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INTRODUCTION

The advent of the singularity expansion method (SEM) [1] for describing
the transient characteristics of antennas and scatterers and the recent develop-
ment of methods for the direct production of both numerical [2] and experimental
[3] transient electromagnetic response data have generated considerable interest
in the possibility of direct extraction of the poles and residues from given
time;domain system response. The conventional approach for determining the
singularities of a system is based on an iterative search procedure that seeks
the zeros of the system determinant in the complex frequency plane. The extrac-
tion of the poles from the given time-domain response is not pessible using this
method. This paper presents a novel approach for systematically deriving the
complex poles and residues from a set of ti@e—domain data.* Numerical studies
have demonstrated that the method, which is based on Prony's algorithm [4],
[51 , is both efficient and accurate and that the results compare well with
those derived independently using the conventional method. Finally, it will be
shown that there are several numerical advantages in applying the method for

computing spectral characteristics from given time domain data.

#This technique was originally presented by R. Mittra and M. Van Blaricum,
"A Novel Technique for Extracting SEM Poles and Residues of a System Directly
from its Transient Response,' 1974 Annual USNC-URSI Meeting, University of
Colorado, Boulder, Colorado, p. 160, October 14-17, 1974.




THE NUMERICAL METHOD

In circuit theory, the impulse response of a linear circuit may be
determined from the knowledge of the location of the poles of the response
function in the complex frequency piane and their corresponding residues. The
impulse response of the circuit is then simply a summation of all the residues
multiplied by exponentially damped sinusoids. It has been shown in recent
works [1], [6], [7] that for electromagnetic antennas and scatterers of finite
size the impulse response of the induced currents and the scattered fields
for time t > 0+ may also be described by the sum of exponentially damped
éinusoidé.* Since the focus of this paper is to extract the poles and residues
of an electromagnetic system directly from its impulse response data, an
obvious place to start would be to write the given impulse response, I(t), as

the summation of exponentially damped sinusoids, i.e.,

N .
I(t) =3 Amexp(sm;) (1
m=1

where the s, are the poles or singularities in the complex frequency plane and
the Am are their corresponding residues. It should be noted here that the poles,
Sm, must be in compléx conjugate pairs in order to ensure that I(t) is real.

It will be assumed, without loss of generality, that I(t) is causal. Since,

in practice, one almost always deals with a discrete set of sampled transient
data, Equation (1) can be rewritten as

N
I(tn) = In =7 Amexp(smnAt)

m=1 n=0,1,...,281 - (2)

where At is the size of the time—stepping interval used in obtaining the

sampled data and £, = nAt. This set of Equations (2) is seen to be 2N nonlinear

*At time t = 0, a delta function exists due to the impulse source.
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equations in 2N unknowns. Prony's [4], [5]method of analysis may be applied
to this set of equations to obtain an exact solution, or a least-square fit
if more than 2N daté samples are used.

The problem of interpolation of a function using sums of exponentials with
unknown exponents was solved by Prony in 1795 [4], for the case of equally
spaced data samples. The method is based on the fact that the In in equation

(2) must satisfy a difference equation of order N which may be written as

N

OlpIp+k =0 p+k=n=0,1, ..., 2N - 1 (3
p=0

where the roots of the algebraic equations

o~
Q
N
o
[
o

(4)

are exp (smAt) = Zm,'m=l, 2y.+.N. If in equation (3) g is defined equal to 1»

then the ap‘s may be obtained by solving the equation

N-1
% lote T vk (5)
p=0
where the I and I are simply the known sampled transient data values.

p+k N+k

If 2N data samples are usedsthen (5) can be solved exactly for the ap's. If more
than 2N samples are desired,then one can obtéin a least-squares type fit to
equation (5). Once the ap have been found, then the roots,Zm = exp(smAt),of (4)
can simply be found and the poles are -obtained by

anm ) 6)

Sm T TAt




It is now a simple procedure to obtain the residues, Am; by solving the matrix
equation embodied in (2) since the elements of the matrix which involve the
sm's are now known. The matrix contained in (2) which must be dinverted is in
the form of a transposéd Vandermonde matrix whose inverse can be computed in
closed form. Thus, Prony's algorithm simply involves the solution of two matrix
equations and a solution of the zeros of an Nth degree polynominal, N being
the number of desired poles. The method requires that in-order to find XN
poles and residues it is necessary to have at least 2N equally spaced transient
data samples. The realness of the transient response, I(t), requires that the
N poles and residues come in complex conjugate pairs.

Once the poles, Sy and the residues, Am’ have Been determined, it ig
then possible to express the impulse response of the system for t > O+_

using Equation (1). If, in addition, the freqﬁency domain transfer function

is desired, then using the poles and residues it can be simply expressed as

N : A
> - + C
~o + J(m-wm) (9)

H(jw) =
m=1

where the poles S have been written in terms of their real and imaginary part
as o

sn = 9 + Jo_ (10)

and where the constant C gives rise to a delta function at t = 0. Thus, the
frequency domain transfer function can be obtained directly from the time-
domain impulse response without having to perform a Fourier transform.

At the beginning of the paper, the statement was made'that the impulse
response of a distributed system for t > O+ could be written as a sum of
exponentials. Since one does not usually have as an exciting function

an impulse function, it is of interest .to determine the form of the transient

response due to an arbitrary exciting waveform.
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A general response function R(s) is given in the Laplace transform

domain as

R(s) = F(s) H(s) ‘ ) (11)
where H(s) and F(s) are the Laplace transforms of the system's iﬁpulse response
for t > O+ and the arbitrary driving function, respectively. By expressing the
trénsfer function H(s) for the system under consideration as an infinite set
of pole singularities, then according to the theory of complex variables, H(s)
may be written in a residue series as
i

. s5~8,
i=1 i

N A
H(s) = T

, Re Si<o (12)

where s is the ith complex pole of H(s) and Ay is its corresponding residue.

Thus, the response R(S) can be written as

N Ai
R(s) = F(s)I - (13)
g S~s,
i=1 i
If the inverse Laplace transform of (13) is taken, the transient response
function r(t) is written as
N
r(t) = ¥ B, exp(s.t) + g(t) (14)
i=1  * *

where the Bi contains the Ai multiplied by some influence of the driving
function and the added term g(t) is dependent on the driving function.
Equation (14) shows that the transient response due to an arbitrary
exciting waveform can, in general, be written as a sum of complex exponentials
plus some added term g(t). If the exciting waveform itself has pole
singularities, as in the case of a step function or a sinusoidal function,

then the g(t) term also may be expressed as a sum of exponentials. 1If the




’ exciting waveform is of finite duration, that is it is turned off after some
time tO’ then it may be shown that the term g(t) is ddentically zero for t>to.

When the driving function is not finite in time and has no pole singularities,

as in the case of the Gaussian pulse, then the g(t) term cannot be written

as a sum of exponentials and Prony's method cannot be applied directly to the

transient response. However, this difficulty may be circumvented by simply

deconvolving the response function r(t) in a standard manner. Equation (11)

gives for instance .

Thus, H(s) may be computed by taking the ratio of the known frequency spectra
of r(t) and £(t). The inevitable presence of experimental and computational
noise limits the upper frequency for which the deconvolved spectrum H(s) is

accurate and, in practice, the computed spectrum must be truncated beyond this
. frequency. Care also must be taken to exclude t = 0 from the deconvolution

because of the presence of the delta function discussed previously.

THE NUMERICAL RESULTS
Results will be presented here for numerical studies in which the method
was used both on transient data obtained from a numerical time-domain computer

18] 191

cod and from a transient electromagnetic measurement facility .
In the case using data from the time domain computer code,a 1.0 meter
dipole antenna with a half length-to-radius ratio of 100 was modeled using
60 equal length cegments and the exciting field was a Gaussian pulse which
was applied across the center two segments of the antenna model. The Gaussian-
. o 2 2 . .
pulse time variation was exp -a (t—tmax) with a, the Gaussian spread parameter,

9 -1 . .
equal to 5 x 10 sec ~. It was assumed that since the Gaussian pulse was very narrow,

. it approximated an impulse and thus the transient response function was not




deconvolved . to obtain the true impulse response. A time step At of 5.556
X iO_ll sec was used, andtmax was 10At. The induced current at the center

.
of each segment was calculated for 500 time steps.‘ In order to calcéléte the
poles, the current on the éenter or source segment was used. Of the 500 current
values calculated, only 80 sampled values were actually used and these were
taken from the first 160 current samples at every second time step. Figure la
shows the source current for the first 160 time stéps as ofiginally generated
and the 80 sampled values are indicated by dots. These 80 current samples were
used with Prony's algorithﬁ to produce 46 poles ;ﬁd residues. These 40 poles
~and residues were then used in Eéuation (2) to reproduce the transient response
of the source current at 250 time steps where the ;ime step used to reproduce
the response was twice the otiginal time step. Figure 1b shows a plot of this
reproduced transient response. It is interegting to note here that although
only the information in the.first 160 original time steps was used the method
reproduced the current for 500 time steps to'within 2 x 10_4 milliamps of the
original response. Figure 2 is a plot of the pole locations in the second
quadrant of the compiex frequency plane. Only the second quadrant is shown
because as stated previously the poles must‘come in complex conjugate pairs or
lie on the negative real axis. Of the poles generated, only the ten plotted as
x's in Figure 2 correspond to the true poles of this system. :These ten correspond
to the first ten even poles of this dipole as calculated by Tesche [6]. The
fact tha; only the first ten even poles were generdted is not surprising if
one looks at the original model which was used. The original model was a
thin-wire approximation and was driven with even symmetry by a Gaussian pulse.
Because of the thin wire model and the width of the Gaussian pulse; the expected

spectral response has an upper frequency limit of about A = 10L [10]}, where L

.
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equals the antenna length. The resonances for a dipole occur at A/L =
1/2,3/2,5/2...s thuss with the upper frequency limit given, only the first ten
even resonances can OCcur. The extra ten pole pairs occurred because in the

method used when 2N sampled values were taken the method returned N poles and

residues. Thus, the extra ten pole pairs are partially a result of the numerical-

aspects of the method used and possibly due to the fact that the response is

not the true impulse response of the structure but is an approximation to it

" since the driving function is a Gaussian pulse. It has been found that thq

transient response can still be reproduced using only the ten physical pdle
pairs.

‘The input admittance for this dipole was obtained by dividing Equation (9)
by V(jw), the frequency spectrum of the input Gaussian pulse. The inéut
admittance, which is plotted in Figures 3a and 3b, compares closely for
all but the higher frequencies with the input admittance obtained by taking
the Fast Fourier Transform of the original data.i |

The experimental data used were generated on the transient electromagnetic
measurement range at Lawrence Livermore Laboratory [9). The response used here
was that of a 1.0 meter monopole located on a ground plane and éxcited by an
approximation to a Gaussian-pulse plane wave. The monopole was loaded at its
fase with a 50-ohm load,an@ the voltage across this load was measured with a

sampling oscilloscope. A total of 512 samples were taken at a time interval of

At = 0.4 x 10”10 sec. Of the 512 measured values,only 100 samples at every

o

fifth-time step were used. Figure 4a shows the measured response in terms
of the current through the load with the dots showing where the 100 samples
were taken. These 100 current samples were used with Prony's method and 41

poles and residues were produced. The méthod has been adapted so that if any
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poles show up in the right half plane they are discarded before the residues
are calculated. This explains why only 41 poles were obtained when 100

samples could give 50 poles. These 41 poles and residues were then used in
Equation (2) to reproduce the transient response of the current for 500 time
steps where the time step used was five times the original time step. It is
seen in Figure 4b that this method haé been used to extrapolate the measured
response to very late time values. Thus,with the storage of only 82 complex

* numbers the original measured time response was reproduced and extrapolated

to late values. Figure 5 is a plot of the generated poles found in the second”
quadrant of the complex plane. The first thing that is apparent about these

. poles is that they tend to fall .along a curve running about parallel to the
imaginary axis. This is typical of the pole locations for a dipole. The
.frequency of the first nine poles in this layer correspond to the first nine
complex resonant frequencies of a 1 meter mornopole., The fact th-t the remaining
poles do not coirespond to physicgl poles again relates to the fact that the pulse
used did not contain frequencie: higher than that qf the ninth resunance. The
real parf of these poles seems to oscillate gréuﬁd the .correct §3lue, which is
’probably due-to the sensitivity of the real part to thernoise in the uata. The
measured data were indeed noisy and no attempt was made to smooth it. A pole
sits on the real axis close to the origin. This is prob.bly beéause there was

a late time dc level present in the measurement system.

.

CONCLUSIONS
From a set of numerically generated transient current response data of a
dipole, the method presented here was used to generate the physical poles of the

system. If these physical poles are used, the transient response could be recovered
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for all time and the spectral characteristics of the system could be generated.

It‘ was possible to reconstruct the‘measpred re8ponAse as well as extr'apolate to ‘
the late time values, using a set éf experimentally produced tran;ient current
data for a monopole. TFrom these studies, a number of observations can be made
about this method. These may be summarized as follows:

1) From relatively few transient.data samples, it is possible to obtain the
transient responée of the system for both early and late times. This is
particularlyvuseful when only a few samples can be taken or only the early

- response is known; This also éllqws for compact storage of the transient
response.

2)  The spectral characteristics can be analytically obtained without the use

of a Fast Fourier Transform (FFT). This allows one to obtain spectral information
~at any frequencf desired rather than at the complete set of discrete frequencies

give by the FFT.

3) The method allows for the direct extraction of the singularities ¢ the
systep ﬁrom its experimental tran-~ient.re ponse. Thus, the transfer function
of aﬁ e%perimental system can be obéained ;llqwing the system to be modeled
from ¢ lumped circuit fiewpo;nt. As a result, +his Qeﬁhod can be used in

radar image ideﬂﬁifigation problems [11].

4) Waen 2N transient data samples are used, the method tries to return N poles
even when fewer than N poles may be present in the data. This can conceivably
be corrected by using something like a least-square fit to solve Equation (2).
5) The method, as presented here, is applicable to systems possessing only
simple poles. However, the method can be extended to systems with multiple §
poles, as will be shown in a future publication.

Work is being done to further refine this method and to make it even more

suitable for practical applications. Studies are also being undertaken to in-

vestigate the potential uses of this method, some of which were mentioned above.
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