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Abstract

Induction theorem is used to formulate the problem of transient elec-
tromagnetic excitation of a rectangular cavity through an aperture. New
variables are introduced to convert the governing second-order differential
equation into a set of first-order equations which correspond to normalized
state equations. This conversion will result in faster convergence in the
numerical solution. Moment method is employed to solve the equations sub-
ject to specified boundary conditions. Cavity fields are expressed in

terms of subsectional expansion functions with time-dependent coefficients,
and external fields are represented as superpositions of plane waves. These
fields are properly matched at the aperture. The procedure for evaluating a
typical expansion-coefficient vector by singularity-expansion method is out-
lined. The formulation takes into account the effect of reflections from
cavity walls on the aperture field and does not require that the aperture be
small.
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I. INTRODUCTION

The study of the transient field behavior inside a conducting cavity
due to excitation through an aperture by an incident electromagnetic pulse
(EMP) is important because it is relevant to the understanding of the
shielding effectiveﬁess of actual situations. For example, the problem of
electromagnetic penetrafion through door slits into aircraft and other
installations due to strong radiation sources is of considerable practical
interest.

Past in&estigations on EMP excitation of cavity-backed apertures have
largely dealt with small openings and have neglected the effect of cavity
reflections on the aperture field distribution. For small openings the
quasi-static method is used to determine the fictitious magnetic current
and charge distributions in the aperture. Equivalent electric and magnetic
dipoles are defined,and their radiated fields determined with the aid of
scalar and vector potentials.l~8 The fields in the cavity are customarily
expanded in terms of unperturbed normal modes. Some are steady-state time-
harmonic sclutions,l-6 and tedious Fourier transformation of frequency-domain
results would be required in order to find transient responses. The quasi-
static approximation can not be applied when the aperture is not small and
when early-time responses are important.

In neglecting the effect of the reflections from cavity walls on the
aperture field distribution,one essentially treats the external and internal
portions of the problem separately. Since cavity dimensions obviously play
an important part in the total problem, this approach may result in sig-

nificant errors.



In this report we propose to avoid the quasi-static approximation .
and to solve the internal and external portions of the problem simul-
tanecusly. The small-~aperture assumption is not implied, and use is

made of the induction theorem 0 in determining the scattered fields.

The problem will be formulated in the transformed s-domain. For external
field problems, such as those involving dipole radiation11 and conducting-
body scattering, frequency-domain and time-domain responses can be re-
lated by replacing the wavenumber k by s/c where s is the Laplace~transform
variable and ¢ the speed of light. However, this is not permissible in an
internal field problem involving waveguides or cavities because the phase
velocities of the various waveguide and cavity modes are different and

are dependent on geometrical dimensions.

New variables will be introduced to convert the governing second-

order differential equation into a set of first-—order equations which cor- ‘
respond to normalized state equations. The field within the cavity will
be expanded in terms of sultably chosen subsectional expansion functions with
variable coefficients and the field outside the cavity expressed as a super-
position of plane-wave fields. The cavity and the external fields are
matched at the aperture where a fictitious magnetic current exists. A com—
bined field expression containing the unknown expansion coefficients is
obtained. To determine these coefficients the moment method12 is used to
convert the first~order equations into matrix equations. It will be shown
that the typical coefficient matrix can be expressed in a form for which
the singularity—expénsion method13 can be used to advantage.

The report contains the details of the theoretical formulation and

the procedure of solution for the problem concerning transient electro-

Much ‘

magnetic excitation of a rectangular cavity through an aperture.




computational work is involved in the application of the moment method

and the singularity-expansion method. It is plaﬁned that appropriate

numerical results will be presented in a subsequent report after work in

this regard is completed.



II. FORMULATION OF THE PROBLEM

We consider the problem of a rectangular aperture in an infinite
conducting plane backed by a rectangular conducting box, as shown in
. f , =1 i .
Fig. 1. An incident transient electromagnetic wave (E, H ) impinges
normally on the plane and the aperture. The problem is to determine the
scattered field in the y > 0 region and the field penetrated through the

aperture into the conducting cavity.

II-1. Equivalent Aperture Magentic Current

We shall invoke the induction theorem for the solution of this
problem. Figure 2(a) represents a simplified 2-dimensional view of the
original problem. (EC, ﬁc) and‘(ﬁs, ﬁs) are, respectively, the cavity
field and the external scattered field. 1In order to determine these unknown
fields, we consider the case when the aperture is covered by a conductor.
The entire region to the left of the infinite plane will have a null field
and, according to the induction theorem, a magnetic current ﬁo on the right
surface of the conducting plane will support a different scattered field

(Eg, ﬁg), as shown in Fig. 2(b), where

.
M =

20
E
o s

x fi

A oy T
= A x E

It

¢ x . (L
For a normally incident plane wave (El, ﬁi), the scattered field (Ez, ﬁz)

from an infinite conducting plane without an aperture is easily deter-

mined. The null field to the left of the'plane will be maintained 1f




. the plane is removed and a magnetic current Zﬁo exists in its place which
will result in a field (Ei + Eg, ﬁi + ﬁ:) in the y > 0 region, as shown in
Fig. 2(e).
Subtracting the fields in Fig. 2(c) from those in Fig. 2(a), we

obtain the problem in Fig. 2(d). The magnetic current M in the aperture is
ﬁ’=—2ﬁo=—9xﬁl (2)

: . % = ‘e . = BO
which supports the field (EC, Hc) inside the cavity and a field (Es - B,

ﬁs ~ ﬁz) to the right of the infinite plane. We note that the region in

which the difference field (Es - Ez, ﬁé - ﬁ:) exists is source~free and

that the tangential component of the electric field is required to vanish

on conducting walls.

II-2. Transformed Governing Equations

' For the problem in Fig. 2(d), we start from the two Maxwell's

curl equations

VxE=-p 22_% ' - (3)

>
VxH=¢g —. 4)

Taking the Laplace transform of Eqs. (3) and (4), we obtain

VxE

—uosﬁ—ﬁ (5)
$ X ﬁ = eos % (6)

where a tilde (~) over a quantity denotes the Laplace transform of that
quantity.

3
Let ¥ be the Laplace transform of an electric vector potential ¥

. such that



5 -
E=-Vx¥F. n
Combining Egs. (5)to(7) and using the Lorentz gauge, we have an in-
homogeneous Helwmholtz equation:
>2 23 3
VE - ue st Fo-n, (8
: 3 3 3
Solution of Eq. (8) for ¥ will give E from Eq. (7) and H from
UOS

- ) '—). .
in regions where M is zero.

Assuming an incident plane wave Qith the electric field polarized

: %
in the z-direction; i.e.,

) E] (10)

E

the Laplace transform of Eq. (2) becomes

5 »
M=-28 8 =318 (11)
which has only an x-component. The x-component of Eq. (8) is then

22 2 =~ o
v FX - U E S FX = - Mxﬁ(y) (12)

where §(y) is a Dirac delta function. FromEgs. (7) and (9), we have

E_ =0 (13)
X
o~ 3 o~
E =~—F (14)
v 3z X
~ a ~
E =-=F (15)
b 9y "X
2 2
- 1 3 3 ~
H = - [ + 17 (16)
X L s aY2 822 X

%

There is little loss in generality by specifying the pelarization of the
incident wave since the shape and orientation of the aperture are still
arbitrary.




F (17)

?
|-
[«
R

z U S 9x32z FX ) (18)
o]

The coupling between the fields inside and outside the cavity will be
accounted for by the consideration of the boundary conditions at the
aperture.

The second-order differential equation (12) can be represented

as a set of first-order equations by defining new quantities 4, ¥, and &

such that
3 -
- F (r,s) = s u(r,s) (19)
-2 F (r,s) = s v(r,s) (20)
ay x H s
and 3 -
- SE-FX(r,s) = s w(r,s) (21)

where r is the space variable. We have, from Eq. (12),
J . J . J =~ 1 5
Eye i(r,s) + gg-v(r,s) + Ez-w(r,s) = - UES Fx(r,s) +;—MX . (22)
Comparing Eqs. (21) and (20) with Eqs. (14) and (13) respectively, we
see that |
E =sw (23)

and
E =~-85 % . (24)

The introduction of U, ¥, and ¥ and the use of the first—-order equations

will result in significantly faster convergence in the numerical solution.

IT1I-3. Operator Equations

In order to write the first—order equations (19)to (22) in a succinct

form, we define



£(r,s) =

and

g (s)

i

We can then write Eqgs. (19) to (22) as

L f(r,s) =

IR 3 ]
0x 3y 9z
0 0 0
(25}
0 0 0
0 0 0
0 0 0
1 0 ¢
(26)
0 1 0
0 0 1
c oL
F
X
i
27)
Ay
A
1y
s x
0
(28)
0
L. 0 -
g P f(r,s) + ég(r,s) . (29)

Note that the inverse Laplace transform of Eq. (29) is a set of

normalized state equations in the four state variables Fx’ u, v, and w.

10




Let an inner product be defined as

J (Fxlsz + 4,8, + 7,9, + ﬁlﬁz)dT (30)

[

where the superscript T denotes transposition and the volume integration

is carried over the rectangular cavity and the half-space to the right of

the infinite plane.

<Eps LEy> = f Fa Gel vy Bt 5, %)

1’ 2
- 3 = " 9 = - 9
T Y1 9% Fx2 Y1 dy Fx2 Y1 3z Fx2}dT ' (31
By making use of the relation
D oa o wE ) eR Ba oL Doz
ax Ty ~ 8 F,0) = Fy g2 B + 8, 55 Fg
~ ] - d
T tx2 9x 1 ul 8x FXZ (32)

.. 3 ~ Y 9 ~ s
and similar ones for 3y (Fle2 - vlsz) and = (F W, - Wlsz)’ Eq. (31)

can be rewritten as

z p = 9 . 0 3~ . 0
<fp» B> f PGty v 5 ") - % 53 T
. D -
" V2 Ay Fxl 2 3z z:‘xl}d’r
+ G on, - aF) = (Fv, - . F )
3 x1 2 1" x2 3y x1 2 1"x2

(33)

11 '



We note that the first volume integral on the right-hand side of Eq. (33) .

1 52>J Each term in the integrand of the

second volume integral can be written as a divergence operation; hence the

is exactly the inner product <Lf

second volume integral can be changed to a surface integral by virtue of

the divergence theorem. For example:
~ ~ = - ~ . Lo~
{ — (F _d, - ulFXZ)dT = f vV o+« % (Fxlu - 4, F dr

- qS (F i, - 4,7 ) # + Ada (34)

Y

where i is an outward unit vector normal to the surface da. Thus, the
second volume integral on the right-hand side of Eq. (33) can be con~-

verted to a surface integral as follows:

3 ©a ~ 2 . — 3 P JUS
f {Bx (Fxlu2 —ulsz) + (F ¥, - %.F Y +— (F %, - W Fx )Xt

= qSqulaz -gF L) g e A+ (F v, - 0 F )ped+ (Fw, - 9 F )2 d)da.

(35)

Now the boundary conditions in Fig. 1 require that ﬁy vanish at
x =0, a and at z = 0, ¢ and that Ezvanish at x = 0, a and at y = - c, 0O
except at the aperture. In view of Eqs. (23) and (24),% and ¥ satisfy the
same boundary conditions as Ey and Ez regspectively. The surface integral
over the right half-space is zero as r -+ ~; hence, the surface integral on
the right-hand side of Eq. (34) will vanish 1if ?X is zero at x = 0 and a.
Consequently, the second volume integral on the right-hand side of Eq. (33)

is zero and

(36)

Equation (36) is a statement of the self-adjointness of the operator L.

In numerical computation the expansion functions for ﬁx will be chosen in

such a way that Fx is zero at x = 0 and x = a.

12




ITI. SOLUTION BY MOMENT METHOD

The method of moments12 will be used to solve the operator equation
(29) for the problem at hand. Four steps are involved here. First, the
space inside the cavity is divided into subsections and suitable expansion
functions are chosen over the subsectioﬁs. The elements of the unknown
vector f(r,s) in Eq. (27) are then expressed in terms of the expansion
functions within the cavity. Second, the field in the y > 0 region is ex-
pressed as a superposition of plane waves. Third, the cavity and the half-
space fields are matched at the aperture. Fourth, inner products are taken
so that the matrix equations for the unknown expansion cqefficients are ob-

tained, These steps are developed below.

ITI-1. Expansions Functions for Cavity Field

Assume that the space within the cavity is suitably subdivided
in the x, y, and z directions and expansion functions F ,, . (v),
x(1i,5,k)
u,. . r . . r and w,, . r) are chosen over the subsections.
(1,3, > V1,30 (0 3 (g g1 (7 axe chosen ove
The expansion functions must satisfy the required boundary conditions. For

convenience, we define the following column vectors:

i, 1,10 0
0 u (r)
F N u . (visjak-)
Faa@ T > P @ T 0
(37)
0 i 0
f\(fi 3 E) (r) = : W O
Vi, P fi,yn @ T 0
i 0 | ~W(i,j,k)(rh .

13



In view of Eq. (27), we can then write the expanded forﬁ of £(r,s) inside

the cavity as

-~ F ~ 31
Bes) = T G500 T, ® * Bu 0 fu,y,n®

v

) i i |
0,510 Fi1,5,0 @ 0,50 fi,g,0 68

Note that the expansion functions FX, u, v, and w are functions of position
only and that the inverse transformation of &, §, v, and § will yield the

time-varying expansion coefficients.

ITI-2. Plane~Wave Representation for Field in Half-Space

In the half-space y > 0, Ez can be expressed as a superposition of

plane waves

) l o w~E -3 (kxx + kyy + kzz) ‘
where
jky = V(s/c)* + k; + ki : (40)

and the new quantity gE(kx,kz) can be determined from the boundary con-

dition at the aperture. At y = 0, we have

[~ < BN ]

R -3k x + k_z)
& - —l—f f P kye X 27" ak_dk
z y=0 lm2 X’z X 2

e A e}

- 1~

" F * 3 Uk 0,z
s igk [Y(i,ny,k)(s) S mx(l,ny,k)(S)}v(i,ny,k)(x’ 2D,
) at aperture (41)

0 , elsewhere

where ny is the subsection number for the cavity in the y direction at
vy =0, j = 1 being assigned to the first subsection at y = - b. It has .

been assumed in Eq. (41) that the magnetic current FIX in Eq. (11), which

14




represents the discontinuity in Ez at the aperture, has been expanded

in terms of the expansion functions v,, (x,0,2z):
(i,n_,k)

M= ) i (s) v (x,0,z) . (42)
x ik x(l n ,2) (i, ?y,k)

From Eq. (41), éE(kx,kz) can be determined by an inverse Fourier

transformation.
-E _ L.
g (k k) ==-s ] v, 0, 10 F T )]
i,k y
jlk x + kzz)
oJJ V(i,n ’k)(x,O,z) e % dxdz
aperture y
_ ~ l
=-s I By, 0@ 5 g, N, o (2167 (k) (43)
ik y
where
v j(kxx + kzz)
G (k k) = JJ Viim ,k>(x,0,z) a dxdz . (44)
aperture

Substituting Eq. (43) in Eq. (39), we can write Ez in the y > 0 region as

ﬁz(r,s) -7 ,z [Y(l g k)<s) s x(l, k)(s)]
7 ~ik x+ky+k z)
J J Gk ,k)e = y Z dk_dk_ . (45)
X Z X 2

Using Eqs. (45), (19) to (21),and (24), we obtain the following expressions

= i
for Fx’ i, ¥, and &% in the y > 0 region.

1

%X(rss) = z [Y(l I'l k) (S) + = )(S)] F

i,k x(1 o, k )(X,y,z s) (46)

x(1 n ,k

with

15



FX(l n ,k

i(r,s) = ) PPN O
. ] y Pl

with

U(i,ny’k)(XQYszys> = -

¥(r,s) = 'z {Y(l o, k)(s)

with

4y te e
and
@(r,s) = ) [¥ (s) + =
’ . Y(i,n k) s "x(i,n ,k
ik
with
W, (X,y,Z,S) = - _i"
(1,ny,k) ZHT2 v

)(x,y,z s) =

b

i,k

i,k

1
4n2

A
)

©w oo

k

o 0 T

1

—j(k x+k y+k z)

J J 56V Lk e vz dk_dk_
X Z

s Pectyn, 0 B8 i (975709)
y ¥y

[ @0 ’
k -3 (k_x+k_y+k_z)
X\ AV X vy z
J J (E;OG (kx,kz)e dk_dk

=23 hosd

. 1 v -J(kxx+kyy+kzz)
v<i’ny,k)(X,y,Z,S) = —“5 [ j G (kx,kz)e dkxdkz

k
Zy AV Xy z .
J j (k )G (kx,kz)e dkquy

00 «=0O

III-3. Field-Matching at Aperture

At the boundary vy =

x(1 n ,k

)(S)]V( n k)(XSY’z S)

)(S)]%Ei,ny,k)(x’y’z’S)

-5 (k_xtk_y+k 2z)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

0 between the cavity and the half~space, there

is a discontinuity in ﬁz due to the existence of the equivalent magnetic

current, as given in Eq.

setting j = ny in Eq. (38)

(41).

Matching ﬁx’ i, and ¥ at the apertur

e by

and y = 0 in Eqs. (46), (48), and (52), we

obtain the following equations:

!

1,k

“,n_,

k)(S)F

-

ik

x(i,ny,k)(x’o’z)

l
[Y(l n k)(SD + =

16

x(1 n k)(s)]F (i,ny,

k)(x,o,z,s)
(54)




é (S)U . (X,O,Z)
i%k (i,ny,k) (1,ny,k)

~ 1 . N'.
= izk [Y(i,ny,k)(S) + s mx(i’ny’k)(S)]u(isnysk)(X,O,z,s) (55)
and ’

(x,0,2)

igk 5(i,ny,k>(5)w<i,ny,k>

=1 Bgn 0@ + 2 ELRY 0@ k)(x,o,z,s>. (56)
ik v
An important task of this problem is the determination of the

expansion coefficients a( )(s) é(i k)(s), and S(i,n ’k)(s) in

terms of Y(l n k)(S) and mx(l 0 k)(s) To this end we take the inner

products of Eqs (54) to (56) with F x(i ,’ny’k,)(x,o,z), u(i,’ny’k,)(x,O,z),

and w(i, k,)(x,O,z)’ respectively, over the aperture and obtain

b

igk 0‘(i,ny,k)(s) <Fx<i',ny,k'), Fx(i,ny,k>>

l
= 1§k [Y(l n k)(s) + = S

(i, ) (B IF g k! e ,nyk>> (57)

LB 0@ U a1y, Yda 07
y y y

1 "y
Lo, n G TP @G L e 10T (58)
y y y
and

Z 81, 0, k) (8) Wy ok, a7

~ 1.
= 2 [Y<i,UY’k)<s> *ts 759

s) I<w .. ~ .
ik X(ly y k)< )] W(l',ny,k')’w(i,ny,k)

17
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It is convenient to write Egs. (57)to(59) in a matrix form by introducing

column matrices {&(i
b}

o @b B o 0@ B 0@ Ban 0

- ;
and {g'mx(i,ny,k)(s)}' We have

5 - : L

{a(i,ny,k)<s>} = [a] {Y(i,ny,k><$) TR Ok (60)

, ~ 1.
Blapn 0@ = Bl g n 0@ * 5 B n 0 ©)? (61)
p4 y M

and _

N ~ 1

{5<i,ny,k><s>} = 7] {Yci,ny,k><3> s Pxtiong o (9 2

where the square matrices [A], [B]l, and [D] are defined in terms of

inner products evaluated over the aperture.

“Lep >] (63)

— ) t
[A] = [<Fx<i',ny;k'), Fxci,ny,k>>} R(1',0 k"), i‘“::.(i,ny,k}

il

[B] >] (64)

-1 o
[<“<i',ny,k'>, ”(i,ny,k>>1 [<“<i',ny,k'), %1, ,k)

_ -1 |
D1 = Tw 5 n ey, Ym0 G, m k), T, 071 (65)
y y y y

I11-4. Combingd Field Expressign

We can now combine Eqs. (38), (46), (48), (50), (52), and (54) to (56)
and write a combined field expression for the transformed vector f(r,s)
defined in Eq. (27) that holds inside the cavity, in the y > O half-space,

as well as in the apertuyre:

18




%(r,s) = 2 {&
ik
J#ny

2
(1,1, 1,5,

v v
T30 fe,g,0 ¢

+ Z ¥y (s) £ (r,s)
i,k (1,ny,k) ny
2
J y
where
B! (r,s) + )
X(l’ny’k) i’k
~ 1
Ui,n, k0 (F8) ¥ i,Zk'
£ s
fn (r,S) =i
y
2
a0 Vi
~" +
‘W(l’ny’k)(r’S) i'gk.
and
r“v
B +
X(l’ny,k)(r’S) i'§k'
. N
“(1,n ,k)(r’S) i'zkv
Em (r,s) =<
X
~ 1
1,010 (08
y
Wzi 0 k)(r,s) + )
Ty’ i k"
~
where A

(k" 31,00° PGk 31,K)

, and D

u
() + é(i,j,k)(s) f(i,j,k)(r)

s "
r) + G(i,j,k)(s) f(i,j,k)(r)}

+ 7o, :
X(l,ny,k

;o1
ik °
J=ny

)(S) fm (r,s) (66)
X

A<i"k';i,k) Fx(i',ny,k')(x’y’z)

HEMRRFTINS u(i',ny,kv)(x,y,Z)

?(67)

D(i',k';i,k) W(i',hy,kv)(x,y,Z) )

3
A(i':k';i,k) Fx(i',ny,k')(x’y,z)

B(i' ak' 3iLk) u(i' ’ny’k') (X$Ysz)
(68)

D(i"k';isk) w(i',ny,k')(x’}’sz) J

(i',k"34,k) are, respectively,

typical elements in the square matrices [A], [B], and [D] defined in

Egs. (63) to (65).

19



III-5. The Matrix FEquations

Preparatory to solving for the expansion coefficients &(i i k)(s),
. 2 2
B, . . ¥Y,. . d § . in Eq. (66 it is expedient
B(l,g,k)(S)’ Y(I’J’k)(s), an (i’J’k)(s) in Eq. (66), i xp
to arrange their values for the different indices in a column-matrix
form and represent them simply as &, B, ¥, and § respectively. Sub-

stituting Eq. (66) in Eq. (29) and taking the inner product of the

F u v
. . . f
resulting equation with respect to f(i,j,k)’ (1,4,k)° f(i,j,k) and
£ defined in Eq. (37) (with respect to f_ defined in Eq. (67)
(1stk> ny
when j = ny), we obtain the following matrix equation:
= ' | ' i — ! [ | RN
o ! RFU | QFV ! Fw & pFF ; o | Fv 0 5
___} m ! mn mn mno | m ! L
T T T T [ I -~ - 0T T T T
uf i uv = ] uu | uv
Rmn L0 i * | 0 i : 0 Pun [ Pon | 0 i
__.__.L.._.._____.__[..._,_._ e T el el Bl I
vF | ,vu | vv vw ~ vF | vu LAY v ~
2mn ! zmn i 2mn I o Y Pmn I Pin | Pmn ! Pm ¥
il e Tt Rt B et BN Rl it
YEL g g g 5 0 o 1 v bl
m | mn | | mn | “mn
T F ] 0 ]
q - e
- 1 0 .
Yl B %ara AP A et (69)
q 4 C(s)
q" 0
where C(s) is a column matrix
o , ] n
) i y
E(s)} = o
L
{<FX, s MX(S)>} s (70)

and Rm 's, pmn's, and q's are themselves matrices arising from inner

t

products. The expressions for an s, pmn's, and q's are given in the

Appendix. m and n are indices locating the position of a particular
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subsection over which an inner product is taken.

=}
it

i +'(j-—l)nX + (k-l)nxny (71)

=]
1

=i' + (' - 1) nX+ (k' - l)nxny , (72)

where n_ and ny are the numbers of subsections in the x and y directions
respectively. We note again that Eq. (69) is in fact a set of transformed

state equations in &, B, ¥, and J.
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IV. FIELD EVALUATION BY SINGULARITY-EXPANSION METHOD
= 7

IV=1. A Typical Equation for Expansion Coefficient

Although the component matrices in Eq. (69), as detailed in the

Q’Vu Q,VV vw

Appendix, appear highly complex, we note that those (R;Z, o’ Ymn? Ymn?

Fv uv _VvF _vu W wv

P Pan® Pun’ Pun’ Pan’ apd pmn) representing the coupling between cavity
and external fields because of the existence of the aperture are sparse,
having only a few nonzero elements. The unknown coefficient matrices
{a(s)}, {B(s)}, {7(s)}, and {8(s)} can be solved from Eq. (69). Typi-

cally an equation of the following form is obtained.

[Z(s)] {a(s)} = [f(s)] = [ ()} + 1R(8)) (73)

s x(i,ny,k

where [Z(s)] and [H(s)] are very complicated square matrices containing
&mn's, pmn's, and qmn's in Eq. (69), and {E(s)} is in general not the

same as {C(s)} in Eq. (70). However, because of the sparseness of many of
the component matrices, the numerical evaluation of [Z(s)] and [H(s)] is not
very difficult. This is especially so when the aperture is a marrow slot.
The equations for the other unknown expansion coefficients {B(s)}, {¥(s)},
and {8(s)} are of the same form as the equation for {&(s)} in Eq. (73).

In the following section the procedure for solving such an equa-

tion by the singularity-expansion methed is outlined.

IV-2, Solution by Simngularity Expansion

The singularity-expansion method for solving transient electro-

. . 13
magnetic boundary-value problems was first formalized by Baum. It
expresses the solution in terms of natural frequencies, natural modes and

coupling coefficients, and the time~domain response is a summation of
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singularity terms. The natural frequencies and natural modes are
independent of the incident-wave parameters which affect only the
‘coupling coefficients.

Consider Eq. (73) from which the typical expansion coefficient

matrix {8(s)} is to be determined. We write
(@) = 217 (RS E i, | ()] + KD . (74)
. b y H .
Let s, be the zeros ofv!i(s)l or the roots of the equation

det[Z(s)] = 0 . (75)

In circuit-theory terminology, [Z(s)] corresponds to the system
impedance matrix and s, are the natural frequencies. [Z(S)]—l can

be expanded in a partial-fraction form as follows:

IR ]
[F(s)1 ™t = 7 2 (7%)

S — 8
o a

where the constant square matrix [Ra] is the system residue matrix at

the pole Sy [Ra] can be written as the product of a natural mode vector

{Rz} and the transpose of a coupling vector {RZ}:11’13
m c,T
[R,1=1{R} (R} a7n
where {RZ} is a solution of the equation
[2(s )] {R)} = 0 (78)

and {Rz} is a solution of

T c
[Z(Su)] {Ra} =0,
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A close examination of the composition of the matrices [Z(s)] and
[H(s)] reveals that their poles coincide and therefore cancel., We have,

from Eqs. (74), (76) and (77),

RHRSYT L
(o)) = | —2 2= ()] S, &)+ RED (79)
o a y
Now define
[As) ] {é'mx<i,ny,£><5)} +{E() = RGs) V() (80)

where {Vo(s)} is the excitation vector when the incident wave is a pulse.

We can then write Eq. (79) as

) ®RIMRYT
{ags)? = z—"'g—_'—s‘;— N(s) {VO(S)}
- 3 .
= )} o i, (s) N(s) (81)
[»A s
where
c T,z
ﬁQCS) = {Ra} {VO(S)} (82)

is called the coupling coefficient.13 We note that N(s) itself may con-
tain poles in the finite plane, but this fact does not result in any
serious difficulty.

We are now in a position to write the expressions for the field
distributions within the cavity. From Eq. (38),

FX<X:Y9ZQS> = s g 5 &(i,j,k)(S) FX(i,j LK) (X,Yaz)

IO INNCRIO) | (83)
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which, in view of Eq. (81), becomes

‘F‘X(Xﬁ“zys) = g ﬁOL<s) {RE}T {Fx(i,j ,k) (X:Y:z)} (s - Sa)-l ﬁ(S)

- g i (e) ViG,y,2) (s = 8 )7F fiCs) . (84)
In Eq. (84),

vg(x,y,z)‘= {RZ}T (Fy (g g0 Gova)} (85)

is a natural mode for Fx. In a similar manner, we will get

E :
B (x,7,2,8) = ) #_(s) v V(x,y,2) (s - s )™t fice) (86)
y o ° o o
and
5 E -1 '
E (x,y,2,8) = ] fi_(&) v, “(x,y,2) (s =87~ N(s) ' (87)
5 © o o
E E
where vay and vaz are the natural modes for Ey and Ez respectively.

We know from Eq. (13) that Ex = 0.

The scattered fields outside the cavity in the y > O region can
be found from Egs. (46) to (53). When the incident waveform is given,
the time-domain field distributions can be determined by performing an

inverse Laplace transformation.
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V. CONCLUDING REMARKS

In this report we have formulated the problem of transient electro-
magnetic excitation of a rectangular cavity through an aperture by making
use of the induction theorem. New variables are introduced to convert the
governing second-order differential equation into a set of first-order
equations which correspond to normalized state equations. This conversion
will result in significantly faster convergence in the numerical solution.

The method of moments is employed to solve the equations subject to
the specified boundary conditioms. By dividing the cavity region into
subsections, the fields within the cavity are expressed in terms of
appropriate expansion functions with time~dependent coefficients. The
fields in the half-space outside the cavity are represented as super-
positions of plane waves. At the aperture, the cavity and external
fields are properly matched. Inner products are taken with testing func-
tions and the first—order equations are converted into matrix equations
containing the expansion coefficients as unknown column vectors. Evalu-
ation of these expansion-coefficient vectors is a necessary step prior to
the determination of field distributions. The procedure for evaluating a
typical coefficient vector by the singularity-expansion method is outlined.

In this work the quasi-static approximation is not used, and the
aperture is not required to be small. Because the internal and external
portions of the problem are solved simultaneously and the boundary con-
ditions at the aperture arelsatisfied, the effect of the reflections
from the cavity walls on the aperture field is taken into account.

To complete the study of the transient behavior of a cavity-

backed aperture, some numerical results would be highly desirable.
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One must then subdivide the cavity region, choose appropriate expansion
functions, form inner products to obtain the matrix equations, solve for
the expansion coefficients by the singularity—expansion method, and per-
form inverse Laplace transformation. Much computation is involved in
searching for the complex singularities, in finding the natural-mode and
coupling vectors, and in determining the coupling coefficients; but, given

time, these objectives are all within reach.
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APPENDIX ~ Expressions for Submatrices in Matrix Equation (69),

We list here the formulas for the matrix elements which appear in

Equation (69).

Fu
251
2
[<Fx(i,j,k)(x’y’z)’ 3y
Fv
(257
)
I<Fx(i,j,k)(x’y’z)’ 3y
3
+ .
X i"',k"
)]
+ Jz
Fw 3
Dot = IF(q, 1,0 0Y2)s 3, ¥y
FF
[pmn] - [<Fx(i,j,k)(x’y’z)’ - uoeoFx(i',j
[<Fx<i,j,k)<x’y’2)’ - UOEO
Fv
o1 =
0 5 3', 3" # ny,
[q"] = [<F (x,7,2), -
q = X(i,j,k) Ky¥sZ), UOQO
R
3x i”,k"
2
- D
3z iu??u

. V(it’jr kt)(st9Z)>] 5 i, 3" #n
s

- ' 9 s e
= (<Fx(i,j,k)(x’y’z)’ 3% u(i',j',k')(x’y’z)>] s Js 3] # ny

y

V(iy,jv,k')(xsysz)

Desn : X z)>1;3
i"gk" (l',k”;i',k')w(ln,ny’k“)( ) )>1
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B

1 ,j',k')(x’y’z)>] H

(i",k";i',k')u(i",ny,k”)(x,y’z)

3s 3 # ny

:’k1)(XsY:z)>} 3 3, 3° # ny

(A-1)

(A-2)

(A~4)

Zk”A(i",k";i' ,k')Fx(i",ny,k”) (x,y,z)>] H
3

i" s]&H

B

(A-5)

A(i",k";i',k')FX(i",ny,k")(x’y’z)

(A", k"1 k') u(i",n
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F
U] = T 5,10 G902 = 5 Frn g0 oy Govs2>1 5 35 47 4 ng D)
05 3,3 #ny
[227] = (4-8)
- [<u (%X,¥,2) ,~ 2 Z A F (X,7,2)>13 ﬁény
( ) 27 a X 1R (i",k";i',k') x(i"’n ,k") ’J s ’ .
y J —ny
uu, _ o ' )
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0 5 js j' % ny
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Pmn 3 ‘ ny
[<u( k)(X;Y:Z), Z RGN k')u(i",n ’k,,)(x,y,z)>]; B
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u
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" ox inzknA(i",k”;i',k')Fx(i",n RN T LS IR C A
’ y j' o= ny
. . < 1
. [<v( k)(x,y,z) By x(1 3 ’k,)(x,y,z)>], 3, 3" # n,
D ' (A-12)
)
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Fig. 1. A cavity-backed aperture problem.
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Fig. 2. Application of induction theorem.
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