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ABSTRACT

In this report we present a new interpretation of Keller's diffraction
coefficient in terms of a plane wave spectrum of the surface current
distribution on the scatterer. We show that the scattered fields, expressed
in terms of spectral diffraction coefficients, are well behaved in the
entire range of observation angles, including the shadow boundaries
and caustic regions, where the use of Keller's coefficients give rise
to infinite fields. The application of the Spectral Domain approach is
illustrated by considering a number of geometries, including the half-
plane with planar and non-planar illuminations, apertures, and
semi-infinite cylindrical structures. A brief comparsion with Ufimtsev's

approach is also included.
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I. Introduction

In this paper we introduce the concepts of épectral Theory of Diffraction
(STD), an approach for solving high frequency diffraction problems. The
solution is constructed in the spectral, or equivalently the Fourier transform
domain using a spectral diffraction coefficient whiéh resembles the Keller's
GTD coefficient. However, both the interpretation and the use of the STD
coefficient is significantly different from that of the Keller's coefficient.
Whereas the diffracted field computed using the Keller's coefficient diverges
to infinity at the shadow boundaries and caustic directions, the result derived
from STD has the correct behavior for all of these observation angles.

Recently, two uniform theories [1]-[2] have been developed for circum-
venting the difficulties associated with Keller's theory in the neighborhood of
shadow boundaries. Each one of these theories is based on its own ansatz and
they do yield different form for the expressions for the field. Since the
present approach is based on an exact representation for the field it provides
a convenient means for verifying and testing the different theories for some
special cases. In addition, it may be conveniently applied to non-planar
illuminating waves, shadow boundary-shadow boundary interaction, multiple edge
diffraction, etc., where one or both of uniform theories may require significant
modification. An added feature of STD is that it can even be applied at caustic
directions, even when there is a confluence of shadow boundary and the caustic
direction. In contrast the uniform theories mentioned above break down at the
caustics.

The paper begins with an introduction of the basic concept of STD. This

is done by constructing the half-plane solution for plane wave illumination



in the spectral domain. The scattered field is represented in terms of a
superposition integral of a continuous spectrum of plane waves with the
spectral diffraction coefficient playing the role of the wighting function
of the spectral plane waves. It is shown that even when this diffraction
coefficient goes to infinity, the scattered field remains bounded, as of
course it should. The next section treats the non-planar illumination of
a half-plane and compares the results with other uniform theories. The
last two sections demonstrate the usefulness of the STD concept by con-
sidering two geometries with either shadow boundary or caustic difficulties
when treated with conventional GID. These include an aperture in a plane
illuminated by a normally incident plane wave and a semi-infinite cylinder
with axial incidence. The paper finally concludes with a brief summary

and suggestions for future work.



II. DIFFRACTION OF A PLANE WAVE BY A HALF-PLANE~-—-A NEW INSIGHT

The problem of diffraction by a half-plane has been analyzed extensively in
the existing 1literature on the theory of electromagnetism. Since Sommerfeld's
well-known solution in 1896, many other workers have devoted their efforts toward
sclving this problem using a multitude of techniques. The interested reader may
refer to the standard texts of Noble [3], Born and Wolf [4], Mittra and Lee [5],
and others where comprehensive reviews of these techniques may be found. The
principal reason why the half-plane solution plays such an important role in
diffraction theory is that it forms an integral part of the solution of a large
class of high frequency diffraction problems dealing with more complex bodies.
This line of thought, in which the canonical solution of the half-plane problem
is used to construct the solution of other complicated geometries such as apertures,
was originally developed by MacDonald in 1905, Braunbek in 1950, Millar [6],
Ufimtsev [7], and others, and later integrated with the ray optical viewpoint by
Keller [8-9], Deschamps [10], and others. A good review is given in [11] where
wedge diffraction is also studied.

In this section we will re-examine this classical problem of diffraction by
a half-plane from a new angle in which the solution to the problem is constructed
in the spectral domain after the concept of the spectral diffraction coefficient
is introduced. Only a brief discussion of the solution is presented here, mainly
with the objective of laying the foundation for more complex problems to be dealt

with in the following sections.

A. Construction of the Solution

The geometry of an ideally conducting half plane illuminated by a plane wave

is shown in Fig. 1. The Cartesian coordinates x, y, z and the cylindrical

coordinates p, ¢, z of the observation point are also indicated in the figure.
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We let the direction of propagation of the incident plane wave be normal to the
edge, i.e., Ei « z =0. This assumption changes the vector nature of the three-—
dimensional problem to a two-dimensional scalar diffraction problem (see for
instance, the book by Born and Wolf [4]). Furthermore, the problem may be
classified as E-wave or H-wave types by simply letting the incident E-field or
H-field be directed alternatively, along the edge of the half plane. 1In this
work, only the E-wave-type incident field will be considered; however, the H-wave-
type solution can be constructed similarly. In scalar diffraction problems, the
corresponding boundary condition, which is similar to the E-wave diffracting case,
is called the soft body boundary condition.

Let the incident plane wave with unit amplitude take the following form at
point 3

i ~+1i >, _ -ikpcos (p- g) _ —-ik (x cos ¢i + vy sin ¢i)

ut = exp (ik™ . p) = e = e . (1)
where ¢i andT(i denote the incident angle and wave vector, respectively. The
problem at hand is to determine the total field diffracted by the half-plane due

to the incident field (1). Let us resolve the total field ut as

ut = S 4 ui’ (2)

s . , . . .

where u~ designates the scattered field due to the induced discontinuity (or
induced current) in the half plane. The scattered field u® satisfies the reduced
wave equation

(3i+8}2,+k2)us=0, for y # 0, (3)

and the soft body boundary condition
u® = —u" » for x < 0. 4)
In addition, for a unique solution it will be necessary to impose two other

conditions, viz., the radiation condition and the edge condition. The boundary

value problem described in (3) and (4) can be solved exactly by many different



techniques. Here, we use the transform technique and solve a Wiener-Hopf type
equation. The discussion is not new and may be found in standard texts, e.g.,
Noble {3}, Jones [12], or Mittra and Lee [5]. The main purpose of this presenta-
tion is to introduce our notations and develop the fundamentals for subsequent

sections.

Let us define the Fourier transform pair as follows:

oo

f u(x) ei

-0

ax

U(a) dx = Flu(x)] (5)

and

u(x) %;f U(e) e %% gq = Fl [U(a)] . (6)

Upon transforming (3) and imposing the radiation condition, the general
solution of this equation may be written as:
IO XL y >0
v (a,y) = (7
B(a) eYy y <0
where y = /az - kz, with the requirement that Re vy > 0 and Im v < O (this is
discussed in {5]). Since US is a continuous function, it is easily found that
A(a) = B(w) . (8)
We use notations U_ and U+ to denote a regular function in the lower- and upper-
half o -plane, respectively. Using (1) and imposing the boundary condition (4)

in the transform domain, one derives

U (a,0) = . (9
i(o - k cos ¢7)

The crucial step in solving the Wiener-Hopf equation for the problem at hand is

to realize that



2, v (a,0") - 2 0% (0,0-) = -2YA(0) = X (o) (10)

where X (a) is a regular function in the lower-half a-plane. Tt is further
noticed that

U (@,0) + US(a,0) = A(a) = %7 X(a) . (11)

X (o) may clearly be interpreted as the transform of the induced discontinuity

(induced current) in the half-plane, i.e.,

0 o
X (@) = [ -3 ot |, e ax . (12)
- 0

Upon application of the standard factorization and decomposition procedures

one can determine X (@) from (9), (10) and (11) to obtain the following equation:

. 1/2
_ 2i(k + k cos Q}) va - k

X (o) 1 (13)
o — k cos ¢
Substituting (13) into (11) and using (7) and (6), one can finally construct
the scattered field
otit —iox~y |y|
s 1 14)
Wy =5 [ K@) S da (
—oo+iT Y
where T is a small re2l number. We may notice that
v |y .
e - i (1) ]
. . (1) . , . . i (1)
in which HO is the zero—order Hankel function of the first kind and Z—HO (kp)
is the Green's funciion of the two-dimensional Helmboltz operator.
Introducing the change of variables x = p cos ¢, vy = p sin ¢, a = -k cos w
and vy = -ik sin w into (14), one obtains
. M—ico . .
PS(p’(b) = us(p cos ¢, p sin ¢) = l]ir_ f )5 (d)l,w) elkp cos (w |¢l) dw (16)
oo



where the path of integration is the one used in [5], and

o w
. ~4cos > cos 5
X(¢",0) = X(-k cos w) = . — : (17)

i
cos ¢ + cos w

Upon introducing

. . ® ¢i
§1(¢1,w) = -Sec ——é%——— (18a)
and
i w + ¢i
X" (¢",w) = Sec — (18b)
we arrive at
x(oh,0) = xHetw) - et (19)

where superscripts i and r are used to denote the incident and reflected
diffraction coefficients, respectively. We may notice that gi(-) and gr(-)
have the same functional form, i.e., Sec (). This definition of X is closely
related to the definition used by Deschamps in [10].

Clearly, Xi and Xr are infinite at w = -(7 - ¢i) and w = ¥ - ¢i,
respectively. These two values of w correspond to the incident and reflected
shadow boundaries appearing in the GTD technique. As a matter of fact, §(¢i,w)
is precisely Keller's diffraction coefficient, when w is replaced by the observa-
tion angle ¢. Although §(¢i,w) tends to infinity at the shadow boundaries, it
does not mean that the field itself is also infinite as Keller's GTD theory
predicts. Instead, the correct value of the field is obtained from (16), which

is always bounded. To distinguish it from Keller's coefficient, which is



associated with the diffracted field, we will refer to §(¢1,w) as the "Spectral

Diffraction Coefficient" for half planes. The terminology is chosen since

§(¢1,w) is associated with the spectrum, or equivalently the Fourier transform,

of the induced current and appears only inside the kernel of the plane wave

spectrum representation for the field and not directly in the form a factor

multiplying the incident field as in the case of Keller's representation.

We may further use the defintion (12) and introduce the spectral diffraction

coefficient of the physical optics field XPO as the Fourier transform of the

physical optics induced discontinuity in the half plane, i.e.,

0 . s
- _ i iax
Kpo (@) Iw 28, u| e dx (20)
where -2 By u1|y=0 is the induced current of the physical optics contribution in
. . . i
the half plane. Since By u* y=0 = —ik sin ¢ ikx cos ¢ , one obtains
i
2k si
Xpp () = = ¢i (21)
a - k cos ¢
Replacing a by a = -k cos w and simplifying the above result, we finally arrive
at
i i 4 r i w - ¢t w+ ¢t
Xpo(8750) = Xp (97,0) = Xp (67,0) = —tan “—"— + tan T t— (22)
It is worthwhile to mention that XU’ as defined in the following equation, is
bounded at the shadow boundaries
i . .
X, 070) = X7 ,0) - X, (67 ,0) (23)

XU(¢i,¢) could be called the Ufimstev diffraction coefficient [13] and will be

used in Section IV.



After substituting (19) into (15), deforming the path to the steepest

descent path PS and taking into account the pole contributions, we arrive at
the following result:

. i .
5 i i _emike cos(oi+lol) o1 l¢] <=
1;1 (pa‘b) = 4_71' f Z((q) 9(—0) dw +

PS 0 0< [¢l <m -9

eikp cos(w—|¢|

(24)

where the upper term is valid for the region 7w - ¢i < [¢| < 7w, and the lower
term is valid for the region 0 < |¢| < 7~ ¢i.

Having determined the scattered field us, we now can find the total field
ut from (2) which may be written in the following alternative form:

ut = u® + ud (25)
where u® is the geometrical optic term defined as:

w8 = oeh) ut + oD Wb, (26)

. . . . i . . R
In the above equation, 6 is the unit step function, ¢ and er are illumination

indicators for the incident and reflected fields

i +, for -(m - ¢i) < ¢ <7
27)

- otherwise,

and '
Er 3 +, for mw - ¢1 < ¢ <7 (28)
1 - otherwise,
and
gr = ur(p cos ¢,p sin ¢) = —e_ikp cos (¢+¢°) (29)

i.e., the reflected field. In defining e’ and ar, it is assumed that
0 < ¢1 < m , although generalization for all angles of ¢1 is quite straight-
forward. Moreover, ud in (25) is the edge diffracted field expressed as:

10



ud(p cas ¢,p sin ¢) = gd(p,¢) = %; IP §(¢i,w) eikp cos(w—|¢|) dw . (30)
s

The integration in (30) may be evaluated asymptotically using the standard
saddle-point integration technique [14]. For large kp and observation angles away

from the shadow boundaries, ud may be computed to give

gd(p,¢) = x(61,9) g(kp) + 0l(kp) 3/2] Kkp » =

where
i(kp+n/4)
g(kp) = +=——" (32
2v2nkp ’
) . ) i i (1)
i.e., the first term of the asymptotic expansion of 4 HO (kp).
Substituting u® and ud from (26) and (31), respectively, into (25), the
asymptotic form of the total field may finally be written as:
] . . ~3/2
uf = o) ul 4 o™ o + x0he) gke) + 0 (k)T (33)

The above result is precisely Keller's GTD solution for the half-plane
diffraction by an incident plane wave. It may be noted that according to (17)
both the observation and incident angles appear in the argument of X(¢i,¢) in a
symmetric manner.

Clearly, (33) is not valid for the observation angles correspond to the
shadow boundaries, where (30) must be evaluated more carefully. For instance,
exactly at the shadow boundaries the saddle point of (30) and the poles of
X(¢i,w) coincide and special care must be exercised to correctly evaluate the
integral asymptotically. For the problem at hand, i.e., plane wave incident,
integration (30) can be performed exactly in terms of the Fresnel integral by

employing the following result {4]:

X . . . i i
%; f sec %(w - oM e1kp cos (w=0) dw = + e ikp cos(¢-0 )F(t V2kp cosg———%——),
Ps
(34)
4 - o 4 - ¢
with the upper sign for cosT——— > 0 and the lower sign for cosT—5—— < 0.

In (34), F is the Fresnel integral with the following definition:

11




~in/4 e 2
F(T) = £ f elt dt . (35)
v T
From (35) it can easily be shown that

F(t) + F(-T) =1 . (36)
Using (34), one can then evaluate (30) in terms of the Fresnel integral, and

finally construct ub with the help of (36) resulting in the following equation:

t i

ot = FeEh Wb+ FE S (37)

i r . .
where u= and u are evaluated at the observation point and
i

el - V2o cos ¢ —ZQM (38a)
i
+
gF = 2kp cos lTCL . (38b)
Equation (37) is valid for -m < ¢1 < 7mand -m < ¢ < ™. This equation

demonstrates the classical solution of the half-plane diffraction by an incident
plane wave originally obtained by Sommerfeld. The asymptotic expansion of ut as
derived in (33) may be constructed directly from (37) by simply using the first
two terms of the asymptotic series expansion of Fresnel integral shown here as:

2 in/4 = -n

F(t) . 6(-1) + T & 1§ P+ (it?) [t] >> 0,
2nT 0=0 2

where I' is the Gamma function and 8 is the unit step function.

In reviewing the material presented in this section, we note that its
principal contribution has been the introduction of the spectral diffraction
coefficient, which - in turn - is shown to be associated with the integral
representation of the scattered and total fields. In contrast to Keller's
coefficients, the infinities in the spectral coefficients at shadow and reflection
boundaries do not lead to infinite fields. The equivalence between the GTD results
and those derived from the spectral representation for observation angles not
close to the shadow boundaries has been established. 1In the next few sections, we
will illustrate the broad nature of the spectral concept and its versatility of
application by considering more general incident waves and complex structures than

the half-plane illuminated by a plane wave.
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IIT. DIFFRACTION OF AN ARBITRARY FIELD BY A HALF-PLANE

The problem of diffraction of an arbitrary incident field by a half-plane is
of great interest in applied electromagnetism. As an example, one is often
interested in solving the problem of radiation or scattering from an antenna
mounted on a conductive body with sharp edges; or for an antenna with a given
pattern function, which is mounted close to the earth and is radiating in the
presence of a protrusion or a hill that may be modeled by a knife edge. It
should be mentioned that the principal modification for the case of an arbitrary
incident field shows up essentially in the neighborhood of the incident and
reflected shadow boundaries, where Keller's representation is not valid because
of infinities in Keller's coefficient. In various uniform theories these
infinities are eliminated either by additive or multiplicative factors that cancel
these infinities at the appropriate angles and yield finite results. However,
since each uniform theory is based on its own Ansatz, the final results are not
necessarily the same. Thus, the solution to this problem is of considerable
theoretical importance, since it also provides, in some special cases, a reliable
means for comparing and testing the validity of various Ansatz that form the basis
of available uniform asymptotic techniques.

A search through the literature reveals that there has not been a detailed
analysis of the half-plane diffraction, due to an arbitrary incident field, until
quite recently. The half-plane diffraction problem of the radiated field by an
isotropic line source has been discussed by Clemmow [15] and Born and Wolf [4],
and others. A more general case has been analyzed by Khestanov [16], but this
work does not provide any specific results of the behavior of the diffracted field,
but only an integral representation, which is not evaluated explicitly. Recently,
a few terms of the asymptotic representation of the diffracted field of an
anisotropic line source have been given by Lee and Deschamps [17], using the

uniform asymptotic theory of Ahluwalia, Lewis, and Boersma [1].
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In this section, we employ the results of Section II and develop an expression
for the diffracted field by a half-plane due to an arbitrary incident fieid (with
no caustics). Furthermore, the construction of the asymptotic expression of the
diffracted field at the shadow boundaries will be presented in detail for an
anisotropic line source. Results will be compared with other available data.

A. Construction of the Solution

In this section, we again assume that there is no z-dependence; hence, a
two—dimensional diffraction problem will be considered. Any field radiated from
a given source distribution and in a domain outside the source region satisfies
the two-dimensional Helmholtz equation. It is well known that this radiated
field can always be expressed in terms of the spectrum of plane waves in the

following fashion:

. ® . /2 2
ut(x,y) = %— f ut(@) e 1Bx B -ky de,

m

-_—

y £0 (40)

. . i ,
where y is measured along the normal to the surface on which u (x,0) is measured.
For instance, that surface may be chosen as the dashed surface shown in Fig. 2.

It is also noticed that U (B) = F[ul(x,O)]. Introducing the change of variables

X =p cos ¢, vy = p sin ¢ and B = -k cos n into (40), ul(x,y) may then be
mT—ioo
i _ i . _ 1 . i ikp cos(n-¢)
u (ps9) = u (o cos ¢,p sin ¢) = 5 fim k sin n UT(n) e dn, 1)
where gl(n) = Ul(—k cos n). The integrand of (41) represents a plane wave

propagating in n direction with an amplitude of %F-k sin n Ui(n).

Our task is to find the total diffracted field by a half-plane due to the
incident field ui(x,y). To do this, we first determine the scattered field of a
(spectral) plane wave from (16), weight it with the spectral amplitude coefficient
of the same wave, i.e., i k sin n Qi(n), and finally integrate it over the entire

2T

spectrum. This procedure leads to the following representation of the scattered

field:
14



mT—1ic s _ . s _ K ) .
gt(p,¢) _ f. {} ikp cos(¢-n) F(eD) e ikp cos(¢-n) FED) X sin Ql(ﬂ) dn,
lw
(44)
where (4358)
gl = —vV2kp cos 9 ; n
£F = V2kp cos L3 (450)

Equation (44) is the complete representation of the solution of the total field
diffracted by a half-plane illuminated by an arbitrary incident field. It is
further noticed that (44) represents a superposition integral. This integral may
be evaluated asymptotically by first sorting out the dominant exponential parts
of the integrand and then expanding the rest of the integrand in terms of the
Taylor series. This procedure will be worked out in detail in the next section
where more specific examples are treated.

Since the Taylor expansion of the Fresnel integral will be used for asymptotic
evaluation of (44), it is given by the following formula:

iTZ o 4

F(0) = “5— ] == GO S (46)
n=0 F(‘§+ 1)

B. Anisotropic Line Source

In this section, we will examine the usefulness of the formulas developed in
the previous section. Consider a line source with a non-uniform pattern. This
line source may be thought of as the radiated field from a source distribution
located far away from the half-plane. The geometry of the half-plane with a
nonisotropic line source is shown in Fig. 2. We notice that S1 and s, are the
coordinates of the line source (a phase center for a given source distribution

far away from the edge) and s is the separation between the source and the edge

of the half-plane. Index "0" is used to denote the source coordinate system

15



erected at the source line (51,82), and angle ¢* is shown in the figure.
The radiated field from a given source distribution p(xé,yé) may be

expressed as:
i = - . 1 '
u’ (%4,) [p(xgsy) 8y(xfHvh | x9,99) dxj dyy (47)

' ' - i (1) Z 2 . ' .
where go(xo,yo | xo,yo) A HO (x | Po = Po ) is the Green's function of
the two-dimensional Helmholtz operator. For large values of Py> compared

with the region occupied by the source, (47) may be written as:
~ ]
. =

. i(kpo+%)
i S ; -e ' 0 '
’:l (OO, ¢O) u (QO CcOos ¢Oaﬂo sin (bo) = 2}72_‘]T—k——p0_ f p(X’O,yO) e d)\b dyo .(48)

If we define P as the double Fourier transform of p(x',y'), (48) will then

take the following form of which E(¢O) is commonly called the Pattern

Function: . T
. el(kooﬁ-) el(kooJrZ)
’ = - »—k si = ) . 49
u (pys0g) Z/E;EEB' P(~k cos ¢, sin ¢4) Z/EFEEE P(3,) (49)
Since we are interested in obtaining the transform of the incident
field, i.e., Ul(B,yO) = F[ul(xo,yo)], we may use the convolution theorem to
express the Fourier transform of (47) as:
- !
) n |y 4! 4

UNB,yg) = [ Flpl =5 0 (50)

' 2
where y = /82 - k", with Re vy > 0 and Imy < 0. For large negative values
of Yoo such that Yo ~ yé < 0 for all yb, (50) may be rewritten in the following

fashion:

/.2 ' Y
- N e R e O VERe.
ULy =S5 FRI e ayy = S5 P(B,~/k" - 8%). (51)
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It is noted that in (51) the integral has a Fourier transform character,

hence, P(B,—/Qiyj’gz) is the double Fourier transform of p(xé,yé), namely, the

same function as introduced in (50). Evaluating the transform of the incident

field at the half-plane, i.e., Yo < -sz, and shifting the origin to the edge of

s,, we obtain the following result for the transform

the half-plane, i.e., Xg = ~81

of the incident field:

‘Y 2 1BS //
U (B) = U (B, it ) = P(89 k . (52)
After introducing the change of variables B = -k cos n, s, = s cos ¢S and
s, = 8 sin $,> one can finally express (52) as follows:
. i
i 5 e1ks cos(n-¢7)
U'(n) = U'(-k cos n) = —— P(-m + n) . (53)

—2ik sin n
It is apparent that P(-n + n’ is the same functional introduced in (49) as
§(¢O). One may now conclude that the transform of the incident field (49) can
be constructed directly from the pattern function ?(¢0) by replacing ¢0 with
-1 + n as in (53).

Next, we substitute (53) into (44), and obtain the following expression
for the total diffracted field by the half-plane illuminated by an incident

field given in (47):
m—1ce

gt(p,¢) _ %_ [ {}—ikp cos (¢-n) F(Ei) —o~ikp cos(¢+n) F(gr{} (54)

l .
1.

P( +m eiks cos(ﬂ—¢1)dn

NIH

The above expression for the total is uniformly valid for all observation angles

¢ as well as distance p.

Next, we proceed to evaluate (4) asymptotically for large values of
gi and Er which correspond to the observation directions different from the
shadow boundary directions. This is done by employing (9), which may be

rewritten in the first two terms as:

F(t) = 0(-1) + F(1) || >> o, (55)

17



where

iﬂ— iT2
F 4 e +o0¢t Yy . (56)

2vVnT

Substituting (55) into (54) and deforming the path of integration to the
steepest descent path, we finally derive the following expression for the

total diffracted field:

u 0,0) = 0™ ulogieg) + 0D 1T L6 + XG6TL0) se) ul(s,m + oh)

+0[ke) %], (57)

where the definitions of G(Ei), e(er), g(kp) and §(¢i,¢) are the same as in
(33), gi is defined in (49), and gr is the field radiated from the fictitious
image source, as shown in Fig. 2. Equatioun (57) has the same form as the
result obtained using the GTD. Obviously, (57) does not hold at the shadow
boundaries where either &i = 0 or ér = 0, since (55) can not be used for small
values of 7; hence, special care must be exercised to evaluate (54) for small

i Y
values of & and &

As an example, we consider the case where the observation direction
coincides with the incident shadow boundary direction, i.e., ¢ = =(n - ¢i).
For this case, gi = 0 and &r # 0 at the saddle point. To evaluate (54)
asymptotically, one can still replace F(gr) by its asymptotic expression from

(55) and calculate the integral via the steepest descent technique to give:
i ikp ¢ ('i+ ) r iks cos ( —¢i)
[ - eI TV R R ) e " dn

= xTGh o 4 oY) o) ulGs,mm + 0D, (58)

where Xr has been defined in (18b). The evaluation of (54) for the part
containing F(él) is more involved than that which was used to obtain (58).
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It should be noted that El = —V¥2kp cos ¢ ; n goes to zero for the observation
angle ¢ = —(m - ¢l) and the saddle point n = ¢1. Therefore, (55) can no longer
be used to evaluate (54) asymptotically.

The procedure for calculating the integral

: - N
T=—1%

. 1
- A .on =9 |
I f i FL 2kp sin = :E( m+ 1)

joo

Jlk(sto) cos (n=e) | oo

will be described in what follows. The above integral has been constructed

by placing v = —-(n - @i) into (54) for the term countaining F(gi). At this
point, it may be tempting to counclude that for large k(s + p) only the lcading
term of the saddle-point type of expansion of the integral in (59) will suffice
to yield the k_l term in the final result. That this is iacorrect, will soon
be evident from tne discussion below. In oruer to perform a complete
asymptotic evaluation of (59), we first expand the integranu FP in terms of

the Taylor series arouad n = Qi, and then evaluate eacihh term of the infinite
series using the steepest descent technique. This procedure is called the

Complete Asymptotic Expansion in the refereunce [l4]. uerc, we only express

tne final result, namely,

] i ika—-i+ -i % _.(2n) 2
< - / 2t 2 i
L) = f £(m) elkEZCOS (n=¢7) an = e 4 z e i V—f} rin o+ 5
(2n) ! ‘kQ : 21
SDP n=0
as ) » o (60)
where
2n
f o (n) . n
o and £(n) = J T4 (n - D)
n n!
an . n=0

1

n=o

The Taylor expansion of the integrand FP may be constructed by first using

the formula (46), resulting in:
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nm

L _ fw ikp -ikp cos (n-¢i) e i i|"
FE/kasinn ¢ & = P -2kpsin”‘—¢1

2 2 n=0 F(%-+ l) 2

i -in¥

) o1ko o~ikp cos (n-¢7) = e 4

2 n=0 F(%—+ ﬂ

!r . - . (2m1)] n
o 1 V7] (-1 (n -9 !
] ke mZO Gm+ DT\ 2 ) JI (61)
and then expressing P as:
P(-m +n) = ) = (n=-¢) . (62)
n=0 )

According to (60), only the even terms of the expansion of FP are needed.

Tne sum of even terms of the Taylor expansion of FP, say (FP) , is given by
~‘e

(Fg)e =_% eikp e—ikp cos (n—¢i)
{ - —1ng- i 2n - —i(2n—l)%
N ()] e nin- ¢ @) e 2n-1
" \P Zo T T ) (2ke) ( 5 ) + P nzl 2 F(n LI (-1)
. 21
n—i i n
- (2kp) 2 (”—'2—"’—) T (63)

Substituting (63) iato (59) and using (60), one derives the result:

ik(p+d)+i . 1
I = P(0) e ) 4 L1 Z —inm F‘n + 24 (an
N 4v21ks /r n=0 P+ 1) s
ikp+i% ikd+i% . .
() e e —inm {p -3/2
+ P J e 18]+ o™ (64)

V2mkp 2¥2n1ks n=0
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through the application of the following identities

-1 o T'ln + lj
2 1 —inm 2 n
(1 + x) == 7 T X (65)
Y1 n=0 I'(n + 1)

and

a + x)_l = z e TOT LT s (66)

n=0
one may further simplify (64) to obtain:
ik(p+s)+i%— ikp+i% iks+i%
1 i . _

I=5°% P(-m + ¢7) + = - & af pr-m + o0 + 0a3?

2V21k(p + s) 2/27kp 2V2rks P 7S (67)
where F'(—n + ¢1) = E(l)(—n + ¢1) = —2_.E(¢0) , that is, the angular

3¢ ,
0 o i

derivative of the pattern function.
Using (58) and (67), the total field gt may finally take the following

value at the incident shadow boundary (Sbl):

iks+i—z—
W, +oh) =2 ulo + s,mm + 0D + g(ke) © 2 pr(en + o)
2V2nks P 7T °
r, i i i i -3/2
- X (@7,-m + 97) glko) u (s,-m + ¢7) + 0(k ) . (68)

Similarly, one can determine the total field gt at the reflected shadow boundary
(SBr). The important feature of (68) is the appearance of the second term in
the r.h.s. of (68), which depends on the angular derivative of the pattern
function. This term, obviously, vanishes for an isotropic line source where

the pattern function is constant. The result shown in (68) agrees completely
with that of the uniform asymptotic theory of Ahluwalia, Lewis and Boersma [1]

exactly at the shadow boundaries, though it does not mean that the observed

21



agreement also holds in the vicinity of the shadow boundaries. More importantly,
(68) shows the discrepancy of the uniform theory of Kouyoﬁmjian and Pathak [2],
when applied in determining the diffracted field by an anisotropic line source

before their slope diffraction modification {18] was introduced.
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IV. DIFFRACTION BY AN APERTURE IN AN INFINITE SCREEN

In this section, we discuss the problem of three-dimensional scalar
diffraction by a convex aperture of arbitrary shape in an infinite screen.
This study has a long history in the literature pertaining to electromag-
netic and acoustic diffraction phenomena. 1In 1891, Kirchhoff was possibly
the first to present a reasonably good mathematical description of the
problem, which was later improved by Braunbeck and others. A critical
review of many different diffraction formulations has been presented by
Bouwkamp [19], and a comparative study of Kirchhoff's formulation,
Braunbeck's work and the Geometrical Theory of Diffraction (GTD) has been
done by Keller and his associates [20]. GTD is the modified version of
the Geometrical Optics (GO) developed by Keller [9] in 1962; at the same
time, the modified version of the Physical Optics (P0O), called the Physical
Theory of Diffraction (PTD), was developed by Ufimtsev [18]. The GTD and
PTD formulations have been the essential core of many new developments in
the high frequency diffraction analyses. Many different uniform theories
have recently been suggested to overcome the difficulties occurring in
GTD at the shadow boundaries and caustics. As mentioned in the introduction,
the Uniform Theory of Kouyoumjian and Pathak (UKP) [2] introduces a multipli-
cative transition function to circumvent these difficulties at the shadow
boundaries, and the Uniform Asymptotic Theory (UAT) [1], which has been
suggested by Ahluwalia, Lewis and Boersma, gives a finite value to GTD at
the shadow boundaries. Interestingly, both uniform theories use the function
%(T), introduced in (56), as their transition function in a completely dif-
ferent manner. The caustic difficulties have been partially alleviated with

the application of the Equivalent Current Method (ECM) introduced by
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Millar [21], Ryan and Peters [22] and its modification by Knott and
Senior [23]. The determination of the field at caustics has also been
studied by Ludwig [24] and others. Some difficulties in applying PTD for
complex scatterers have been discussed and resolved by Mitzner [25].

Our goals in this section are to apply the techniques developed earlier
and to construct a solution to the aperture problem, which is valid every-
where, including the shadow boundaries and the caustic directions. An
added feature of the approach is that it is able to bring out the subtle
relationships among GTD, PTD and ECM in a unified fashion. The analysis
is again carried out, primarily in the spectral domain; thus, this may be
regarded as yet another application of the Spectral Theory of Diffraction
(STD).

The geometry of a convex aperture in an infinite screen is shown in
Fig. 3. The screen S and the aperture A lie in the x-y plane, and T,
which possesses continuous tangents, represents the rim of the aperture.

~

We let the incident field ui be a plane wave with the wave vector kz, which
takes the following form:

ui _ eikz (69)
The case in which the incident field impinges obliquely on the structure
has been investigated by the authors in a separate paper [26].

The total diffracted field ut may be split as follows:

t s i
u =u +u, (70)
s . . .
where u~ is the scattered field. Here, as in previous cases, we assume that
. t .
the total field u 1is zero on the screen, and therefore, the problem at hand

may be called the diffraction by an aperture in a soft screen. Since the

scattered field u® is generated by the induced discontinuity of the total
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. . S 8 . . .
field in the screen, u satisfies the following equation:

0+
2 2
(3% + 37 + 32 +k2) w’ =3 ut| §(z). (71)
X y z z 'y
o+ o+ 2 >,
It is noted that 3 utl =3 uSI Introducing g, = ellR R I/4ﬂl§ - ﬁ'{
z 0- z 0— 0

as the Green's function of the three-dimensional Helmholtz operator, one

finds that

2 2 2 2
+ ' oty - ! oy —- z").
(3, + 30 + 3, + k) g (x,y,z[x",y",2") §(x - x') 8@y - y') 8(z - z")
(72)
Using the convolution theorem, one can easily verify that uS is determined
from the following equation:
s t0+
u’ = -/ 3. u | g (x,y,z|x',y",0)dx"dy" (73)
0
S 0-
u® may further be decomposed as
o = ud 4+ O, (74)
d , . . 0 | .
where u  is the diffracted field and u is the scattered field when the
aperture is closed. One may readily observe that
i
0 “ }
u=
ut = —ul(— z). o (75)
<
where u’ is simply the reflected field and symbols > and < refer to the
regions z > 0 and z < 0, respectively. Using (73), (74) and (75), the
total diffracted field ut may also be expressed as:
ut = uf + uPO, (76)

where uPO is the physical optics field and takes the following value:
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0+ ; i 0 0 O+
8y dx'dy' +u =u +u + S Bzu l

8, dx'dy' (77)
S 0- A 0-

and uf designates the fringe diffracted field. It is noticed that

Bzu0| over S is the same as the induced discontinuity of the physical
0-
0+ i
optics field and has the value azu l = - 282u over §.
0-
z =0

. . f . . .
Qur task is now to determine u , which is written as

; ro, o+ 0 o+ |
u =-J dul]l -23ua] | g, dx'dy’'. (78)
S

L5 o Z 0~

The quantity in the bracket in (78) which is the fringe field discontinuity,
is mainly confined around the rim of the aperture. To obtain uf from (78),

we first transform all of the quantities into the spectral domain by thle

following definition:

vlzl
dx'dy' = —5 (79)

_ _ = i(ax" + By")
G, = F[go] = i gy © 5y

0

where Yy Vaz + 82 - k2. The above result can easily be verified by Fourier

transforming (72) and imposing the radiation condition. We next define the

Fourier transform of the induced discontinuities as:

t o+ 0 O+
D (a,B) = F{[- 3 u + 3. u 1 8(s)}
U z z
0 0~
t 0+ 0 0+) i(ax" + By')
= f¢(- 3 u + azu re dx'dy' (&na)
s 1 Z Jo- 0-J
. o+
D(Q,B) = F[_ a u ]’ (80b)
0-

26



o+

1 6(S)). (80c)
(5

[ . o
DPO(a,B) = F [- Bzu
where 6(S) has value one on S and zero otherwise. It is now apparent that the

. |
Fourier transform of u” is

£
U = DUGO (81)

f
To determine DU, which eventually allows one to obtain u , an orthogonal
edge-coordinate system is introduced. As shown in Fig. 3, every point of the
screen S can be uniquely determined by its coordinate values (1,0), where ¢

is an arc length measured from a reference point on the curve I' and 1 is a

distance measured on the outward normal of the curve T from the curve to the

point of interest. If the curve T is expressed by its parametric represen-—
tation
x = f(t)
r: te[ti,tf], (82)
y = g(t)

then an arbitrary point of the screen can be coordinated as

H
1

= f(t) +-&L£El T

2(t)
(83)

where 2(t) = //[f'(t)]2 + [g'(t)]2 and prime denotes the derivative with

]
1 L 1
respect to the parameter t. One may notice that & (t), _f (t)} defines

2(t) 2(t)

the components of the outward unit normal. Using transformation (83), the

differential area is readily found to be:

dxdy = (1 +-§) dtdo = (1 +-§)z(t) drde, (84)

where p is the radius of curvature of I', i.e.,
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3
- et (85)

By employing transformation (83) in the evaluation of (80), one arrives

at: t
£
D (,8) = & ot EE BTy (o gya(eya, (86a)
ty
where
w t O+ 0 0+W T itlag' (t) ~ BE'"(t)]/8(t)
Xy(e,8) = J|= 3 u +ou 1+ e g dt. (86b)
of % lo- Z fo- .

By substituting (86a) into (81l) and performing the inverse Fourier transfor-
mation, one finds that
£ - i{ax + By) - Y]z(

1 > e
u = 4ﬂ2 fm DU(a,B) oy dadB. (87)

Introducing the spherical coordinate system (R,8,¢) and replacing x = R
. f
sin 8 cos ¢ and y = R sin 0 sin ¢ into (87), we may evaluate u for large

values of R (far field) to obtain (see Felsen and Marcuvitz [14], p. 439),

ikR
e
4TR

uf(E) =D. (-k sin 9 cos ¢, -k sin 6 sin ¢) = QU(9,¢) go(kR), R -» 0

U
(88)
The above evaluation is valid as long as the diffraction coefficient in the
kernel of (83) is well behaved at the observation angle (86,¢). For the dif-
fraction coefficient DU given in (82), this is always the case. However, if
we were to use either D or DPO in our representation in place of DU’ a direct
substitution of o« > -k sin 6 cos ¢, B > -k sin 6 cos ¢ would not be valid and

the integral would have to be handled in a similar manner as outlined in

Section IT.
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It is worthwhile to mention, that up to this stage, everything is exact
. c . R i .
and formally valid for an arbitrary incident field u~. However, since an

exact expression for —Bzut O+ and, hence, of DU(a,B) in (86), is not known,
0-

it is necessary to introduce an approximation, that allows us to evaluate (86b)
in a reasonable fashion. To illustrate the procedure, let us assume for sim-
plicity that the incident field is a normally incident plane wave, as

described in (69). We further assume that we are dealing with the high
frequency region, i.e., the dimensions of the aperture are large compared

to the incident wavelength. Under the latter assumption, one may replace

the induced discontinuity in ut on the screen, i.e.,

[ o 4y 0o
L z 0- z 0-

induced if a local half-plane had been erected tangent to the curve T and

T , e
bo(1 +-E), with the discontinuities that would have been

was placed in the plane of the screen. This approximation, which has been
used very extensively in the high frequency diffraction analysis, is indeed the
core of GTD and PTD. Introducing this approximation and comparing (86b) with

(12) and (6a), one arrives at:

Xo(e,8) v Xleg' - BE')/2) X, [(ag' - BED/L) = X [(ag' - BE')/2], (89)

where X and XPO are those terms previously defined in (13) and (21),
respectively. It should be pointed out that in deriving (89)a different
orientation for the coordinate system has been used for the local half plane
than that employed in Section II. Taking this difference between the two

systems of coordinates into account and remembering that our interest lies

in the normally incident case, we may simplify (13) and (l4) to obtain

2kl/2Va + k

¢4

X[a]l = - (90)
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and

2k
XPO[a] = (91)

Substituting (89) into (86a), one finally arrives at:

t
D, (a,8) = if o) + Be(O y fggr(6) ~ 8" () /L) ]2(D)a. (92)
i

The above formula resembles the formulation used in the equivalent edge
method (ECM). In this method, a fictitious line edge-current was introduced
using GID diffraction coefficients, in order to circumvent the caustic dif-
ficulty. In our procedure, the derivation in (88) proceeds very naturally,
such that there is no need to introduce an artificial current line source.
In his monograph, Ufimtsev derived an expression for a circular disk, which
is similar to (86b), however, with the order of integration interchanged.
His construction was carreid out in the space domain and was directed toward
the calculation of the far field. The expression he derived is identical to
(86a) with a and B replaced by -k sin 6 cos ¢ and -ksin 6 sin ¢, respectively.
Ufimtsev evaluated (86a) asymptotically using the stationary phase method and
then determined (86b) at stationary points using the expression of the far field,
diffracted by a half plane. Next, he used an interpolation scheme to determine
the diffracted field near and at the caustic directions. In conclusion,
Ufimtsev's construction (PTD) is largely based on intuitive consideration, as
he used a switched order of integration in contrast to (86a).

We evaluate (92) asymptotically for large values of k using the stationary
phase method after substituting o = -k sin 6 cos ¢ and B8 = -k sin 6 sin ¢ into
(92) and assuming that 6 # 0. The stationary points (bright points) are the

roots of the following equation:
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af'(t) + Bg'(tr) = O. (93)
It is easily understood from (93) that the directions of the lines from the
stationary points to the observation point (at infinity) and the tangent to
the curve ', at the stationary points, are perpendicular to each other. 1In
other words, the diffracted and incident rays lie on the diffraction cone,
which is degenerated to a plane for our case. This is the result which was
first stated by Keller in his GTD technique [9]. For a convex aperture,
there are two values of t which satisfy (93). This is true if o and B do
not vanish simultaneously, i.e., 6 # 0. We denote these two values by t1 and
t, and apply the standard stationary phase technique to the integral (88)

2

arriving at:

i~ N

= " TPl -1/2 ' '
Dy (as8) = Jor Jag"(e)) + 8" () Ky [(og! (£) = BE'(£))/0(e )]

i 1

ilaf(t,) + Bg(t,)] + i _
“a(e)) e ] ] Yroah, 9w

where + are selected according to the sign of af"(tj) + Bg”(tj). In calcu-
lating (92), it has already been noticed that the contributions of the end
points cancel each other, due to the fact that f(ti) = f(tf) and g(tf = g(tf).
The same relations also hold for their derivatives. Substituting (94) into
(88), one can finally determine the asymptotic value of u
Having determined uf, we next evaluate the asymptotic form of ut,
PO

defined in (76), by first constructing the asymptotic evaluation of u

given in (73). Following the same procedure which led to (87), one readily

obtains
. oo —-i(ax + Ry) - Y|z|
PO i 1 e
u u + Z;E _i DPO(a,S) oy dadB, (95)
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where DPO(Q,B) has already been defined in (80). Unlike Du(a,B), DPO(a,B)
is a singular function and, hence, care must be exercised in evaluating the
integral appearing in (95). Taking into account the pole contribution, we

then can express (95) as follows for the far-field region and observation

angles 6 # 0:
PO i eikR
u =u + i + DPO(—k sin 6 cos ¢, -k sin 6 sin ¢) LR (96)
>
<
where u’ = —ul(—z) is the reflected field and 2 corresponds to the regions

z 2 0. To obtain the asymptotic value of DPO’ we follow the same procedure
which led us from (86a) to (92) and finally to (94). In doing so, we arrive

at

DPO(a,B) = right hand of (94) after replacing the index U by PO. (97)

Using (96) and (88) and recalling that X = X+ X the total diffracted

U PO’

field u® may be written finally as:

. 5 —ui elkR 2 ~1/2
o= ut i . z /2_7Tllaf"(tj) + 88" (t))]
u | j=1
© 2
ilof () + Bg(c)] * i B
X[(eg' (£) - BF' (£))/0(£)] (k) e J 3 + 0(k ), (98)

where a = -k sin 6 cos ¢,B = ~k sin © sin ¢ and X[*] is defined in (90). The
above result agrees completely with the result obtained using the GTD ray opti-
cal construction. As was previously mentioned, (95) is not valid for small

values of 6 and, in fact, diverges as 6 - 0.
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When 6 » O, ut can be determined by employing other techniques instead
of the stationary phase method to evaluate (92). To do this, we expand the
integrand of (92) in terms of the Taylor series around 6 = 0, and then
perform the integration term by term. Substituting a = -k sin 6 cos ¢ and
B = -k sin 6 sin ¢ into (92) and using the Taylor series expansion, one

finally obtains from (86) the following expression for uf

JIKR o 3 3
=4 ] L+ A+ B+ 03 sin” 0)] 2(¢) dt (99)
t

i

A = [ - cos 0 g'(t) - sin 8 f'(t) + ik[cos ¢ f£(t) + sin ¢ g(t)]] sin 6, (100a)

42(t)
and
_ .,cos ¢ g'(t) - sin ¢ f'(t) .
B [1k 49(t) [cos ¢ £(t) + sin ¢ g(t)]
1 - - 1] 2 l 2
- % [COS ¢ g2§E§ sin ¢ f (t)] + Ek [cos ¢ £(t) + sin ¢ g(t)]2 sin2 6. (100b)
The physical optics field contribution, i.e., (77) can also be simplified

for small values of 9§ to give

PO eikR 2
u = f -2ik - 2k"(x' cos ¢ + y' sin ¢) sin ©
4mR
A
.13 ' v e 2 .2 4 . 3 '
+ ik” (x' cos ¢ + y' sin ¢)” sin” 6 + O(k sin” 0)| dx'dy', (101)
where, as defined in (69), u = elkz and u" = —e—lkz. It may be noticed

. . . . t
that exactly at the caustic direction where 6 = 0, the total field u

takes the following form

ikR
t PO f R e
u = u + u = - [2ikA + L] TR’

(102)

where A and L are the area and circumference of the aperture, respectively.
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B. Diffraction by an Elliptic Aperture

In order to demonstrate the generality of the procedure described in
the last section, we now go on to consider the diffracted %ield by an
elliptic aperture due to a normally incident plane wave. The aperture is
characterized by its axes such that 2a and 2b are its major and minor axes,

respectively. One may then parametrize the rim of this aperture as

X f(t) a cos t

tef0,2n] . (103)

y g(t) b sin t

Substituting (103) into (98) and simplifying the result, the total diffracted

field in the region z > 0 and for values of 6 # 0 can readily be shown to be

™ i
ikAsinf6-i~ -ikAsinb+i+
ut =/ 1 abA—_3/2 sin—3/2 0 | -e 4 cos -l-(T—T - 6) te 4
Tk 2°2
ikR
1, 7 e -1
cos 2(2 + 8) R + 0k 7] (104)

where A = (a2 cos2 o + b2 sin ¢)1/2. This result agrees with the one obtained
by Jones ([12] using a rather elaborate construction of MacDonald, and also
with the GTD formula.

For small values of 6, i.e., for observation angles along the caustic
direction, it is necessary to use (99) and (101) to determine the diffracted

field. For the case a = b, i.e., a circular aperture, the resultant field

expressions are rather simple and are given by

£ ra  im 2 .7 .23 2 IKR
= - + - —— — 1 - .
u {-2ma ( 3 + g—ka + 5 k"a”) sin” 8] 4R (105)
and
. ikR
UPO = [—2iﬂka2 + lE-k3a4 sin2 8] ——- . (106)
4 4R

For this special case of a circular aperture (77) can be integrated

exactly to give
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PO _ _4“'ka2 Jl(ka sin 9) e1kR 107
v o= + ka sin 6  4wR '

where Jl is the first-order Bessel function. As one expects, (106) is

indeed the small argument expansion of (107).
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V. DIFFRACTION BY A SEMI-INFINITE CYLINDER

The geometry of a semi-infinite hollow cylinder with the convex cross
section I' is shown in Fig. 4. The cross section I' is parametrized as (81),
and we assume that an incident plane wave impinges on the cylinder, axially,

i.e.,
ul = e—lkz ) (108)

Once again this case is of interest, since the axial direction coincides with
the line caustic, where conventional GTD results give rise to fictitious
infinities. As in (70), we split the total diffracted field ut into the
incident field ui and the scattered field us, where the latter satisfies the

following equation:

32 4+ 5% + 0% 4 k) B = M s (109)
X v z n

In (109), an denotes the differentiation along the outward normal of the cylinder
and 8§(S) is the delta distribution defined on the surface of the cylinder S.
Upon employing the Green's function defined in (68), one may express the
scattered field u° as follows:

o = of 3 ot g aar (110)

b
s ™ Jo- 0

where da' is the differential area of the cylinder.

To determine u® from (110), we first introduce a three-dimensional Fourier

transformation by the following definition

o«

* 1 1 ] l
GO =.F[g0] = f &g el(OLx By '+yz') dx' dy' dz' = 5 5 5 5 . (11D
—C0 Q + B + Y -k
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The above result can readily be verified by Fourier transformation of (72),.

We next define the Fourier transform of the induced discontinuity (or surface

current) as:

[eo)

D(a,8,7) = [ -b_u"|% s(s) POXHBYIHNED gur gyr ga
£,
= [ f ilef(®)+8e(D)] X (1) L(0) At (112)
5
where 2(t) = V[£' ()12 + [g'(£)]1° and
0 t| 0+ iyz'
X = [ -3u Y2 a4zt . (113)

. s . . . .
Using the fact that u~ = DG, and performing the inverse Fourier transformation,

0
it is then found that
s [ e—i(ax+8y+yz)
uw = =5 [ D(e,B,Y) 5 5, 55 dadB dy . (114)
817 -w o + B+ vy -k

The above formulation may further be simplified after substituting
x = R sin 6 cos ¢, y = R sin 6 sin ¢ and z = R cos 9 into (114), and performing
the y integration. The result for large values of R (far field) and in the

region z > 0 is given by

ikR
e
4R

u = D(-k sin 6 cos ¢,-k sin 6 sin ¢)

(115)

wihere D(a,B) = D(a,B,—Viz - az - 62 ). Unlike in (77b), D is bounded for
6 = 0 in (115) because the caustic direction and shadow boundaries are

separated for this case.
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To evaluate (112) which eventually allows us to find (115), we employ the
same approximation that was used in the previous section in connection with
(86b). Namely, we assume that in the high frequency region the induced

discontinuity in the cylinder, i.e., —Bnut O+ , can be replaced with the

0-
discontinuity that would have been induced if a local half plane had been

erected tangent to the cylinder. Introducing this approximation and comparing

(113) with (12), one arrives at:

Z‘._i_/_i._k__ (116)

Xo(a) v X[al =
va - k

where X[+] is previously defimned in (13). Substituting (116) into (112) and

using the fact that (116) is independent of the integration variable t, one

obtains

.
D(a,B) = X[-/k> - o® - 2] [ T Hef(O¥Be(O] iy g | (117)
t

i

The above simplification is not possible when the incident field does not
propagate in the axial direction. In this case X will be a function of t and
remains in the integral as XU in (92).

Substituting (117) into (115) and following the same procedures which

led to (98), we obtain the total field ut in the region z > 0 and for 6 # 0 as:

ikR _— 2
i 2
ut = ul + %R— X[—\/kz - 0L2 - 82] le V2T iOLf”(tj) + Bg"(tj)[l/ Q(tj)

ik[af (t,)+Bg(t,) |+iT _
‘e ] Py oTh (118

where o = -k sin 6 cos ¢, B = -k sin 6 sin ¢, and £y and t, are the roots of (93).

The plus and minus signs in (118) are determined according to the sign of

af"(tj) + Bg”(tj).
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For small angles of 8, we use the Taylor series expansion to evaluate
(117). The final result for the total diffracted field ut in the region z > 0
is

. ikR t
t i, e 2 f f

{
<l - ik[cos ¢ £(t) + sin ¢ g(t)]
cos 5 t,
2 i
2

_ % [cos ¢ £(t) + sin ¢ g(t)]? sin’

6 + 0[k> sin> e]\, g(t) dt . (119)
Interestingly, exactly at the caustic direction where 6 = 0, the above formula

can be further simplified to give

t i eikR
u = u + 2L 4mR ’

(120)

where L denotes the circumference of the cross section of the cylinder.

A. Diffraction by a Semi-infinite Circular Cylinder

We use (118) and (119) to determine the diffracted field by a circular
cylinder illuminated by a plane wave propagating along the axial direction.

1f the radius is denoted by a, the cross section may then be parameterized as:

X f(t) a cos t
{ te[0,27]
y g(t) a sin t (121)

Substituting (121) into (118) and (119) and simplifying the result, one
finally arrives at:
(i) for large values of ©

——— | ika sine—ilz:- -ika sin6+i%\ eikR

t_ i 2 2na
u = u + e/ksinat + e ? R (122)
COS‘E N

/s
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(ii) for small values of o

. . ikR
t i 1 23 .2 b . 4 *
u =u + 5 <4ﬂa - 1k"a” sin” 8 + O[{k sin el} iﬂR . (123)

cos
2

We may obtain a uniform expression for the diffracted field by simply
substituting (121) into (117) and performing the integration. This

substitution is done to derive

t i 4ma eikR
u = u + 5 JO(ka sin 9) R’ 0 <9<
cos 5

(124)

ST
v

where J0 is the zero-order Bessel function. We may notice that (122) and (123)

are the asymptotic expansion and small argument representation of (124),

respectively.
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VI. CONCLUSIONS

The motivation behind this paper has been to introduce the Spectral
Theory of Diffraction, or STD, which is an approach for constructing a
solution for high frequency diffraction problems. It is shown that the
scattered field, when expressed in the spectral domain, has the correct
behavior at the shadow boundaries and caustic directions (even when there
is a confluence of these two) and reduces to Keller's results away from
these angles. The case of non-planar illumination has been treated and
the results have been compared with other uniform theories. The problems
of diffraction by apertures and semi-infinite cylinders has been discussed
using the concepts of STD, and the formulations obtained in this manner
have been compared with that of Ufimtsev's theory. It is hoped that be-
cause of its versatility and uniform nature STD will find future applications

to a broad class of problems related to high frequency diffraction phenomena.
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Fig. 1 Ditfraction of a plane wave by a half-planc
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Fig. 2 Diffraction of an orbitrary Field by a half-plane
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Fig. 3 Diffraction by an Aperture in an infinite screen
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Fig., 4 Diffraction by a semi-infinite cylinder



