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1. INTRODUCTION

A very important set of problems in electromagnetic theory centers
on phenomena involving the generation and propagation of current waves
in a single long wire parallel to the earth. In practice, the concern
is with specific terminations and a specific set of excitation conditions,
via a series or shunt generator, or via an incident wave (which, in EMP
problems, is a broadband pulse). Since this is a very general and
difficult problem, this study is limited to a simple related case.

Assume that the wire is infinitely long and very thin (its diameter
is small compared with other linear dimensions in the problem). Simple
harmonic fields are considered that can propagate along this structure,
with no incident radiation. This has been done previously by Wait,l
Kikuchi,? dos Santos,® and Carson.” The main concern here lies in the
determination of the propagation constant and the attempts to define
transmission-line constants, such as the impedance and admittance per
unit length. Alsoc considered is an approach to the puzzling choice
between outgoing waves that increase exponentially in amplitude with
distance from the wire and incoming waves that decrease exponentially.

The fields of the wire above ground are determined in section 2
by matching boundary conditions for a perfectly conducting wire! and
for a wire of finite conductivity.? These boundary conditions lead to
an equation for the propagation constant I in terms of the freguency w.
Section 3 reviews the concepts of impedance and admittance for trans-
mission lines and decribes why they are not generally applicable to the
present problem. This is not in agreement with Wait! and Rikuchi.?
It is concluded, however, that Carson's work® is valid but limited to
low freguencies. Section 4 presents some limiting cases from Wait,!
which could be of interest for applications. Electric and magnetic Hertz
vectors are discussed in appendix A. A derivation of the Green function
for the two-dimensional Helmholtz operator is given in appendix B, with
special emphasis on the behavior of incoming and outgoing waves far from
the source; some of the problems associated with the definition of
potential differences and currents for high-frequency fields are discussed
in appendix C.

Rationalized MKSA units are used and the time-dependence of harmonic
fields is chosen to be exp(iwt).

'7. R. Wait, Radio Science 7, 675 (1972).

2g. Kikuchi, Electrotech. J. Japan 2, 73 (1956).
34. F. dos Santos, Proc. IEEE 119, 1103 (1972).
7. R. Carson, Bell Sys. Tech. J. 5, 539 (1926).



2. FIELDS OF A WIRE ABOVE GROUND

2.1 Fields of a Line Current

First, the fields generated by a current in an infinite wire of
radius a located at a height h above a semi-infinite ground with a
plane boundary have to be determined. The coordinate system was
chosen here in such a way that the boundary is the yz-plane and the
wire axis--running in the z-direction~--is located at the coordinates
x=h, v = 0.

Considering only waves propagating in the z-direction, the
symmetry of the configuration is such that the z-dependence of all
fields can be separated as a factor exp(-I'z), where

' = 1B L

is a complex constant. If the positive z-axis is chosen in the
direction of the wave propagation, the factor exp{-i(Bz - wt)] shows
that the real part of 8 has to be positive, whereas the existence of
losses implies that its imaginary part has to be negative.

infinite homogeneous medium. The magnetic field does not have a
component along the wire, so that the only need is an electric Hertz
vector of the form

The solution is based on the fields of a line current in an .
)

> A . A
TGx) = mP(x)es = exp(-iBa)f(x,y)8 , (2)
where I satisfies equation (A-18); consequently, £ obeys

(3%2/9x% + 32/3y% + k2% - B2)f(x,y)

= (1/eu)Is(y)s(x-h). (3)

This is essentially the Green function for the two-dimensional Helmholtz
equation, discussed in appendix B. Assume that

Re(k? - B2%) > 0; (4)
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otherwise, we would be dealing with an evanescent cylindrical wave.

Being concerned with the response of the system to a current in the wire,
a solution was sought that corresponds to outgoing waves, which is given
by equation (B-11l). The fact that this solution increases exponentially
with large R, as discussed in appendix B and dos Santos,3 limits its
validity to a region up to a distance from the wire large enough to be
in the radiation zone but not so large that this exponential factor
changes the nature of the solution. The resulting potential is

Note: The italicized numerals parenthesized on the left side of
mathematical formulas in this report represent reference and equation
numbers--that is, numbers " (1-3)" denote that our eguation (5) is basi-
cally the same as equation (3) in reference 1 by Wait.l The italicized
numerals marked with an asterisk (as in our eq 11) denote a disagreement
between the referenced equation and our equation.

(1-3) 1P (%) = - (l/4€w)Ifexp(—iBz)H<§2)[/ kZ-BZ /(x-n)?% + y%1, (5

which, according to equation (B-15), can be rewritten as

k2P (%) = - (ipwI/4m) exp(-Tz)

(1-4) - (6)
% I diue ! exp(-ulx-h|) exp(-ily),
C

where

(1-4') u = VA% + B? - k% (7)

The field IY has the correct source for the problem of the wire
above ground, and the boundary conditions can be satisfied by means of
solutions of the homogeneous equation of the same general form.

2.2 Perfectly Conducting Wire

Wait! addresses the problem of a perfectly conducting wire in a
medium of (possibly complex) constants €;, H; separated by a plane from
another medium characterized by €5, uy. The corresponding gquantities
are then distinguished by indices 1 or 2, so that

l7. R. Wait, Radio Science 7, 675 (1972).
5a. F. dos Santos, Proc. IEEE 119, 1103 (1972).



k; = g unw2 , n=1, 2, (8)

U= ‘/K +8 -k-n s (9)
k2 = k2 - R? (10)
n n

and so on. It is assumed that the Hertz potentials described in appendix
A have the form

I, = A f dku]l{exp(—ulkx-hl)
(1-5%) €. (11)

+ R(A) expl[-uj(x+h)1}exp(-iAy) ,

(1-6%) I = A f diuT! M(M)exp[-u; (x+h) Jexp(-iAy) {12)
C
(1-7%) I, = A f diuT?! T(A)exp(-uih+tuzx)exp(-ily) (13)
C
(1-8%) I; = A f dAuT! N(A)exp(-uih+tuzx)exp(-ily) (14)
C
where
A = - i(uwI/4rki)exp(~-Tz) . (15)

The functions R, M, T, and N are determined by the boundary conditions,
and the path C_ is chosen so that outgoing waves are obtained in both
media as shown in figure 1. The first term in Il corresponds to a source
at x = h, vy = 0; whereas the terms containing R, M, T, and N are solutions
of the homogeneous Helmholtz equation. The ohmic currents in the

ground are taken into account through the complex €5 in the usual

manner. The factors ul'l exp (=ujh) could have been included in the
functions, since they have no special significance as far as image
locations are concerned.

The boundary conditions at x = 0 have to be satisfied for all y
and z; they give four independent equations for M, N, R, and T. These
conditions represent the continuity of the tangential components of *\} .
and H,
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Figure 1. Contour C_ for integrals in equations (11) through
{15) . Each set of branch points corresponds to one
medium; increasing the conductivity of that medium
moves the branch points closer to the real axis, and
they can eventually cross it for large enough conduc-

tivity.
‘ L ] (1_2")

E1jy = Ezy at x = 0, (16)
(1-2") Eyz = Esz at x = 0, (17)
(1-2") Hiy = Hpy at x = 0, (18)
(1-2") Hiz = Hsgy at x = 0. (19)

-
Equations (16) and (17) together wiEh Maxwell's equation for V x E
imply that the normal component of B is continuocus; the discontinuity

in the normal component of B gives the surface charge. Equations (16)
through (19) lead to

(1~11) iAB(1 +R) -Uiwuy M = iABT + uawu, N, (20)

. (1-9) k3(1 + R) =x3 T, (21)




(1-12) iABM - g;wu; (1 - R) = 1iABN - ewuz T, (22) } .

(1-10) K2 M = k3 N (23)

respectively, where equations (&~29), (A-30), (A-32), and (A-33) are
used to relate the potentials to the fields. To obtain Ejz, We solve
for R and find

A2B2(1-K) 2%+ (ci1wur=c20uzK) (Hrwuitiawus k)

(1-13) R = (24)
-A%82(1-K) *+ (g wur+ewusK) (Hiwur+iawuzK)
where
(1~13") K = k?2/k3 (25)
equation (A-31) then gives
(1-13") E1z = kil . (26)
In the case where
(1-13'") Wy = U2 = U , (27)
the expression (24) reduces to
: 2k? A% - ujus
(1-14) R(A) = - 1 + x s (28)
ki kfuz+k3u,
whence,
(1-15%) Eiz = - 1 (uwI/2m)exp(-iBfz)B(B). (29}

10
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The factor B(B) can be written in terms of the integral representation

- of Héz and, since the integral vanishes for an odd function of )} (the

path of integration can be chosen symmetric about the origin), it
becomes

(=260 B(B) = (-11/2) (1 - B*/kD{u{) [k1 /GEETH)

- H(§2> [ 1 /<x+h)2+y2]f + [ dr[(A%-uju2) / (kiuzt+k3uy) ]
C

x exp[- (x + h) u;] cos Ay. (30)

The boundary conditions at the wire require that

(1-16") Eiy, = 0 for (x - h)? + y% = a?%. (31)

The first term in B(B) is constant at this surface; the other terms
vary slowly. Consequently, if the radius of the wire is small enough,
a good approximation is obtained by settin? the field egual to zero at
any particular point on the surface. Wait~® chooses a point at x = h,
y = a, which leads to the modal equation

(1~17) D:(B) = 0 , (32)

where

D1(B) = (-im/2)(1 - B2/k}) [m{?) (x1a) - H{?) (k) VinZ+al))
(1-17%*) (33)
+ I dA[ (A %-uju2)/ (kfus+k3ui)]exp(-2uh)cosia

C

This equation gives the value of the propagation constant B for a
given freguency w that corresponds to the mode under consideration.

7. R. wait, Radio Science 7, 675 (1972).

11




The validity of the above assumption about the boundary condition . .
at the wire can be expressed in terms of the rate at which that part -

of the field not from the line charge changes over the wire. This is a
good approximation if

za[-l-ﬁ-‘?f] << 1, (34)
o 9% _ _
x=h, y=o
where
ol(x,y) = j dAuT*R(A)exp[-u; (x+h) Jexp(-1iAy). (35)

c

Alternatively, the locations where the field Ej;z vanishes can be
determined, which would correspond to a slightly deformed wire.

There is no contribution to the other tangential component of the
electric field from the line source, as can be seen from equations (5)
and (A-16). Contributions frgm the other terms have to be small as
does the normal component of H, which also has to vanish on the surface .
}

of a perfect conductor.

2.3 Wire of Finite Conductivity

Kikuchi? addresses the problem of a wire of finite conductivity.
In this case, the tangential component of E is continuous at the surface
of the wire. He matches the z-component outside the wire with that
inside, the latter being obtained from the current, under the assumption
that the field is not significantly affected by the presence of the
ground; it is

K a
O( Ca} exp(-Tz) , (36)

where Gc is the conductivity of the wire, and

ke = E, - 10./9 w w2 + 2, (37)

2y, Kikuchi, Electrotech. J. Japan 2, 73 (1965).

12 .
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€q being the dielectric constant of the conductor. Equation (36) can

be obtained from Sommerfeld's equations (20) and (20a).° In the case

of a good conductor, the asymptotic limits of the Bessel functions can
be used to obtain

lim JO(Kc%

g »x J (K % =i,
c 1 V¢

since the magnitude of Ko tends to infinity and its argument tends to
-1/4.

Kikuchi's scalar and vector potentials2 become

(2-12%) A1z = - (111/4) exp(-TI2) {H{?) [V (x-m) 7 + y7 ]

-1l (/R T F y2 1+ (21/m) [ [exp(-uix-uih)
C

x exp(=1iAy)/ (uy + u,)] dr} (39)

(2-12) Azp = (UiI/2m)exp(-Tz) [ {exp(uox - urh)exp(-ily)/(ui+us)} di (40)
C

(2-12%) ) = - (TT/4wey) exp(-Tz) {8(?) [k1/ (G2 F 57 ]

- Ho(z)[Kl/(x+h)Z + y2 1+ (21 k¥/m) [ lexp(-uix - uih)

C—
x exp(~i\y)/ (ki uat+kiui)] dA} (41)

(2-12%) 0y = =~ 1(k? T'T/2m0e;) exp(-T'z)
X ,f [exp(uzx - uih) exp(=iiy)/(k} us+kdu;)] di (42)

C

2H. Kikuchi, Electrotech. J. Japan 2, 73 (1965).
Sa. Sommerfeld, Lectures on Theoretical Physics, Vol. III, Electrodynamics,
Academic Press, New York, 1952.

13
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The same field component (equation 29) can be obtained from

(2-5) E]_z = I‘@}_ - iUlAlz (43)

. Matching boundary conditions at the surface of the wire at the
point x = h - a, vy = 0, the medal eguation takes the form

(2-6) = igw D2(B) = (k /a0 ) I, (K a)/I1(K &)~ ik /a0, , (44)

where

Da(R) = (-in/2) (1 - B2/KDIE(D (k1) - H§2>[K1<zh-a>]}

+ f dx [()x2 - uluz)/(k%uz + k%u1)]
C

X exp [-(2h - a) w]. (45)

For a perfect conductor, equation (44) reduces to

D,(B) =0, (46)

which is equivalent to equation (32).

The discussion about the approximations in section 2.2 applies
here, with the added assumption about the field distribution inside the
wire being unaffected by the presence of the ground.

3. TRANSMISSION~LINE PARAMETERS

A transmission line is characterized by such distributed parameters
as a series impedance per unit length 2; and a shunt admittance per unit
length Y; as shown in figure 2.

The differential equations for voltage and current as functions

of the distance along the line are

(2-8) 3v/3z = - Z11 , (47)
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Figure 2. Variables and parameters that characterize an
infinitesimal section of a transmission line.

(2-8) 31/9z = - Y,V . (48)

For an ideal transmission line without any losses,

zl = ile , (49)

Y,

iwC; , (50)

where L) is the series inductance per unit length and Ci1 is the shunt
capacitance per unit length. Both of these geometric properties of

the circuit are defined for static fields; their usefulness is guestion-~
able, however, when retardation effects are important.

If losses are taken into account, they are reflected in a series
resistance per unit length R; and a shunt conductance per unit length
G1: thus, equations (49) and (50) change to

Zy = Ry + iwL: , {51)

and

Y; = G; + iwC; . (52)

15




If the parameters are independent of Z, equations (47) and (48) reduce .
to

82v/82% - Z,Y,V = 0 , (53)
and the solution is
V=Ae + B e s (54)
where
PZ = ZIYI . {55)

The second term in equation (54) corresponds to an increasing exponen-
tial contrary to our assumptions, and we set B egual to zero, so that

V=Y e . (56) .

Similarly, from egquation (75),

|
—
N

1= (/2 V etz 1 T2 : (57)
(o] Q
the constant ratio,
z =V/I =21/T =VZ,/Y1 » (58)

o

is called the characteristic impedance of the line. For the ideal
case,

I' = iw VE1C1 ’ (59)




S S DRSS AL -G O F R S0 TP SO OGRS LUy U USSP S RS P

ZO = Y‘Ll;icl .

Equation (C-5) can be written in the form

§ Eedr + [ 9B/0tdS = 0,
(c) (s)

and the potential V is defined, conventionally, as

vV =- P E.d7
a

(60)

(61)

(62)

Considering the circuit abdc of figure 2, the change in potential 4V
comes in part from the line integral along the conductors related to
R;, and in part from the magnetic field through the second term in
equation (61), represented by L;. Similarly, the current dI between
the conductors comes partly from an actual conduction current described

the motion of charges on the conductors and represented by the capaci-

. by the conductance Gj, and partly from a displacement current due to
(

s

- tance C3;; this is also discussed in appendix C.

Considering the wire above ground, the main problem in further
generalizing these concepts lies in the absence of a well defined

circuit to which equation (61) could be applied.

Kikuchi? defines the series impedance and shunt admittance in terms
of a scalar potential in a particular Lorentz gauge. From eguation (C-7),

which is valid in an arbitrary gauge,

(2-5) 3V/3z = - iwA_ - E_ ,

(63)

and, evaluating the potential at the surface of the wire at a point

closest to the ground, eguation (47) shows that

(2-7) iw Ay, (h-~a,0,2z) + E;5 (h-a2,0,z)
Zy = .
! I exp(-Tz)
. The shunt admittance is then simply obtained from eguation (48),

2, Kikuchi, Electrotech. J. Japan 2, 73 (1956) .

17
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(2-7) I' T exp(-Tz)

= 65
T v (h-a,0,z) ° (65)
1

Clearly, the z~-dependence of numerators and denominators cancel. It is
also possible to rewrite equation (64) in the form

T V1(h—a,0,2) (66)
Zl = )

I exp(-Tz)

which, together with equation (65), yields the expression (55) for T2
regardless of the choice of scalar potential. It is this physically

meaningful propagation constant that is determined from the modal equa-
tions (32) or (44).

Wait! rewrites equation (32) in the form

B2 = k2 [A + 2(Q - iP)I1[A + 2(N - iM)]171, (67)
where
(1-27%) Q = iP =% [ [exp(-2uih)/(ui+uz) Jexp(~iAa)dA, (68)
C

(1-28*) N - iM = % | [exp(-2uih)/(uz+u;k3/k?)Jexp(~ira)dA. (69)
C

According to e%uation (55) and following the decomposition used by
Kikuchi,2 Wait® defines

(1-24) Z, (iuw/2m) [A + 2(Q-iR)] , (70)

(1-25) Y,

(27ig w) [A + 2(N=-iM) 71, (71)

but there is no really firm motivation for this choice.

l7. R. wait, Radio Science 7, 675 (1972).
2y, Kikuchi, Electrotech. J. Japan 2, 73 (1956).

18
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Alternatively, it is possible to define a gauge independent,

path~dependent potential at the wire, using equation (62) and integrat-

ing along the straight vertical line shown in figure 3. Equation {66)
would then give the impedance per unit length as

o]
z, = (T/I) exp(lz)[- {m E2X (x,0,2z) dx
h:a
- B, (x,0,2) dx] , (72)
o

and the admittance per unit length would be

Y, = 1"2/21 . (73)

The ground may be chosen as a reference for this potential; the
difference between the two definitions can be expressed in terms of

~Y

1

00 —t - — e ——
a

Figure 3. Path of integration for the definition of potential
difference.

19



o
f Ezox (x,0,z) dx = iBK exp(-Tz)

-0

X | lexp(-uih)/u1l[l = A%(1-K)u3! (us+u,k) 1]
C

x (1 + R) dA. (74)

The ground is not an equipotential surface, and the losses contribute
to the series resistance.

Ultimately, the definition and usefulness of concepts such as a
voltage and an impedance must be closely related to the type of measure-*
ment to be performed.

4. SPECIAL CASES

Some of the special cases discussed by Wait! are presented here to
conclude our analysis. Kikuchi? also refers to some limiting cases.

From eguation (29}, a solution can be obtained to the basic
equations by superposition of those solutions for a fixed w but
arbitrary B, where the boundary condition at the wire (which determines
B as a function of w through the modal equation) is replaced by one
that represents in some sense a voltage, V, applied to a gap of length
2b in the wire. In that case, the tangential field at the wire vanishes
everywhere except at the gap, where it is

E;z(a) = v/ (2b) . (75)

The discontinuous integral of Dirichlet,

il . 1 for |z| <8
% f ii%%h exp(~-iBz) dR = l (76)
- 0 for |z| »>8

is used to show that eguation (77),

l7. R. wait, Radio Science 7, 675 (1972).
2y, Kikuchi, Electrotech. J. Japan 2, 73 (1956}.

20
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(1-18) Eyg = - o | Sigﬁb gggg exp(=iBz) dB,  (77)

-0

obeys the new boundary conditions; since D(B) in equation 33 is equal
to B(B) in equation (30) at the point on the wire surface, x = h, v = a,
and approximately equal to it on the whole surface of the wire.

The current along the wire is linearly related to the field
through

I(z,B8) = [i(27/uw)/B(B)]E;z(z,R) (78)

from equation (29) for each component B; thus, the current is

(1-19) I(z) =~ izw J Sigﬁb D(lB) exp(-iBz) dB . (79)

The function D(R) vanishes for the solution By of the modal
equation (32), leading to a pole in the integrand in eguation (79).
This pole lies in the fourth quadrant, as pointed out at the beginning
of section 2, and gives a contribution when the integral is evaluated
by closing the contour through the lower half of the complex B-plane.
The residue gives the first term in

27V sinBob [8D(B)
(1-19) I(z) ~ - [ ] + I, (80)
T Bob 58 lg-p, T

and the second term I, comes from other singularities in this half-plane
such as branch-line integrations.

Another limit of certain interest is that of the wire on the ground--
that is, h -+ 0. In that case, the modal equation (32) reduces to

(1-20%) J axro® - wiug) /(kiue + kiuidl (81)
C

because a<<h implies that a also has to tend to zero for this solution
to apply. The integrand behaves like 1/} for large X, since
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(1-21%) Acwiup L ki+kF-28% (82)
kius+kiu, ki+k3

>

so that the numerator has to vanish for the integral to converge,
giving the solution

3
(1-21) B, = [(ki + k3)/217 , (83)

It is not clear, however, to what extent this applies to a real wire on
the ground, due to the restriction to a vanishing diameter from the
condition a<<h.

5. SUMMARY AND CONCLUSIONS

This report presents a solution to the problem of waves supported
by a single infinite wire above a (imperfectly) conducting ground.

The modal eguation, obtained using some simplifying assumptions,
determines the propagation constant for a given frequency. The
separation of the square of this propagation constant into factors
representing the series impedance and shunt admittance of an equivalent
transmission line is highly ambiguous at best. Thus, these concepts,
as well as that of a voltage or potential difference to which they are
related, are ill defined for time-varying fields when the frequencies
involved are sufficiently high. 1In particular, the scalar potential
that--together with the vector potential--allows the determination of
the fields can be changed in an arbitrary manner by gauge transformations.
On the othexr hand, a voltage defined as the line integral of the elec-
tric field is path-dependent for time-varying fields. Care has to be
exercised in interpreting the measurements of "voltmeters" and, to some
extent, "ammeters," in cases where the high-frequency content of a
signal is significant.

An important aspect of the problem, overlooked by KikuchiZ? and
Wait,! is the specification of the path of integration for the integral
representation of the Hankel functions for complex arguments. As shown
by dos Santos,3 an integral taken along the real axis corresponds to
incoming waves, and the radiation of energy by this system requires the
selection of a path deformed around the branch points, as shown in

'7. R. wait, Radio Science 7, 675 (1972).
2y, Kikuchi, Electrotech. J. Japan 2, 73 (1956).
3a. F. dos Santos, Proc. IEEE 119, 1103 (1972).
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figure 1. These solutions have the property that they lead to fields
that increase exponentially with distance from the source. This is,

of course, unphysical for the problem under consideration. We attribute
this behavior to the simplification involved in reducing it to a two-
dimensional configuration. A study of the Green function shows that
there is a region of space where the exponential increase is not notice-
able but far enough from the wire to correspond to the radiation zomne

of the fields; in this region the fields can be associated with
physically meaningful outgoing waves. The flow of energy at larger
distances comes mainly from the source at the "beginning" of the
infinite wire, and does not have a physical interpretation.

An area for further study and of great practical interest is the

behavior of this system under an incident wave--a problem that has
been studied with different approaches involving other approximations.
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APPENDIX A. ELECTRIC AND MAGNETIC HERTZ VECTORS

The scalar potential ¢ and the vector potential X are not
independent in a Lorentz gauge, but they are related by the Lorentz
condition

VeRX + €udd/dt = 0 . (A-1)

Consequently, they can be expressed in terms of a single three-vector
field II, the Hertz vector, through the. equations

>
& = - VI ’ (a~-2)

-
eudl/at. (A-3)

4
]

Maxwell's equations for the electric and magnetic fields reduce to the
wave eguation for the potentials, and II satisfies

(32/8t2 - v2) 1 = p/e (a-4)

where the polarization vector E is related to the sources, the charge
, . +
density p and current density 3Jj, through

p = - v.; (A"5)
3 = 3%/5t . (A-6)
These last two eguations imply that

3p/3t + v = o , (A-7)

which is an expression of the conservation of charge, implicit in
Maxwell's equations. The electric and magnetic fields are related to
the Hertz vector through

25




APPENDIX A

> 2 2 =
E = - eud”ll/ot* + VV-I , (A-8)

3 o= cuvxON/5¢e) . (3-9)

For monochromatic waves, all fields have a time dependence
exp (iwt); for instance,

,t) = E(EZ) exp(iwt) , (A-10)

> > > >

where E(x} can be complex and it is understood that E(x,t) is equal
to the real part of the right-hand side. Equations (A-8) and (A-9)
reduce to

- -
T = K2 + UVl (A-11)
- -
B = ileuwVxI , (a-12)

where

Note: The italicized numerals parenthesized on the left side of
mathematical formulas in this report represent reference and equation
numbers~--that is, numerals " (1-2)" denote that our equation (A-13) is
basically the same as eguation (3) in reference 1 by Wait.!

(1-2") k? = euw? (A-13)

and equation (A-4) becomes

(V% + kz)ﬁ = (i/ewﬁ . (a-14)

l7. R. Wait, Radio Science 7, 675 (1972).
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-5
In a case when II has only one component, the z-axis can be chosen in
that direction and consegquently

—>
I =1 e3; . (A-15)

Then, equations (A-11) and (A-12) reduce to
-> 2 A~
E = klles + V 3I/3z , (A-16)

= A ~
B = jeuw(e;dll/3y - e,d3/9x) . (a-17)

>
As can be seen from equation (A-14), j must also be in the z-direction,
and II obeys the scalar equation

(V2 + kDI = (ilew)i . (A-18)

The magnetic field derived from such a Hertz vector has no component

in the z-direction, as shown by equation (A-17). Thus, even when J

has a fixed direction, the most general solution for the fields requires

a Hertz vector with more than one component, Alternatively, another
field, the magnetic Hertz vector II”, can be defined by taking into account
the symmetry of the equations for a source-free field. It satisfies

=
(3%2/8t? - V%) 1 = o , (a-19)
and the corresponding electromagnetic fields are
- 2. >,
H= - V°I° + VVell” , (a-20)

E = - uvxsli“/st. (A-21)
The intermediate potentials, still in a Lorentz gauge, are

¢ =0, (aA-22)
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A = uvxi” . (A-23)

For monochromatic waves, equations (A-19) through (A-21) become

(V2 + k)" = o , (B-24)
- P >
H = k20" + VvV« , (a=25)
+ - +J
E = - iuwvVxI . (A-26)

-
Furthermore, if II” is also in a fixed direction along the z-axis,
+A A
I" = 1d"¢e (a~27)
. (V2 + k)II” = 0 . (A~28)

We use both Hertz potentials to obtain

E, = 32I/9x%dz - ipwdl” /3y , (A-29)
(1-1) Ey = 3%0/3ydz + ipwdli”/9x, (a-30)
(1-1) E, = (k% + 32/3z%)1 , (a-31)
(1-2) B, = 3%N°/3x%z + iewdll/3dy , - (A-32)
(1-2) H = 8°17/3ydz - iewdll/dx , (A-33)
(1-2) H, = (k% + 32%/03z%)1" . (A-34)

The one-component field II is determined by the current density, which
has to be in the z-direction and the boundary conditions, whereas the
one-component field N” is determined by the boundary conditions alone.
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APPENDIX B. GREEN FUNCTION FOR THE TWO-DIMENSIONAL HELMHOLTZ EQUATION

Since the Green function depends only on the difference of the
coordinates of the field point and the source point, a source point can
be chosen at the origin and equation to be solved is

(52/8x% + 5%2/3y2 + k®)6(x,y) = - 8(x)S8(y). (B-1)

The Fourier transform of the Green function is determined in the usual
manner; thus,

, exp[-1i(k_x+k_y)]ldk_dk
G(x,y) = L " IJ X kA =7 (B-2)
(2m) k2 + k2% - k2
X y

The ky~integration is done first. For real (positive) k, a purely real
path of integration would encounter two poles, at

(B-3)

for [kyl < k; these poles become purely imaginary for [kyl > k. To
specify the path of integration around these poles, note that k% can

be given either a positive or negative imaginary part; consequently, there
are two integrals

® exp[-1i(k_x+k_y)1dk_dk
G, (x,y) = (£;>2 lim | e e (B-4)
- £+0+ - k; + k; - k% ¥ ie

The positions of the poles in the complex kx-plane for different
values of ky are shown in figures B-1 and B-2.

For positive x, the contour around the lower half-plane can be
closed without adding a contribution from the infinite arc, while this
has to be done around the upper half-plane for negative x. Egquation
(B-4) may be expressed in the form

® exp[-1i(k _x+k y)J]dk dk
G, (x,y) = —2— 1im [} — % Y
(2m)2% €20+ wo (k_+ivk2-k2Fie) (k_-ivkZ-k’Fig)
b y X y

, (B=5)
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‘Imkx 7
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\Jkyl=K
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gl — ="
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—-——— - Rekx
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Figure B-1l. Location of the poles of the integrand of G,
in equation (B-4) as a function of ky.
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~
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~ '
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Figure B-2. Location of the poles of the integrand of G_ in
equation (B-4) as a function of k.
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where the square root is assumed to be real and positive for ky > K

That is, the first factor corresponds to the pole in the

and € = 0.
Evaluating the residues yields

lower half-plane.

© exp(-ik_vy-|x]|vkZ-k*Fie)dk
- 4T €40+ - /kyz-K2+ie

The integral is separated into Fourier sine and cosine transforms,

giving
© cos(k_y)exp(-|x|/k2-x2%ic)dk
G,(x,y) = L tinm Y b4 ¥ (B-7)
* Vk2-k2Fie

2T g-+0+ o

The sine transform vanishes due to the integrand being an odd function

of ky- Using equation (1.4.27)1 yields

G, (x,y) = (2m)~% lim  K_[(+ic+e")Vx%+y?] ,  (B-8)
- €‘+O+

where K, is a modified Bessel function, related to the Hankel functions

by

_i. 1 . =_l. (2)-_.
KO(C) = 5 im Hé )(15) 5 im Ho (-iz) . (B-9)

Equation (B-92) in this appendix is obtained from equation (7.2.15).2
We finally can write
(B~10)

6, Gx,y) = (/&) (kr)

G6_(x,y) = =(i/4) (2D (xR) (8-11)

Ia. Erdélyi, Editor, Bateman Manuscript Project, Tables of Integral
Transforms, Vol. I, McGraw-Hill Book Company, Inc., New York,; 1954.
2A. Erdélyi, Bateman Manuscript Project, Higher Transcendental Func-

tions, Vol. II, McGraw-Hill Book Company, Inc., New York, 1953,
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where

R = Vx?+y2 , (B-12)

From equations (7.13.1) and (7.13.2),2 the asymptotic limits of the
Hankel functions are,

%

Hé”(c) vo(2/mg) ? expli(g-n/4)] (B-13)

Hc()z)(C) v (2/Tr?;);2 expl-i(z-1/4)]1 , (B-14)

which shows that G_ is the Green function that corresponds to outgoing
waves. In Morse and Feshbach,?® the time dependence is assumed to be
exp (~iwt) and G+ is chosen for the Green function (eqg 7.2.18).

It is, of course, possible to rewrite equation (B-6) in the form

-ik_y-|x|VEZ-KkZ)dk
exp( 1%257 | x| %y K<) v

- L P -15)
G (X:Y) = i (B-1
+ bm . 2__2

(C+) /kv K

where the paths of integration are shown in figures B-3 and B-4. The
path chosen around the branch points at fx specifies the branch of the
square~root function at each point of the contour.

We are interested in values of k2 which are obtained from
k% = k%2 - g2, (B~16)

where kZ is given by equation (A-13) of appendix A. For real k2, equate
the imaginary parts in equation (B-16) and obtain

KoK, = = BrB. > 0, (B-17)

2Erdélyi, Editor, Bateman Manuscript Project, Higher Transcendental
Functions, Vol. II, McGraw-Hill Book Company, Inc., New York, 1953,

3p. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-
Hill Book Company, Inc., New York, 1953. (Also see pp. 822-825).
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AImky
C+
L\ ‘ég,f >
-K Reky

Figure B-3. Path of integration C, in the k_-plane for Gy
in the case of real k. It shows the deformation
of the path around the branch points at k.

‘:[ﬂ?ky

C_

X 2 -
K Reky

Figure B-4. Path of integration C_ in the k,,-plane for G_
in the case of real k. It shows the deformation

of the path around the branch points at k.

which shows that the branch points in figures B-3 and B-4 move into the
first and third quadrants, and the paths of integration have to be
changed as shown in figures B-5 and B-6; this agrees with the contours
chosen by dos Santos.

Furthermore, the asymptotic formulas (B~13) and (B-14) show that
when the exponent is no longer imaginary but complex, the behavior of
the Green function at large distances is determined by the exponential
factor. Thus, for real x, G, corresponds to incoming waves and G_ to
outgoing ones; both decrease like 1/VR at large distances. On the other
hand, when x has a positive imaginary part, G, corresponds to incoming

“a. F. dos Santos, Proc. IEEE 119, 1103 (1972).
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*X

_

Rek
X Ct y
—K

Figure B~5, The contour C,, for complex values of «,

AImky

N x

]
-K |?eky

Figure B-6. The contour C_, which has to be deformed as shown
when the branch points move into the first and third
quadrants.

waves and decreases exponentially with distance, while G_ represents
outgoing waves that increase exponentially with distance. Neither of
these solutions is completely satisfactory in terms of a physical
interpretation.

When the medium is conductive, equation (A-13) is changed to

k? = guw?(l - ig/ew) , (B-18)
and equation (B-17) is changed to

K K, = =B Bi - uow ., (B~19)
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. Thus, KrKi is positive for

o< - BrBi/uw; (B-20)

the above conclusions are unchanged, whereas for

o> - BrBi/uw, (B-21)

the behavior at large distances of G, and G_ are interchanged.

The energy flow for a nonconductive medium and an outgoing wave
can be represented by the arrows in figure B~-7, which show that the
increase in the energy flux in the radial direction comes from a
decrease of the flux in the axial direction. This unphysical behavior
can be related to the assumption of a source at z = - < which supplies
energy in amounts increasing exponentially with distance from the axis.
If 0 is large enough, the energy dissipated in the volume reverses these
conclusions when the inequality (B-21) is satisfied.

.( ' If ¢ = 0 and -Bi << By, then

R4

Syg Sg'

.

Z

Figure B-7. Diagram of the flow of energy at large distances
from the axis.
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K_ =~ /KZ-BZ , (B-22) .

Ry ~ - BB /K, (B-23)

and k; 1s small compared with «, as long as k is not close to B .

Hence, the factor 1//E§ becomes important when R = l/Kr, whereas the
exponential increase only starts to matter when R ~ 1/x,, and the fields
would have the expected behavior of outgoing radiation in the region

Ky = - BiBr/Kr. (B-24)

The solutions for larger values of R would have to be ignored.

When « becomes imaginary, which corresponds to evanescent
cylindrical waves and no radiation, the exponentially increasing
solution becomes meaningless and the other solution, the one that is
connected to incoming waves, has to be chosen.
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APPENDIX C. POTENTIAL DIFFERENCES AND CURRENTS

scalar potential, &, is originally defined in electrostatics
of the field E by

(c-1)

Vx_E>=O (C-2)
The inverse of eguation (C-1) is
-

E = - Vo , (C-3)

For a time-independent distribution of currents, this translates into

Kirchoff!

s second law, which states that the potential drop around a

closed path is zero.

When the fields are time dependent, equation (C-2) changes to

whence

where

>
E

VxE=- 38/5¢t , (C-4)
§ £« dT = - dF/dt, (c-5)
(c)

F = (g)% . 3% (C-6)
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and (S) is a surface bounded by the fixed contour (C). That is
Kirchoff's second law is recovered if the right-hand side of equation
(C-5) is written as a potential drop (Faraday's law). When most of

the flux is localized in a certain part or parts of the circuit, an
inductance that corresponds to a definite potential drop can be defined;
otherwise, it is no longer possible to specify the potential (with
respect to some reference point) at a given point of the circuit.

The scalar potential % becomes a part of a set, together with the
vector potential K, and is related to the fields by

E=-70 - 3%/5¢ (c-7)

B o= vxk . (c-8)

These potentials can be changed through a gauge transformation to

2° = X + VA (C-9)

-

" = & - 3A/3t , (C-10)

where A is an arbitrary function of % and t. This implies that the
scalar potential is no longer determined by the fields and, in particular,
it could be set equal to zero.

Another definition of potential difference can be based on egquation
(C-1), but the integral is now path dependent. The differences for
different paths are given by equations (C-5) and (C-6). Precisely
what is measured by a voltmeter has to be determined by a detailed study
of the instrument.

Another measured quantity that has to be clearly defined is the
current. Maxwell's equation

V x " = 3’ + aﬁ/at (c-11)

gives
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§ ﬁ'd?=1+j83/at'—§, (c-12)
S
where
.. 1= 3 .38 (c-13)
. (s)

is the conduction current and the second term of the right-hand side is
called the displacement current. When a current is measured by placing
a loop around a wire, what is really determined is the left-hand side
of equation (C-12), which is often called the total current.
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