AN 244
y

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
. o READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
( \. REPORT NUMBER ’ 77 7J2. GOVT ACCESSION NO.[ 3. RECIPIENT'S CATALOG NUMBER

NSWC/_'WOL/TR 75-39

4. TITLE (and subtirte) "Scattering of Electromagnetid s TYPE OF REPORT & PERIOD COVERED
- %gdlat%qglbx Ap%rturﬁi" z._Su§faig Curreﬁt,
ngen erture ectric Field, ac i
Bca tering Cgoss-Section For The Axia ly Topical Report

Slof:-,ted Cylinder at Normal,Symmetric €. PERFORMING ORG. REPORT NUMBER
M Incidence
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

J. N. Bombardt, Jr.
L. F. Libelo

9. PERFORMING ORGANIZATION NAME AND ADDRESS ) 10. P ROCRAM ELEMENT, PROJECT: TASK
gggal Sgrfgce Weapons Center,White Oak Lab{HDL:EQ052E6 Subtask EB-085
ilver Spring, Maryland 20910 NMAT-03L-000/ZR011-01-01

Y DNA-EB0O88-52

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
April 1975
13. NUMBER OF PAGES

193

T4, MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) | 15. SECURITY CLASS. (of this report)
Unclassified

[ i5a.” DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
( Approved for Public Release
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block Zb, 1f diffsrent from R.porfj

18] SUPPLEMENTARY NOTES
Thg eftor? funded by Defense Nuclear Agency was performed
jointly with Harry Diamond Laboratories, Washingten, D. C.

19. KEY {iRDS.éCianua on reverse_side i{ necessary and identify by block number)

Axia otted Cylinder
Electromagnetic Scattering
Surface Current

Aperture Field
Back-Scattering Cross-Section

20. ABSTRACT (Continue on reverse aide if necessary and identity by block number)
In this report we consider the thin-walled perfectly conducting,

axially slotted, infinite circular cylinder, and the infinite
cylindrical strip. For the case of incidence simultaneously

. normal to the cylinder axis and parallel to the symmetry plane

‘ bisecting the infinite axial slot, we present the analytic
formulation of the integral equations for the surface current on
the conductor and also those for the tangential component of the

DD , ':2:";, 1473 eoiTion ofF iruov €5 IS OBSOLETE UNCLASSIFIED
S/N 0102-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




UNCLASSIFIED

SLLCURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. (Contd)
electric field over the slot. The incident radiation is assumed
merely for simplicity to be monochromatic, plane, and linearly
polarized parallel to the cylinder axis. Results obtained
numerically for the tangential field over the slot, the surface
current density on the conductor, and finally the back-scattering
cross-section are displayed in graphical form for intermediate to
large slot angles for the range of n = 2Ma/A from 1 to 5. Some
newly observed relations for the slot field at wavelengths
corresponding to internal resonances are also considered.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




NSWC/WOL/TR 75-39

SCATTERING OF ELECTROMAGNETIC RADIATION BY APERTURES V. SURFACE
CURRENT, TANGENTIAL APERTURE ELECTRIC FIELD, AND BACK-SCATTERING

CROSS-SECTION FOR THE AXIALLY SLOTTED CYLINDER AT NORMAL, SYMMETRIC
INCIDENCE

This report contains formal and numerical results of research into
an electromagnetic scattering problem. The study was performed
jointly at the Harry Diamond Laboratories and at the Naval Surface
Weapons Center/White Oak. These efforts were supported at the
Harry Diamond Laboratories by the Defense Nuclear Agency

(HDL Project:E052E6) under Subtask EB-088, and at the Naval Surface
Weapons Center/White Oak partly by the Defense Nuclear Agency under
Task DNA-EB088-52, and partly by the Independent Research Program
(Task Number MAT-03L-000/ZR011-01-01). This document is for
information only.

JOHN B. WILCOX
By direction




NSWC/WOL/TR 75-39

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS . . 2« 2 2 o o o o o o o o o o
LIST OF TABLES L] L] - - - L] L] L] Ld Ld L] Ld Ld L] L] L] Ld L] L]

I.
II.

ITI.
Iv.
vo
VI.

VII.

VIII.

IX.

XI.
XII.

XIII.

INTRODUCTION . . . . « e o o o o o o o o o

INTEGRAL EQUATION FOR THE APERTURE TANGENTIAL

ELECTRIC FIEID . . . . e o o o o o o o o o
INTEGRAL EQUATION FOR THE SURFACE CONDUCTION
CURRENT. . . . . e o s o o o o o o o o o =
SIOT ADMITTANCE AND CONDUCTOR IMPEDANCE. . .
THE BACK-SCATTERING CROSS-SECTION. . . . .
THE FORMULATION OF THE NUMERICAL METHOD OF

CAILCUILATION. . . . e o o o o o o o o o o =
NUMERICAL RESULTS FOR INFINITE CYLINDER WITH
NO SLOT. © o « o o o o o o o o o o o o = o =

TANGENTIAL APERTURE ELECTRIC FIELD AND CONDUCTOR
SURFACE CURRENT DENSITIES FOR THE SLOTTED CYLINDER

l. General Comments . . « « « o « o o o«
2. The 9,=30° Slot Characteristics. . .
3. The 9,=45° Slot Characteristics. . .
4. The 9,=60° Slot Characteristics., . .

5. The 9,=90° Slot Characteristics
(Half Cylinder). « « v« o o o o o o &

6. The ®,=120° Slot Characteristics
(120° Cylindrical Ribbon). . « « . «

7. The 9,=150° Slot Characteristics
(60° Cylindrical Ribbon) . . « . . .
EFFECTS OF INTERIOR RESONANCES ON SCATTERING
BEHAVIOUR. . o v ¢ o o o o o o o o o o o o =
1. Constraints On The Aperture Electric
2. The Interior Electric Field In Terms
of The Surface Current . . . . . . .

- - .
- - )
. - .

Field

3. Consistency of the Aperture Field Constraint

Conditions With Numerical Results. .

FURTHER CONSIDERATION OF THE w°=30° SLOT-
COMPARISON OF THREE METHODS OF SOLUTION. . .
THE CYLINDRICAL STRIP FOR 9,=174°. . . . . .
COMMENTS ON THE COMPUTER PROGRAM . . . . . .
1. The Main Program . . « « o o o o o &«
2. Subroutines and Function Subprograms
FINAL SUMMARY AND CONCLUSIONS. o« « o o o o

LIST OF REFERENCES. . o o ¢ ¢ o ¢ o o o o o o o o &«

18
27
32
42
45
64
69
69
69
79
89
97
109
121

133
133

138

140

159
167
174
174
177
182

190

L



lo.

11.

12,

13.

14,

15.

Electric Field
Conductor:;

Electric Field
Conductor;

Electric Field
Conductor;

Electric Field
Conductor: n

Electric Field
Conductor; n

Electric Field
Conductor;

Electric Field
Conductor:

Electric Field
Conductor:;

Electric Field
Conductor;

Electric Field
Conductor:;

Electric Field
Conductor:

NSWC/WOL/TR 75-39

LIST OF ILLUSTRATIONS

In
5,

Title

The Slot,
Qo = 300

The Slot,
o = 30°

The Slot,
¥ = 30°

The Slot,
%o = 30°

The Slot,
¥y = 30°

The Slot,
P = 45°

The Slot,
o = 45°

The Slot,
P = 45°

The Slot,
o = 45°

The Slot,
¥y = 45°

The Slot,
B = 60 °

Geometry of The Scattering Problem

Surface Current On

Surface

Surface

Sur face

Sur face

Back~Scattering Cross-Section, ¢4 =

Surface

Surface

Surface

Surface

Sur face

Sur face

Current

Current

Current

Current

30°

Current

Current

Current

Current

Current

Current

On

On

On

On

On

On

On

On

On

On

Surface Current Density On A Cylinder With No Slot:

Surface Current Density On A Cylinder With No Slot,

The

The

The

The

The

The

The

The

The

The

The

Page

65

66

72

73

74

75

76

78

81

82

83

87

88

91



Figure

16.

17.

18,

19,

20.

21,

22,

23,

24,

25,

26,

27.

28.

29,

NSWC/WOL/TR 75-39

LIST OF ILLUSTRATIONS (Contd)

Title

Electric Field In The Slot, Surface Current On The
Conductor, m = 2, 9, = 60°

Electric Field In The Slot, Surface Current On The
Conductor, m = 3, ¥, = 60°

Electric Field In The Slot, Surface Current On The
Conductor, n = 4, ®, = 60°

Electric Field In The Slot, Surface Current On The
Conductor, m = 5, @, = 60°

Back-Scattering Cross-Section, ®, = 60°

Electric Field In The Slot By Method of Moments And By

Sommer feld Least Squares, Surface Current On The
Conductor; m =1, ®, = 90°

Electric Field In The Slot By Method of Moments,
n = 2; By Sommerfeld Least Squares, m = 1.5;
Surface Current On The Conductor; @, = 90°

Electric Field In The Slot, Surface Current On The
Conductor; m = 3, ®, = 90°

Electric Field In The Slot, Surface Current On The
Conductor; m = 4, @, = 90°

Electric Field In The Slot, Surface Current On The
Conductor; m =5, @, = 90°

Calculated And Measured Back-Scattering Cross-Sections,

®o = 90°; The Half-Cylindrical Mirror

Electric Field In The Slot, Surface Current On The
Conductor; m = 1, @, = 120°

Electric Field In The Slot, Surface Current On The
Conductor; n = 2, ¢, = 120°

Electric Field In The Slot, Surface Current On The
Conductor; n = 3, ®, = 120°

Page

92

93

94

95

96

99

100

102

105

106

108

111

114

115

I

i



Figure

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

41,

42,

43,

44,

NSWC/WOL/TR 75-39

LIST OF ILLUSTRATIONS

Title

Electric Field In The Slot, Surface
Conductor; m = 4, ®, = 120°

Electric Field In The Slot, Surface
Conductor; n = 5, ©p, = 120°

Back-Scattering Cross-Section, @, =

Electric Field In The Slot, Surface
Conductor; m = 1, @, = 150°

Electric Field In The Slot, Surface
Conductor; m = 2, ©®, = 150°

Electric Field In The Slot, Surface
Conductor; m = 3, ®, = 150°

Electric Field In The Slot, Surface
Conductor; n = 4, @, = 150°

Electric Field In The Slot, Surface
Conductor; m = 5, @, = 150°

Back-Scattering Cross-Section, g

(Contd)

Current

Current

120°

Current

Current

Current

Current

Current

= 150°

On

On

On

On

On

On

On

The

The

The

The

The

The

The

Amplitude of The Electric Field At The Center Of

The ®, = 30° Slot

Real And Imaginary Parts Of The Slot Electric

Field; m = 2.405, ®, = 30°

Real And Imaginary Parts Of The Slot Electric

Field; m = 3.832, ®, = 30°

Real And Imaginary Parts Of The Slot Electric

Field; m = 2.405, 9, = 60°

Real And Imaginary Parts Of The Slot Electric

Field; m = 3.832, o, = 60°

Real And Imaginary Parts Of The Slot Electric

Field; m = 2.405, 9, = 90°

Page

118

119

120

123

124

125

129

130

131

142

143

144

147

148

150



Figure

45.

46,

47.

48,

49.

50.

51.

52.

NSWC/WOL/TR 75-39

LIST OF ILLUSTRATIONS (Contd)

Title

Real and Imaginary Parts Of The Slot Electric
Field; m = 3.832, 9, = 90°

Real And Imaginary Parts Of The Slot Electric
Field; n = 2.405, @, = 120°

Real and Imaginary Parts Of The Slot Electric
Field; n = 3.832, ¢, = 120°

Real And Imaginary Parts Of The Slot Electric
Field; m = 2.405, ¢, = 150°

Real And Imaginary Parts Of The Slot Electric
Field; m = 3.832, 9, = 150°

Three Normalized Slot Electric Field Amplitudes;
n = 10.472, v, = 30°

Comparison of the Planar Strip and the Cylindrical
Strip Back-Scattering Cross-Section for ©,=174°
and Planar Strip width 2Ta/30

The Surface Current Distribution Over the Cylindrical
Strip for 9, = 174°, n=0.5 and for the Corresponding

Flat Strip

Page

151

153

154

156

157

l64

170

172



Table

Table

Table

Table

Table

Table

NSWC/WOL/TR 75-39

LIST OF TABLES

Numerical Values of Back-Scattering Cross-
Section, kog, From The Method-of-Moments and
From Exact Theory With No Slot

Normalized Distributions of the Electric Field
in a Slot Where 9,=6° from the Method-of-Moments

Normalized Distribution of the Electric Field
in a Slot Where 9,=6° from the Work of Morse
and Feshbach

Normalized Electric Field Distribution In a
Slot For ©®,=30° By The Method-of-Moments

Normalized Electric Field Distribution In a
Slot For ®,=30° from Morse and Feshbach

Numerical Values of Back-Scattering Cross-
Section, B=koB, by the Method-of-Moments for
®o,=174° i.e. The Cylindrical Ribbon

Page

67

16l

16l

162

162

169



NSWC/WOL /TR 75-~39

I. INTRODUCTION

This report constitutes the fiftﬁ in a seriesl-4 of theoretical
investigations of the scattering characteristics of apertures in
conducting surfaces. In particular, it is the third in a sequence
devoted especially to a study of the axially slotted, infinite, thin
walled, circular, conducting cylinder. The first two in the
series” - may of course be considered the limiting case where the
radius of the cylinder increases to some very large magnitude while
all other parameters remain fixed and finite. 1In this paper, for

the geometry in a plane normal to the cylinder axis as illustrated

in Figure 1. we show in graphical form the results obtained by

1. L. F. Libelo and J. N. Bombardt (HDL) "Scattering of Electro-
magnetic Radiation by Apertures: I, Normal Incidence on the
Slotted Plane", ‘NOLTR 70-58, Naval Surface Weapons Center,
White Oak, Silver Spring, Md., April 1970

2. L. F. Libelo and J. N. Bombardt (HDL) "S.E.R.A.: II. Oblique
Incidence on the Slotted Plane for Parallel Polarization",
NOLTR 72-25, Naval Surface Weapons Center, White Oak, Silver
Spring, Md., January 1972

3. J. N. Bombardt and L. F. Libelo (NAVSURFWPNCEN) "S_E.R.A.:
III. An Alternative Integral Equation with Analytic Kernels
for the Slotted Cylinder Problem", HDL-TR-1588, Harry Diamond .
Laboratories, Washington, D. C., August 1972

4, J. N. Bombardt and L. F, Libelo (NAVSURFWPNCEN) "S.E.R.A.: .
IV. Slotted Cylinders and Cylindrical Strips in the Rayleigh
Limit", HDL-RT-1607, Harry Diamond Laboratories, Washington, )
D. C., August 1972 '
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numerically solving for the tangential component of the electric
field over the aperture, the surface current density on the curved
conductor and the back-scattering cross-section. Slots subtending
total angles of 60°, 90°, 120°, 180°, 240°, and 300° at the axis -
are considered. Of course the latter three cases may be called
alternatively the half-cylindrical mirror and the 120° and 60°
circular cylindrical strips. In each case results have been
obtained for values of the parameter m = 2Ma/A equal to 1, 2, 3, 4
and 5.
Before proceeding to the analysis itself, we first review the
earlier works by others on this scattering problem. Sommerfeld
published what is probably the earliest work. In this attempt at
the problem he formulated the solution in terms of series expansions
for the fields internal as well as external to the slotted cylinder.
Since the application of the boundary conditions to these series
expansions did not result in explicit evaluation of the unknown
coefficients in these series, Sommerfeld attempted to obtain approx-
imate solutions. To achieve this, he restricted the problem to the
case where the slot arclength is small in comparison to the wave-
length. Using the method of least squares, he managed to derive

analytic expressions for the coefficients in this asymptotic limit. .

5. A. Sommerfeld, "Partial Differential Equation", p 29-31
Academic Press, New York, 1949 ')

10



NSWC/WOL/TR 75-39

Unfortunately, however, he failed to publish any numerical results
or any experimental measurements he may have had available. It is
important to point out that in the results we report below of our
investigations of the slotted cylinder we do not restrict ourselves
to this asymptotic limit. Series expansions for the field were
also assumed by Morse and Feshbachs. In the study they carried

out the unknown series expansion coefficients are expressed in
terms of an integral of the unknown electric field over the slot.
They approximatelf solved this integral equation by assuming that
the distribution of the field over the slot, for the slotted
cylinder, is proportional to the electrostatic field distribution
over the slot in an infinite plane. At the mid-point of the slot,
they were able to derive an analytic result for the proportionality
constant. Again we are unfortunate in that they also failed to
furnish any numerical or experimental results. Somewhat about the
same time Turner7 investigated the half-cylindrical mirror, he
derived an integral equation for the surface current density and

by a variational approximation obtained an expression for the total

scattering cross-section per unit length of the half cylindrical

6. P. M. Morse and H. Feshbach, "Methods of Theoretical Physics",
Part II, 1387-1398, McGraw-Hill, New York, 1953

7. R. Turner, "Scattering of Electromagnetic Radiation by an

Infinite Cylindrical Mirror", Tech. Rep. No. 161, Cruft
Laboratory, Harvard University, Cambridge, MA, 1953

11
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mirror. Once again no experimental or numerical results were
reported even in this special case. Turner's formal equations were
similar to the integral equation obtained earlier by Chambers8 in
his investigations of reflection by a cylindrical mirror. Again no -
scientific results for currents or fields were given. Barakat and

Levin9 reported in 1964 on their theoretical investigation of the

slotted infinite cylinder using the least sgquares method of

Sommerfeld. Their results covered the values of half-slot angle

g =15° 30° 60° 90° 120°, 130°, 135°, 140°, 150° for the single

value of the parameter m = 2T/A = 0.5. They claim convergence of

the numerical results in all cases for truncation of the infinite

series representation of the scattered electric field at the fourth N
term. For the half cylindrical mirror (£ = 90°) they also present

results for n = 0.25, 0.50, 0.75, 1.00 and 1.50. 1In Figure 24 below

we superimpose their results for the slot electric field for n =1
and &4 = 90° on our results and shall discuss this further at that
point in our report. We also include their slot field results for
g = 90° and n = 1.5 in Figure 25 displaying our results for & = 90°

and N = 2,0, This will be discussed at that point also. Barakat

8. L. Chambers, "Reflection of a Wave by a Cylindrical Mirror",
Proc. Edinburgh Math. Soc. (2) 9, 1956

9. R, Barakat and E. Levin, "Diffraction of Plane Electromagnetic -
Waves by a Perfectly Conducting Cylindrical Lamina", Jour, Opt.
Soc, of Amer. 54, 1089-1094, September 1964 j

12
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and Levin also find numerically that the perturbation method of
Sommer feld's is only applicable for small slot angles and long wave-
lengths, i.e. small n. Unfortunately, they appear to have an error
in their derivation of the perturbation solution. Consequently,
there is some question as to the validity of their conclusion con-
cerning narrow slots. Another attempt at the slotted cylindef
scattering problem was reported by Barth10 in 1969. His approach was
fundamentally that of Morse and Feshbach. There was an essential
difference, however, in that Barth assumed a finite series for the
slot field. The corresponding finite number of series coefficients
were evaluated by satisfying the integral equation for the slot
field at an equal number of spatial points. This results in a
finite algebraic system of equations that is solvable at each wave-
length of interest. Barth calculated numerically the electric

field distribution in the slot at 500 MHz for a cylinder one meter
in radius. This corresponds to N ~ 10. The slot angle he con-
sidered was 60°, Specifically, Barth calculated the electric field
at the center of the slot in the Morse and Feshbach formulations

and further obtained an approximation to the slot electric field

distribution. His results are shown in Figure50 juxtaposed on

10. M. J. Barth, "Interior Fields of a Slotted Cylinder Irradiated
with an Electromagnetic Pulse", Tech. Rep. No. AFSWC-TR-69-9,
Air Force Special Weapons Center, Kirtland Air Force Base,
New Mexico, August 1969

13
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those of Morse and Feshbach and our own results. We reserve dis-
cussion of the comparison of these results until later. Koshparenok

and Shestopalov11 published in 1971 a formal attempt at solving the
diffraction problem of the slotted cylinder for arbitrary n, -
polarization, and direction of incidence of the linearly polarized

incoming plane wave. The approach used to derive the equations to

be solved is the Riemann-Hilbert method in the manner proposed

earlier by Agranovich et.al.12 In this approach they explicitly

considered the long wavelength approximation for the case of

E-polarization for arbitrary incidence on a cylinder with a very

narrow longitudinal slot. The qualitative conclusions they

derived and their numerical calculations are very interesting. 1In

a later paper in our series of investigations we shall compare and

discuss these results with our results for the narrow slot problem.

This part of the slotted cylinder problem is of sufficient impor-

tance to merit a report devoted solely to it. The unfortunate

aspect of the Koshparenok and Shestopalov paper is the total

absence of numerical results for anything but the long wavelength-

narrow slot problem.

11, V. N. Koshparenok and V., P. Shestopalov, "Diffraction of a .
Plane Electromagnetic Wave by a Circular Cylinder with a Longi-
tudinal Slot”, Zh. Vychisl. i Mat. Fiz., 11, 719-737, 1971

12. 2. S. Agranovich, V. A. Marchenko and V. P. Shestopalov, )
"Diffraction of Electromagnetic Waves by Plane Metallic )
Gratings", Zh. tekhn. Fiz., 32, 4, 381, 1962

14
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What constitutes, perhaps, the most extensive earlier treatment

of scattering by axially slotted conducting cylinders is the work of

Macrak:i.s13 His results are embodied in a Ph.D. dissertation to

- Harvard University in 1958. 1In this study the back-scattering
cross-section was the aquantity of primary interest. The approach
was through the Green's function and resulted in the same integral
ecuation for the slot electric field as obtained before by Morse
and Feshbachs. Macrakis was fully cognizant of the difficulty
involved in approximating the slot field if the aperture is a "wide"
one. He further recognized the considerable difficulty one is faced
with at an internal resonance and appropriately cqualified his
results at such frequencies. Keeping these constraints in mind,
Macrakis assumed a static form with unknown constants for the slot
field and obtained the back-scattering cross-section via a varia-
tional calculation. Although the results he obtained are somewhat
limited in usefulness to narrow slots away from resonance, he did,
nevertheless, provide analytical forms and numerical results.
Probably the most important of his contributions are his published

results of his measurements at many wavelengths. He reported on

- 6. P. M. Morse and H. Feshbach, "Methods of Theoretical Physics",
Part II, 1387-1398, McGraw-Hill, New York, 1953

v 13. M. S. Macrakis, "Backscattering Cross-Section of Slotted

Cylinders", Ph.D. Dissertation, Harvard University,
i Cambridge, MA, 1958

15
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experimental data for back-scattering cross-sections for a narrow
slotted cylinder and a half cylindrical mirror. These measurements
were made using an adaption of Schmitt14 from the parallel-plate
methods of Row15 and Tang16 called the "space separation method". -
In the experimental set up the cylindrical tube when slotted results
in an effective change in ka. To bring the system back to the
desired ka value, a coaxial tuning probe along the axis of the
cylinder was utilized. The effect of this probe in the measurements
appears to be an open question. The data by Macrakis had not been
successfully interpreted and compared with theoretical results
(except at long wavelengths) prior to this time. In what follows
below we shall exhibit the results of comparing the work of Macrakis
with our theoretical predictions. At a laﬁer time we shall in a
subsequent report compare his results with.more recent data.

We have now completed the review of the earlier attempts at the
problem of axially-polarized plane wave scattering by an axially
slotted cylinder. In the next two sections, to make this report

somewhat self-contained, we develop the theory and the numerical

14, H. J. Schmitt, "Backscattering Measurements with a Space Sepa-
ration Method", Scientific Report No. 14, Cruft Laboratory,
Harvard University, Cambridge, MA, 1957

15. R. V. Row, "Electromagnetic Diffraction in a Parallel Plate
Region", Ph.D. Dissertation, Harvard U., Cambridge, MA, 1953

16, C. C. Tang, "Backscattering From Dielectric~Coated Infinite
Cylindrical Obstacles", Ph.D. Dissertation, Harvard University, )

Cambridge, MA, 1956

16
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( method used to calculate our results. Following this we present

our results and then discuss our conclusions concerning them. Some
new observations on the behaviour of the electric field over the
- aperture for incident radiation of wavelengths coinciding with

internal resonance are included in the discussion below,

17
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II. INTEGRAL EQUATION FOR THE APERTURE TANGENTIAL ELECTRIC FIELD
The scattering problem being studied is essentially two-

dimensional, Figure 1, illustrates all the necessary details of
the geometry in a plane normal to the cylinder axis. The mono-
chromatic, linearly polarized, plane wave is shown incident normal
to the cylinder axis, symmetric with respect to the slot and with
its electric field vector parallél to the z-axis. The latter
coordinate axis is taken, for simplicity, coincident with the axis
of the slotted cylinder. We assume harmonic time dependence of the
form e-iwt and shall suppress the explicit time exponential from
appearing throughout the following equations. The incident fields

are then given by

=i - i - -ikpcosy -
(1) E” (r) = E, (p,9) e, = Ece e,
and
=3 = i - ~-ikpcosy -
2 H r) = H (P, ) e = Ho e e
(2) (xr) v @ v o v
where
w 21
(3) k = c A

and ;z and ;y are respectively unit vectors along the positive

z and y axes. In MKS units, with Yo and €, as respectively the

18




NSWC/WOL/TR 75-39

magnetic permeability and electrical permitivity of free space, the
incident electric and magnetic field amplitudes are related as

follows:

(4) Eo = /Wo /%o Ho

Only a z-component of electric field exists in the problem.
This field at a source free point satisfies the homogeneous scalar

wave equation
(5) V?E_(T) + K°E_(T) = 0

In polar cylindrical coordinates the magnetic field components can

be obtained from the axial electric field as follows

3E_(p,®)

(6) Ho(p,9) = =(1/i0uop) 3o
3E_(p,®)

(7) Ho(p,0) = -(1/itu) 30—

One immediate important bit of information due to the symmetry is
that the electric field must be an even function of the angle o.
For the interior region of the cylinder of radius a we assume

the form of the solution for the electric field to be
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@ J (kp)
(8) Eél)(P,w) = B2 cosnp
=0 Jh (n) "

where we denote the region of space for p<a by the superscript (1) -

and where Am is an unknown expansion coefficient and finally
(9) n = ka = 2Ma/A

In the region exterior to the slotted cylinder we concoct a solution
of the scalar wave equation (5) which is composed of two parts. One
of these is the well-known field that would be present if there were

no slot in the cylinder17 This is the first sum in equation (10)

o’

immediately below. The remaining piece is a contribution to the
field due solely to the presence of the slot. This is the second sum
in eq. (10). Thus, in the exterior region which we denote by the

superscript (2) we have

‘ 2 g (n)
100 ) (p.0) =B ) € (-0™ |7 (ko) - B=—u0) (kp) | cosmp
m=o H (n)

(
e Hml) (kP)

+ ——— C_ cosmy for p<a
m=o foll) (n) n

17. J. J. Bowman, T.B.A. Senior and P.L.E. Uslenghi, eds. "Electro-
magnetic and Acoustic Scattering by Simple Shapes", p 92-93, .
North-Holland Publishing Co., Amsterdam, The Netherlands, 1969
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where Cm is an unknown expansion coefficient and

1 m=20
(11) € {

2 m=1,2,3,...

We note at once that the interior and exterior Ez fields must be
identical over the slot region and both vanish on the conductor.

Then from eas. (8) and (10) we find

18
0

[--]
(12) E Am cosmp =

cosn@
. m
m=o nm:

1
o

Since ea. (12) holds for all ¢ (at P = a) we must have
(13) C =2aA for all m
m m

We can then replace the expansion coefficients in eq. (10) using
the identity of eq. $13).

Now let us introduce some convenient notation. Let us denote
the electric field in the slot by € (). Then we can write from

egs. (8) and (10)

€ (o) ~po <P<Yo

- (1) _ =(2)
(14) E_(a,9) =E ""(a,9) = E, " (a,9) 0 Do <P<=Do

or edguivalently we can write
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(15) EIAm cosnip = {e(¢)

0 ~po <P<Po
m=
° Po <W<=Po
Consequently we can invert and express the unknown expansion -

coefficients in terms of the electric field over the slot as follows

Em Po
(16) AL =om j & € () cosmp
~Po
Clearly then determination of the electricl field over the slot
constitutes one way of solving the scattering problem.
Taking advantage of the requirement that the azimuthal compo-
nent of the magnetic field must be continuous across the slot will 3
lead us to an integral equation for the slot electrical field. We
next show this. First we have necessarily

an &l @ - Hf’(a,cp) for |o|<pe

Then from egs. (7), (8), and (10) we obtain

O

© J’'(n) ® (n)
(18) m Am cosmy =E I? ) A cosmp +
m=o J (n) m=o Hm1 (n)
i J_(n) '
Bo ) € (-)" [J'm(ﬂ)- T n(*) (n)] cosmp _
m=o Hm1 (n)
for |o|<w, b
22
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after some simple rearrangement of terms in eqg. (18) and use of the

(1)

Wronskian relation for Jm and Hm namely
; s (1) (x)’ _ =2
(19) Jm('ﬂ)Hm (n) \Jm(ﬂ)Hm (m) = imn
we get the simpler relation
N (1) S (1)
1 .y M 1
(20) ;Z {Am/Jm ('ﬂ)Hm (ﬂ)} cosmp = E°;z {Gm(-l) /Hm (n)} cosmep
=0 =0

for |ol< v,

We shall need notation for the surface current for the conducting
cylinder without a slot. This quantity, which is well-knownl7, we

denote by K; () =

@®
—(=2)./Sa Lymo (1)
(21) K@ —(ﬂﬂHuo Bo ) 1€ (-0"m") (m} cosmp
m=o
Noting that the right hand sides of egs. (20) and (21) differ merely
by a constant factor we find from egs. (20), (21) and (16) the

integral ecuation for the aperture electric field:

(17) J. J. Bowman, T.B.A. Senior and P. L. E. Uslenghi, eds.
"Electromagnetic and Acoustic Scattering by Simple Shapes",
p 92-93, North-Holland Publishing Co., Amsterdam, The
Netherlands, 1969
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N

P = € ! J
(22) Jodcp'e(qo’) ZE#" cosm(cp?lp)J ] -3 &% ®
o = I (MH_ (”ﬂ °

for |o|<wp,

Egq. (22) which is the relation we were seeking was obtained after

some simple manipulation of trigonometric identities as follows

Po Po -
j~ & ‘(') sin m @ sin m o’ = sin meyp .f dw'e(m') sin mp’
Lo ~Po

but €(=¢’) = &(9’). Then changing ®’ into —w'gives

Lo , Po ,
j dp‘(=’) sinmp’ = .I dr'(p’) sinmp’ =
Po ~Po

dp’e(®’) sin mp’

+
tﬁ
.
o
m
o

Note that the sought after aperture field is given in Eg. (22) in
terms of the surface current density that would be present over the
corresponding angular portion of the cylinder in the absence of the
aperture,

Before continuing to the next section on the surface current
density for the slotted cylinder we shall briefly touch on some

significant points regarding Eq. (22). First upon observation of
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- the kernel of the integral operator we find that it becomes singular
at the zeros of the Bessel functions. Consecuently, certain require-
ments must be placed on the electric field in the slot at the fre-

- gquencies which give rise to the roots of the Bessel functions. The
occurrence of these singularities is not unexpected since we have
coupled the interior of the cylinder to its exterior via the
existence of the slot. Thus we see that the singularities mentioned
occur at the well-known interior modes18 of the closed infinite
circular conducting cylinder. A second characteristic of the kernel
that we note is that it is rigorously a divergent infinite series.

That this is the situation can be seen by using the large order

( approximations for Jm('ﬂ)19
m
(23a) J (M) —= _i_ (%n)
also
(23b) ) (n) —= (-1) J2/Mm ﬂ)_m
m m—® 2m

18. G. Goubau, "Electromagnetic Waveguides and Cavities",
p 185-191, Pergamon Press, New York, 1961

19. A. Erdélyi, Ed., "California Institute of Technology, Bateman
Manuscript Project. Higher Transcendental Functions, Vol. II",
- egs. 14 and 15, p 87, McGraw-Hill Book Co., Inc., N. Y.,
N. Y. 1953
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Then it follows in this limit that
(1)
(23c) I MHE " (M) —z -i/Mm

and in turn the kernel diverges as can be easily seen.

Attempts to solve eq. (22) were reviewed in the previous
section. BAll the earlier efforts focussed upon assuming a form for
the electric field in the slot which permitted analytic integration.
This appears to be the only readily tractable approach with the
kernel of the integral operator in its present form. The very
nature of this kernel precludes a direct numerical solution except
for certain restricted ranges of the physical parameters. 1In
particular we showed4 that the kernel reduces to a manageable form
in the Rayleigh limit and hence in the long wavelength approximation

a solution can be found.

4, J. N. Bombardt and L. F., Libelo (NAVSURFWPNCEN) "S.E.R.A,:
IV. Slotted Cylinders and Cylindrical Strips in the Rayleigh
Limit, HDL-RT-1607, Harry Diamond Laboratories, Washington,

D. C., August 1972
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IITI. INTEGRAL EQUATION FOR THE SURFACE CONDUCTION CURRENT
On the boundary surface at p=a the surface conduction current

is defined by

-t

(20 R =3, x [ (a,0) -8 (@0 ]

Then, as is to be expected from the symmetry of the problem, the
surface current has only a component in the Z-direction. This

current is given by

H(2) (a,p) - H(1)

" (a,®)

(25) K (9) =

Using egs. (7), (8), (10) and (13) we then obtain

® € (—i)m ® A cosmy
2 € ' m m
(26) K_(v) =(—— tEo ——— cosm¥ - N
z ﬂn)Juo m;B Hél)(ﬂ) mé; Jﬁ(ﬂ)Hél)

(m)

Each term in eq. (26) is readily identified. The first summation
is the surface current on the infinite cylinder in the absence of
the slot. The second summation containing the expansion coeffi-
cients, Am, therefore represents the change in the total surface
current due to the presence of the axial slot.

For convenience let us introduce a new form for the unknown

expansion coefficients Am, namely
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m
em ( _i) Am

(27) Bm = E m=20,12,...

° (1) B (1)
B (n) Jﬁ(ﬂ)Hm (M)

This enables us to write the surface current more compactly as

2 €
(28) KZ(CP) = (ﬁ)#;:' Z B cosmp

m=oe

We next introduce some further useful notation. Since the current

density wvanishes over the slot region we write

0 2T <p<p<tpo
9 K =
(29) 2 ) {E(w) Po<P<2M=pq
Thus ¥ () explicitly denotes the current density on the conducting
surface itself., Inverting eqg. (28) we obtain in the new notation

of eq. (29)
= 7. em fzﬂ-cpo 4 ! ?
€ = —
(30)  (2/Tm) /& /o B = o L, & ¥@") cosmp
To derive the integral equation for the surface current consider
eq. (28) for values of ¢ corresponding to the conducting surface,

i.e. Po<p<2M—p,. Start with eq. (27) multiplied thru by

Jm(n) Hrf‘l) (n) cosmp and then summed on m, i.e.

28
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( ®

(31) z Bth(n)H;I)(ﬂ) cosmP = Eg Z Gm(-i)m Jﬁ(ﬂ) cosmp
m=p m==o

@

Y A
- Z‘ m cosmp
m=o

The first summation on the right hand side is merely the incident
electric field, Ei, at the cylindrical surface P=a. According to
eq. (15) the second sum vanishes identically on the metal. We then
have the desired integral equation after manipulating the constants

around and substituting in for Bm from eq. (30).

2T —pe

( (320 T & Idcp’ k@ Y € g (m 1 () cosm(@<)
Po m=o

E_ (a,®) Qo <p<ZM—p,

The kernel in eq. (32) can be simplified through the identity20

aan (252)|)

(33) z Gme(n)Hé\l)(n) cosm(p=p ') = H, () (21'1
m=o

20. J. A. Stratton, "Electromagnetic Theory" eq. (11) p 374,
i McGraw-Hill Book Co. Inc., N. Y., N. Y. 1941
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Finally we have for the surface current integral equation

2T e

(34) f% Jﬁgf o’ K(p'y ul*) (%n

sin (in—)l) = Ei (e,9)
Po '

for  @o<@p<2Mp,

Note that the surface current density on the conductor is given in
terms of the incident electric field over the same azimuthal range
(i.e. angles corresponding to that portion of the cylinder p=a
occupied by conductor).

Just as in the case of the aperture field integral equation
no exact analytical solution has been reported for the surface
current on the conductor. This time however the kernel of the
integral operator in eqg. (34) can be handled on the computer with
confidence. Consequently a direct numerical approach for solving
eq. (34) is feasible. The results of such calculation will in fact
be shown below. It should also be pointed out that eq. (34)
simplifies considerably in the Rayleigh region. We have already
published4 the analytical results obtained for narrow cylindrical

strips.

4, J, N, Bombardt and L. F. Libelo (NAVSURFWPNCEN) "S.E.R.A.:
IV. Slotted Cylinders and Cylindrical Strips in the Rayleigh
Limit", HDL-RT-1607, Harry Diamond Laboratories, Washington,
D, C,, August 1972
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At this stage in the development of the theory used in
resolving the scattering problem we pause momentarily to make a
brief comment on the surface current riear the edges of the conductor.
At an edge. the current is defined in terms of a magnetic field
component that is normal to the edge. For a perfect conductor of
infinitesime#l thickness the edge conditions require that field
components parallel to the edge be bounded whereas those normal to
the edge are singular at the edge. As a conseguence of this the
surface current is singular at the edges of the slot on our axially
slotted perfectly conducting infinite cylinder., We shall return to
discuss this subject in the following development below.

One further point will be discussed at this stage. In an
earlier report3 we presented a connective integral equation contain-
ing as simultaneous unknowns the aperture field and the surface
conduction current. This alternative approach to the solution of
the problem contained well-behaved kernels, i.e. they are functions
with no singularities. However, direct numerical solution of that
ecuation was not attempted as it was felt that such an approach would
require an inordinate amount of computer time. This we believed to
be the case since both € (p) the aperture field and X () the surface

conduction current had to be computed simultaneously.

3. J. N. Bombardt and L. F. Libelo (NAVSURFWPNCEN) "S.E.R.A.:
ITI. An Alternative Integral Equation with Analytic Kernels
for the Slotted Cylinder Problem", HDL-TR-1588, Harry Diamond
Laboratories, Washington, D. C., August 1972

31



NSWC/WOL/TR 75-39

IV, SLOT ADMITTANCE AND CONDUCTOR IMPEDANCE

Eq. (22) is an integral equation relating the aperture eslectric
field to the surface current on the conducting cylinder without a
slot for the portion coincident with the slot, i.e. |¢|<¢o. Let us .

rewrite the electric field in the slot as follows

(35) g(p) = ZVn ‘i’r(lE) (v) /a | | <o
=5

where we have assumed € (9) expandable over the slot region in the
set of expansion functions YéE)(m) with the unknown expansion
coefficients Vh. This expansion for the electric field in the
aperture must, of course, satisfy edge conditions. Defining an

inner product for the expansion functions as follows

Po
(36) wr(j) = <YI§E) (@) , coste> = S at wr(lE) () cos (L) dp n,1=0,1,2,...
o

we can then rewrite the integral equation for the aperture field as
% n ' (1) (E)
22 Ho 1 } \ =97
(37) L {ELvn/ [(2) c J, (MH, (n)] Ly cos (L) =2 aK°z(cp)

for Icpf<cpo -
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( Next let us introduce a second set of weighting (or testing
. E . .
functions) ; {Qé )(w)} and then we can write some further inner

products with this set of basis functions, namely

Vo)
(38) °(f) = <3 (® (¢) ,coslp> = So de g (B () cos () m,1=0,1,2,..
m m . m
=Po
and
(39) <2 B) (), R (3)> = S% a B )R () m=0,1,2, ...
m Z m Z

)

Now we can utilize egs. (38) and (39) to rewrite eq. (37) in the form

8 (E)y (B)

(E)
: 8= 2Ma<é '~/ (9) ,K° (p) >
[iﬂni JL(ﬂ)H(l) (n)]} m 2

for m=0,1,2,...

(40) n;ovn{

II[\/JB

Let us interject at this stage in the development a comment that is
probably needed. We have treated the mathematical rigour concerning
complete sets of basis function and projections onto their elements
in a seemingly cavalier fashion. Although we shall make no attempt
in this paper to establish the limitations on this approach let it

suffice to merely point out that what we are doing here holds under
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wide enough latitude to justify our derivations. With this in mind

let us then proceed.

For convenience we shall define the quantity

® ¢
(41) ¥ =) o= = 8 (E) y(E)

mn Tn\ JEo (1) m{ “ni
[(2 ) Jeo J, (‘ﬂ)HL (n)]

which upon simple inspection is found to possess the dimensions of an
admittance through the only parameter that is not dimensionless,

namely +/io /€0 in the denominator. Introducing the further notation

(42) 12 = 2Ma <t (¥ (9) K (9)>

we find eq. (42) denotes a quantity with dimensions of just current
alone (recall that K; has dimensions of current per unit length).

In this new notation we can rewrite eq. (40) compactly as

m=0,1,2,...

Formally then we define an "admittance matrix"

(44) Y = Ymn] m,n=0,1,2,...
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where Y is the matrix whose elements are the Ymn' Note that this
matrix has an infinite number of columns and an infinite number of
rows. Consequently this quantity should be handled with a degree of

caution when manipulating with it. Similarly we define "voltage and

current vectors"

(45) V = |:an| n=0,1,2,...
(46) Jo= [1‘:“:] m=0,1,2,...

where the voltage vector |\ has components Vn (note there are an
infinite number of such components) and the current vector I° nas

components I; (again there are an infinite number of components).

Now we can formally rewrite eq. (43) as
(47) Y -V=1I°

If we formally introduce the inverse of the matrix defined in

eq. (44) which we shall denote by”Y-lwe obtain then

(a8) V= Y1r°
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Eq. (48) formally states the solution of the aperture electric field
integral equation, i.e. eq. (22).

We thus find that the integral equation for the electric field
in the aperture leads to a statement of Ohm's law in matrix form.
An admittance matrix for the aperture connects a known current
vector to an unknown voltage vector. The integral equation for the
surface current density on the conductor leads to a complementary
statement of Ohm's law. This will be demonstrated next.

Eqg. (32) is one form of the integral equation for the surface
current density that relates this current to the incident electric
field on the conductor. We expand the surface current density as

follows

(49) ke =y a"1_ ()
n=

where the In are unknown expansion coefficients and the Y;K)(w) are

a basis of expansion functions for the surface current. Here also
we must require that the expansion in eq. (49) satisfy the conditions
at the slot edges. 2as above we define the inner products

(50) Y(K) = <Yr(1K) (9) ,costp> = dy YnK) (P)costyp ; n,41=0,1,2,.. .

nl
Po

This then enables us to rewrite eq. (32) as follows
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C e 2 n)’—‘ ;
(51) E:In E;GL (—% %? JL(n)Hél)(ﬂﬂ Yéf)coséw = 2ﬂaE:(a,¢)

n=o0 L:o

for ®,Sps2M—p,

Introducing another set of weighting functions; {iéK)(w)} we again
define the inner products with this set of functions
2M<py

(52) Q(f) = <§(K)(w),cos&m> = S dayp Q(K)(w)coséw s mt =0,1,2,..
m m oo m

and analogous to eg. (39)

{ (K) i = (K) i
\ (53) <§n (cp),Ez(a,cp)>— de §m (cp)Ez(a,cp) 0,1,2,..

3
]

s2ﬂ4$o

%o

With the help of egs. (52) and (53) we can now rewrite eqg. (51) in

the form

(54) Zo I { Lio [GL ("—’%) Jg:: J, (n)Hél) (n)] arflf) wéf’}:

2Ma<t ' (o) £} (9> for m=0,1,2,..

Again we can simplify the appearance of this relation by

introducing the notation
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= 1) Jie (1) (K (K)
(s5)  z__ LZJ%L ( 2) & Ty (MH, (n)] ¢ N0y 1%

for m,n =20,1,2,..

This gquantity upon inspection is easily found to possess the

dimensions of an impedance. With the further definition of the

quantity

(56) vi = ama<t N (9) £l (9)>

which obviously is a "voltage", we can cast eq. (54) into the more

compact relation

< i
(57) % In zmn = Vm m 0,1,2,..

Formally then we can define an "impedance matrix"
(58) L= [Zan mn=20,1,2,..

with matrix elements Zmn , a "current vector”

(59) [ = [In] n=o0,1,2,..
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with components In , and a "voltage vector"

(60) '

]
r—
<

m=20,1,2,..

g b
[ W—

with components V;. Again it must be emphasized that / has an
infinite number of rows and an infinite number of columns, and I
and V1 have an infinite number of components. Eg. (57) can be

written formally as
61y Z 1=V

Then if we introduce formally the inverse of the impedance matrix

we obtain the formal solution
..]_ 3
(62) 1 =27""V*

We then observe that the integral equation for the surface current
density on the conductor does indeed lead to a statement of Ohm's
law in matrix form. Here, however, an impedance matrix for the
conductor connects a known voltage vector to an unknown current
vector.

The procedure followed in deriving egs. (48) and (62) has

become known and accepted by all but a handful of diehard dissidents
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among electromagneticians as the "Method of Moments"zl'zz. We shall
return to further discuss this approach later in what follows.

Let us return to consider Macrakis'13 earlier study. In his
work he discussed integral equations for the aperture electric field -
and for the surface current density on the conductor in terms of
what he called "dual" quantities. That is, either of these integral
equations could be generated from the other one by introducing the
appropriate "dual" quantities. Macrakis then inferred that there
is a single unknown gquantity, in this diffraction problem, which is
comprised of two parts: the electric field in the slot and the
surface current on the conductor.

We have presented an alternative view to that of Macrakis. 1In
our view of the problem the integral equation for the aperture
electric field and that for the surface cufrent on the conductor can
be thought of as merely complementary statements of Ohm's law. The
solution of either integral equation can be used to generate all

quantities of interest in the scattering problem. It is interesting

21. R. F. Harrington, "Matrix Methods for Solving Field Problems",
Technical Report No. RADC-TR-66-351 Rome Air Development Center,
Griffiss Air Force Base, New York 1966

22, R, F, Harrington, "Field Computation by Moment Methods",
The Macmillan Co., New York, N, Y, 1968

13, M. S. Macrakis, "Backscattering Cross-Section of Slotted .
Cylinders", Ph.D. Dissertation, Harvard University,
Cambridge, MA, 1958 )
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and significantly important to observe the generalization that, in
principle, construction of such complementary formulations should
be possible for any simply shaped enclosure with an aperture when

illuminated by an electromagnetic field.
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V. THE BACK-SCATTERING CROSS-~SECTION
Since Macrakis13 reported on measured back-scattering cross-

section per unit length for several slot angles we can compare some

of our theoretical predictions with his results. For this reason we

present in this section a short derivation of this quantity. The

actual back-scattering cross-section expression23 is a conventional

one and we shall merely start our derivation with it.

(63) o, = ::L‘ szpIE: (P, 9=0) %/ |BEo|®

where E: is the scattered field from the cylinder. The back-

scattering cross-section, or b.s.c.s. for short, can be obtained }

from either the surface current on the conductor or the electric

field in the aperture. We shall obtain first the b.s.c.s. from the

current.

| The scattered electric field can be readily obtained from the
external electric field as given in eq. (10) by subtracting off the

incident field. We have

13. M. S. Macrakis, ;hackscattering Cross-Section of Slotted
Cylinders", Ph.D. Dissertation, Harvard University, .
Cambridge, MA, 1958

23. R, W, P. King and T. T. Wu, The "Scattering and Diffraction of -
Waves", eq. 18.1, p 68, Harvard University Press,
Cambridge, MA, 1959 )
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o (1)
s (kp)

(64) ES (p,0) =) [-E,€ (-)™ 3 (m) + 2]

cosmy
m=0 ( ) (n)

Using eq. (27) which defines the coefficient Bm converts this to

(65) ES (p,9) = -y B 3 (mE™) (kp)cosm

m
m=o

We also need the asymptotic form of the Hankel function for

large argument;

(1) 2 i(kp-T/4) =imlT/2
(66) H (kp);: Jﬂkp e

Using this in eq. (65) we get for the b.s.c.s.

//|E0|a

Substituting for Bm from eqg. (30) this becomes

m.p.

(67) o ? (-0)™ 3_(mB_

ZTT-cp ’ @
S gﬂp' K—(EL)"X Em(-i)m .:J'm('r'|)cosnt;>"a

(68) o_ =
®o H, mZo

B 4k

or alternatively
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(69) 095 = 4k

A similar derivation yields for the b.s.c.s. in terms of the

aperture electric field

m i ’ ¢ Do , 3
B 4k -1 Eo Hy o0 By Ho

We can also consider the b.s.c.s. in another form which yields
some physical insight into the problem. Thus let us write the
scattered field as the sum of two contributions, namely the
scattered field in the absence of a slot which we shall call }
E° (p,p=c) and that contribution of the scattered field which arises

z
due to the presence of the slot which we shall denote by E2°(p,¢=o).

We then have

lim
(71) oy = 70 2MelES (p,p=0) + E}°(p,9=0)[? [ |Eo|®

It is clear from the explicit form of eq. (71) then that the

b.s.c.s. should exhibit maxima and minima at wavelengths where the
component scattered fields constructively and destructively interfere
with one another. Since the scattered fields are separately bounded

the resonances they give rise to must in turn be finite in amplitude.

We shall discuss these resonances below when we present the results, )
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VI. THE FORMULATION OF THE NUMERICAL METHOD OF CALCULATION

In part IV of this report we developed "admittance" and
"impedance" matrices of infinite order. The approach used to obtain
these was the so-célled method-of-moments which Harrington21
developed and applied to electromagnetic field problemszz. Now it
should be realized that matrices of infinite order are as a rule not
the ordinary garden variety matrix that one usually has to deél with
in classical electromagnetic phenomena and consequently a con-
siderable amount of caution must be exercised in manipulating them.
For example our impedance and admittance matrices can be inverted
only in special situations. Of course a diagonal matrix of infinite
order can be inverted (provided its trace is not null). In the case
where the set of expansion functions, Y; )(m) and the set of weight-
int functions Q; )(m) are "orthogonal" sets over the range of the
independent variable the "impedance" and "admittance" matrices are
diagonal. Classical eigenfunction methodology for solving integral
equations relies on the availability of such complete sets of
orthogonal functions. On the other hand, numerical implementation

of the "method-of-moments" restricts the matrix of inner products to

21, R. F. Harrington, "Matrix Methods for Solving Field Problems",
Technical Report No. RADC-TR-66-351] Rome Air Development
Center, Griffiss Air Force Base, New York 1966

22, R, F. Harrington, "Field Computation by Moment Methods",
The Macmillan Co., New York, N. Y. 1968
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be of finite order, This recasts the calculation back into more

familiar territory. The matrices that are actually to be dealt with
can then be inverted by the more familiar conventional numerical
techniques. To accomplish this contraction to finite matrices for a
particular problem in essence then merely requires solving a
numerical approximation to the problem. These "method-of-moment"
numerical approximations, as Reilly24 pointed out, were observed by
Harrington22 to be essentially equivalent to those employed by
others in point-matching techniqueszs—27 where the boundary condi-

tions are enforced at a finite number of discrete points using

truncated series representations for the electromagnetic fields.

22, R, F. Harrington,iﬁfield Computation by Moment Methods",
The Macmillan Co., New York, N, Y. 1968

24, E. D. Reilly, Jr., "Resonant Scattering From Inhomogeneous
Nonspherical Targets”, Journal of Computational Physics,
Vol. 11, No. 4, p 463-492, April 1973

25, E. M. Kennaugh, "Multipole Field Expansions and Their Use in
Approximate Solutions of Electromagnetic Scattering Problems".
Ph.D. Dissertation, Dept. of Electrical Engineering, Ohio
State University 1959, Columbus, Ohio

26. L. F. Libelo, Jr., "Scattering by Axisymmetric particles Whose
Size is of the Order of the Wavelength", Ph.D. Dissertation,
Dept. of Physics, Rensselaer Polytechnic Institute, Troy,

N. Y. 1964

27. C. R, Mullin, R, Sandburg and C. O. Velline, "A Numerical Tech-
nique for the Determination of Scattering Cross-Sections of .
Infinite Cylinders of Arbitrary Geometrical Cross-Section", IEEE.
Transactions on Antennas and Propagation, AP 13, 141, 1965 )
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A simple illustration of the point matching method was published
earlier by the present authorsl.

One well-known classical variational technigque for solving
linear integral equations is that of Galerkin and is described at
length by Kantorovich and Krylov28. This method is fundamentally a
special case of the method-of-moments in that the set of expansion
functions coincides with the set of weighting functions.
Harrington22 has observed further that Galerkin's method and the
rigorous method-of-moments itself are in essence equivalent to the
older Rayleigh—Ritzzg—30 variational method which is a much more
widely known numerical technique.

Having, we hope, set the philosophic background properly for

the method to be used in the computations let us continue the

development of the approach to solving the problem. We have, we

1. L. F. Libelo and J. N. Bombardt (HDL) "S.E,R.A.: I. Normal
Incidence on the Slotted Plane", NOLTR 70-58, Naval Surface
Weapons Center, White Oak, Silver Spring, Md., April 1970

22, R, F. Harrington, "Field Computation by Moment Methods",
The Macmillan Co., New York, N. Y. 1968

28, L. V. Kantorovich and V. I. Krylov, p 304, "Approximate Methods
of Higher Analysis", Interscience Publishers, Inc., NY 1958

29, Lord Rayleigh "Theory of Sound", sections 88 and 89, Vol. I,
Dover Publications, New York 1945

30. W. Ritz, "Uber eine neue Methode zur Losung gewisser Variations

probleme der mathematischen Physik", Journal fur die Reine und
Angewandte Mathematik Vol., XXXV, p 1-61, 1909
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recall, three integral equations which have been derived for the
problem at hand., These are the slot electric field equation, i.e.
eq. (22), the surface current density integral equation, i.e. eq..(34)
and the connective integral equation of an earlier report3. We felt -
that the integral equation for the surface current was, all things
considered, best suited for numerical solution and devoted all our
efforts to it.

We shall now proceed to consider in more detail the approximate
numerical treatment we applied to the slotted cylinder problem.
First it should be noted that a stable and accurate solution of the
surface current integral equation by the method-of-moments depends
on a number of factors; the choice of the set of expansion functions,
the choice of the weighting functions, the accuracy of the computed
elements in the matrix of inner products, the generation of a "well-
conditioned" matrix of inner products and the size of this matrix of
inner products. Judgement should be given to selecting the set of
expansion functions so that one does not require an inordinately
large number of them to adequately represent the unknown quantity in
the integral equation. At the same time they should be chosen so as

to be relatively independent functions. Similar care should be

3. J. N. Bombardt and L. F. Libelo (NAVSURFWPNCEN) "S.E.R.A.: .
III. An Alternative Integral Equation with Analytic Kernels
for the Slotted Cylinder Problem”, HDL-TR-1588, Harry Diamond -)
Laboratories, Washington, D. C., August 1972
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devoted to selecting the set of weighting functions so that they are
a set of relatively independent functions. They should be chosen so
that the inner products formed with them test independent properties
of the integral equation. The accuracy with which elements in the
inner product matrix can be computed depends critically upon the
sets of expansion and weighting functions chosen for the computation.
Of course analytic closed form expressions for each element in the
inner product matrix is highly desirable. K. Mei31 discussed the
conditioning of a matrix in terms of the orientations of the hyper-
planes represented by the rows of the matrix in an n-dimensional
vector space., His results indicate essentially that a "well-
conditioned" matrix results if the hyperplanes are nearly perpen-
dicular to one another whereas an "ill-conditioned" matrix results
if two or more hyperplanes are nearly parallel., Furthermore, after
a certain number of arithmetic operations are performed during
numerical inversion 6f a matrix a round-off error check is necessary
to determine if the matrix is well-conditioned. We shall postpone
detailed discussion of other numerical considerations until later
when we discuss the computer program itself,

The method-of-moments shall be applied to the slotted-cylinder

scattering problem in the same manner that Harrington treated the

31, K. K. Mei, "On the Integral Equations of Thin Wire Antennas"”,
IEEE Transactions on Antenna and Propagation AP 13, 374 (196°%
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scattering problem of an infinite cylinder of arbitrary cross-
section without a slot. On the conducting portion of the scatterer

the surface current will be approximately represented as an ensemble

of constant current elements with unknown amplitudes. Only at the

midpoint of each such current element will the surface current

density integral equation be assumed to hold. This procedure yields

a finite system of algebraic equations where the unknowns of the

system are the constant current amplitudes in the approximation.

Clearly, in principle, if the sizes of these constant current

elements are sufficiently small when compared to the size of the

wavelength we should obtain a fairly decent approximation to the

actual exact solution provided we treat any singularities in a )
proper manner, The surface current integral equation, namely

eq. (34) will be repeated for convenience

2M ~pg
(34) S dwp Eéf.l-Hél) (?n|sin ﬁigE_L ,) - (ﬁ) o—in cosv
Po

for ©q=yps2M—p,

For purposes of calculating by the method-of-moments we

approximately represent the surface current density as

nw-1t

(72) (@) M, =

B,P, (o) .
LLL

1
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where L is an even integer for reasons which shortly shall become
evident, PL(w) is a unit step-function which shall be defined in
more detail in a moment, and B, is the amplitude of this step-

- function. The step-function is defined as follows

(73) P, (®) = ule=p, ;) — ulew,)

where we have

1 a>0
u(a)={

0 a<0

In eqg. (73) for the definition of the unit step-function the

angle ®, is given by
(74) P, = %o * LAP

where we take
(75) ap = 2(M=p,) /L

and we recall ¢, the semi-slot angle was illustrated in Figure 1.
Eq. (75) tells us merely that we have divided the angular range of
the conducting portion of the cylinder of radius a into L equal
intervals, Now if we substitute eq. (72) into eq. (34) for the
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surface current density we generate the approximately correct

relation

- g_e-ln cosy )
n

| =)

(76) BLfL (n,o)

1=1

where we have introduced the notation

P
A ¢

(77) £, (n,p) = S dp’ Ho(l)(ZTIfsin (%«;) l)
Pr-1

We choose the set of weighting functions as the following set

of Dirac delta functions

(78) 8 (0= ) form = 1,2,...L
where
(79) o, =k, +to)

Thus we see that the method-of-moments yields for eqg. (34) the

set of L simultaneous equations

form=1,2,¢0.,L
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This set can be solved for a given m and ¥, i.e. a cylinder radius
to wavelength ratio and a slot angle. Symmetry considerations
reduce the size of the system of simultaneous equations to be solved
numerically. Thus, for the incident plane wave as shown in Figure 1,
the surface current is éymmetrical about ® = T, Consequently the
number of unknown step current amplitudes to be found is reduced

since

(81) B B

L+l-t" “4 for L

1,2,...,L/2

Therefore we can write

L/2

~

(_ (82) i) e-in COSC.Em

B £, (&) + £, ()] = (n

n~

1=1

form=1,2,...,L/2

Now eq. (82) can be cast into the same matrix form as eq. (61). It
should be noted, however, that the approximate "impedance" matrix
associated with eq. (82) is of finite order and can in principle be
inverted (if it is not singular) by conventional numerical tech-
niques. We have written a computer program for solving the system
of egs., (82) and shall discuss it later.

At this point we have approximated the slotted cylinder by

zoning it into elements of uniform currents. An immediate question
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thrusts itself forward concerning the validity of this approximation
to the current density near the edges of the slotted scatterer where
in the ideal mathematical model the surface current must become
unbounded in amplitude. This difficulty wé feel is not too serious -
to have to deal with. To begin with the surface current amplitude

for each zone can be interpreted as an approximation for the surface

current at the midpoint of the element. Consequently the current

precisely at an edge is never computed! Instead an approximate

value is calculated for the surface current at the mid-point of a

zone that has an edge as one of its boundaries. At the mid-point of

such a zone the surface current density may be very large but can't

become infinite. Then numerical approximation at mid-points of such

a zone is a meaningful quantity. Secondly, physical quantities such

as the electric field in the aperture and the back-scattering cross-

section are obtained from integrals of the surface current which are
relatively insensitive to small changes in surface current near the

ideal edges of the scatterer. Finally, it should be borne in mind

that any experimental approach to the scattering problem of a

perfectly conducting slotted cylinder or an infinite cylindrical

strip must, of necessity, employ scatterers constructed of a metal

which is finitely conducting with finite thickness. Of course all

probes and detectors are also finite in size and possess limited

ability to accurately define an edge. Consequently the ideal
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mathematical model of a slotted perfectly conducting cylinder
displaying singular behaviour at an edge is impossible to achieve
experimentally. Thus, eq. (72) should, if properly handled,
- adequately represent the surface current for most practical purposes.
Next we shall enter into detailed discussion of the elements
for the matrix of inner products. The expansion and weighting
functions introduced above have led to inner products for the
surface current integral equations which were denoted by fL(n,am).
A numerical solution of eq. (82) requires the analytical evaluation
of these inner products which are explicitly displayed in eq. (77).
Note that it may occur that 5m does not lie within the range of
integration in eq. (77). Should this be the situation a Taylor
series expansion of the integrand can be integrated in order to
provide an analytical result for fL(n,ém). If $m does lie within
the range of integration we can get an analytical result for
fL(n,aL) by integrating the small argument expansion of the Hankel
function in the integrand. We shall demonstrate both situations next.

The inner products in eq. (82) are defined by

_ Pr-1 () P ~p
£, (o) S dp’ H, 21| sin > ) |

pl

where ¢+ = 1,2,...,Land m=1,2,...,L/2., The first case to be
considered is that where $m does not lie within the range of inte-
gration. More specifically we shall take 5Lu5m such that
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D ’
L ® -
-\ (1) . ( m)
fL>m(T\,CPm) = Scp dp’ H, (21’\|s:.n p |)
-1

1

Then a Taylor series expansion of the integrand about 5& becomes

'~ P, P
Hél) (?n[sin ( > m) I) = Ho(l) (2ﬂ sin ( Lz m)) + (w'*iL) .

a ..4) . (“"*")
a ! Ho1 (;ﬂ sin 2 1

+ LR ]

where m',w4>wm. Term by term integration of this Taylor series

leads to

+ L)

where
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(~ Then to first order in A¥® the inner product is

D, ~p
) - (1) . (ch m) .
fL>m('n,cpm) ~ Hy |:2'n sin 2 -| fi\ey

)

A similar development for the case 6£<5m leads to

>~
- (1) . m_ 4
frem(Ne®@y) =~ Hy [Zn sin 5 ] Aep

Therefore to first order in Ay we have

i ®_—
-~ (1) . m "4
(83) £, (.0 =~ 1P [2n sin | B ] g
( for ‘L = 1'2'...IL a'rld m = llzl...IL/z

For the second situation i.e. when m = £ the Hankel “unction

integrand simplifies since
N ¢ = ¢ =
[sin (o ~,)/2| =~ | (®'=,) /2| for ¢, <o,

It then follows that

)

3

(84) fL(n.cFL) ~ S ap ’ Ho(l)[n(ch-cp')JdCP' +
Pra Py

Pr
\ ap’ B [’ -5,) ]
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These integrals can be evaluated by requiring
knap << 1

so that a small argument asymptotic form of expansion for the Hankel

function can be employed i.e.
(1) R S A L 1 x\* 3 X\
By n 0 L (2) +17{1- (2) 1l (2) +vel + ()

where Ye = 0,5772...is the Euler constant. Then, in terms of the

small argument expansion the first integral in fL(ﬂ,éé) becomes

Py P
s dCP'Ho(l)[ﬂ(CEL-CP')]m{l+i%[ye+{,n (g)_l} I ap )
P i CPL—l

Py

-(%n)‘{l-i % El—ve-Ln(n/z)]} SCPL_?cp' @, )2 +

® ®
Pra PLa

where we have

3
S dp’ =% Ao
o)

-1

58



NSWC/WOL/TR 75-39

oy ’ —_ !.-. 3
(ch-cp )2 = 3 (Ap/2)

- Sch : - 1 1 1
’ ’ - = = - =
) deop Ln(tpL-CP ) = 2 (Ap) 4n (2 Acp) 5 Ae
L -1

and

¥
4 - 3
¢ 1= ’y 2 .y 4 — l l s l - l l
4 -1

which in turn gives us then

( ®
X
S dp’ Ho(l)[n(ca-cp')] = {1 + i %ﬁveﬂn(nﬂ)]} (A%)
®
1=

- 2r{1-12 [1-v_~tn(n/2) ]} (%)2 12 [(A%) Ln(%) - (A%)]
- 33 B () (9) -5 ()0,

The second integral in eq. (84) for fL(ﬂpaL) can be evaluated as

follows. We define new variables

- (85) u=n ($L-cp')
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(86) van l@'9,)

Then we have

P, nap /2
S dCP'Ho(I)[ﬂ(C;L'CP')] =Tl—] S Hc)( ) (u)
(p{,-l [~}
and
P, nap /2
oy )[ Py (1)
Ho n (e -CPL)] n dv Hy ' (v)
¢L o

From these two relations we conclude that the second integral

in eq. (84) is given simply as )

cp
S dp’ H( )[n(cp -ch)J = S Ho(”[n(cEL-cp’)J
L CPL -1

Consequently the value of fL (n,cﬁL) is

(87)  £,(ng,) ~ {1+ iZ [y +a/2]1} tw -
- %(2.)2{1 - i % [ll—Ye%n (IL) (_%)
+ g [(%Q) ‘o (A%) B (é%) |- (z) [%( 2) "n(é%)' %(Q%)a]

for 4+ =1,2,...,L/2 -
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Equations (83) and (87) provide analytical expressions that can
be used to numerically evaluate the known coefficients in the systems
of algebraic equations in eq. (82). These analytical expressions
have been derived on the condition that Agp is very small and where
knAp is also a small number. What this implies is that the wave-
length of the incident radiation must be long compared to the zone,
or element, of constant current dimension. This is of course
necessary from a physical point of view if the approximating ensemble
of discrete current elements is to accurately represent a continuous
surface current distribution at wavelengths of interest.

Next we turn to the evaluation of the slot electric field. Once
the surface current density has been determined in the manner
described just above the electric field in the opening or slot can be
found in a direct straightforward manner. Using egs. (31), (33) and
(15) we can obtain the connective integral equation which we showed
in earlier paper3 bgtween the slot electric field and the surface

current density.

2M=po

(88) €(®) = E- (a,9) - (ENE”' S dep H(cp')Ho(l)(2n|sin(w) l) '
z 4 Eo ® 2
o

for 2M—p, <ew<+pg

3. J. N. Bombardt and L. F, Libelo (NAVSURFWPNCEN) "S.E.R.A.:
III. An Alternative Integral Equation with Analytic Kernels
for the Slotted Cylinder Problem", HDL-TR-1588, Harry Diamond
Laboratories, Washington, D. C., August 1972
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Using eg. (72) this becomes
i L
@) /By = & "% - (il) ZB:,f:,(ﬂ.cp)
1=1

and taking symmetry into account we obtain for the slot electric

field
L/2

_ _—incosy n
(89) E(p)/E, = e - (4);1 BL[fL(n.cp) + f:.+1-4("'°"):|

for 2M—py<o<®,

Calculation of the slot electric field is one property of the prob-
lem which proves useful as a vehicle for comparison with the results
of other workers. The computer program constructed for the slotted
cylinder problem evaluates eq. (89) for the slot electric field for
a given set of parameters A\, M and ®¥,.

The surface current density can also be used to compute the
back-scattering cross-section. This is done using eqg. (69) which we

repeat here.

21 i
s "cpo P E:(aocp,) x@l) , 3
(69)  kog = (n/2) dp E, H,
o]
Thus we have also
@® L 2"'(90 3
= 2 ' 3y ' ’ ’
kop = (/2)° | ) € (-0 3 (0 ) B &’ P, (v')cosmp
m=o 1=1 ®o
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or in turn

B, |3, (map +2) (-0 3_(n)
1 m=1

e

(90) ko, = (n/2)°

nc

4

(sin mwp, - sin m&-l) ..llz
m ;

Now if we define a new function by

(91) g, (m) = g, (map + 2 ) (- g_(m[3inlme,) - sinlop, )]
m= m

we can write the back-scattering cross-section in the simpler form

2

L/2
iaﬂgﬂn)+gm1q}ml

(92) ko, = (n/2)?
1=1

These b.s.c.s. were also incorporated into the computer program for
the problem. The calculated values obtained for eq. (92) will be
compared with available experimental data below.

Having completed our general discussion of the formulation of
the method used for the numerical calculations in our diffraction
problem we next proceed to present the results obtained. We shall
compare these to the results obtained by others whenever they are

available for this purpose.
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VII. NUMERICAL RESULTS FOR INFINITE CYLINDER WITH NO SLOT
The exact series solution of the surface current density on an
infinite perfectly conducting circular cylinder with no slot was

given earlier in eqg. (26), i.e.

2 e em(.-i)m
) cosmyp

(93) K(p) = H (—
Z 0 ﬂﬂ 223 Hél)(ﬂ)

Using egs. (64) and (63) with the Am all identically set to zero

gives the b.s.c.s. for the cylinder with no slot as
af < 1)]?
9 = - \’ - n
(94) ot =3 néo( 1" e I (n)/m

We have computed the surface current density at 40 values of }
azimuth in the range 0<¢p<T, i.,e., for L = 80, Figures 2 and 3 display
the numerical results for the surface current at wavelengths corres-
ponding to values of n =1,2,3,4,5 respectively. Numerical evalua-
tion of the exact series of eq. (93) for the surface current when
there is no slot in the cylinder yields numerical results that are in
extremely close agreement with those of Figures 2 and 3. In fact the
exact results cannot be distinguished from the approximate results
when plotted on the same graphs.
The accuracy obtained for the numerical results using the
method of moments for the cylinder without a slot improves with .

increasing L. This is indicated in Table 1. where we have listed \
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Table 1. Numerical Values of Back-Scattering

Cross=Section, ko from the Method of Moments

B ’
and from Exact Theory With No Slot

L = 40 L =60 L =80 EXACT

n = 0.5 2,3636 2.3619 2.3611 2.3590
1.0 3.8747 3.8706 3.8686 3.8627
1.5 5.3493 5.3429 5.3401 5.3325
2.0 6.8589 6.8482 6.8438 6.8321
2.5 8.4039 8.3806 8.3724 8.3559
3.0 9.9184 9.8889 9.8789 9.8589
3.5 11.4882 11.4470 11.4339 11.4106
4.0 13,0785 12,9890 12,9629 12,9256
4,5 14.6640 14,5573 14.5267 14.4849
5.0 16.2379 16.1047 16.0664 16.0166
5.5 17.7468 17.6214 17.5957 17.5738
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values of koB for m varying from 0.5 to 5.5. For each value of 1M we
show the exact result and the numerical approximation for L = 40, 60
and 80. The improvement with increasing L is readily evident in
this table., For the range of m considered we note that for L = 80 . :
the departure from the exact b.s.c.s. is less than one part in three
hundred.

Clearly the numerical approximation used leads to excellent
prediction of the surface current density and b.s.c.s. for the

infinite cylinder with no slot.

68



NSWC/WOL/TR 75-39

VIII. TANGENTIAL APERTURE ELECTRIC FIELD AND CONDUCTOR SURFACE
( CURRENT DENSITIES FOR THE SLOTTED CYLINDER

1. General Comments
In Part VI'of this report we presented a discussion of the
method utilized to calculate the quantities of interest. This was
followed by an illustration of the method applied to a problem that
has a known solution and is familiar certainly to nearly all workers
in the field of electromagnetic scattering and probably all first
year graduate students in Electrical Engineering and in Physics.
The results displayed for the method are undoubtedly extremely accu-
rate for that problem. In this part of the report we present the
results obtained using the same technique for the slotted infinite
( circular cylinder. More specifically we show graphically the tan-
gential electric field in the slot and simultaneously in the same
graph the surface current density over the conductor for the same
cylinder. This is done for n =1,2,3,4,5 to obtain the behaviour as
a function of the ratio of the cylinder radius to the incident wave-
length. Along with the graphically represented results we show for
each slot angle considered the corresponding results for the back-
scattering cross-section as a function of the parameter m. These
b.s.c.s. results were obtained by the same numerical technique.
2. The 9o = 30° Slot Characteristics
The first case considered is that for which 9, = 30° or equiva-

lently a slot subtending a total angle of 60° at the cylinder axis.
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In this case the surface current density was evaluated at 50 points
in the range 9@,<p<M, This means of course that L = 100 or the con-
ducting portion of the circular cylinder of radius a was approximated
by assuming that it consisted of 100 zones each carrying a surface
current of constant amplitude. The increment for the 50 equally

spaced points over half the conductor implies

Ap _ (M=T/6) /50 _ M/60 _ 1
P, m/60 m/6 10

Furthermore for the largest N ccinsidered we find for the arclength of

each of these zones

abp _ 2Ma Ap _ _ Ap _ 1 _ 1
\ X 20 - Moam =2 X Tz0 22~ -04

)

This is the maximum ratio of arclength per zone to incident wave-
length. We conclude from this that we should be able to numerically
generate in the manner described good results for the guantities we
are evaluating. In Figures 4 through 8 respectively we show the
results obtained for the aperture electric field and the surface
current density for n = 1,2,3,4 and 5. It must be emphasized that
the results being presented in this paper are the first published
results for this particular case of a slotted cylinder. As a result
of this we cannot compare our data to those obtained by others, .
Nevertheless we can establish some points which would tend to lend
support to the accuracy of our theoretical results. First, calcula-
tions we performed for L = 80 for this case gave results which
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indicate strongly that the results presented here for L = 100 have
already converged rather closely to the exact results. From this
aspect we believe the results depicted in Figures 4 through 8 are not
in error by more than a few per-cent. The second point to be made is
that the current densities displayed in Figures 4, 5 and 6 are quali-
tatively similar at the larger angles of ¢ to the current densities
of the slot-less cylinder shown in Figure 2. For angles closer to
the slot edges much stronger distortion must necessarily be present
and this accounts for the marked deviations in current density of the
9, = 30° case from the ¢, = 0 case for n = 1,2,3. For the current
densities shown in Figures 7 and 8 for 9, = 30° and n = 4 and 5 we
note the occurrence of three maxima which are guite sharply defined
in the n = 5 case. This is in qualitative agreement with the n = 5
situation shown in Figure 3 for the ¢, = 0 case which has two clearly
evident maxima at the larger angles and two inflexion points at about
¢ = 90° and 105°. The m = 4, ®, = 0 curve in Figure 3 possesses two
inflexion points at the larger angles which the corresponding slotted
cylinder for ¢, = 30° seems to have resolved into the three peaks as
a result of the presence of the slot edges. Recall now that the cal-
culated surface current densities were utilized to calculate the slot
electric field distributions. 1In all cases we find for ¢, = 30° the
distribution of the electric field over the aperture region is quali-
tatively in agreement with the long-wavelength or electrostatic
approximation for narrow slots. Although 9, = 30° is not strictly
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speaking a very narrow slot it is not too surprising to find this
gualitative behaviour for the electric field. We can in fact inject
at this point experimental results that were obtained at a somewhat
later date. than the calculations being reported here. Measurements32
for the same size slot of the electric field component parallel to
the cylinder axis for axially polarized normally symmetric incident
radiation were made on a 1l2-inch long, open ended, cylinder for

M = 3.84. In the plane normally bisecting the cylinder axis this
electric field component was found to be qualitatively the same as
those calculated by the present authors. In fact the results for the
axial slot electric field distributions are quantitatively in fairly
close agreement. The results for the finite cylinder problem will be
presented in a subsequent report in substantial detail.

One should not be too hasty and be too strongly tempted to
assume that the long-wavelength approximation is adequate for
describing the v, = 30° slot electric field distribution over the
entire range of M considered. A quick preview glance at Figure 39
where the w, = 30° slot electric field at slot center is shown as a
function of 7m should indeed arouse some serious doubt as to the reli-
ability of the electrostatic approximation in this case. Certainly

this should arouse suspicion near the internal circular waveguide

32.. D. P, Margolis, C., L., Andrews, J. Heckl and L. Libelo, "Plane
Wave Scattering by An Open-Ended Cylinder With An Axial-Slot",
Bull. Am. Phys. Soc. Vol. 20, No. 1, p 101, 1975
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resonances for ¢, = 30°. We again repeat for emphasis that 9, = 30°
implies a slot such that 1/6 of the conducting cylinder is missing.
This can hardly be considered to be an approximately narrow slot.

All things considered then the infinite cylinder results for
%o = 30° as shown in Figures 4 through 8 are quite accurate values
for the range of m they represent. The back-scattering cross-section
vs. N for ¥, = 30° is shown in Figure 9. The sharp minima that occur
at M =~ 2,40 and N ~ 3.83 correspond to the two lowest internal TM

modes for the circular cylindrical waveguide which are

n = 2.405 and n = 3,832

0l 11
This behaviour is reasonably consistent with the Morse and Feshbach6
prediction for very narrow slots at internal resonances. Otherwise
the calculated results are about as should be expected. This result
lends additional support to the credence of the values obtained for
the surface current density for ¢, = 30°.
3. The ¢, = 45° Slot Characteristics

Next we consider the situation where the half-slot angle is
increased to 9, = 45°. Now we are investigating the characteristics
of a cylinder for which 1/4 of the conductor is missing. The calcu-

lations were performed assuming L = 100, i.e. the conductor is

assumed approximately described by 100 strips each cérrying its own

6. P. M, Morse and H, Feshbach, "Methods of Theoretical Physics",
Part II, 1387-1398 McGraw-Hill, New York, 1953
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uniform current density. Thus for the range of azimuth 9,<p<7T we
have 50 such strips where the ratio of the angular width of each

strip to the half-slot angle is

Ao _ (T-11/4) /50 - -3 = 06
Po m/4 50 °
The ratio of arclength of each such strip to the smallest wavelength,

or largest m, considered is

adp _ 2Ma Ap _ . A _ _3 _
A A 27 oM ~ go - -037°

Thus the accuracy of the numerical results for this case should be
about the same and probably a slight bit better than we obtained for
®o = 30°. 1In Figures 10 through 14 we show respectively the aperture
electric field and surface current density distributions for the
circumference to incident wavelength ratios n=1,2,3,4 and 5. For
L = 100 the numerical approximation technique utilized probably
yielded results good. to within one or two per cent in this case. To
fail to recognize the very close resemblance of the surface current
density distributions at n = 1,2,3 for 9, = 45° as shown in Figures
10, 11 and 12 to the corresponding ones of n = 1,2,3 for ®, = 30° in
Figures 4, 5 and 6 is virtually impossible. The same number of
maxima and minima occur for each m for both @, = 30° and @, = 45°,
i.e. the 9w, = 45° distribution appears to be merely that for ®, = 30°
compressed to fit over a smaller range of angle. For m = 2,9, = 45°

we find a slow decrease in surface current density as we move away
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from the maximum at ¢ = T to a minimum at about @ = 122°, Further \
decrease in ¢ results in monotonically increasing current distribu-
-]

tion. This is the same qualitative behaviour found Zor m = 2, «. =30%

In the latter case though the amplitude is lower and the minimum

occurs at about 115°, For m = 3 and 9, = 45° the current density

amplitude follows that for m 3 and 9, = 30° fairly closely. The

principal difference is in the locations of the turning points (other

than at o = M), For 9, = 45° a maximum occurs at about ¢ = 105°

95°, Minima occur for

whereas for ¢, = 30° it appears near ¢
¥, = 45° near 72° and 137° and near 70° and 132° for @, = 30°.
]

Figures 13 and 14 give the surface current distributions for ¢, = 45

and N = 4 and N = 5. Again a very close resemblance to the corre-

.

sponding characteristics for ¢, = 30° is most clearly evident. Thus
for n = 4 we see from Figures 13 and 17 a maximum occurs at ¢ = T,
The amplitude of this maximum in the surface current density is
approximately 1.8 for ®, = 30° and 2.1 for 9, = 45°. In both slotted
cylinder cases the current density falls monotonically as we move
away from the rear of the cylinder. For 9, = 45° we pass through an
inflexion point at about 135° whereas the inflexion point occurs at
about 132° for ®, = 30°. Again both current distributions decrease
monotonically as we move away from the inflexion point toward smaller

values of ®. Note that the amplitudes are about 1.25 for 9, = 45°

and 1.15 for 9, = 30° at the inflexion points. 1In the ¢, = 45° case

the first minimum occurs at about ¢ = 90° with amplitude 0.5. For
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®o = 30° this first minimum is at about 99° with the same amplitude.
As we proceed further around towards the slot we find a monotonically
increasing surface current density until a maximum is reached. This
occurs for both @, = 45° and 9, = 30° at about ¢ = 65° with an ampli-
tude of 1.7 for the narrower slot and is only very slightly higher
for @, = 45°. Proceeding further toward the slot both cases exhibit
monotonically decreasing behaviour until a minimum at ¢ = 53° and
amplitude 1.7 is reached for @, = 45°, while this occurs at ¢ = 41°
with amplitude 1.1 for ®, = 30°. Since both cases are thereafter
close to the slot they both proceed rapidly to exhibit the strong
influence of the slot edge as ® continues to decrease further. For

m = 5 examination of Figure 14 for @, = 45° and comparison with
Figure 8 for 9, = 30° shows very plainly that from ¢ = T around to
about ® = 62° both surface current distributions are very nearly the
same. The principal difference over this range is merely the sharp-
ening of the rate of change in surface current near the minima. Both
surface current distributions have a maximum at ¢ = T with amplitude
of about 2.25 and a second maximum at about ® = 91° with amplitude
of about 2.25 for ®, = 30° and 2.1 for v, = 45°. They both have a
deep lying minima at about ® = 125° with amplitude of about 0.1l.

They further have a second deep minimum at ® = 65° for @, = 45° and

@ = 63° for ® = 30°, At both of these second minima the current
densities have an amplitude of about 0.1, As the slot edge is
approached after passing through the second minimum the ¥, = 45°
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surface current density distribution possesses a shoulder at about
® = 54° and with an amplitude of about 1.5. The w, = 30° current
distribution also exhibits a shoulder. This occurs at about 9 = °7°
is somewhat broader and has an amplitude of about 1l.4. In summary .
then we note a gradual evolution in the surface current density dis-
tribution as we increase from @, = 30° to ¥, = 45°. Next consider

the 9o = 45° slot electric field distributions as shown in Figures

10 through 14, For m = 1,2,3 we see these distributions as quali-

tatively what should be expected in the long-wavelength-narrow-slot

width limit. This is somewhat remarkable since for 9, = 45° as we

noted earlier, 1/4 of the cylinder has been removed. In the n = 2

case for example the slot width is approximately equal to 1/2 a wave-

length. For m = 4, 9, = 45° the slot electric field is clearly

deviating from the long-wavelength limit behaviour. In fact the

field for this case resembles that shown in Figure 8 for m = 5 and

¥, = 30°., Figure 14 for m = 5 and 9, = 45° shows very simply that

the electrostatic or long-wavelength or narrow-slot approximation

cannot reliably be used to describe the slot electric field distri-

bution except when safely in the limiting region aAyp/A<<1l, For m = 5

the slot width is comparable to the wavelength., The electric field
distribution over the slot for m = 5 displays a maximum at the slot

center followed by a minimum and in turn another slightly higher

maximum as the edge is approached. This of course then ends by a

~——

monotonically decreasing field amplitude which vanishes as the slot
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edge is reached. The ¢, = 45°, m = 5 slot electric field behaviour
is radically different from that for ®, = 30°, m = 5 even though the
latter also involves a slot width comparable to the wavelength.

We have superposed, using small crosses, the back-scattering
cross-section for ¢, = 45° on the corresponding curves for ¢, = 30°
in Figure 9 and @, = 60° in Figure 20. From an examination of these
curves we observe the gradual evolution of the back-scattering cross-
section characteristics as the slot is widened.

4, The 9w, = 60° Slot Characteristics

For this case the same order of approximation was taken in the
range ®,<p<ll namely 50 points., This leads to the conducting portion
of the slotted cylinder being approximated by L = 100 zones of equal

arclength each carrying a uniform current density. Note that in this

case we have

=T
(M) fpo = (———#%%429 =,04

and the ratio of the arclength of each constant current zone to the

incident wavelength at the largest m considered is

ape _ - Ap _ i _ 1
Y noof 5 X 125 30~ 03

Again we emphasize that this is the largest ratio of arclength to
wavelength considered for this particular slotted cylinder. The
results obtained for this case should be somewhat more accurate than

for the previous slotted cylinder. Figures 15 through 19 show

89



NSWC/MWOL/TR 75-39

respectively for m = 1,2,3,4 and 5 the slot electric field distribu-
tion and simultaneously the surface current density distribution on
the conductor for the 9w, = 60° slotted cylinder, Upon examination
of Figures 15, 16 and 17 for n = 1,2,3 respectively we see that the
slot electric field, not unexpectedly, is still evolving from the
narrow-slot electrostatic type distribution. Simultaneous with this
the corresponding large angle range of the surface current distribu-
tion for the @, = 60° slotted cylinder still possesses the @, = 0,
or slot-less, cylinder character. But this quantity is also under-
going increasing deviation for the ¢, = 60° case for m = 1,2,3. It
is certainly obvious as m takes on larger values as can be seen in
Figures 18 and 19 that 9, = 60° cannot be described by the narrow- )
slot approximation. Considerable structure is now evident in both
the surface current density distributicn and the slot electric field
distribution. Note however that the qualitative behaviour of the
current distributions for m = 1,2,3 are somewhat similar for ¢, = 30°
¥, = 45° and for 9, = 60°., Figures 7, 13 and 18 make it quite plain
that for the larger slot angle the current distributions can be
significantly different for the slotted cylinders. The changes are
apparently gradually evolving as one can observe by comparing the

n = 5 situation for the surface currents. Figures 8, 14 and 19
respectively for the @, = 30°, 9, = 45° and @, = 60° slots exhibit
maxims at or near ® = 90° and @, = 180° and a minimum in the neigh-

borhood of ® = 120°, They show the occurrence of another minimum
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and a shoulder near the slot edge. These latter occur at different
angles in each case. Furthermore the shoulder is barely perceptible
for the n = 5, ¢, = 45° and p, = 60° cases and quite boldly evident
for n = 5, ¢, = 30° case. Finally we should note the back-scattering
cross-section for the 9, = 60° slotted cylinder. This is given in
Figure 20. It still shows the existence of two relatively sharp
minima. But these now occur at about m = 2.4 and n = 4,2. This is
essentially the predicted behaviour one should anticipate. It is a
consequence of the pﬁysical fact that the cylinder is becoming less
clearly defined as a cylinder. At ®, = 60° one third of the con-
ductor has been removed. As a result it should be expected that the
resonances for the slotted cylinder should wander from those for a
cylindrical waveguide and in addition they should display broadened
oscillations when plotted against wavelength. This indeed occurs as
can be seen by comparing Figures 20 and 9. Otherwise the overall
behaviour is the usyal one as 7 increases from the Rayleigh limit.
5. The ®, = 90° Slot Characteristics (Half-Cylinder)

This slotted cylinder configuration is the so-called "half-
cylindrical mirror". Again the same order of approximation was taker
for the range of azimuth @y<p<T. We consider again the conducting
portion of the slotted cylinder to be approximated by L = 100 zones
of equal arclength. Each such zone it is assumed carries a uniform

surface current density. In this case we have
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-
(Ap) foo = ( 43;/50 = 1/50 = 0.02

The ratio of the arclength of each constant surface current element

to the wavelength of the incident radiation for the largest value of

n considered in this case is

arp _ . Ap _ 1 _ 1 _
X NoT =5 X355 = 75 = 0-025

Just as we stated in the previous case we expect the calculated
surface current distribution to be a bit more accurate for this
slotted cylinder than for the preceding slotted cylinder. Figures 21
through 25 respectively present the surface current distribution on
the conductor and the distribution of the electric field in the
aperture for values at nn = 1,2,3,4 and 5. Now if we examine Figures
21 and 22 and 2 we note that in the shadow region, i.e. near o = T we
have roughly speaking qualitatively similar behaviour in the current
density for the half-cylindrical mirror and for the slot-less
circular cylinder. By this we are referring to the occurrence of a
maximum at T for bothm =1, and n = 2 and ¥, = 0 and ¢, = /2. This
maximum is accompanied by a slightly lower minimum in the surface
current density at a smallef value of ®» but roughly in the neighbor-
hood of ® = 160° in all four cases being compared. This is followed
by monotonically increasing behaviour of the current density as ¢
decreases., For the ©®, = 90° case, of course, the singularity of the

edge behaviour soon dominates and we get the anticipated marked
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deviation from the @, = 0° behaviour as we get further away from

¢ = T, It must be emphasized that vestiges of the characteristics of
the slot-less cylinder may continue to appear for the 9, = 90° case.
Nevertheless we should expect greater deviation from the @, = 0°
caée. After all one should recall we now have only half the cylinder
remaining in the present diffraction problem. Thus, the m = 3 situa-
tion as shown in Figure 23 is a rather familiar type of behaviour
which actually is somewhat surprising for the half-cylinder. Con-
tinuing we see the n = 4 and n = 5 tangential electric field results
of Figures 24 and 25 are now departing very radically from the long
wavelength cylinder limit behaviour. Accompanying this behaviour of
the slot electric field we observe growing departure of the surface
current density distribution from the full cylinder (i.e. 9o = 0)
characteristic as shown in Figure 3. Again we anticipate a later
report on measurements32 on a 12-inch long cylinder open at both ends,
for ®, = 90° and n = 3.84. These results showed a slot electric
field distribution, in the plane that divides the cylinder in half
lengthwise, with maxima at ¢ = 0° and about 70° and a sharp minimum
at about ¢ = 40° much like the behaviour exhibited by the infinite
half cylinder in Figure 24 for m = 4.

In the half-cylindrical mirror case we have results obtained

32. D. P. Margolis, C. L. Andrews, J. Heckl and L. Libelo, "Plane
Wave Scattering by An Open-Ended Cylinder With An Axial-Slot",
Bull. Am. Phys. Soc. Vol. 20, No. 1, p 101, 1975
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from an earlier attempt to solve this problem namely that of Barakat
and Levin9 using the Sommerfeld least squares methods. We have cal-
culated the aperture electric field distribution using the tabulated
coefficients of Barakat and Levin for m = 1 and 1.5. In Figure 21 we
show their results for m = 1 using a four-term approximation for an
infinite series representation of the field. Clearly the behaviour
close to the slot edge can't be expected to be predicted too well in
this order of approximation. As can be seen by comparison with the
L = 100 solution this is indeed the case. Surprisingly though the
Barakat-Levin results are not too far off in amplitude from the
center of the slot almost to the slot edge itself. However, the
qualitative behaviour predicted by the four-term approximation fails
abysmally both in the central region of the slot and at the edge.
The Barakat and Levin electric field for m = 1 predicts a minimum at
the slot center then a very slow rise to a maximum at about ¢ = 20°.
The amplitude over this range rises from 1.7 at ® = 0 to about 1.71
at the maximum. From there on the electric field monotonically
decreases as we proceed toward the edge of the conductor. Unfortu-

nately the Barakat-Levin approximation leads to a non-zero tangential

5. A Sommerfeld, "Partial Differential Equation", p 29-31
Academic Press, New York, 1949

9, R. Barakat and E. Levin, "Diffraction of Plane Electromagnetic
Waves by a Perfectly Conducting Cylindrical Lamina", Jour. Opt.
Soc. of Amer. 54, 1089-1094, September 1964
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component of electric field at the slot edge. This is fundamentally
incorrect physically. The only other set of data published by
Barakat and Levin that we could use for purposes of comparison is the

case for n = 1.5. Using their five-term approximation for the -
infinite series for the slotted cylinder field we calculated the
corresponding electric field amplitude over the slot region. Upon
examination of Figure 22 we can only guess that the qualitative

behaviour they predict is probably not too far off except very near

the slot itself. Truncation of the infinite series beyond the fifth-

term probably accounts for the non-vanishing tangential component of

electric field at the slot edge itself., 1In fact they predict the

field at the slot edge is about half that at the slot center. Note

that the Barakat-Levin five-term approximation for m = 1.5 predicts

the occurrence of a minimum in the slot electric field at the slot

center followed by a maximum at about ¢ = 50° and a steady falloff in
amplitude thereafter as we proceed around the cylinder toward the

slot edge. This behaviour is very similar to that for m = 2 in our
method-of-moments calculation. The difference in amplitudes between

the two solutions probably is due to the difference in the value of n

they represent.

The radical change in the slot electric field distribution as 7
increases from 4 to n = 5 results from the somewhat less remarkable
change in the surface current density over the half-cylinder for the
same pair of values of m. We observe in Figure 24 for m = 4 the
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electric field has a maximum at the slot center with an amplitude of
1.68 followed by a sharply reduced minimum of amplitude 0.85 at

® = 43°, This in turn is followed by a sharp rise to a second maxi-
mum with amplitude of 1.86 at ¢ = 72° and then a sharp drop to zero
at the slot edge. Figure 25 for m = 5 displays a low lying maximum
of amplitude 0.6 at the slot center then falls off slightly to a
minimum at ¢® = 13° with amplitude of 0.5. Proceeding around the slot
we find a rapid rise to a maximum of amplitude 1.7 at ¢ = 44° then a
rapid decrease to a second minimum at ¢ = 66° with amplitude 0.22.
This is then followed by a sharp rise to a third maximum of amplitude
1.23 at ¢ = 82° and then a very sharp drop to zero at the slot edge.
We thus have observed two very different but very interesting distri-
butions of electric field distributions over the slot due to a change
of just 25% in the incident wavelength. Note that for both n = 4 and
n = 5 very little resemblance to the long-wavelength approximation
persists in the slot electric field distribution. Simultaneous with
this we observe that the corresponding surface current densities are
gquite similar for these two wvalues of mn.

Figure 26 shows the back-scattering cross-section as a function
of a/A or m for the half-cylinder. The calculated behaviour shows
the further shifting of the resonances and the broadening of the
spectrum with increasing slot size. Only one minimum is now evident
in the range of M up to N = 5. The second minimum occurs somewhere

beyond m = 5. This curve is consistent with the pattern evolving as
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Figure 26. Calculated and Measured Back-Scattering
Cross-Sections; ©,=90°, The Half Cylindrical Mirror
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the slot increases., 1In Figure 26 we also have included the results
obtained by Macrakis13 in his attempt to experimentally investigate
the back-scattering of the concave half-cylindrical mirror. From
about n = 3.5 on to N = 5 his experimental results are in fairly good
agreement with our theoretical results. His measurements should
coincide with the Rayleigh limit type of behaviour for small m. For
this to be the case if we try to extrapolate down from his result for
the smallest 1 of his experiment, namely, m = 2.5 a maximum would
have to exist below m = 2.5. This agrees at least qualitatively with
our theoretically predicted behaviour. His lack of more precise
agreement with our calculations is very probably rooted in the
limitation of his experimental accuracy. This latter unfortunate
characteristic arises as he himself has observed from the difficul-
ties of modeling in the laboratory an infinite slotted cylinder by
finite slotted cylinders.

6. The ¢, = 120° Slot Characteristics (120° Cylindrical Ribbon)

In this case we have 2/3 of the metallic cylinder missing. We
can consider this problem, as we stated in Part I of this report, as
the scattering by a cylindrical strip subtending an angle of 2T/3 at
the axis. The incoming radiation is of course incident from the con-

cave side of the strip. For this case we again show the results for

13. M. S. Macrakis, "Backscattering Cross-Section of Slotted
Cylinders", Ph.D. Dissertation, Harvard University,
Cambridge, MA, 1958
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L 100. The ratio of angle subtended by each of the 100 approxi-

mating uniform current strips to the half-slot angle is

®o 21/3 50 100 *

The ratio of the arclength of each of those strips to the shortest
wavelength considered is

ane _ 2Ma Ap _  Ap
N X 2m = " ogp = 0.017

These strips are quite small relative to the smallest wavelength con-~-
sidered and hence should be expected to give us quite good results
for the calculated quantities. Figure 27 displays the slot electric
field distribution and surface current density distribution for m =1,
The results for the electric field distribution are indeed quite
surprising in that we find the characteristic behaviour for the
narrow-slot limit approximation. Clearly the slot in the cylinder is
not small by any stretch of the imagination. On the other hand the
conductor width is about 1/3 the incident wavelength. Clearly we
have made a transition. It is now more appropriate to consider how
close an approximation to the infinite plane strip our conductor is
rather than inquiring as to how narrow a slot we have. We emphasize
that we have nevertheless calculated the electric field over the
cylindrical surface of radius a not occupied by conducting material.

The surface current distribution for m = 1 has a minimum at @ =T,
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This is the first slotted cylinder case in which this characteristic
appears. As we move away from the strip center the current density
slowly and steadily increases until near the edge where it rises much

more rapidly. In Figure 28 the elec¢tric field distribution over the .
slot, not surprisingly, no longer resembles the long-wavelength

behaviour. We now observe a small amplitude maximum at the center of

the slot followed by a minimum of about half the amplitude at the

slot center. The electric field then gradually increases to a much

larger maximum not too far from the slot edge and then, as it must,

sharply falls to zero as the edge is approached. Simultaneously the

surface current density has a slightly higher value at the strip

center than exhibited by the m = 1 case. Actually the current at the

strip center is a maximum. About 1/3 of the way toward the edge a

minimum a just slightly lower amplitude than at the strip center can

be seen. Continuing from the minimum the surface current density

slowly increases until the rapid rise near the slot edge takes over.
Qualitatively the surface current density away from the edge is

roughly similar to the slot-less distribution. 1In fact for n = 2 we

have about the same behaviour of surface current for all the previous

cases considered, ®, = 0, 30°, 45°, 60° and 90°. 1In Figure 29 we

have the slot electric field and surface current density for n = 3.

In this case the arclength of the conductor is precisely one wave-

length long. This case presents some very noteworthy behaviour for

the electric field distribution. Note in particular that the slot
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center, ® = 0, is an electric field minimum with amplitude 1.91. The
electric field remains nearly constant as we move away from the slot
center and only gradually rises to a maximum at about ¢ = 26° with
amplitude of 1.96. This is about 2 - 3% higher than the minimum at
the slot center. Proceeding around we find the amplitude of the
electric field continuing to fall off until another minimum is
reached at ¢ = 78° with amplitude 0.64 i.e. about 1/3 that over the
neighborhood of the slot center. As ¢ increases further the electric
field in the slot steadily increases to a second maximum at ¢ = 102°.
Here the amplitude is 1.16, about twice that at the preceeding mini-
mum. Continuing around the cylindrical slot the electric field
thereafter falls sharply until it vanishes at the slot edge. The
surface current density distribution is almost exactly the same as we
saw in Figure 28 for m = 2, 9, = 120°. The only essential difference
is an enhancement of the maximum at the rear of the strip and the
minimum which now occurs at ¢ = 153° instead of at v = 160° for nm=2.
Recall that the slot electric field distribution has been calculated
from the surface current density on the strip. We then conclude that
the former is obviously quite sensitive to the latter since only
relatively small variations in current distribution over the strip
can clearly generate significant changes in the electric field dis-
tribution. Compare the slot electric field distribution and surface
current density distribution in Figure 30 for m = 4 with the corre-

sponding quantities in Figure 29 for m = 3. The result of this
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comparison is to lend further emphasis to the conclusion just cited

)
H

that small changes in the surface current distribution can induce
quite remarkable variations in the electric field distribution. For -
the current on the strip when m = 4 we note that there is a maximum
at the strip center of amplitude 2.1. For m = 3 the maximum at the
strip center had an amplitude of about 1.8. For m = 4 there is a
minimum at ¢ = 143° with an amplitude of about 1.5. The correspond-
ing minimum is at ¢ = 153° for m = 3 with an amplitude of 1l.6.
Essentially the only difference in surface current on the strip for

N =3 and N = 4 consists merely of a further enhancement of the maxi-
mum and minimum. Similarly the m = 4 and M = 2 surface currents on
the strip differ, basically, in the same manner. As a consequence of
these relatively small changes in surface current on the strip as m
varies from 2 to 4 we find in the latter case a maximum for the
electric field at the slot center. The amplitude of this maximum
field at the slot center is 1.48. Moving around the cylindrical slot
from the center the field decreases steadily to a minimum of ampli-
tude 0.34 at v = 46°. It then continues to increase with increasing
¢ to another maximum of amplitude 1.32 at @ = 93° and thereafter
rapidly decreases to finally vanish at the slot edge at @ = 120°. We
emphasize that the relatively unremarkable change in current distri-
bution on the strip in going from n = 3 to n = 4 has induced very
markedly different electric field distributions. This strong sensi-

tivity exhibited in the slot electric field distribution to )
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relatively small changes in the strip current distribution is again
shown in Figure 31 for n = 5, ¢, = 120°. The surface current maximum
at the strip center for m = 5 has an amplitude of 2.2 which is not
too different than the corresponding amplitude of 2.1 for m = 4. The
strip current minimum for m = 5 is at ® = 138° and has amplitude of
1. For n = 4 this minimum occurred at 143° with the amplitude of
1.5. Again the only essential differences between surface current on
the conducting strip for n = 4 and n = 5 are a further sharpening of
the maximum and minimum and a shift in location of the minimum. This
latter behaviour is not an unanticipated result. Also the n =5
current distribution on the strip is quite similar to that for m = 3.
As a result of the surface current density distribution on the strip
for n = 5 we find the very different electric field distribution on
the cylindrical slot shown in Figure 31. A minimum of amplitude 0.68
occurs at the center of the slot. This is followed by a long range
of azimuth ¢ during‘which the electric field monotonically increases
to a maximum at ¢ = 56° with the amplitude of 1.68. This amplitude
is more than double that of the minimum at the slot center. Further
increase in ¢ shows a continuing decrease in electric field until a
second minimum appears at ¢ = 83° with amplitude 0.3. The deep mini-
mum in electric field has an amplitude less than half that of the
slot center. Proceeding further around the cylindrical slot we note
a rapid rise in electric field amplitude to a maximum with amplitude .
1.64 at ®» = 105°. The second maximum has an amplitude almost equal
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to that at the first maximum. This is then followed by rapid de-
crease in the electric field amplitude to zero at ® = 120° i.e. at
the slot edge. All of this remarkable variation in the slot electric
field with relatively mild variation in the surface current density
distribution over the strip is rather subtly concealed in the
character of the back-scattering cross-section for the strip when
considered as a function of the ratio of circumference to wavelength
i.e. n. Figure 32 exhibits this b.s.c.s. as a function of n. What
we find is not surprising. For small n we have the usual Rayleigh
region behaviour. For larger N we note only one turning point occurs
over the range of n we considered. Essentially we are still witness-
ing the transition that should occur as the slot widens further. The
slot-less cylinder resonance frequencies have become considerably
less reliable as resonances for the large slot situation. Continuous
shifting of resonances from those for ¥, = 0, i.e. no slot and
further broadening of the lines of the spectrum with increasing slot
width result in our problem for ®, = 120° in the occurrence of only
one broad line in the b.s.c.s. and a resonance that lies somewhere
just beyond n = 5,

7. The 9o = 150° Slot Characteristics (60° Cylindrical Ribbon)

As the final slotted cylinder, or cylindrical strip, case we
calculated the surface current density on a conducting strip that
subtends a total angle of 60° at the axis and the slot electric field
over the cylindrical slot surface that subtends a half angle ®, = 150°

121



NSWC/WOL/TR 75-39

at the axis. In this case we approximated the conducting cylindrical
strip by 80 substrips each carrying its own constant uniform current
density. This means the ratio of the angle each such zone subtends

at the axis to the half slot angle is -

bp _ T-ST/6 L _ L. _ o5
v, _ 5M/6 X 40 ~ 200 _ °

The second characteristic size parameter for this case, namely the
ratio of the arclength of the zones to the smallest wavelength con-

sidered, is

a _ b0 _ o, 1 _ 1
x - Moamr T2 X 3g T 9e~ 001 ‘
H

Noting that each approximating subdivision on the conducting strip is
about one one-hundredth of the incident wavelength we should expect
the numerical method of calculation to yield very accurate results.
These results for the surface current density over the conducting
cylindrical strip and the electric field distribution around the
cylindrical slot are shown in Figures 33 through 37 for n =1,2,3,4
and 5 respectively. Consider the current density aé displayed in
Figures 33, 34 and 35. In those cases i.e. form =1, 2 and n = 3
there is a minimum at the strip center. The amplitudes for the
current densities at ¢ = T are respectively 1.4, 1.0 and 1.2. Moving

away from the strip center in each ease the current on the strip }
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gradually increases but at successively slower rates as m increases
from 1 through 2 ton = 3. In the last of the three cases under
discussion the surface current is nearly constant for about 1/3 of
the way from the center to the edge. 1In all three situations the
current increases very rapidly from about 8° away from the edge.
Once again we observe the very sensitive dependence of the electric
field distribution on the current distribution around the cylindrical
conducting strip. This surface current variation as m goes from 1 to
3 hardly exhibits any remarkable change in behaviour. Actually the
behaviour is pretty much that shown for the m = 1 and n = 2 situa-
tions for ®, = 120°. The electric field distributions, on the other
hand, show clearly and quite obviously some very fascinating varia-
tion in behaviour as m changes. Figure 33 for 1 = 1 shows a minimum
for the electric field at the slot center with an amplitude of about
1.34 and then an ensuing very slow rate of increase to a maximum at
63° with amplitude of about 1.46. This is only an increase of about
10% over about half the way from the slot center to the slot edge.
Beyond this maximum the electric field falls off at an increasing
rate to vanish at the strip edge. This electric field distribution
is very roughly similar to that shown in Figure 22 for m = 2 and
9o = 90°. In Figure 34 we note a maximum in the electric field at

the slot center with amplitude of 0.92 followed by a minimum at

¢ = 52° with amplitude of 0.54 and then another maximum at ©® = 109°

with the larger amplitude of 1.5. Thereafter for about the remaining
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1/3 of the range of » from center to edge the electric field de-
creases with growing rapidity all the way to the strip edge where it
vanishes. This electric field behaviour is similar to that for

n =4, 9o = 120° of Figure 30, and roughly that of n = 4, ¥ = §0° of
Figure 24, and for n = 5, 9, = 45° of Figure 14. It should be ﬁoted
that the current distribution in all of these other situations is of
significantly varying character. For m = 3 and ®, = 150° the
electric field again displays a minimum at the center of the slot
where the amplitude is 1.4. The field then increases to a maximum of
amplitude 1.5 at ® = 52° (note for m = 2 this is the location of a
minimum in the electric field distribution). Further progress away
from the slot center results in a decreasing electric field until a
minimum of amplitude 0.54 appears at ¢ = 91°, Proceeding further
around the cylinder the field rises more rapidly to a second maximum
at @ = 124° with amplitude 1.48. Continuing the electric field falls
off ever more rapidly and finally vanishes at the edge of the con-
ducting strip. Although the current distributions are clearly éuite
different the electric field behaviour is again roughly similar to
that for n = 5, ¥, = 120° as shown in Figure 31. The surface current
density for m = 4, @, = 150° exhibits a maximum of amplitude 1.6 at
the strip center and then a barely recognizable minimum at about

¢ = 172° of very nearly the same amplitude. This can be seen in
Figure 36. With the appearance of this minimum we find the slot

electric field distribution it generates has three clearly defined
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maxima from ¢ = 0 to ¢ = 150°, These occur at ® = 0 with amplitude
1.55, ¢ = 82° with amplitude 1.44 and ¢ = 132° with amplitude 1.4.
Minima in the electric field occur between these maxima. These are
at ¢ = 53° (note this is the location of a maximum in the slot .
electric field distribution for m = 3, cf. Figure 35) with an ampli-

tude of 0.46, and at ¢ = 107° with amplitude of 0.62. The only other

case we have considered that exhibited an electric field distribution

even remotely resembling the one presently under discussion is shown

in Figure 25 for n = 5, 9o = 90°, Again the corresponding current
distributions over the conductor are quite different., 1In Figure 37

we note that for m = 5 the surface current density on the strip

differs from that for the lower values of M merely by a slightly more
enhanced behaviour near the maximum at the strip center and near the

minimum at © = 164°, The resulting slot electric field distribution
now shows two additional turning points. For m = 5 there are maxima
at the slot center with amplitude 0.29, at ® = 53°, (note this is a
minimum for n = 4 and a maximum for m = 3) amplitude 1.54 and at

¢ = 98° with amplitude of 1.30 and finally at ¢ = 135° with the ampli-

tude 1.32 (this almost coincides with the third maximum for n = 4).
Between these maxima lie minima at ¢ = 8° amplitude 0.28, at ¢ = 78°
(nearly coincident with the maxima for m = 4) with an amplitude of
0.59, and at ¢ = 116° where the amplitude is 0.74.

The back-scattering cross-section for the 9o = 150° slot (or

conducting cylindrical strip of 60°) is shown in Figure 38 as a
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function of n. Now the resonances for the cylindrical system occur
well beyond n = 5, The b.s.c.s. more appropriately is now evolving

towards that for an infinite flat strip. This latter quantity was

calculated by Morse and Rubenstein33 using the limiting form of -
solution for an elliptic cylinder as it shrinks in thickness. One

glaring observation can be made after viewing Figure 38 and thinking

back over the above discussion. This is that the far field behaviour
displayed in the back-scattering cross-section thoroughly masks,

almost misleadingly, the very rich and fascinating variation in

behaviour of the near fields.

33, P, M, Morse, P. J. Rubenstein, "The Diffraction of Waves by
Ribbons and by Slits", Phys. Rev. 54, 895 (1938) )
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IX. EFFECTS OF INTERIOR RESONANCES ON SCATTERING BEHAVIOUR

1. Constraints on The Aperture Electric Field
The electric field in the interior of the slotted cylinder, i.e.

for p<a, was given in eq. (8) as

2 (p,p) =

A  cosmy
o g () "

where the expansion coefficient is that given by eqg. (16) namely

®o
A = Eﬁ- j dop E(p) cosmyp
—Po

It is a physical fact that the electric field in the interior must be
finite at all frequencies for any value of slot angle ®,. Conse-
quently we must have some requirements that constrain the electric
field over the slot .at frequencies for the incident radiation that
coincide with internal resonances. These frequencies in the present
problem are defined by the roots of the Bessel functions Jm(n).
Denoting the n-th root of the m-~th order Bessel function by Mo We

have as the internal resonances frequencies defined by n = nmn where
(95) Jm(n ) =0

Note that the frequencies associated with the "mn values are the only
ones which can be sustained in a TM mode of a circular waveguide,
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We conclude then that the coefficient Am must approach zero as n

approaches Mo in such a manner that the quantity

(96) lim [Am/Jm(ﬂ)]

N

remains finite and well-behaved. Several requirements on the
electric field in the opening are compatible with this essential con-

dition. The ways in which Am can vanish at n = nmn are as follows

I. Re [€(p)] =0 and 1Im [C(p)] =0
)
(97) II. Re [(E(@)] =0 and de' Im (8(p’)] cosmp’ =0

[¢]

Po

III. dp’ Re [8(p')]cosmp’ =0 and Im [E(p)] =0

O Gy

Po ®o
IV. j dp’ Re [(€(p’)] cosmp’ = 0 and S dp’ Im(E(p’)Jcosmp ‘=0
o

o]
where Re[ ] and Im[ ] as usual indicate respectively the real and
imaginary parts of the quantity [ ]. The constraints I. through IV.
as listed in eq. (97) on the slot electric field are essentially the
only ones compatible with the condition that Am vanishes at n = nmn'
Two limiting forms for the slot electric field can be utilized

to infer a relationship between the size of the opening, or slot, and

the particular requirement which holds for the electric field in that
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opening at a resonant frequency. To begin with the limiting case of

no opening implies

(98) lim & (p) —=0
Po—0

in such a way that we must have

(99) lim Re [&(p)]—0 and lim Im [(p)]—=0
¥o—0 ®o—0
™Mn "mn

From this we deduce that constraint relation I. of Eq. (97)
should be invoked at an internal resonance frequency whenever the
slot is a narrow slot, i.e. %o is small. This certainly is true for
the lower order modes. The second limiting situation is that of no

conductor, which implies

(100)  lim e(®)—=E, (a,p) = B, e ' oo"
o =T
and in turn
Do
lim Sdcp' e(’) cosmp’ —=TE_ (-i)™ J ()
o T o "

or equivalently

135




NSWC/WOL/TR 75-39

®o
(101) lim S dp’ Re [(p’)] cosmp’'—>0
Qo T o
nen__

and simultaneously

Do
(102) lim do’ Im [€(p’)] cosmp’'—>0

P 3
~Mn

Our conclusion from this limiting situation is that constraint
relation IV of eq. (97) should be invoked for the slot electric field
at internal resonance whenever we have a very narrow cylindrical
strip concave towards the incident radiation. This certainly holds
for the lower order modes.

We pause to emphasize that the particular resonant frequency
may also influence which requirement in eq. (97) applies to a partic-
ular aperture since the associated wavelength can be very small, com-
parable to, or much larger than the distance between the slot edges.

Morse and Feshbach6 have considered a narrowly slotted cylinder
where the wavelength of the incident radiation was assumed to be
large compared to the distance between the slot edges. The wave-
length was not, however, assumed to be long compared to the cylinder

diameter. In the course of their analysis they state that the

6. P. M. Morse and H. Feshbach, "Methods of Theoretical Physics",
Part II, 1387-1398 McGraw-Hill, New York 1953
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electric field in the slot is required to vanish at the TM mode
eigenfrequencies. This results in complete absence of any evidence
of the existence of the narrow slot outside of the cylinder at the
corresponding internal TM mode resonances. Their analysis becomes
slightly less valid as the internal modes of high order are con-
sidered. Nevertheless for the regime they considered constraint con-
dition I. of eq. (97) was invoked by them. This leads to having all
of the expansion coefficients for the scattered field, due to the
presence of the opening, vanishing at any internal TM mode. Physi-
cally, of course, it is not likely that the very high order TM modes
will be excited with appreciably significant amplitudes. For the
range a/A not too large they have probably a reasonably good approxi-
mation. It should be noted that thus far in the literature the
existence of only constraint I. seems to have been Jdiscussed or
acknowledged. Now the remaining constraint conditions i.e., II, III

and IV of eq. (97) are apparently entirely new ones for the slot

electric field. Each of these, it is important to point out, merely
require a single one of the set of expansion coefficients to vanish
at any given internal resonance frequency. It then follows immedi-
ately from this that constraint conditions II, III and IV allow for
the existence of a non-zero scattered field due to the presence of a
slot at the internal TM mode frequencies. We repeat for emphasis
constraint conditions II, III and IV of eqg. (97) do not appear to

have been known in the literature prior to this investigation.
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2. The Interior Electric Field In Terms of The Surface Current
The electric field in the interior of the slotted cylinder, i.e.
for p<a, can be expressed in terms of the surface current density.
This permits calculation of the interior electric field without
explicit concern over the interior TM mode eigenfrequencies. To
obtain this formulation of the interior electric field we utilize

eq. (27) for the expansion coefficients and then rewrite it

rearranged as follows

(1)

m

(103) A =E€ (-1)" g () -B_ I (n) H' ()

Substitution of this into the defining series for the interior

electric field, i.e. eq. (8), gives

® ®
(104) E(o,0) = E mZo e (-0™ 5_(kp) cosntp—mZoBme(kp)HIf: Xxa) cosmy
The first summation in eq. (104) is merely that for the incident
electric field. Then substituting from eq. (30) for the Bm coeffi~
cients we obtain for the interior electric field
2M—p,
(205) £ (p,p) = B, e TKPCOSY _ (%)E:-L ap’ K(®’) .

z o

N (2) ¢
. mZ;Em Jm(kp) H (ka) cosm(ep ‘~p)
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With the help of the following identity34

- (106) Z:Eme(kp)Hél)(ka) cosm (¢ ‘=p) -'Hél){k Jpa+aa—2090cos(w'*$)}
m=o

for p<a
we can rewrite eq. (105) in the more compact form

2T —pg
(107) E:)(p,cp) = g, e LKPCOS® -(%)J%:- E! o’ H(p’) .
(o]

1 3
Hé ){k JpE+a®-2pa cos(wdm')f for p<a

This latter equation reduces to the defining equation for the
sur face current, namely eq. (34), when the azimuthal variable ¢ falls
in the range @o=p<2T—p, and simultaneously p=a. The expression for
the interior electric field in the form displayed in eq. (107) is
more readily interpreted physically. This is due to the fact that
the internal field is represented as a linear superposition of the
incident field and a field explicitly due to the total induced
current density on the conducting wall of the slotted cylinder.
Summing up then eq. (107) gives the internal electric field in terms

- of the total surface current density on the conducting portion of the

34. I. S. Gradshteyn, I. W. Ryzhik, "Tables of Integrals, Series and
Products", eq. 2, Section 8.531 p 979, Academic Press, N. Y.
1965
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slotted cylinder. We recall at this point that the surface current
density is the basic quantity we calculate via the method-of-moments.
Once this gquantity is available we can determine all other physical
quantities of interest such as the internal electric field as shown
in eq. (107).

3. Consistency of the Aperture Field Constraint Conditions With

Numerical Results

The constraint conditions on the aperture electric field distri-
bution at internal resonances as given in eq. (97) can be corrobo-
rated by numerical calculation of the electric field in the slot at
values of m over the range we investigated: 0.5<n<5. This range of
circumference to wavelength ratio includes two Bessel function zeros
which correspond to the two lowest circular waveguide TM modes.

These are, to three decimals,

(108) n 2.405

ol
= 3.832

3
|

11

The roots of the Bessel functions are extensively tabulated and
are readily available in many references e.g. the Jahnke-Emde

tables35 or the tables of Abramowitz and Stegun36. We have

35, E. Jahnke, F.'Emde, "Tables of Functions", Chap. VIII, Dover
Publications, New York, N, Y. 1945

36. M. Abramowitz, I. A. Stegun, "Handbook of Mathematical Functions" .
Table 9.5, U.S. Dept. of Commerce, National Bureau of Standards,
Applied Mathematics Series-55, 3rd Printing 1965, U. S. Govern-
ment Printing Office, Washington, D. C. )
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calculated the real and the. imaginary parts of the electric field in
the slot at each of the values given in eqg. (108) for all the values
of 9o in part VIII of this report. The results for all but the

Po = 45° case are included in the following discussion. In Figure 39
we exhibit the wavelength dependence of the electric field at the
center of the slot for the , = 30° cylinder. As we noted in Figures

4 through 8 the electric field in the aperture displays maximum

amplitude at ¢ = 0, i.e. at the center of the slot over the range
0.5sn<5 for the 9, = 30° case. Now examination of Figure 39 reveals
that the electric field in the opening appears to approach zero as m

approaches n and n Figures 40 and 41 on the other hand show

0l 11 °

the distribution of the real and imaginary parts of the electric

field over the aperture for the 9, = 30° case for n = 2.405~n01 and

M = 3.832~M respectively. We recall that the slot electric field

11
distribution was calculated from a numerical approximation for the
surface current density distribution and in addition values of m only
ol and nll were .used in the calculation whose

results are displayed in Figures 40 and 41. All things considered

closely approximating m

then we conclude that constraint requirement I of eq. (97) is the

appropriate one at n_.., and 7 for the slotted cylinder with 9, = 30°.

01l 11 .
This conclusion is further confirmed by the fact that the back-
scattering cross-section for the ¢, = 30° case is nearly identical to
the back-scattering cross-section for the 9, = 0° (or no slot) case

at both mMg3 and mj; . This can be seen by comparing the b.s.c.s. in
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( Figure 9 for ¢, = 30° with interpolated values from Table 1 for the
b.s.c.s. when ¢, = 0°. Thus p, = 30° appears to be still exhibiting
further narrow slot characteristics for 0.5<sn<5.

Figures 42 and 43 give respectively the distributions over the
®o = 60° slot of the real and imaginary parts of the electric field

for n = n and n = Comparison of the back-scattering cross-

0l M1 -

sections at n =n and ”11 in Figure 20 for ¢, = 60° are far from

0l

identical with the b.s.c.s. at n and ”11 for the o = 0 cylinder.

0l
This clearly indicates that the ¢, = 60° case is, as should be
expected, very poorly described by the narrow slot approximation.

This inadequacy of the narrow slot approximation is becoming more
pronounced. It has been further confirmed by considering the fre-
guencies corresponding to the very sharply defined two lowest internal

TM circular waveguide modes (i.e. for nol and n.,). The presence of

11
the slot of half angle 60° has physically modified these eigenvalues
for the closed cylinder so that they then correspond to broader lines
centered at slightly shifted frequencies differing from the precise

and n

values of 7 This phenomenon of evolution of line broad-

0l 11 °

ening and shifting of the centers of these lines is already discern-
ible for the 9, = 45° case of the slotted cylinder. This has been

. alluded to in section VIII for both 9, = 45° and v, = 60° and again
must be éointed out in this section where the resonance frequencies

are being considered. For the ®, = 45° case this can be seen by
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inspecting Figures 9 and 20 which respectively permit comparison of
the 9o = 30° and 9, = 45° b.s.c.s. and the 9, = 60° and 9, = 45°
b.s.c.s. We have not included the distribution of the real and imag-
inary parts of the electric field over the slot for v, = 45° and
n = "Ng1 and UIP The objectives of this chapter are in no way
injured by this omission. Inspection of Figure 42 shows that for
n = “01 constraint requirement II of eq. (97) is most likely the
applicable requirement on the slot electric field to maintain the
interior electric field physically a realizable one. Clearly con-
straint requirement I completely fails to apply for this situation.
Studying Figure 43 for the n = “11 resonance frequency we see clearly
that this corresponds to the last constraint requirement of eq. (97).
Constraint I definitely does not apply now. This result can be made
much more plausible by realizing that Figure 43 represents a situa-
tion where the wavelength is shorter for the same size opening than
for the results depicted in Figure 42. 1In effect a larger opening is
presented to the incident radiation. Roughly speaking then the
scattering situation has moved a bit closer to the limiting situation
described above where consﬁraing requirement IV holds. At the lower

mode i.e. N we probably are somewhat between the two extreme cases

0l
at which constraints I and IV apply. The 9, = 30° slotted cylinder

case, we pointed out just above, is behaving pretty much like the
¥ = 0° case. We expect for 9, = 30° further departure from this
situation at higher modes which correspond to effectively larger
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openings in the cylinder as the wavelength decreases.

At the frequencies corresponding to the two lowest TM circular
cylindrical waveguide modes we f£ind that constraint requirement IV of
eqg. (97) holds for the real and imaginary parts of the electric field
over the slot when the half slot-angle is 9, = 90°. This is immedi-

ately evident for nn = n as shown in Figure 44. For n = m the

01 11
results as shown in Figure 45 do not at a first cursory glance seem
to display this property. In fact it would superficially appear that
constraint requirement II just might apply to the aperture electric
field distribution. It should be borne in mind though that ¢, = 90°
means we are considering a half-cylindrical concave mirror. This is
gquite far removed from a narrow slot situation. Indeed if the real
part of the electric field is weighted by the multiplying factor
cosgp we can easily enough observe, using Figure 45, that for the
range over which the real part of the aperture field is negative the
weighting function cosp only weakly modifies the amplitude of the
field. Meanwhile this weighting function much more markedly damps
the amplitude of the field over the range of ¢ for which the real
part of the aperture field is positive. The net result is that the

real part times the cosine integrates to zero for n and

=
%o = 90°, hence constraint requirement IV is the actual condition
that holds. Most probably this continues to hold for the higher

modes of the complete circular waveguide. Remember that by satisfy-

ing eg. (97) over the aperture results in a finite or well behaved
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electric field in the interior of the slotted cylinder which is a 3
fundamental physical requirement at the values of m corresponding to
the TM eigenmodes of the circular cylindrical waveguide without a
slot.

The next case to consider is that for the half slot angle
9o = 120°, We recall that this corresponds to a concave cylindrical
strip of central angle 120° i.e. one third the original cylinder with
¥, = 0°. As expected this in no way is approximated by a narrow
slotted cylinder. That this is so is confirmed by inspection of
Figure 46 for n = ”01 and Figure 47 for n = ”11 which clearly indi-
cates that the distributions of the real and of the imaginary parts

of the slot electric field do not satisfy constraint requirement I of

v’

eq. (97) at the waveguide resonances. Note the case for 9, = 120°

and n =1 as represented by Figure 46. Once again this presents

01
only a superficial indication that constraint condition III, this

time, may hold. However, a more closer scrutiny of the area under

the curve of the distribution of the imaginary part of the slot

electric field reveals that the proper condition holding in this case

is once again constraint réquirement IV of eqg. (97). Similarly if

one undertakes an approximately careful piecewise examination of the

effect of the weighting function cosyp for the real and imaginary -
parts of the slot electric field as shown in Figure 47 for the

n = “11 case it results in the conclusion that constraint requirement

IV also holds here. This is the case even though it may not be
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immediately evident because of the oscillatory behaviour of the real
and imaginary parts of the aperture electric field distribution.

The last case studied and reported on in this paper is the
¥ = 150° slotted cylinder. This is, of course, the cylindrical
ribbon which subtends an angle of 60° at the cylinder axis. Again it
is crystal clear that constraint requirement I of eq. (97) does not
enter into this situation. Now only a narrow strip consisting of
one-sixth the original cylinder concave towards the radiation is the
target. This is decidely not a case where the narrow slot theory
applies. Figure 48 for the distributions of the real and imaginary
parts of the electric field at the lowest TM eigenmode of the cylin-
drical waveguide shows that constraint requirement IV holds for
¥ = 150°. Obviously we are far along towards the limiting situation
of no cylinder. This limit we recall corresponds to condition 1IV.

It is also clear from Figure 48 and Figure 38, m = n no longer rep-

01
resents a resonance for @, = 150°. In spite of the oscillatory
behaviour exhibited in Figure 49 for the distribution of the real and
imaginary parts of the electric field over the aperture in the

®o = 150° case it can still easily enough be demonstrated that at

M =Ty, » upon introducing the weighting function cos®, that con-
straint condition IV applies. This is by now of course not at all
surprising. Again we note clearly by simple inspection of Figures 38

and 49 that n = n is no longer a real resonance when the cylinder

11

is cut back to a 60° strip.
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We next briefly summarize the results of this chapter. The
requirements that were derived for the electric field in the opening
i.e. eg. (97) have been substantiated by numerical results we obtain-
ed via the method-of-moments. We have seen that constraint condition
I applies for the lower order modes when the half slot angle is
®o = 30°. A case where constraint condition II applies occurred for
the cylinder with half-slot angle 9w, = 60°. All the remaining cases
explicitly considered and included in this report corresponded to
constraint requirement IV. It is probably the situation that con-
straint conditions II and III hold for the cylindrical waveguide
resonances when the slot angle falls in the range 30°<p,<60° for the

lower lying modes in the closed cylinder interior spectrum, \

158



NSWC/WOL/TR 75-39

X. FURTHER CONSIDERATION OF THE ¢, = 30° SLOT - COMPARISON OF THREE
( METHODS OF SOLUTION

. We begin this section by first developing the Morse and
Feshbach6 form of solution for the slot electric field distribution.
Morse and Rubenstein_33 solved, exactly, the problem of a plane wave
normally incident on a slotted infinite plane of infinitesimal thick-
ness and of perfect conductivity. When the incident radiation is
polarized parallel to the slot the electric field distribution in the
slot, for wavelengths that are large compared to the slot width, can

be shown to have the form
d 2
€ (4) xfw 1l - —)

where d is the distance from the symmetry axis of the slot to the
field point in the slot and D is the half width of the slot. This
result can be approximately carried over to a slotted cylinder of

radius a and half slot angle ®, by the following substitutions

n

d = ap

R

D aPg

where ¢, has been assumed to be very small. Under this transforma-

tion the electric field distribution in the aperture of an axially

6. P; Mj-ﬁorée and H., Feshbach, "Methods of Theoretical Physics",
Part II, 1387-1398 McGraw-Hill, New York 1953

33. P. M, Morse and P, J. Rubenstein, "The Diffraction of Waves by
‘ Ribbons and by Slits", Phys. Rev. 54, 895 (1938)
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slotted cylinder for a very narrow slot is given approximately by

¥

This latter form is the slot electric field distribution assumed by

€lp) ,=

Ao

Morse and Feshbache. In Tables 2 and 3 we show respectively the slot
field distributions for a slot of ¢, = 6° obtained using the method-
of-moments and the results obtained by Morse and Feshbach. These
have both been normalized at the slot center. Comparing these two
sets of results we note good agreement exists between the two distri-
butions for the wavelengths considered. Two points should be noted,
first we are not considering "resonance" situations and second as the
slot edges are approached differences between the two distributions
appear and increase in magnitude although they are not very large.
Note that as the wavelength decreases this deterioration in agreement
becomes more pronounced.

Now let us compare the results obtained for the v, = 30° slot
electric field distribution by the method-of-moments to the corres-
ponding distribution predicted by Morse and Feshbach using the narrow
slot approximation. The two distributions are shown in Tables 4 and
5. These slot field distributions have been normalized to the values

at the slot center. Observation of these tables shows that the two

6. P. M. Morse ahdiH. Feshbach, "Methods of Theoretical Physics"”,
Part II, 1387-1398 McGraw-Hill, New York, 1953
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Table 2, Normalized Distributions of the Electric Field in a Slot
Where ¢, = 6° from the Method-of-Moments

- n=0.5 1.0 2.0 3.0 4.0 5.0
o =0° 1.000 1.000 1.000 1.000 1.000 1.000
1° 0.985 0.988 0.987 0.988 0.987 0.987
2° 0.950 0.950 0.949 0.949 0.948 0.947
3° 0.883 0.883 0.882 0.881 0.880 0.878
4° 0.781 0.780 0.780 0.778 0.776 0.773
5° 0.629 0.628 0.627 0.625 0.623 0.619

Table 3. Normalized Distribution of the Electric Field in a Slot
Where v, = 6° from the Work of Morse and Feshbach

N1-(p/6°)2
® = 0° 1.000
1° 0.986
2° 0.943
3° 0.866
4° 0.745
5° 0.553
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Table 4. Normalized Electric Field Distribution In a Slot For
%o = 30° By The Method-of-Moments

n = 0.5 1.0 2.0 3.0 4.0 5.0 -
® =0° 1.000 1.000 1.000 1.000 1.000 1.000
5° 0.986 0.985 0.984 1.982 0.980 0.967
10° 0.942 0.940 0.935 0.928 0.921 0.873
15° 0.864 0.861 0.852 0.836 0.822 0.741
20° 0.745 0.740 0.726 0.702 0.680 0.593
25° 0.562 0.556 0.539 0.511 0.485 0.431

Table 5. Normalized Electric Field Distribution In a Slot For
®o = 30° from Morse and Feshbach

J1 - (9/30°)2
p = 0° 1.000

5° 0.986
10° 0.943
15° 0.866
20° 0.745

25° 0.553
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distributions are nearly identical over the entire slot for m = 0.5
and 1 = 1.0. However as m increases the disagreement between the two
distributions steadily increases. This is not unexpected. Thus for
n = 4 say the arclength of the slot is approximately 2)\/3 which is
hardly a narrow slot.

In Figure 50 we simultaneously display the slot electric field
distributions for 9, = 30° and n = 10.472 obtained by Morse and
Feshbach, by Barthlo, and by the method-of-moments for L = 200, All
three are normalized to the value at the center of the slot. The
method-of-moments prediction for the distribution of the slot
electric field is in very good agreement near the slot edges with the
Morse and Feshbach slot field distribution. Over the larger range of
the slot these two field distributions differ considerably. On the
other hand we observe that the slot field distribution of Barth is in
reasonable agreement with the Morse and Feshbach theory over most of
the slot. Near the slot edges this agreement seriously deteriorates.

All these discrepancies displayed in Figure 50 can be readily
understood if we take into consideration several factors. To begin

with the wavelength that corresponds to m = 10.472 is roughly

A~ % a

10. M., J. Barth, "Interior Fields of a Slotted Cylinder Irradiated
with an Electromagnetic Pulse"”, Tech. Rep. No. AFSWC-TR-69-9,
Air Force Special Weapons Center, Kirtland Air Force Base.

New Mexico, August 1969
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and the slot width is
2a sin 30° = a

so that the wavelength is comparable to the width of the slot. Then
the Morse and Feshbach distribution, which is an approximation hold-
ing for a wavelength that is large compared to the slot width, should
not be capable of reliably describing the electric field over most of
the slot region. Agreement at the slot center with the method-of-
moments is forced by the assumed normalization to the slot center.
The next point to be considered is the behaviour required for the
electric field near the slot edges. Near an edge the tangential
electric field must go as the squére root of the distance from the
field point to the slot edge. Close to the edge, then, the slot

field distribution at any wavelength behaves as

‘J;a sin (E;:E) e« 1l - (9—)
2 P—=Po Po

Near the slot edge the Morse and Feshbach distribution becomes

w6 - )

Thus very near the slot edges the Morse and Feshbach field distribu-

tion has the correct limiting form for any wavelength. This accounts
for the good agreement of the Morse and Feshbach results with the
method-of-moments result at n = 10.472. Barth's results also have

been forced into agreement with ours at the slot center by the method
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chosen for normalization of the field distribution. Over the re- ')
mainder of the slot but not close to the edge Barth's results are an
improvement over those of Morse and Feshbach since his formulation
essentially contains a somewhat larger number of adjustable param-
eters. However Barth's assumed form for the slot electric field
distribution fails utterly to satisfy another basic edge condition.
Jones37 has shown that the normal component of the magnetic field at
an edge possesses a singularity the order of which depends on the
curvature of the edge. Since this component of the magnetic field is
given by the derivative of the tangential electric field we can see
from Figure 50 that Barth's assumed slot electric field rather
unfortunately and unphysically has a derivative that vanishes at an
edge. Since this electric field does not have a vertical slope at
the edge the normal component of the magnetic field is not singular

at the edge. The Barth formulation is therefore fundamentally wrong.

37. D. S. Jones,i"The Theory of Electromagnetism”, pp 566-569,
Pergamon Press, New York 1964 )
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XI. THE CYLINDRICAL STRIP FOR ¢, = 174°
Another special case we investigated is that of the scattering
by a cylindrical strip, of radius a, concave toward the normally
incident axially polarized radiation. This strip corresponds to
®o = 174° or equivalently half of the strip subtends an angle of 6°
at the cylindrically axis. The method-of-moments applied to the
integral equation for the surface current density is ideally suited
for the situation of a narrow cylindrical strip. That is, a minimal
number of uniform current zones are required to approximate the narrow
strip and still achieve a desired degree of accuracy. This is clearly
evident upon inspection of Table 6 where the back-scattering cross-
section at different wavelengths are given for the narrow strip of
%o = 174° in two orders of approximation, namely L = 40 and L = 60.
Over the range of M from 0.5 to 5.0 the difference in the results
between the two orders of approximation ranges from .1% to .2%. This
indicates that a relatively small number of uniform current elements
would yield quite accurate results for the back-scattering cross-
sections.

Plotted in Figure 51 are the values of the b.s.c.s. for L = 60
taken from Table 6. Also in Figure 51 are plotted b.s.c.s. for a
flat or planar strip. These latter results were obtained using the

Rayleigh approximation for a flat ribbon. The Rayleigh approximation
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formula used is3
k23 3 Lk 4,48
(110) kcB 1 + 2 ) 2 + 1n® 2kd

where 24 is the width of the flat strip. Now the distance between

the edges 2W of the cylindrical ribbon of radius a is
(111) 2W = 2a sin (T—p,) = 2a sin (T/30) ~ 2Ma/30

We can see how good an approximation a flat strip makes to our cylin-
drical strip by substituting for d in eq. (110) the expression for
W given in eq. (111l). This gives the following approximate expres-

sion for the back-scattering cross-section

(112) Koy =M1+ %( ) ] /JL_ * In [%mz;so) If

The resulting close agreement of the cylindrical strip results with
the flat strip results is hardly a surprising outcome. This is a
direct consequence of the fact that the shortest wavelength consid-
ered for the incident radiation namely the m = 5.0 case is on the
order of ten times greater than the width of the strip. At these
long wavelengths the back-scattering properties should be nearly

indistinguishable between the flat planar strip of width 24 and a

38. G. T. Ruck, ed. "Radar Cross Section Handbook", Vol. 2. p 502,
Plenum Press, New York, N. Y. 1970
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Table 6. Numerical Values of Back-Scattering Cross-Section, B=kogp ,
. by the Method-of-Moments for ¢, = 174° i.e. The Cylindrical
Ribbon

B = koB
n L = 40 L = 60
0.5 0.5939 0.5945
1.0 0.8337 0.8346
1.5 1.0433 1.0446
2.0 1.2414 1.2431
2.5 1.4355 1.4376
3.0 1.6297 1.6322
| 3.5 1.8268 1.8299
4.0 2.0291 2.0328
4.5 2.2384 2.2428
5.0 2.4564 2.4615
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symmetrically positioned cylindrical strip whose projection on a
plane facing the incident radiation has width 2w = 24.

Figure 52 exhibits the results obtained for the surface current
distribution on the symmetrical positioned strip, concave to the
incident axially polarized plane wave electromagnetic radiation. We
show for the case 9, = 174° and m = 0.5 the results obtained from a
Rayleigh approximation as given in an earlier paper4 as well as those
we obtained by our method-of-moments calculation. To facilitate com-
parison both sets of results have been normalized to the magnitude of
the surface current at ¢ = T i.e. at the center of the "shadow"

region of the strips. The normalizing factors adopted are

(113) |k, (=M1, _ 5 = 10.49 H,

for the Rayleigh approximation, and
(114) |Kz (¢=n)|n=0.5 = 9.36 H,

for our theoretical determinations. As can be quickly and clearly
observed in Figure 52 the two distributions of the magnitudes of sur-
face current density over the cylindrical strip are for all practical
purposes identical except in the close-in neighborhood of the edges.

We demonstrated in a previous paper4 that the theoretical Rayleigh

4. J. N. Bombardt and L. F. Libelo (NAVSURFWPNCEN) "S.E.R.A.: IV
Slotted Cylinders and Cylindrical Strips in the Rayleigh Limit",
HDL-RT-1607, Harry Diamond Lab., Washington, DC, August 1972
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result for the surface current at the narrow cylindrical strip edges
exhibits the singular behaviour required for agreement with the phys-
ically established edge conditions. The Rayleigh approximation
actually only lags the rate of increase of the actual amplitude near
the edge by an amount less than that shown in Figure 52. Recall that
we have forced the two sets of results into agreement at the strip
center normalizing each set separately. The corresponding normaliza-
tion factors are given in egs. (113) and (l114). By inspecting these
we note that they differ by about 2% with the Rayleigh normalizing
factor being the larger. Consequently the Rayleigh curve will be
pulled down much more drastically as the edge is approached. At the
same time the relative effect away from the edge is hardly signifi-
cant. We thus have determined the surface current density over the
narrow strip and it is in good agreement with the asymptotic predic-
tions of the Rayleigh limit approximation. Although we have not ex-
plicitly included them the corresponding results for the distribution
of amplitude of surface current density at other wavelengths in the
range of 1.0<mM<5.0 were found for the same cylindrical ribbon. These
are not significantly different from the results shown for m = 0.5 in

Figure 52.
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XII. COMMENTS ON THE COMPUTER PROGRAM

1. The Main Program

A program which we have dubbed with the title STEPS has been
constructed. This program solves the silumtaneous system of alge-
braic equations collected together in eqg. (82). In this set of
equations the unknowns quantities to be solved for are the step-
function pulse amplitudes of the surface current density distribution
on the conduction portion of the cylinder. Once the surface current
density is computed the program then computes the electric field at
p = a over the cylindrical aperture. This is accomplished using
eq. (89). Finally in the same program the surface current density
results are then utilized to calculate the back-scattering cross- 3
section per unit length via eq. (92).

Complex function subroutines have been written for the known co-
efficients in eqg. (82), the set of simultaneous equations. These
known quantities are*' required in eq. (89), for calculating the aper-
ture electric field distribution, and in eq. (92) for evaluating the
back-scattering cross-section in the form B = koB. An existing IBM
subroutine for solving simultaneous linear equations was modified to
solve sets of simultaneous linear equations with complex coefficients.
Both an existing IBM subroutine for calculating n-th order Neumann
functions with real argument and a subroutine written for n-th order

Bessel functions of the first kind with real argument were used in
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the complex function subroutines just mentioned. We shall briefly
discuss these subroutines below.

STEPS proceeds generally as follows. The iﬁput data is read in.
A "DO" loop is set up for calculating the desired quantities at all
specified values of the circumference-to-wavelength ratio parameter n.
Next additional "DO" loops calculate and load the coefficient matrix
and right-hand side vector into the computer memory. Using appropri-
ate subroutines, the simultaneous system of algebraic equations is
solved and proceeding through another "DO" loop the azimuthal angle
and complex surface current density, amplitude and phase, are printed
out, Next cycling through another "DO" loop the electric field dis-
tribution is calculated at P = a over the aperture and the azimuthal
angle and the complex electric field, amplitude and phase, are then
printed out. Lastly the summation which gives B = kUB is calculated
and the printed output consists of the frequency parameter 7, B=k0B
itself and an error code for the IBM sﬁbroutine GELG (a Gaussian
elimination method). The program repeats the above procedure for
each value of m until the final value of M (for a given set of input
data) is attained. At this point the program is ready for a new set
of input data.

Our computer program STEPS requires the following data input:

i) PHIO = @,, a positive angle to be given in degrees and
should be.a positive integer if the electric field over the aperture
at p = a is to be computed,
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ii) L = an even (non-negative) integer which represents the
order of approximation of the calculation and is the number of
equally spaced points on the perfect conductor at which the surface
current density distribution over the cylinder is to be calculated, -

iii) BEGETA = the initial value of the circumference to wave-
length ratio, 71, at which the surface current density and aperture
electric field at p = a and at which the back-scattering cross-section
B = koB are to be computed,

iv) FINETA = the final value of the frequency parameter 1M at
which the desired quantities are to be calculated,

v) DETA = the increment for the frequency parameter ~ a posi-
tive non-zero integer NETA is first established such that the rela-
tion DETA * NETA = FINETA - BEGETA holds.

The amount of computer time required for a given set of input
data depends upon three factors:

i) the number of simultaneous algebraic equations that are to
be solved, namely L/2 for each value of 1,
ii) the value of v,, the half-slot angle, and

iii) the number of desired n values.

To illustrate the estimation of the computer time required con-
sider the choice of L = 100, which corresponds to a system of 50
simultaneous equations, and a half-slot angle 9, = 30°. It takes
about 75 seconds on a CDC 6400 computer to obtain the surface current
density distribution over the conductor;the electric field
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distribution over the cylindrical aperture and the value of the back-
scattering cross-section B = koB for a single value of nn. If instead
L = 80 is chosen, i.e. a system of 40 simultaneous equations, it
takes about 52 seconds per M value to calculate the desired gquan-
tities. If we again choose L = 100 and the half-slot angle ¢, = 60°
is selected it requires approximately 120 seconds for each value of 7
to calculate the desired back-scattering cross-section, surface
current distribution and aperture electric field distribution.

Naturally as the number of simultaneous algebraic equations to
be solved is increased the amount of computer memory required also
increases. When a system of 40 simultaneous equations are to be
solved the number of 60 bit words of computer memory required is
46,700 (octal). For a system of 100 such simultaneous equations to
be handled the number of 60 bit words of memory required increases to
65,000 (octal).

An option built into the main program permits the array of co-
efficients in the sets of simultaneous equations to be printed out if
they are explicitly desired for any reason.

We have decided not to explicitly include the actual computer
program in this report for reasons of economy. The program is avail-

able upon request from either author.

2. Subroutines and Function Subprograms

A subroutine we entitle DJSER calculates the Bessel functions of
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the first kind, of integral order and with real argument from the

series expansion

(_l)m(x/2)2m+n

m! (m+n) !

Jn(X) m=o
The necessary factorials are computed by means of another simple

function subprogram we call DFAC. The order n can be zero or a posi-

tive integer but the real argument must be greater than zero. 2n

error code is returned in the calculation if n is less than zero and

another if the argument x is not greater than zero. Termination of

the evaluation of the series occurs when the g-th term computed is

less than a prespecified tolerance, D, times the sum of the preceding }

g-1 terms. Upon termination the sum of the first g-terms is returned

as the value of the Bessel function.
Subroutine BESY taken from an IBM manual39 computes the Bessel

functions of the second kind with integral orders and real arguments

via the recurrence relation

Yn+1(x) = (2n/x) Yn(x) - Yn_l(x)

Values of ¥, and ¥, are first calculated, for a specific argu-

ment, from an appropriate and accurate approximation for large or for

39. "SYSTEM/360 Scientific Subroutine Package" (360A-CM~03X), Ver-
sion II, Programmers Manual, Publication H20~-0205-2, Inter- 3

national Business Machines Corp. 1967
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small arguments. Cycling through the recurrence relation then yields
Yn' The order is restricted to be zero or a positive integer but the
real argument must be greater than zero. Should the order n be less
than zero an error code is returned by the program. In the same
manner another error code will be returned if x is less than or equal
to zero.

Another subroutine from the IBM manual, ARRAY39, is used to con-
vert the doubly dimensioned array of coefficients into a singly
dimensioned vector. This vector is in the same location in memory as
the array. The IBM version of ARRAY was modified in order to convert
arrays with complex elements.

To solve the systems of simultaneous linear equations we used
GELG39 another subroutine from the IBM manual. Solution is effected
by means of Gauss elimination with complete pivoting. We can illus-
trate the method by considering the following simple system of

simultaneous equations:

a;1X; t* Q12X2 tT @QaXs = b
az1 Xy + azpXa t+ azaxXs = by
A31Xy + AapzXp + AzzXas = bs

The method systematically reduces this set of equations to the

"triangular” form

39. -“SYSTEM/360 Scientific Subroutine Package" (360A-CM-03X),
Version II, Programmers Manual, Publication H20-0205-2,
International Business Machines Corp. 1967
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Xy * 12Xy + CyaXs =4,
Xz + CpaXs = dp
X = da

Then starting at the bottom of this triangularized set we can compute
all the unknowns Xa, X2 and x; by working upward. Such a triangular
form can be generated by selecting the element in the original co-
efficient matrix with the largest absolute value. Let us assume akj
is this element. We designate it as the first pivot element. Then

compute the following multipliers for each value of the index i:

Mix = "2357%%5

Next multiply each element of the row containing the first pivot N
element (the k-th row in this case) by the appropriate multiplier. |
Then add the result to the i-th row for each value of i. This

process produces a new matrix in which the j-th column consists of

zeros and the pivot element. Reducing the array by eliminating the

j~th column and k~th row we generate another matrix whose rank is one

less than that of the original. Select the element with the largest

absolute value from this new matrix as the second pivot element and

repeat the above process reducing the matrix rank by one again. This

process is carried out N-1 times in succession if the original matrix

is of rank N. The triangularized matrix is generated by collecting

the discarded pivot rows. This in essence is the systematic pro-

cedure followed in order to solve the original system of simultaneous
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equations with complex coefficients. A complex function subprogram
called AREA evaluates either eq. (83) or eq. (87) depending on
whether or not 6& lies in the interval of integration. AREA is used
both to generate the coefficients in the systems of simultaneous
equations and calculate the aperture electric field distribution.
Finally another complex function subprogram called WEIGHT calculates
the gL(n) quantities expressed in eq. (91) which are required to
calculate the back-scattering cross-section.

The program including all subroutines and function subprograms
is available upon request. All the details just briefly commented
upon above are very readily understood by simply studying the
program itsélf.

The program STEPS exists and is known at the Defense Nuclear
Agency under the name DASC. This is an acronym for the title

"Diffraction by an Axially Slotted Cylinder".
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XIII. FINAL SUMMARY AND CONCLUSIONS

It is rather well-known that the radiation properties of slot
antennas on conducting cylinders have been studied extensively. 1In
fact so much work has been accomplished by so many workers investi-
gating the radiating antenna that it would be a severely difficult
task to properly credit them all. For this reason the authors wish
to extend their apologies to all those we have failed to give the
credit due them. We have merely cited several representative
references4o—46 and stand prepared to absorb the justly deserved
reactions of those we have omitted.

The subject of this investigation has been the study of the

scattering and diffraction of a linearly polarized plane electromag- ;

netic wave that is normally and symmetrically incident on an axially

40, S. Silver and W. K. Saunders, "The Radiation From A Transverse
Rectangular Slot In A Circular Cylinder", Jour. of Applied
Physics, 21, 745 (1950)

41, L., L, Bailin, "The Radiation Field Produced By A Slot In A Large
Circular Cylinder" IRE Transactions AP-3, 128 (1955)

42, J. R, Wait, "Radiation Characteristics of Axial Slots On A
Conducting Cylinder" Wireless Engineer pp 316-322 December 1955

43, J. R. Wait, "Electromagnetic Radiation From Cylindrical
Structures" pp 88-104, Pergamon Press, New York, N. Y. 1959

44. cC. A. Balanis, "Radiation From Slots On Cylindrical Bodies Using

Geometrical Theory of Diffraction and Creeping Wave Theory"
Doctoral Dissertation, Ohio State Uniwv., Columbus, Ohio 1969

45, J. R. Wéit, "Survey of Recent Literature on Slot Radiators", NBS
Report #5051, U.S. Dept. of Commerce, Washington, DC March 1957

46, R. W, P. King "Theory of Linear Antennas" Harvard University
Press, Cambridge, Massachusetts 1956 - )
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slotted cylinder or a cylindrical ribbon. At the start a straight-
forward separation of variables was carried out and upon application
thereafter of the appropriate boundary conditions we concocted a
formulation which led to the integral equation for the electric field
in the aperture of the cylinder. This formulation was also used.to
derive the integral equation for the surface current density over the
conducting portion of the cylinder. The integral equation for the
electric field in the slot was shown to give rise to a statement of
Ohm's Law in matrix form wherein an admittance matrix for the
aperture in the cylinder connected a known current vector to an un-
known voltage vector. Equivalently the integral equation for the
surface current density on the conducting portion of the cylinder
gave rise to a complementary statement of Ohm's Law wherein an imped-
ance matrix for the conductor coupled a known voltage vector to an
unknown current vector.

In an earlier report4 analytical features of the integral equa-
tion for the electric field distribution over the aperture in the
conducting cylinder were studied by deriving solutions for narrow
slots in small cylinders. Similarly in that report analytical
aspects of the surface current density integral equation on the con-

ductor were analyzed by obtaining solutions for narrow cylindrical

4. J. N. Bombardt and L. F, Libelo (NAVSURFWPNCEN) "S.E.R.A.:
IV. Slotted Cylinders and Cylindrical Strips in the Rayleigh
Limit", HDL-RT-1607, Harry Diamond Laboratories, Washington,
D. C., August 1972
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strips. Simplifications of the kernels of the integral operators
were the prime reasons which enabled us to derive these analytical
solutions. Unfortunately applications of these analytical methods to
the integral equations for wavelengths beyond the Rayleigh limit has
proved to be intractable thus far for analyzing the general slotted
cylinder or cylindrical ribbon.

The method-of-moments was introduced and the interrelationships
between this method and other classical techniques for solving inte-
gral equations were considered. We chose the integral equation for
the surface current distribution for numerical solution using the
method-of-moments technique. This choice was motivated by the fact

that the kernel in the integral equation is a closed form, computable

!
)

function at all wavelengths of interest. With the choice of step-
function pulses as the set of expansion functions for the surface
current and Dirac delta functions as the set of weighting or testing
functions, we applied the method-of-moments to the surface current
integral equation. This generated a system of simultaneous algebraic
equations with the amplitudes of the step functions as the unknown
quantities. Taking advantage of symmetry properties of the system
the number of these simultaneous equations were considerably reduced.
The simultaneous algebraic system of equations that results from
applying the method-of-moments can be equivalently thought of as a
matrix equation with a known coefficient matrix multiplying an un-

known vector and resulting in a known vector. The elements of this
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known coefficient matrix are integrals of the kernel which were eval-
uated analytically. A computer program was constructed to solve this
matrix equation. This program computes not only the surface cur?ent
distribution at a given wavelength but it also determines the elec-
tric field distribution over the aperture in the cylinder and in
addition the back-scattering cross-section per unit length for a
given ¥, or half-slot angle,

The computer program was subjected to a reliable check by com-
paring its results for back-scattering cross-section of a complete
cylinder over a spectrum of wavelengths with the corresponding known
exact results. Over that range of wavelengths the numerical results
6btained from the computer program were found to be in excellent
agreement with the known results. Numerical results were then géner-
ated from that computer program for a number of slotted cylinders and
we presented some of these in this report along with a discussion of
them for the specific cases v, = 30°, 45°, 60°. We did the same for
the half-cylindrical mirror, i.e. 9, = 90° and for the two cylindri-
cal ribbons corresponding to &, = 120° and 150°. These results dis-
played quite clearly the physical behaviour anticipated. The infi-
nitely sharp interior resonances for the closed circular waveguide
exhibit themselves in the back-scattering cross-section in the
presence of a relatively narrow slot. As the effective size of the
slot increases these resonances tend to correspond to broader and
broader lines whose centers shift more and more with ever increasing
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%o+ Equivalently we see in our results the evolution of the scatter-
ing system from a circular cylindrical one to that corresponding to a
flat planar strip at @, increases from 30° through intermediate
values to 150° and beyond. Upon examination of the aperture field
distributions and surface current density distributions we observe in
our results the stationary state resulting from a symmetrically inci-
dent axially polarized electromagnetic wave falling upon a slotted
cylinder. This it should be recalled is a fourier component, when
properly weighted, of an incident pulse irradiating the same cylinder.

The incident plane wave induces a surface current distribution, the

result of excited surface waves that propagate around the cylinder

undergoing reflection at the now present edges. As a result of these .)
induced surface waves we observe in the near field region a trans-

ition of behaviour in the electric field as seen in the aperture.

This goes from that almost exactly corresponding to the narrow slot
distribution through a very rich and interesting variety of distribu-

tions as the slot angle ¢, increases over the range studied and as n

changes over the range investigated. This remarkable behaviour for

the near electric field distribution accompanies a most unremarkable

variation in the surface current on the conductor of the same large

range of slot angle 9o, and of circumference to wavelength ratio n.

This fascinating near-field behaviour of the electric field distribu-

tion is almost completely masked in the back-scattering cross-section

results, i.e. in the far-field behaviour at ¢ = 0°.
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The series expansion of the interior electric field i.e. for

p<a led to a set of constraint requirements on the electric field
distribution over the slot in the cylinder at certain frequencies.
These frequencies are the eigenfrequencies or characteristic interior
resonance frequencies for the circular waveguide. In the problem
investigated in this paper they are the TM circular waveguide modes.
Four different possible requirements on the aperture electric fields
arise in a very straightforward and natural way from the physical
requirement that the electric field within the slotted cylinder must
remain finite at these TM mode resonance frequencies. For the
slotted cylinders, the half-cylindrical mirror and the cylindrical
strips considered, numerical results.for the aperture electric field
were given at each of the two lowest.TM mode frequencies for each
geometry. Discussion of the results.obtained for the distribution of
the real and imaginary parts of the electric field over the aperture
in the slotted cylinder resulted in clearcut confirmation of the
validity of the constraint conditions derived. Furthermore these
constraining relations were discussed and shown to hold for the
limiting cases of no slot in the conducting cylinder and no conduc-
ting cylinder. It is very likely that similar sets of constraining
requirements exist for other diffraction problems involving a conduc-
ting enclosure with an opening which permits the interior modes for

the closed conductor to couple to the exterior region.

The numerical technique discussed in earlier portions of this
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report was applied to the special case of a slotted cylinder where
¥ = 6°. As was mentioned back in the introduction this narrow slot

problem is of significant interest all by itself to require a sep-

arate report devoted solely to it. For this reason the corresponding y
results for this case shall appear in a subsequent paper in this

series. We did however include the numerically determined results

for the narrow concave cylindrical ribbon which subtends a total

angle of 12° (p, = 174°) at the cylinder axis. This particular

scattering problem provided an ideal situation for application of the
numerical technique. The results obtained for the back-scattering
cross-section and the surface current density over the narrow strip

at N = 0.5 were excellent. We have demonstrated that the numerical

method was successful in predicting with accuracy the gradual evolu-~

tion and transformation of the scattering characteristics from those

of the conducting cylinder with an axial slot to those of the flat

strip.

In conclusion we note that the results presented in this report
have filled an important gap. The problem of determining the results
characterizing the scattering of a plane symmetrically and normally
incident, linearly polarized monochromatic, electromagnetic wave by
an axially slotted conducting cylinder or cylindrical strip has been
solved, numerically. This solution has been generated in a range of
wavelength that prior to this time had proven to be an inaccessible
region namely that of the primary resonance region spanning that

188



NSWC/WOL/TR 75-39

portion of the frequencies from the Rayleigh limit to the limit of
geometrical optics. Clearly the techniques used in this paper to
generate the solution for the geometry chosen for investigation can
be quite readily extended to a whole host of other problems involving
apertures in otherwise closed conducting shields. Many such problems
have indeed been subjected to investigation and the results obtained
shall appear in forthcoming papers of the series. A considerable
amount of general fundamental physical information has been accumu-
lated and this will become evident in the contents of these papers as
they are published and then inspected and studied.

The solution for the infinite cylinder scattering problem with-
out a slot has been utilized rather widely as a practical approxima-
tion to similar but finite scattering geometries. 1In fact the number
of such approximate applications are legion. The breadth of the
spectrum of application of the conducting infinite cylindrical scat-
terer includes modelling of real aircraft, approximating ship masts
as well as other superstructure elements, construction of sensors,
and geophysical problems such as locating ore deposits. In turn the
solution of the present problem, that is the scattering by an infi-
nite cylinder with a full length axial slot, has already served as a
guide and as an approximation to the solution of problems involving

finite cylindrical geometries with apertures. Again a host of real

practical problems fall into this category. A number of papers to

follow in this series will be examples of this.
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