7.--Self-inductance with rectangular core L versus
k= cfa for a=b, R=2a/900 and u =w.
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Fig. 8.--Self-inductance enhancement factor L/L,
versus k =c/fa for a=b, R=2a/900 and

U =o0.
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field is purely in the x direction, whereas for L/Lo it is, by Table 3,
predominantly in the y and z directions. It means that the flux amplifi-
cation property of the rectangular permeable solid depends mainly on
the total incident flux and not so much on the detailed configuration of the
incident field.

From Fig. 5 we sce that Lo is a monotonically increasing function

of k., If we write

L .
= L_ (41)
o

L =
we can appreciate that L. need not have any monotonic dependence on «
at all since it is the product of a monotonically decreasing and a monotoni-
cally increasing function. The sharp rise of L as k — 0 is really due to
a faster rate of increase of L/Lo than the rate of decrease of Lo . We
must also point out that for « very close to 0, L must eventually come
down to 0. This is because in this region L0 drops sharply to 0. In
fact we have Lo ~ K lln K ’ while L/LO ~ Iﬂn K’ for k ~0, This result
is phys‘ically sound since the self-inductance of a current loop of zero
area must be 0. On the other hand it is meaningless to push the present
calculations down to very small k. Our treatment of the current loop is
based on the thin-wire approximation; this breaks down for R ~c¢, when
the thin wire must be considered as a massive cylinder.

Iinally, what we have calculated is actually the external self-

inductance. None of our results includes the internal self-inductance due
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to magnetic flux in the interior of the thin wire. For a cylindriéal thin’

wire of a non-magnetic conductor in free space, the internal self-

inductance amounts to about u0/87r per unit wire leng‘th[sl . Itis, how-

ever, negligible in our present problem.
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