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ABSTRACT

The space-time integral equation approach is extended to the solution
of the large body problem for bodies with edges. An improved technique is
developed for computing the smoothed impulse response of targets with edges
which allows a variable patch size and provides greater economy and efficiency
of solution than previously possible. The impulse response augmentation tech-
nique is then used to produce the total impulse response and the frequency
response over the entire spectrum. Results are obtained for a sphere-cap
flat-end cylinder and a right-circular cylinder.

The space-time integral equation approach is extended to the problem
of scattering from open, thin surfaces. The E-field boundary condition is
used to develop the space-time integral eguation, which in turn is solved
numerically by marching on in time. Smoothed impulse responses are obtained
using this technique for a square plate, a circular disc, and a parabolic
cylinder section. These computed results compare well with measurements
taken on the time domain scattering range. Smoothed impulse response meas-
urements are also included for a selection of other open, thin surface target
geometries. '

A solution technique is developed for the inverse scattering problem
using a space-time integral equation approach. This technique, which uses
an iterative solution scheme, is demonstrated on the sphere, sphere-capped
cylinder, and flat-end sphere-cap cylinder. The solution converges closely
to the actual target geometry in these cases.
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SECTION 1
INTRODUCTION

This document is submitted as the final report in response to the
requirements set forth in Contract No. F30602-73-C~-0124 between the Sperry
Research Center, Sudbury, Massachusetts, and the Air Force Systems Command,
Rome Air Development Center, Griffiss Air Force Base, New York. The primary
objective of this program, performed during the period 17 January 1973 through
16 January 1974, was to extend the technique for computing the impulse response

of smooth convex bodies to bodies which have edges and to open, thin surfaces.

In Sec. 2 the case of scattering from targets with edges is considered.
Improved numerical solution techniques are developed, described and applied for
computation of the smoothed impulse response for these targets using the spaceF
time integral equation. The resulting numerical techniques provide more accu-
rate, more efficient solutions for targets with edges. Smoothed impulse re-
sponse computations are presented for the case of the flat-end sphere-cap
cylinder and the case of the right-circular cylinder for numerous aspect angles
and for both TE and TM polarizations. The impulse response augmentation
technique was applied to these two target geometries for axial incidence. It
was found that only slight modifications were required.in the procedures that
had been developed for smooth convex targets:in order to handle the case of
targets with edges. Both the total impuise response and the frequency response
over the entire spectrum were computed for the flat-end sphere-cap cylinder
and the right-circular cylinder for axial incidence. The results are in good

agreement with what had been expected.

In Sec. 3 the results of additional time domain scattering range
measurements are presented. Measurements were taken to obtain the smoothed
impulse response of seven open, thin surfaces which include a square plate, a
rectangular plate, a circular plate, a corner reflector, a circular cylinder
section, a parabolic cylinder section, and a parabolic dish. An additional
processing step has been applied to the measured results presented in this
report in order to further reduce their noise content and to also facilitate

comparison with smoothed impulse response computations.
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Section 4 presents a detailed development of the numerical solution

of the space-time integrodifferential equation for the case of open, thin sur-
faces. The basic integrodifferential equation is of the Elfield type, and its
form provides some insight into the scattering mechanism itself. Solution
procedures are presented for flat rectangular plates, flat circular plates,
and convex rectangular plates. Smoothed impulse response computations are
presented for a flat square plate, a flat circular plate, and a parabolic
cylinder section. The results are compared with direct time domain measure-

ments and found to be in good agreement.

The inverse scattering problem is addressed in Sec. 5 from a direct
time domain viewpoint. A space-time integral equation is developed which in
principle yields the solution to the inverse scattering problem. An iterative
numerical technique for the solution of this inversion equation is developed,
described, and applied to four targets. The sphere, sphere-capped cylinder,
sphere-cap flat-end cylinder, and flat-end sphere-cap cylinder target geome-

tries are used to test the technique. Conclusions are presented in Sec. 6.
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SECTION 2

EXTENSION OF IMPULSE RESPONSE AUGMENTATION TECHNIQUE TO BODIES WITH EDGES
. (Ce L. Bennett and D. Peterson)

2.1 SPACE-TIME INTEGRAL EQUATION FOR BODIES WITH EDGES

- The space-time integral equation for bodies with edges is the same
as that used for smooth convex bodies without edges. However, the numerical

@ treatment is modified to accommodate a more accurate and efficient solution
procedure. Section 2.1.1 reviews the space-time integral equation approach
and the numerical implementation for smooth convex bodies without edges.
Section 2.1.2 describes the numerical solution procedure that has been devel-

oped during this contract for bodies with edges.

2.1.1 Review of Space-Time Integral Equation Approach

The space-time integral equation approach to the electromagnetic
scattering problem was first developed in 1968.l This approach to the solu-
tion of transient electromagnetic scattering and radiation problems consists
of formulating a time domain integral equation for the surface currents on the

‘ scatterer in such a way that the integral equation can be reduced to a recur=-
rence relation in time. This equation is then solved numerically for the sur-
face currents, which in turn can be used to compute the field at any point in

space, in particular the far field.

Reviewing this technique, the general scattering problem is shown in
Fige 1. 1In this problem there is a magnetic field ﬁi' incident on a conducting
body whose surface is S . This incident field sets up currents on the sur-
face 3 such that the ﬁ:field boundary condition is satisfied. These currents,
in turn, produce the scattered field H® . Once the surface currents have
been determined, the field at any point in space may be computed (in particular
the far field) and the problem is solved. The space-time integral equation
used here for these surface currentsl is derived by applying the ﬁ;field bound-
ary condition, and is thus sometimes referred to as an ﬁ-field integral equa-
tion. H-field integral equations are also sometimes referred to as Maue inte-
gral equations in recognition of A. W. Maue, who derived the first ﬁlfield

integral equation in the frequency domain.2

® ?



onducting

?ody}

FIG, 1 General scattering problem.
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The derivation of the'space-time integral equation which is used

1,3,4 This equation gives the currents on the surface

here appears elsewhere.
3 as a function of the incident field ﬁl' and the surface currents at other

points in space earlier in time:

- = _ ~ -3 - -‘1— J"A {'—1:- -];E-]—’-—», AR} ’
J(r, t) = 2an X H™ (v, t)+ 5 Ja, % R2 + 55T J(r’y ) x a_¢ dS (1)
S
T=1t=-R
!
where
T = position vector to the observation point
r'= position vector to the integration point
R=|r-7'
- -,
é\ =r—r
R R
t = time in light meters
$n = unit normal to surface at r .

In many applications, the quantity of interest is the far-scattered

fields The expression for the far-scattered magnetic field ;is is given by

=S _A agf;IzTZ} ~ ’
r H (ryt) = e I { > Xa, ds (2)
S

T=1t-R

where

the distance of the far-field observer from the target

H
1

the unit vector that points from the target to the far-field

>
i}

observer.
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For numerical solution of Eq. (1), the target surface is divided
up into curvilinear square patches and the current is computed at the center
of each of the patches by marching on in time. The solution is carried out
on the Cartesian components of the currents by using a numerical representa-
tion of Eq. (1). The integration over space and the differentiation over

time are both carried out numerically.

For an explicit numerical solution which requires no matrix inver-
sion, the scattering surface is divided into curvilinear patches of approxi-
mately equal area, with the space sample point at the center of each patche.
The spacing of these sample points (and thus, the size of the patches) on the
surface is chosen small enough to give both a good representation of the scat-
terer and also a good representation of the currents that exist on the scat-
terer. Next, the time increment At between the points in time at which the
current is computed must be less than the time it takes a wave to travel be-
tween the closest space points. This condition is necessary for stability in
an explicit solution procedure and also insures that the numerical procedure
can be carried out by simply marching on in time without resorting to matrix

inversion. The numerical solution may be represented with

- - 1 ——)
J(t) = Jpo(t) + 5= ZFEQz W, 4, (3)
4
where " -
Jl(t)
. T (t)
3(t) = 2

14




\ fEo -
) FEQ, W, 45, | = P o

FEG, = (§ + 5%) T

T <t - At
W, = the appropriate weighting vector
AS, = the area of patch 4

N = +the total number of patches.
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Since T <t -At , then the right-hand side of Eq. (3) is completely .
known if the solution is started initially and then marched on in time. Thus,
Eq. (3) represents the recurrence relation that gives the numerical solution
of Eq. (1). However, for this solution to be obtained, the minimum spacing
between space sample points must be greater than the time increment. This
implies that for efficient operation, the space sample points should be ap-
proximately equally spaced. This condition is easily satisfied for smooth
convex targets without edges. But for targets with edges, satisfying this
condition would require larger patch size in the vicinity of the edge, which
is inconsistent with the requirement that the current be adequately sampled
near the edge. What is really needed is a technique which sllows smaller
patch size in the edge region and at the same time permits a time increment
determined by the typical patch spacing. The next section presents a tech-

nique for accomplishing this goal.

2.1.2 Numerical Solution Technique for Bodies with Edges

This section presents a numerical technique which allows variable

patch size on the target and does not sacrifice efficiency, accuracy, or
stability in its implementation. If the spacing between patches becomes
less than the time increment At , then the numerical solution of Eq. (1)

may be written as

— - 1 —— 1 -~
J(t) = Jpo(t) + 5 ZFEQ‘Z W, 48,1 + 5= ZFJ& w, 8s, | J(t) (4)
P .
where
. . . 1 )
Fz = the portion of the numerical representation of <§ + 57 that

operates on E(t) . v
Equation (4) may be written in the form -

J(t) = G(t) + £ T(t) (5)

16




where

G(t) = J L E
G(t) = Jpo(t) + o ) FEQ, W, &S,
= i }
f-z[szzAsz:] .

Of course Eq. (3) reduces to the earlier expression given in Eq. (3)
if f is zero. The solution of this problem is termed explicit if f 1is
zero and implicit if f is nonzero. The solution to the explicit problem is
a recurrence relation in time and is obtained by a simple time stepping pro-
cedure. The solution to the implicit problem is also a recurrence relation
in timey but in addition requires a solution of simultaneous equations at each

time step.

The value of f 1s a function of the numerical representation used
for interpolation to obtain E(T) and BF(T)/BT together with the relative
value of the minimum space distance and the time increment At .« 1In the
past the numerical solution has been explicit, which for stability requires
that &t must be less than the minimum space distance. However, for bodies
with edges it is desirable to use relatively small patches in the vicinity of
the edge where the surface currents interact most strongly and have potential
large amplitudess over the remainder of the body the standard patch size is
used. With this geometry, efficient solution of the problem demands that the
time increment be larger than the minimum spacing of surface sample points.
This requires an implicit solution of Eq. (5) for stability, since f is
nonzero. The brute force approach for solving Eg. (5) is by means of matrix

inversion and is given by

Jt) = (1-8)"1 @) . (6)

However, this would have to be performed at every time point and would require
a large block of computer memory for its implementation. For these reasons

the matrix inversion approach is impractical for the solution of Eq. (5).

17



The approach chosen for the solution of Eq. (5) is that of iteration.
As a first estimate the current is taken to be

Fl. g . (7)

It is ihteresting to note that this gives the contribution to 3 due to the
incident field and the currents on all other patches whose spacing is greater
than At , and thus this first estimate gives a very good approximation to
the exact result. Next, Eq. (5) is used as a basis of the iteration formula,
where the value of 3 on the ith iteration is given in terms of 3 on the

(1 -1)* iteration by

Jt=G+s 3™t . (8)

For the numerical solution in this work, the simplest form of

interpolation was used to evaluate J(T) and 3J(T)/eT . Over the
interval t - 4t <7 <t , the function J(T) was assumed to be linear.

The function

—  J(71) BJ(T) (9)
FEQ = R oT
where
T = t - R .

which appears in Eq. (1) must be represented numerically. A linear inter-

polation of J(T) vyields

'a—"Tgﬂ = const

oT -

3=J(t)-R—J(IL

18




So that
FEQ = J(t)/R . (10)

Note that with this simple interpolation formula there is no contribution to
the G term in Eq. (B). Thus,

Foe L5

in Eq. (4).

At this point, it is useful to relate the iterative solution given
in Eq. (8) to the matrix inversion solution given in Eq. (6). The solution by

matrix inversion in Eq. (6) is written as

—_

F7=0-871tg .

Formally the solution to this equation may be written in terms of the expres-
sion

Fe (L+f+52454...) C (11)

which is valid and converges, provided Ifl <1l .
Consider now the iterative solution given in Egs. (7) and (8) as
Fl- ) ¢
7%= (1+6) C

732 (1+£+£%) G , etc. (12)

Thus, it can be seen that the iterative solution in the ith iteration gives

the first 1 +terms in a series representation of the matrix solution. This

19



should converge if f 1is less than unity, and the smaller f is, the faster

the convergence will be.

In the solution of targets with edges, the patch size (linear dimen-
sion) in the edge neighborhood was taken to be one-half the patch size over
the smooth parts of the targets. This yielded a value of f that ranged be-
tween 0.1 and 0.3 and provided very rapid convergence. Thus, for this work

only three iterations were necessary to converge to the solution.

In addition, in the numerical solution process the value of f is
zero for all patches for which the minimum spacing to other patches is greater
than At . For these cases, the first estimate is exact and no iterations
are required. 1In the numerical process, this fact is exploited and the in-

crease in computer time required to apply this technique is.minimal.

In summary, this technique for treating bodies with edges allows a
variable patch size over the target and provides a solution procedure which

yields accurate solutions efficiently and economically.

2.2 SMOOTHED IMPULSE RESPONSE COMPUTATIONS FOR BODIES WITH EDGES

The numerical solution of the space-time integral equation for bodies
with edges was carried out using the technique described in Sec. 2.1.2. 1In
addition, the self-term correction was also used in this solution to account
for the non-zero curvature in the patch on which the observer is located. The
following section presents results for a flat-end sphere-cap cylinder and for a
right-circular cvlinder. The incident pulse used for these computations was a

Gaussian regularization of an impulse given by

e(t/a) = & exp (na)*(t/2)%] . (13)

For these computations, the width parameter was taken to be

na =1

20




so that the base width of the incident pulse was approximately 4a .

2.2.1 Flat-End Sphere-Cap Cylinder

The geometry representation of the flat-end sphere-cap cylinder used
for the computations presented in this section is displayed in Fig. 2. This
target possessed a radius of a and an overall length of 5a. On the cylinder
body, there were 8 bands of width 0.475a with each band containing 7 patches
in the x > 0 space region. On the sphere cap, there were 3 bands of arc
width 30° with the bands containing 2, 6, and 7 patches, respectively. On
the flat end there were two major bands as can be seen in Fig. 2. In the edge
region, the patch size was chosen to be approximately one-half of the average
patch size. On both the cylinder body and the flat end a bandwidth of 0.24
was chosen for the edge region. The average standard patch size was approxi-
mately O.2a2 and the average edge patch size was approximately O.O5a2. The
minimum spacing between sample points (which occurred on edge patches) was
approximately O.l4a and a time increment of 0.3a was chosen for the computa-

tions.

The smoothed impulse response that results for the case of TE
polarization is displayed in Figs. 3 and 4 for angles of incidence that range
from 0° to 180° in 30° ‘increments. For 0° incidence, the initial part of the
return very closely approximates the derivative of the incident pulse or a
smoothed doublet. The return from the sides of the cvlinder is negligible.
The second negative pulse which appears is due to the return from the far
sphere-cap join region. Finally, the second positive pulse can be attributed
to a wave which travels around the rear of the structure. As the angle of
incidence increases from 0° to 90° the smoothed doublet becomes very smeared
out and the creeping wave return appears earlier in time after the first posi-
tive pulse, as expected. On increasing the angle of incidence still further
from 90° to 1800, the stability of size and shape of the initial pulse, par-
ticularly at 120°, 150°, and 180° should be noted. This initial pulse is the
specular return from the spherical end-cap, which doesn't change over this
range of angles and in fact is simply a smoothed impulse followed by a negative

smoothed step. At 180° incidence it is interesting to compare the result to

21



\
\
\
N- ——

L

[/
[ L L) -

o= ANGLE OF
. INCIDENCE
Ky

N
R
I

=

N
]
N
—

|
/"

FIG, 2 Numerical representation of a flat-end sphere-cap cylinder with .
radius a and length 5a.
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FIG. 3 Smoothed impulse response of flat-end sphere-cap cylinder with
radius a and overall length 5a for TE polarization (hori-
zontal scale: t/a=5/div.y vertical scales r H °(t /a) =0.1/div.).
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that which was obtained for 0° incidence. At 180° incidence, the initial re-
turn is a smoothed impulse followed by a negative step, whereas at 0° incidence
the initial return is a smoothed doublet. The return from the far end and the
creeping wave 1s larger for the case of 180° incidence than it is for 0° inci-

dence.

The smoothed impulse response that results for the case of TM polari-
zation i1s displayed in Figse. 5 and 6 for angles of incidence that range from
0° to 180° in 30° increments. The response for both 0° incidence and for 180°
incidence is identical to that obtained for the case of TE polarization due
the rotational symmetry of the scattering problem for these two angles of in-
cidence. Moving off from axial incidence, the effects of polarization become
very apparent. The time of the creeping wave arrival after the incident pulse
varies only slightly for TM polarization because the path of the creeping
wave transversal is along the cylinder length for all aspect angles. Also note
that the amplitude of the initial feturn at broadside (900) incidence is larger
in the TM case than in the TE case. In addition, at 90° incidence at
t/a ~ 2 a small negative pulse is observed which can be attributed to the far
edge of the flat end. Finally, the effect of waves traveling the length of
the cylinder can be seen for the TM case, especially at 600, 900, and 120°,

2.2.2 Right-Circular Cylinder

The geometry of the right-circular cylinder used for computing the
results presented in this section is displayed in Fig. 7. The radius of this
cylinder was taken to be a and the length to be 4a . This yielded a tar-
get with a length-to-diameter ratio of 2 to 1. For the numerical computation,
the surface of the target was divided into patches and the current was computed
at the center of each patch using the numerical technique described in Secs. 2.1.1
and 2.1.2. These computations were carried out only in the upper half x space
and use was made of the planar symmetry in the problem. The patch distribution
used for these computations is displayed in Fig. 7. The bandwidth of the stand-
ard patches on the ends was taken to be O.4a and on the cylinder body was taken
to be 0.5a. The bandwidth of the patches adjacent to the edge was taken on the
end to be 0.2a and on the cylinder to be 0.2%a. The average standard patch

size was approximately O.2Oa2 and the average edge patch size was approximately

25



+30

FIG. 5 Smoothed impulse response of flat-end, sphere-cap cylinder with
radius a and overall length 5a for ™ polarsization (hori-
zontal scalet t/a=5/div.; vertical scale: rH (t /a) =0.1/div.).
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' FIG. 6 Smoothed impulse response of flat-end, sphere-cap cylinder with
radius a and overall length 5a for TM polarsization (hori-
zontal scale: t/a=5/div.; vertical scale: r H (t /a) =0.1/div.).



FIG. 7 Numerical representation of right-circular cylinder geometry
with radius a and length 4a.
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O.O5a2. The minimum spaéing between edge patches was approximately 0.l16a and

the time increment chosen for the computations was 0.3a.

The smoothed impulse response of the right-circular cylinder that
results for the case of TE polarization is displayed in Fig. 8 for angles of
incidence that range from 0O to 90°. at o° incidence, the initial return is
identical to that obtained in Fige. 3 for the flat-end sphere-cap cylinder until
the effect of the far end has had time to travel to the observer. Again the
return from the far end of the cylinder is a second negative pulse which grad-
ually disappears as the angle of incidence becomes larger. Also, the second
positive pulse, which is due to the creeping wave, moves closer to the specular
return as the distance it must travel decreases from the length of the cylinder

at 0° incidence to the circumference of the cylinder at 90°.

The smoothed impulse response of the right-circular cylinder that
results for the case of TM polarization i1s displayed in Fig. 9 for angles of
incidence that range from 0° to 90° in 30° increments. The response at 0°
incidence is identical to that obtained for the case of TE polarization due
to the rotational symmetry of the problem for this angle of incidence. As the
angle of incidence increases from OO, it is interesting to note that the time
of the creeping wave return remains relatively constant for TM polarization.
This is due to the fact that the creeping wave travels along the length of
the cylinder for all angles of incidence. As the angle of incidence increases
from 30° to 90° the effect of traveling waves is more apparent than it was for
the TE case, as evidenced by the second negative swing at t/é > 10 .
Finally, it is also interesting to note that the return from the far edge of

the flat end can be seen at t/a ~ 2 for 90° incidence.

2.3 IMPULSE RESPONSE AUGMENTATION TECHNIQUE FOR BODIES WITH EDGES

The space-time integral equation approach solves the scattering prob-
lem directly in the time domain. This approach is valid for any excitationg
however, the most useful excitation has been found to be the regularized (or
smoothed) impulse given in Eq. (13). The response due to this excitation,
rOH S(’cf/a) s is the regularized (or smoothed) impulse response of the target

and is computed exactly with the space-time integral equation using the tech-
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FIG. 8 Smoothed impulse response of right-circular cylinder with radius

a and length 4a for TE polarization (horizontal scale:
t/a=5/div.; vertical scale: rOHS(t/a)=Oal/div.).
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FIG. 9 Smoothed impulse response of right-circular cylinder with radius
" a and length 4a for TM polarization (horizontal scale:
t/a=5/div.; vertical scale: rOHS(t/a)=O.1/div.).



niques described in Sec. 2.1l. This approach yields results for targets with
sizes up to several pulse widths or, equivalently in the frequency domain,

several wavelengths.5

A technique has been developed recently which uses the space-time
integral equation approach as the basis and extends the results to obtain the
impulse response and frequency response of an arbitrary target over the entire
spectrum.3 This technique has been demonstrated for several smooth convex
targets including the sphere, the prolate spheroid, and the sphere-capped
cylinder. The purpose of the sections which follow is to describe the exten-
sion of the impulse response augmentation technique to targets with edges.
Section 2.3.1 provides a review of the impulse response augmentation technique.
Section 2.3.2 presents the results obtained by applying it to the flat-end
sphere-cap cylinder for both 0° and 180° incidence. Finally, Sec. 2.3.3 de-
scribes the application of the technique to the right-circular cylinder and

presents the results which were obtained.

2.3.1 Review of the Impulse Response Augmentation Technigue

In order to simplify the notation in these sections the electro-
magnetic field variables are equated to their linear system counterparts as

described below:

H*(t/a) = e(t) = incident pulse

1]

roHIs(tf/é) - r(t) = smoothed impulse response

h(t) = impulse response

t/a  t = time

H* (ka)/a - E(w) = transform of e(+t)

rOH s(ka)/a = R(w) = transform of r(t)
H(w) = frequency response

ka » w = frequency




where

H* = incident magnetic field'intensity

H® = far scattered magnhetic field intensity
r, = distance of far field observer from origin
t/a = normalized time
ka = normalized frequency
a = characteristic linear dimension of target.

The scaling and normalization that is indicated above yields curves which are

independent of target size.

The impulse response augmentation technique, first suggested in
1968l and first demonstrated for smooth convex targets in 1973,3 deals directly
with the smoothed impulse response of the target in the far field. The smoothed
impulse response is computed using a space-time integral equation approach and
has vielded good results up to body sizes of several pulse widths or, equiva-
lently, up to body sizes of several wavelengths. The regions of slow variation
in the smoothed impulse response remain the same in the exact impulse responses
thus it is only necessary to determine the structure of the singular regions and
any other regions of fast variation. But the singular portions of the exact
impulse response that result from scattering by specular points on smooth con-
vex targets can be computed exactly and hence do not need to be computed by
solving the space-time integral equation. The impulse response augmentation
technique combines the smoothed impulse response, the known singular contri-
bution to the impulse response, and the theory of Fourier transforms to pro-
duce the total impulse response and the frequency response (system function)

of the target at all frequencies.

The impulse response augmentation technique is most easily under-
stood by considering the most basic approach to the deconvolution (or system

identification) problem. Figure 10 shows the functional diagram of a linear
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e(t)—= hit) — 1 (1)

FIG. 10 Linear system,
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system (in this case electromagnetic scattering by a target) that is char-
acterized by its impulse response h(t) or, equivalently, its system function

(or frequency response) H(w) . Of course,

h(t) @ H(w)

where © denotes Fourier transform. The excitation e(t) of the linear sys-

tem in this case is the regularized (or smoothed) impulse

2
e(t) = 7?_7 e'(nt)

(14)
which produces the regularized (or smoothed) impulse response r(t) of the

system. This response is given by

r(t) = e(t) * h(t) (15)

where ¥ represents a convolution.. In the problem being considered here,
e(t) is specified analytically and r(t) is computed by solving the space-
time integral equation. It is desired to find h(t) and/of H(w) + This is
the system identification or deconvolution problem.

One way to solve this problem, at least in principle, 1s to trans-
form Eq. (15) and rearrange to obtain

Rlw

H(w) = E(w

h(t) = F~ {H(w)} (16)

where

E(w) © e(t)
R(w) & r(t)

gl { } is the inverse Fourier transform.
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However, the estimate of the system response =r(t) that is computed contains
some uncertainty or noise, and thus, the transform of the computed smoothed
impulse response ﬁ(w) also contains some noise. In using Eq. (16) to com-
pute the estimate of the system function, it can be shown that this noise
grows exponentially,3 and therefore this brute force technique will not yield

valid large body results.

The impulse response augmentation technique is displayed in block
diagram form in Fig. 11. This technique first augments the smoothed impulse
response to remove the contribution from singular portions of the impulse
response that are known exactly. This produces the augmented smoothed impulse

response ra(t) that is given by
r (t) ==z(t) - elt) * £ (t) (17)

where fa(t) is a suitable augmentation function that contains the known

singular portions of the impulse response.

Next, the transform of the augmented smoothed impulse response,
Ra(w) s 1s computed and divided by the transform of the incident pulse to
vield the augmented frequency response, H;(w) « This function contains
noise which increases exponentially at frequencies above some value. However,
it is known that the augmented frequency response must go to zero with in-
creasing frequency. Thus, an estimate of the high frequency behavior of the

augmented frequency response, Ha(w) s 1s of the form

H(w) 30 <o
a c
i) = (18)
F(w) 3w 2 W,

where ®  is the boundary point and F{(w) is the high frequency estimate of
Ha(w) « The inverse Fourier transform of Ha(w) then yields the estimate

of the augmented impulse response, ﬂa(t) .
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FIG. 11 Impulse response augmentation technique.
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Finally, the inverse of the augmentation procedure is performed on
ﬁa(t) , which yields the estimate of the impulse response, h{t) . Moreover,
an estimate of the system function, H(w) , is obtained by applying the in-

verse of the augmentation procedure in the frequency domain to Ha(w) .

The augmentation function represents the contributions of the singu-
lar portions of the impulse response which are known exactly from optics
considerations. These singular portions may contribute to not only the high
frequency behavior but also to the low frequency behavior of the response, as
in the case of an impulse. These contributions are removed by subtracting
the effect of the augmentation function fa(t) from the response to yield
the augmented response as given in Eq. (17), which is repeated here for con-

veniences:

ra(t) r(t) - e(t) * fa(t) (17)

or

ha(t) h(t) - fa(t) .

Since the effect of the optics or high frequency contributions has been re-
moved, then it remains to estimate the manner in which the lower frequency

components approach zero with increasing frequency.

It has been found in previous work3 that the augmentation functions
should be chosen such that they account for the singular contributions to the
impulse response but at the same time possess a transform that contains only
linear phase variations. The functions which satisfy this simple criterion
are singularity functionals and psuedo-functions that contain only a single
discontinuity. Some functionals which possess this characteristic are the
doublet, the impulse, the step, and Hadamard's psuedo-functions.6 It has also
been found that the singular portion of the impulse response at the leading
edge region would be given by the physical optics approximation for aspect
angles where the response was polarization indeperdent, such as axial inci-

dence on rotationally symmetric targets.
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2.3.2 Flat-End Sphere-Cap Cylinder

This section describes the application of the impulse response aug-
mentation technique to the flat-end sphere-cap cylinder for axial incidence at
the two viewing angles. This target provides the logical extension of the
previous work3 which considered the circular cylinder with sphere caps on both
ends. The target geometry of this target is shown in Fig. 2 with its axis
coinciding with the z axis. Flat-end incidence corresponds to the 0° as-
pect angle and sphere-cap incidence corresponds to the 180° aspect angle.

This target is illuminated by an incident plane wave given by

é(na)2 (t/é-i—z/a)2

e(z,t) = j%-e (19)
where
na = 1
a = radius of cylinder .

This yielded an incident pulse width equal to the length of the cylinder body.

The smoothed impulse response that was computed by the space-time
integral equation as described in Sec. 2.1 is displayed in Fig. 12 for 180°
incidence. This represents the response of a sphere-cap flat-end cylinder.
The initial portion of the smoothed response and the impulse response is
identical to that obtained from the cylinder with two sphere caps due to the
identical nature of the problem over the initial time window. However, the
response from the far end of this target does differ from the far-end response

of the cylinder with two sphere caps.

Figure 13 shows the frequency response for this target at 180° in-
cidence that was computed by dividing the transform of the smoothed impulse
response in Fig. 12 by the transform of the incident pulse. This frequency
response is valid up to a ka of approximately 3.5, after which the numerical

noise increases very rapidly. The ripples that appear in this response prior
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FIG. 12 Smoothed impulse response of a flat-end sphere-cap cylinder
with radius a and overall length 5a at 180° incidence.
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FIG. 13 Frequency response of a flat-end gphere-cap cylinder with radius
a and overall length 5a at 180" incidence.
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to ka of 3.5 are due to the interference between the return from the near .
end of the target and the return from the far end of the target.

In previous work3 it was found to be convenient to divide the axial
response of a cylinder with two sphere caps into two parts and consider each
section separately. It is also convenient to use the same procedure for the
cases presented in this and the following section. For the case of this tar-
get, the results for the front section are identical to those obtained from

the cylinder with two sphere caps3 and so only the results are presented here.

The smoothed impulse response of the front section was defined to
be that part of the response in Fig. 12 that occurs before t/a = 1.8 . The

augmented frequency response that results using the augmentation function
£ (t) = & 6(t/a+2) - = u(t/a+2) (20)
al T2 4

is displayed in Fig. 14.

The high freqﬁency portion of the augmented frequency response was

given by
~ (o) AO
H . (w) = -—7— exp(ib ) 3+ w>uw 21
al 0.)3 2 Q ? C ( )
where
w = 2,000
c
bo = 1.619
Ao = 0,213

and the resulting high frequency estimate is shown in Fig. 14.

The impulse response hl(t) due to this portion of the return is
displayed in Fig. 15. Note that the impulse response is time limited and that

it has a negligible precursor.

42




241t
!
o 1.6t .
> —  From smoothed impulse response
o --—  |/w®? high frequency estimate
=
o ot
0.8 .
/\} |
0 R . I // asn
0 2.5 : 5.0 7.5
ka
(a) Amplitude
0 25 ka 5.0 7.5
- - - - - > ot - " - — N
O — — T\F .... )
S —— From smoothed impulse response
x —— Constant high frequency estimate
S
-20
-40

(b) Phase

FIG. 14 Augmented frequency response of the return due to the front part
of the flat-end sphere-cap cylinder at 180° incidence.
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FIG, 15 Response of the return dueoto the front part of the flat-end
sphere-cap cylinder at 180" incidence.
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The smoothed impulse response of the far section was defined to be
that portion of the response in Fig. 12 that occurs on or after t/a = 1.8 .
The augmentation function for this return is zero, since no specular points
contribute to this portion of the response. Both the amplitude and phase of
the augmented frequency response is displayed in Fig. 16. It is assumed that
this response is due to both a return from the rear edge of the target and
also a return due to a wave traveling around the rear of the target. The
amplitude of the contribution due to the wave traveling around the rear was
taken to be the exponential form of a creeping wave.3 The amplitude of the
return from the rear edge was taken to be 1/@5 + The phase in both cases
was assumed to be linear. Thus, the form of the high frequency estimate for

the augmented frequency response is

\

- _ V3 . A . .
Ha2(w) = A exp(-Blu> ) exp(mel-fbl) + ;372 exp(mez-FJbz); w > W, . (22)

The parameters in Eq. (22) were chosen in the following manner:

W, = approximate value of frequency at which the first minimum in
’ amplitude occurs
ml = the time at which a wave traveling around the rear of the

cylinder would appear in the response

Bl = the coefficient for the creeping wave of a sphere
b2 chosen such that the time response is causal
My = <@(wl) - b2>/m1

by = o(w) - m ~m

(S
it

o =@ +1/{my-m)

Al & A2 chosen such that

I:Iaz(wl) = Hy ()

0.3 .

it

Ha2(w2)
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FIG., 16 Augmented frequéncy response of the second part of the flat-end
sphere-cap cylinder response at 180" incidence.
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Carrying out the above procedures yields the following values for these

parameterss

wl = 33.436
m = -6.000
bl = 0,241
w, = 4.912
m, = -3.872
b, = - 51/4

lHaQ(wl)[ = 0.095

|1, ,(w,) | = 0.300
Al = 3.220
Bl = 2,051
A2 = 00446 .

Substituting these values into Ege. (22) yields the estimate of the high fre-
quency portion of the augmented frequency response shown by the broken line in
Fig. 16.

. The impulse response of the second part of the return from the sphere-
cap flat=-end cylinder is displayed in Fig. 17. Note the creeping wave peak at
t/é - 6 . The return due to the far end appears as a sharp negative swing at
t/a = 3.9 , which is slightly sooner than would be expected. The form of this
portion.of the return is 1/(t -vlzo)l/2 » where t_ 1is the time of the singu-
larity.

Finally, the two portions of the impulse response are combined and
the resulting total impulse response is displayed in Fig. 18(a). The total
frequency response is shown in Fig. 18(b). The fast variation in the response
is due to the interference between the specular return and the return from the
far end. The interference between the join return and the creeping wave re-

turn is also evident in the form of an amplitude modulation.oof the fast ripples.
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FIG. 17 Impulse response of the far end of the flat-end sphere-cap
cylinder at 1800 incidence as computed with the impulse

response augmentation technique.
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FIG. 18 Response of the flat-end sphere-cap cylinder at 180° incidence
as computed with the impulse response augmentation technique.
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The smoothed impulse response that was computed by the space-time
integral equation as described in Sec. 2.1 is displayed in Fig. 19 for 0°
incidence. This represents the response of a flat-end sphere-cap cylinder.
The initial portion of this response approximates the derivative of the inci-
dent pulse, as predicted by the physical optics approximation. There is neg-
ligible return from.the sides of the cylinder. Next there is a negative pulse
from the join region of the far sphere-cap, which is followed by the creeping

wave return at t/a = 11.2 .

The frequency response of this target computed.by dividing the trans-
form of the smoothed impulse response by the transform of the excitation is
shown in Fig. 20. This frequency response is valid up to approximately ka =
3.5 , after which the numerical noise increases very rapidly. The ripple
which appears before this point can be attributed to the interference between
the specular return and the return from the far end. The effect of the doublet
in an impulse response can also be seen in this figure as a linear function

increasing with ka . -

Again it is convenient to divide the response into two parts; the re-
turn from the near end of the cylinder and the return from the far end. The
smoothed impulse response of the front section was defined to be the part of
the response in Fig. 19 that occurred before t/a = 1.8 . This point in time
was chosen to be the point where the response possessed a zero crossing. The

augmentation function used for this response is given by

1
fal(’c) = D8 (t/a -T,) + pza(t/a -Tz) + Vzv('t/a -Tz) (23)
where
-1/2
v(t =T ) = (t/a -Tz) u(t/a -Tz)
T. = -4,000
z
D, = 1/2
P = 0.141
VA
V = -00035 .
z
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FIG, 19 Smoothed impulse response of a flat-end sphere-cap cylinder
with radius a and overall length 5a at 00 incidence,
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The coefficients for the impulse and the v function were computed using the
augmented smoothed impulse response in the vicinity of t/a = -4 . The im-
pulse and the v function were included as part of the augmentation function
as a result of a study on the far fields produced by currents in the vicinity
of edges. Using the theoretical currents in the neighborhood of a 90° wedge
yields both an impulse and a v function in the leading edge of the far-field
impulse response. The amplitude and phase of the augmented frequency response

are displayed in Fig. 21.

The high frequency portion of the augmented frequency response was

given by
- JT . . '
Hal(w) = U, ;575 exp(meo + 3 bJ 3w > W (24)
where
w = 4,173
c
b, = -31/4
m = 2,753
o)
U_ = 0.379 .

The value of bO was specified to give a causal time function and w, was
chosen such that the phase was still in the linear region: Next, m and Uz
were computed such that both the amplitude and phase of Hal(w) and Hal(w)
are equal at W, o The resulting augmented frequency response is shown in
Fig. 21.

The impulse response ﬁl(t) due to this portion of the response is
displayed in Fig. 22. The doublet and impulse appear initially in the response
at t/a = -4 , as expected. Subsequently, there is a negative peak at approxi-
mately t/a = 02.75 which could be due to a wave traveling across the front
face of the cylinder, although the timing indicates it does not travel across

the middle of the front face. Again note that the impulse response is time
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FIG, 21 Augmented frequency reSponseodue to the front part of the flat-
end sphere-cap cylinder at O incidence.
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FIG, 22 Impulse response of the return due to the front part of the
flat-end sphere-cap cylinder at 0° incidence.
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limited and possesses a negligible precursor.

The smoothed impulse response of the far section was defined to be
that portion of the response in Fig. 19 that occurs on or after t/a = 1.8 .
The smoothed impulse response that results is nearly the same as that obtained
for the far section of the cylinder with two sphere caps. This is somewhat
surprising, since it indicates that the effect of the front-end currents on
the response due to the far end is negligible. Thus, the technique and results
used in the previous work3 for the far end of the sphere-capped cylinder apply

here for the far end of this target.

The augmentation function for this return is zero, since no specular
points contribute to this portion of the response. Both the amplitude and
phase of the augmented frequency response are displayed in Fig. 23. The form
of the high frequency estimate for the augmented frequency response is the
same as that used in previous work3 for the far end of a sphere-capped cylinder

and is given by

. l A
_ nal/3 . . 2 . .
H (®) = A; exp(-B,w™/~) exp(jom, +34) + 7}3 5 exp(Jum, +3b,) 5 @ > w, «  (25)

The parameters in Eq. (23) were chosen in the following manner:

w, = the approximate value of frequency at which the first minimum

in the amplitude response occurss this was chosen

¢, = the phase at ®,
moo= 9,/u,
bl = 0
tj2 = the time at which the second join return would first appears
this was specified .
my = "t
wy = w, + ﬁ/(m2 - ml)
by =m - (my - m) a,
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FIG, 23 Augmented frequency response of the second part of the flat-end
sphere-cap cylinder at 0° incidence.
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bl = the coefficient for the creeping wave of the sphere

Al & A2 chosen such that

§a2(w2) = Hyo(w))

~

I_15:12(%)

il

0.210 .

Carrying out the above procedures yields the following values for these param-
eters:

wy = 2.372
my = -7.289
b, = 0
wy = 3.328
m, = -4,000
b, = -4.661

|H 2(w2)l = 0.173

()| = 0.210
Al = 3.656
B, = 2.0%1
Ay, = 0.283 .

Substituting these values into Eq. (2®'yiélds the estimate of the high fre-

quency portion of the augmented frequency response shown by the broken line
in Fig. 23.

The impulse response of the second part of the return from the flat-
end sphere-cap c¢ylinder at 0° incidence is shown in Fig. 24. Note the creeping
wave peak at t/a ~ 7.3 . The return due to the far end appears as a negative
swing at t/a = 4 , as expected. The form of this portion of the return

would be expected to be (t -leo)l/2 s Where to is the initial time of the
return.
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FIG. 24 Impulse response from the second part of the flat-end, sphere=-cap
cylinder at 0° incidence.
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Finally, the two portions of the impulse response are combined and

the resulting total impulse response is displayed in Fig. 25(a). The total

frequency response is shown in Fig. 25(b). The fast variation in the frequency
response is due to the interference between the return from the front end and
the return from the far end. The slight modulation can be attributed to the
interference between the creeping wave return and the far edge return. Finally,
the presence of the doublet in the impulse response is apparent as a linearly
increasing frequency response such that at higher frequencies this effect

dominates the response.

2.3.3 Right-Circular Cylinder

This section describes the application of the impulse response aug-
mentation technique to the right-circular cylinder for axial incidence. The
target geometry is shown in Fig. 7 with its axis coinciding with the z-axis.
This target is centered at the origin and has a length-to-diameter ratio of
2:1. For the smoothed impulse response computation the target was illuminated
by the incident plane wave given in Eq. (19) with a width equal to the length
of the target.

The smoothed impulse response that was computed by the space-time
integral equation as described in Sec. 2.1 is displayed in Fig. 26 for axial
incidence. The initial portion of the return approximates a smoothed doublet
and is identical to the initial response of the flat-end sphere-cap cylinder
at 0° incidence. Again there is negligible return from the sides of the c¢cylin-
der due to its symmetric nature. The return from the far end of this target
can be attributed to both the far edge and to the wave traveling around the
backside. It is interesting to note that the portion of the return from the
far end is nearly identical to that obtained from the far end of the flat-end
sphere-cap cylinder at 180° incidence. This indicates that the currents which
are set up on the front end of the target have little effect on the far field
response of the return from the far end of the target. Because of the above
considerations, it should be obvious that the response from the front end of
the cylinder is identical to that already computed for the flat-end sphere-
cap cylinder at 0° incidence. The response from the far end is very similar
to that already computed for the far end of the flat-end sphere~cap cylinder
at 180° incidence;
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FIG. 26 Smoothed impulse response of a right-circular cylinder with
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Shown in Fig. 27 is the frequency response of this target, which was
computed by dividing the transform of the smoothed impulse response by the
transform of the incident pulse. The frequency response shown here is valid
up to approximately ka = 4 , beyond which the numerical noise increases
very rapidly. The ripples that appear in the response before this point are
due to interference between the return from the near end and the return from
the far end of the cylinder. The linear increase in this response is attrib-

uted to the doublet that appears in the leading edge of the impulse response.

For application of the augmentation technique, the response in
Fig. 26 was divided into two parts at t/é = 1.8 . The response for the
first part is identical to that given in Sec. 2.3.3 for the front part of
the flat-end sphere-cap cylinder at 0° incidence. The results are summarized

here for convenience. The augmentation function was given by

o gl
£,,(t) =D8"(t/a-T)) + P,6(t/a -T,) + Vv (t/a-T)) (23)
where
v(t -T,) = (t/a -Tz)'1/2 U(t/a -T,)

T_ = =-4.000
z

D, = 1/2

P = 0.141
Z

V = -00035 .
Z .

The high frequency portion of the augmented frequency response was given by

. o ey e
H,(w) =1, ;3772 exp(jum  +3b)) 3 Fw> o (24)
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where

C
b, = -31/4
m = 2.733
o
U = 00379 .

Figure 21 shows the augmented frequency response and Fig. 22 displays the
impulse response due to the front part of this target.

The application of the augmentation technique to the second portion
of this response i1s identical to that used for the far end of the flat-end
sphere-cap cylinder at 180° incidence, which was described in Sec. 2.3.2.
Hence, only the results are summarized here. The augmentation for the far
end of this target was taken to be zero. The high frequency estimate of the
augmented frequency response is given by

~ A
_ n &/3 . . 2 . e >
HaQ(w) Al exp( Bl )exp(mel-+Jbl)-+;;7é exp(me2-+3b2), ©>w (22)
where
wl = 3.313
ml = =-6.000
bl = =0,357
w2 = 4,864
m2 = =3.975
b, = -5m/4
lHa2(wl)| = 0.169
|Ha2(w2)[ = 0.300
Al = 2,305
Bl = 2,051
A2 = Oc 504 .
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On comparing these values with those obtained for the flat-end sphere-cap
cylinder at 180° incidence, most parameters are nearly the same. However,
the amplitude of the creeping wave return seems to be approximately 45 percent

larger for the cylinder with the sphere cap.

Finally, the two portions of the impulse response are combined and
the resulting total impulse response for the right-circular cylinder is dis-

played in Fig. 28(a). The total frequency response is shown in Fig. 28(b).
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SECTION 3
TIME DOMAIN SCATTERING MEASUREMENTS ON OPEN, THIN SURFACES
(C. L. Bennett and D. Peterson)

3.1 DESCRIPTION OF MEASUREMENTS

The functional block diagram of the scattering range is shown in
Fig. 29. The system signal source is a high-voltage switch which generates .
a 300 V step function with a risetime less than 100 ps. The signal is
radiated, virtually undistorted, from a wire transmitting antenna protruding
through a circular ground plane 20 feet in diameter. This wave illuminates
the target and the resulting scattered waveform is received on a coaxial
horn antenna, which essentially smoothes and differentiates the signal and
thus provides the smoothed impulse response of the target. The received
waveform is sampled by a 12 GHz oscilloscope that has been triggered by the
initial pulse and whose sampling gate deflection is under the control of a
small instrumentation computer. Unprocessed data are displayed on the oscil-
loscope CRT while the sampled-and-held waveform is passed through a low-pass
filter, digitized, read into the computer, and stored on magnetic tape auto- ‘
matically. This system has been designed to correct for long-term timing
drift and/or amplifier drift. In addition, the waveforms are stored in such
a way that they are ready for the subsequent operations of averaging (to re-
move short-term noise) and baseline processing. The effects of a time vary-

ing baseline are subtracted from measured waveforms to improve system accuracye

The salient characteristics of the range are the speed and simplic-
ity with which multi-octave frequency~domain data can be obtained. These
advantages accrue because the time-domain scattering range yields an "uncon-
taminated" interval of time between the arrival of the direct wave and the
arrival of unwanted reflections. This is most easily explained by consider-
ing the sketch in Fig. 30, which shows the relative location of the elements -
on the ground plane. The transmitted signal travels outward from the base
of the wire antenna and is received at R at time to = d/b (where ¢ 1is
the speed of light). The outgoing wave reaches the target at t = r/c s
is reflected, and arrives at the receiver at t) = (2r +d)/c = to + (2r/c) .
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29 Functional block diagram of video time domain scattering range.
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The targets are usually located anywhere from 2 to 5 feet from the trans-
mitting antenna; therefore, target returns lie in the region that extends
from 4 ns to 10 ns after the incident pulse. The response due to reflection
‘from the tip of the antenna and the edge of the ground plane occurs approxi-
mately 15 ns after the incident pulse. The "clear window" which exists be-
tween 10 ns and 15 ns is required because many of the targets are highly dis-
persive and their response will extend far beyond the specular reflection.
The entire region between the direct transmission and the table edge response
forms a convenient time "window" to view the target response and allows one
to "gate out" (in time) unwanted reflections. Thus, undistorted transient
target responses can be viewed without resorting to elaborate and expensive
anechoic chambers. In addition, a single time-domain measurement obviates
the requirement for tedious measurement of the amplitude and phase responses

at many frequencies.

The accuracy of the measurement system has been estimated for the
results presented in this section. The peak of the incident pulse as measured
on the sampling oscilloscope 1s approximately 400 mV, and a typical target re-
sponse has a peak value in the vicinity of 10 mV. When using the 10 mV scale
on the sampling oscilloscope, the standard deviation of the sample mean is
estimated to be

Cm= = 005 mV
v

if 16 scans are averaged. Thus, the estimated standard deviation of the sam-

ple mean v is in the vicinity of 5% of the peak value of the target response.

In addition, the measured responses were further processed by means
of a convolution procedure to obtain the response due to a Gaussian shaped in-
cident pulse rather than the approximate smoothed impulse used in the actual
measurements. Figure 31 displays the actual measured incident pulse along with
the smoothed Gaussian pulse that was used in the convolution process. The
frequency spectrum of these two pulses is displayed in Fig. 32. The time

domaln expression for the Gaussian pulse is given by
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FIG., 31 Incident pulse (horizontal scale: 0.5 ns/div.; vertical scale:
100 mV/div.).
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FIG. 32 Spectrum of incident pulse.
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e(t) = Eo ;ﬁ-exp [-ai (t"to)2j

and the frequency domain expression is

E(w) = E, exp[- w2/(2an)2] exp(-jwto) .

The amplitude coefficient EO was set equal to the dc value of the measured
incident pulse. The width coefficient a ~was obtained by requiring that the
50% value of IE(w)I occur at the same point in frequency as the 50¥% value of
the magnitude of the transformed measured incident pulse. The width of the re-
sulting Gaussian pulse becomes 0.59 ns or approximately 7 inches. An added
benefit of this process is the reduction of high frequency noise in the response

where no signal is present anyway.

3.2 RESULTS '

In previous studies,3’7 the smoothed impulse response was computed
for target geometries that included the sphere, right-circular cylinder, right-
square cylinder, sphere-capped cylinder, cube, sphere-cone sphere, UES satellite
modél and SSS satellite model. Under the present contract, responses were meas=-
ured for a number of open, thin surfaces. The results of these measurements on
seven different targets are summarized in Table 1. The square plate, rectangular
plate, circular disc and corner reflector. target geometries are displayed in
Fig. 33. The circular cylinder secticu, the parabolic cylinder section, and the
parabolic dish target geometries are shown in Fig. 34. The smoothed impulse
responses which are displayed in this section are due to the incident smoothed

impulse shown in Fig. 31(b), which has a width of 0.59 ns. .

In Fig. 35, the smoothed impulse response (in a backscatter direction)
over an 8 inch square plate is shown for four angles of incidence. In this case,
the image plane is normal to the face and to the edges of this flat plate. For

0° incidence, the initial return appears as a differentiation of the incident
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Object Shape
Class

8" X 8" Square Plate

4" x 8" Rectangular
Plate

8" Diameter Circular
Disc

4" x 8" Corner Re-
flector

8" x 8" Circular Cyl-
inder Section

+ J2rx-x2 y 2=8"

r = 5"

It

Y

8" x 8" Parabolic Cyl-
inder Section

y = vV8x

z = 8"

8" Parabolic Dish

/yP & 2% = /Bx

Summary

Image

Plane

Normal
& edge

Normal

Normal

Normal

Normal

of

to

to
to

to

to

TABLE 1

Measured Waveforms

face

8" face

4" face

face

apex

Coincident.with

apex

Normal to axis

Normal to axis

Normal to face
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Polari=-

zation

™

™
™

Aspect
Angles
0%, 30°, 60% 90°

0°, 30°, 60° 90°
0 0] 0
0%, 30°, 60° 90°
(o} 0 (o} (¢}
0%, 30°, 60°, 90
0%, 30° 60°, 90°
120%, 150°, 180°
0%, 30°, 60°, 90°
120% 150°, 180°

0%, 30°, 60°, 90°
120°, 150°, 180°

0%, 30°, 60°, 90°
120°% 150°, 180°

0°, 30°, 60° 90°
120° 150°, 180°

No. of
Waveforms
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8" X 8" SQUARE PLATE

4"x 8" RECTANGULAR PLATE

8" DIAMETER DISK

90° CORNER REFLECTCR

FIG, 33 Target geometry of 8" x 8" square plate, 4" x 8" rectangular plate,
8" diameter disk, and 90° corner reflector.
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CIRCULAR CYLINDER SECTION

PARABOLIC CYLINDER SECTION

PARABOLIC DISH

FIG. 34 Target geometry of circular cylinder section, parabolic cylinder
section, and parabolic dish.
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FIG, 35 Smoothed impulse response of an 8 inch-square plate with image
plane normal to face and edge for TM polarization (horizontal
scale: 0.5 ns/div.; vertical scale: 10 mV/div.),
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smoothed impulse. This is followed approximately 0.8 ns later by a positive
pulse which represents the effect of the creeping wave on the target. For 30°
incidence, we first note a positive pulse from the near edge of the plate.

This is followed 0.8 ns later by a direct return from the far edge of the plate.
Finally, the return from the creeping wave at the far edge appears at approxi-
mately 1.2 ns after the first positive pulse. Moving on to 900, again a posi-
tive pulse is noted from the near edge of the plate. At a time of 1.6 ns later,
a negative pulse is noted, which is the return from the far edge of the plate.
The second positive pulse is due to traveling waves set up on the plate which

decay rapidly with time.

In Fig. 36, the smoothed impulse response of a 4 X 8 inch plate is
shown for the case where the image plane is normal to the face and to the 8
inch edge. This provides the response for the case of TE polarization. For
0° incidence, we again note the initial part of the response represents the
derivative of the incident smooth impulse. Again, this is followed by the
creeping wave, which appears 0.8 ns later. It is interesting to note that the
timing of this creeping wave is the same as it was for the 8 inch square plate.
This indicates that the creeping wave is traveling in the 8 inch direction of
the plate. It is also interesting to note that the amplitude of the smoothed
doublet in this response is approximately one-half the amplitude of the smoothed
doublet that was obtained for the 8 inch square plate. For 60° incidence, the
first positive pulse represents a return from the near edge. This is followed
by a negative pulse approximately 0.7 ns later, which can be attributed to the
return from the far edge.éf the plate. The second positive pulse is due to.
the traveling waves which were set up in the long dimension of the plate. At
90° incidence, the initial positive pulse is due to the return from the near
edge of the plate. At approximately 0.8 ns later, a very small negative pulse
can be noted which is attributed to the return from the far edge of the plate.
The second positive pulse again is due to the traveling wave which is set up

on the plate and which decays very rapidly.

Figure 37 displays the smoothed impulse response of the 4 X 8 inch
rectangular plate where the image plane is normal to the face and to the short
edge of the plate. These responses represent the case of TE polarization

for the incident wave. At 0° incidence, the differentiation of the incident
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FIG, 36 Smoothed impulse response of 4 x 8 inch rectangular plate with
image plane normal to face and 8-inch edge for TM polarization
(horizontal scale: 0.5 ns/div.; vertical scale: 10 mV/div.).
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FIG, 37 Smoothed impulse response of 4 X 8 inch rectangular plate with
image plane normal to face and 4-inch edge for TM polarization
(horizontal scale: 0.5 ns/div.:; vertical scale: 10 mV/div.).
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pulse again appears as a smoothed doublet. For this case, the creeping wave
return appears approximately 0.4 ns after the zero crossing of the smoothed
doublet. This is because the creeping wave now travels along the short dimen-
sion of the rectangular plate. At 90° incidence, the first positive pulse is
due to the return from the near edge of this plate. We note that its ampli-
tude is down substantially from what it was in Fig. 36 for the TM case.
This is due to the fact that the polarization is now parallel to the short
side of this plate, and the actual length of the scatterer which the incident
wave gees 1is only 4 inches. This positive pulse is followed by a negative
swing which represents the traveling wave that is set up on the plate and
which decays very rapidly in this case. At approximately 1.6 ns after the
first positive peak, a second positive peak occurs which can be attributed

to the return from the far edge of this rectangular plate.

In Fig. 38 the smoothed impulse response of an 8 inch diameter disc
with image plane normal to the face is shown for various angles of incidence.
For 0° incidence, the first portion of the return again appears as a smoothed
doublet. This is followed approximately 0.8 ns later by a positive pulse
which represents the creeping wave that travels around this target. At the
remaining three angles of incidence, the first positive pulse is due to the
return from the near edge of the disc. This is followed by a negative swing
as the currents decay near this leading edge. The second positive pulse that
appears in the three remaining angles of incidence moves further away from
the first pulse as the angle increases. This is due to the fact that the
distance which the creeping wave, or traveling wave, on the surface has to
travel increases as the angle of the incidence increases. At 300, the pulse
appears approximately l.2 ns after the first pulse. At 600, the second pulse
appears approximately l.4 ns after the first pulse. And finally, at 90° the

second pulse appears approximately 1.6 ns after the first pulse.

In Fig. 39, the smoothed impulse response of a two-dimension corner
reflector with the image plane normal to the apex of the corner reflector is
shown for various angles of incidence. The axis length on this corner re-
flector is 8 inches and the width of each plate is 4 inches. These responses

are for the case of TM polarization, i.e., the incident E—field parallel
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FIG. 38 Smoothed impulse response of 8-inch diameter disc with image plane
normal to face and for TM polarization (horizontal scale:
0.5 ns/div,; vertical scale: 10 mV/div.).
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FIG. 39 Smoothed impulse response of 4 x 8 inch corner reflector with
image plane normal to apex for IM polarization (horizontal
scale: 0.5 ns/div.; vertical scale: 10 mV/div.).
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to the axis of the corner reflector. The initial return at 0° incidence does
appear to approximate a smoothed doublet as the first order of theory would
predict. However, there is obvious smearing of the smoothed doublet present.
For example, if one compares the width of this smoothed doublet in Fig. 39
with the width of the smoothed doublet that appears in Fig. 38 for 0° inci-
dence on the disc, then one sees the impact of this smearing. The second pos-
itive pulse for this angle of incidence again can be attributed to a wave
which travels around the rear of the corner reflector. This positive pulse
appears approximately 0.8 ns after the zero crossing of the smooth doublet.
As the angle of incidence increases from 0° to 900, the returns from the near
plate of the corner reflector and the far plate of the corner reflector be-
come more separated. At 90° incidence, the first pulse can be attributed to
the near edge of the near plate. The negative pulse which appears approxi-
mately 1.2 ns after this first positive pulse can be attributed to the far
edge of the far plate. This is followed by a second positive pulse which can

be attributed to a wave that travels around the back of the corner reflector.

In Fig. 40 the smoothed impulse response of the corner reflector for
the case of TM polarization is shown for angles of incidence from the back
side of this target. As the angle of incidence increases from 90° to 120°
and then to 15O?,Lthe”initial,portion of the smoothed impulse return appears
to approximate a smoothed doublet, especially at 120° and 1506T—7This is to be
expected because the angle of incidence is becoming nearly normal to one side
of the rear plate. At'l8OO, the first positive pulse is due to the return
from the apex. The return from the far edges of the sides appears approxi-
matéiy 0.6 ns later as-.a negative pulse. For this angle of incidence, the

wave which travels around the rear of the target becomes smeared.

In Fig. 41, _the smoothed impulse response of the corner reflector
1s shown for the case where the image plane is coincident with the apex and
symmetric with the target. These responses are shown for the case of TE
polarization where the E;field is perpendicular to the apex of the corner re-
flector. It is interesting to note here for 0° incidence the vast difference
of this response from that obtained from the TM polarization which is shown

in Fig. 39. Here, at o° incidence no apparent smoothed doublet occurs in the
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FIG, 41 Smoothed impulse response of 4 x 8 inch corner reflector with
image plane coincident with apex for TE polarization (hori-
zontal scale: 0,5 ns/div.; vertical scale: 10 mV/div.).
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response and the initial part of the return is at a much lower level for this
case. Apparently the scattering from the sides of the corner reflector when ‘
the E—field is perpendicular to the edge is substantially less than it is when
the E-field is parallel to the edge. However, the return from the apex appears
to be slightly larger than it was for the TM case. The creeping wave again
appears at approximately the same time and is approximately the same magnitude
as it is for the TM case. As the angle of\incidence increases, the scattered
waveform becomes more complicated. The effect of the near edge of the near
plate becomes apparent, the effect of the far edge of the far plate becomes
apparent, and also the creeping wave is still present. For example, at 90°

the first positive peak 1s from the near edge of the near plate, the second
negative peak is due to the far edge of the far plate, and the second positive

peak is due to the creeping wave which travels around the target.

In Fig. 42, the smoothed impulse response is shown for the corner
reflector with TE polarization when the angle of incidence is from the back
side. In comparing the response for this polarization with that obtained for
the TM polarization, at angles of incidence of 120° and 150° the apparent
smoothed doublet nature of the response does not appear. At 180° incidence, ‘
the first positive pulse is attributed to the return from the apex. This is
followed by a negative pulse which is attributed to the return from the far
edge. Subsequently, a second positive pulse can be attributed to a wave which
travels around the rear of the target. Note that there is less smearing of
this creeping wave for the TE case than occurred for the TM case shown in
Fig. 40, This is probably due to the different path that the creeping wave

travels in the two polarizations.

In Fig. 43, the smoothed impulse response of a circular cylinder
section is shown for the case where the image plane is normal to the axis of
the cylinder. This target 1s the section of a cylinder with a radius of B
inches and a height of 8 inches. The distance across the open face is also
8 inches for this target. For 0° incidence, the initial part of the return
appears to be a rather smeared smoothed doublet. Note that the amplitude of
the negative swing of this is probably 50¥% larger than the amplitude of the

positive swing. This initial part of the return is followed by a.varying
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FIG, 42 Smoothed impulse response of 4 X 8 inch corner reflector with
image plane coincident with apex for TE polarization (hori-
zontal scale: 0.5 ns/div.; vertical scale: 10 mV/div.).
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FIG., 43 Smoothed impulse response of circular cylinder section for
image plane normal to cylinder axis for TM polarization
(horizontal scale: 0.5 ns/div.; vertical scale: 10 mV/div.).
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waveform that is due to waves traveling across the face of the cylinder and
waves traveling around the rear of the cylinder. As the angle of incldence
increases, the structure of the smoothed impulse response becomes more com-
plicated. However, at 90° it is not diffioultlto relate the portions of the
smoothed impulse response to the geometry of the target. The initial positive
impulse for this amgle of incidence is due to the near edge of this cylinder
section. The negative pulse that follows approximately 1.6 ns later can be
attributed to a Teturn due to the f%r edge of this target. The second posi-
tive pulse which occurs at appro&imétely 2.1 ns later can be attributed to a

wave which travels around the rear of the target.

In Fig. 44, the ssmoothed impulse response is displayed for angles of
incidence on #this target that vary between 90° and 1800. Note that at 180°
incidence the positive pulse which first appears is due to the specular return
from the nose of the back 'side of the target. The negative swing that follows
would be predicted by the physical optics approximation. The second negative
pulse, which occurs approximately 0.4 ns afier the first positive pulse, can
be attributed to a return from the far edge of this target. The second posi-
tive pulse which appears approximately l.1 ns later cam he attributed to the
creeping wave. Following this is some oscillation which apparently takes blace
on the concave side of this target.

In Fig. 45, the smopthed impuise responée of a pafébolic bylinder
section is shown for the case where the image plane is normal to the axis of
the cylinder and symmetric about the target. This target is a section of a
parabolic cylinder. The height of the section is 8 inches, the width across
the face is 8 inches, and the depth is 2 inches. This target is very similar
in geometry to that of the circular cylinder section whose response is shown
in Figs. 43 and 44. As a matter of fact, only minor differences can be dis-
cerned between the responses shown in Fig. 45 with a parabolic cylinder sec-
tion for aspect angles of 0% to 90° and the response shown in Fig. 43 for the

circular cylinder section.

Figure 46 displays the smoothed impulse response for this parabolic
section for aspect angles of 90° through 180° at 30° increments. Again, the
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FIG. 44 Smoothed impulse response of circular cylinder section for
image plane normal to cylinder axis for TM polarization
(horizontal scale: 0.5 ns/div.; vertical scale: 10 mV/div.).
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FIG., 45 Smoothed impulse response of parabolic cylinder section with
image plane normal to cylinder axis for TIM polarization
(horizontal scale: 0.5 ns/div.; vertical scale: 5 mV/div.).
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FIG. 46 Smoothed impulse response of parabolic cylinder section with
image plane normal to cylinder axis for TM polarization
(horizontal scale: 0.5 ns/div.; vertical scale: 5 mV/div.).
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response of this target is very similar to that of the circular cylinder sec-
tion shown in Fig. 44. In fact, only at an aspect angle of 180° can one see
a noticeable difference in the two responses. For the parabolic section, the

effect of the edge is less apparent than it is in the circular section.

In Figs. 47 and 48 the smoothed impulse response for a parabolic
dish 1s shown for the case where the image plane is perpendicular to the face
of the dish and symmetric about the dish. This target is a parabolic dish
whose face 1is 8 inches across and whose depth is 2 inches. For an aspect angle
of Oo, the smoothed impulse response is similar to that obtained for the para-
bolic section. However, as the aspect angle increases, more apparent dif-
ferences in the two responses become obvious. For example, at 90° the para-
bolic dish now looks more like the 8 inch diameter disc shown in Fig. 38,
where one can see the return from the near edge of the disc and also the re-
turn from the far edge of the disc. As the aspect angle increases from 90°
to 1800, the creeping wave moves in closer in time to the initial pulse. In
particular, at 180° the creeping wave appears approximately 1.0 ns after the
initial pulse, which corresponds to the time that it would take a wave trav-

eling the geometric distance around the rear of this target.
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FIG. 47 Smoothed impulse response of parabolic dish with image plane
normal to face for TM polarization (horizontal scale:
0.5 ns/div.; vertical scale: 10 mV/div.).
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FIG, 48 Smoothed impulse response of parabolic dish with image plane
symmetric about the dish for TM polarization (horizontal
scale: 0,5 ns/div.; vertical scale: 10 mV/div.).
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SECTION 4
EXTENSION OF SPACE-TIME INTEGRAL EQUATION TECHNIQUE TO OPEN, THIN SURFACES .
(K. S. Menger and C. Maloy)

4.1 THE INFINITE PLANE

4.1.1 Introduction

This report describes a time-domain simulation of scattering prob-
lems in which the target is an open surface of zero thickness and zero resis-
tivity. The scattered magnetic ﬁlfield at a point distant from such a target
has been computed on a Univac 418-ITI. The computations are numerically stable
and the fields thus computed agree with the reflections from such targets meas-
ured on a time domain scattering range. Illumination of the target in these
simulations was by a plane wave whose amplitude varied as a smooth (Gaussian)
impulse in time. The time width of the impulse was set typically to about one-

tenth the time required for light to traverse the target's longest dimension.

. Briefly, this approach begins with solving for the current density .
J induced on the scattering surface by the incident wave.* With these currents,

the ﬁ-field scattered to any point outside the surface can be computed explic-

itly. To obtain the currents themselves, an integro-partial-differential

equation for J in space and time is solved numerically. This formulation is

due to Bennett,l who applied it to the simulation of thin wire scatterers. In

the present application, the equation is solved on scattering surfaces of non-

zero area where the tangential component of the total E field is known to van-

ish at all times.

Numerical approximations of the equation are such that at any point
on the surface the current density for the next time increment can be computed
explicitly from numbers that have already been computed; no matrix inversions
are necessary. To achieve numerical stability, a priori knowledge of the be-
havior of 3 near edges was exploited. The component of current density per-
pendicular to an edge always vanishes at the edge due to the continuity of

charge and to the absence of charge everywhere outside the surface. This

*Surface current density J is measured in amperes/meter. MKS units are used
throughout. '
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property was used to extrapolate near edges, where the information is other-
wise insufficient for numerical evaluation of certain one-sided spatial deriv-
atives appearing in the integro-partial-differential equation. Also employed,
and for the same reason, was the a priori behavior of the surface current
density component parallel to the edge. This component varies hyperbolically
with distance from the edge, and increases without bound at the edge itself

if the resistivity is zero as has been assumed here.

Carteslan coordinates have been used for the rectangular and cir-
cular targets discussed in this section. For targets possessing cylindrical
symmetry, a curvilinear coordinate is introduced which is coincident with the
intersection of the scattering surface and a plane perpendicular to its longi-
tudinal axis. A parabolic cylinder is given special attention, and the added
axis for this particular case has the equation of a parabola. When expressed
with the help of this fourth axis, all equations and boundary conditions em-
ployed for the rectangle are identical in form for the cylindrical targets.
Indeed, the rectangle is a degenerate case of the open cylinder in the sense
that the straight line is a degenerate form of a parabola. For the sake of
presentation, however, the rectangular scattering surface will be discussed
first to avoid initially the additional mathematics of the curvilinear coordi-

nate.

4.1.2 Calculation of ﬁ from 3

‘Let ﬁj' represent a magnetic field that is defined everywhere in
empty space and for all time. If a perfectly conducting scatterer is intro-
duced into the space at some fixed location, the magnetic field now present
will in general differ from the original. Let this new total field be desig-
nated ﬁ't + Field §1: can be regarded as the vector total of the original
fiéld ﬁi' (now regarded as incident upon the scatterer) and a scattered mag-
netic field ;;s due to the presence of the target. In other words, for every
point in space on or outside the scatterer designated by position vector T
from some origin and for all time +t measured from some reference event, ﬁs

is defined by

HY @, t) =8 (5,t) +H°(,¢) . (26)
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H ° is the magnetic field radiated by currents induced on the surface S/ of
the scatterer by ﬁt

at that surface. Letting J(r’,t) represent this in-
duced surface current density at each point ;" on the surface at time t ,
then the scattered field ;fs(;; t) at any point ; outside the surface S’

and time t 1is given by . -

oS _i ? [} -y ¢ A 3t ! [+ -’_—'l
He(z, t)= =] P x(z-x') a8’ + = J, NFEE x(r-r ‘) ds' (27
S’ - S -

where ¢ 1is the speed of light and each integration is carried over all points
r’ on the surface S’ . Throughout this section, for any two points in

—

space Ty ;; s the Euclidean "line-of-sight" distance between them shall
be denoted lrl - r2| .

In principle then, a knowledge of 3(;;'t) at all times t and for
all points =’ on S’ is sufficient to compute scattered field H® . This

solves the scattering problem in a manner that allows experimental verifica-

tion. Whereas 3 itself would be difficult to measure in the laboratory,

s .
H is much less so.

4,1.3 Derivation of the Integro-Partial-Differential Equation for J

—

To derive equations yielding the induced surface current J , use

is made of the given incident electric field EJ' » the scattered electric field

E’s s and the total electric field Ei: + These three electric fields accom-
pany the three magnetic fields Ht . HS , and ﬁ*l respectively, and are

interrelated at every point ; in space and time t by

EC(Tyt)=E-(Tyt) + ES(Tyt) (28)
Applying Maxwell's equation v x §’= - By %% in free space to the scattered
field alone gives
ns
— s aH _
VXE +p 5-=0 . (29)
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This, together with the vector potential A whose exlistence 1s assumed in

— g - -

H = VX A yields the equation
ot 2s A _
vx(E +p,oa_t>—0 . (30)

Any vector field whose curl vanishes everywhere in space must itself be thg
gradient of a scalar field. For the above vector field, namely E55+ Ho %% ’

this scalar field potential shall be designated ¢ . Thus,

E+p ==Vo (31)

which after a time differentiation and use of €, W, = l/o2 becomes

2-—)
3E ° 1 3°A - ¥
€ T = mesm—< - V== (32)
o ot c2a't2 o ot
Applying Maxwell's equation v X ﬁ = 3 + €, %% to the scattered field alone
gives
e B TyiEt-e BTy (FxD)--7 (33)
o 3t T o ot -
which with Eq. (32) becomes
1 3% g} = 2R =2
-5 S5 VI -VX (VXA) =-T . (34)
c” ot °

—_

Expansion of the curl of the curl of any vector field such as A 1is
9(9- ) - (5’-5’); so that Eq. (34) becomes

2
—_ - - -L §_A_—) E,E —).—))—-—)
(VeV)A - 5 > v(ao TV A ==-7 . (35)

c 3t
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. . 2.7 _ s SK - 2s
The preceding relations, V XA =H~ and ko St + Vo= -E ,

are insufficient to specify A wuniquely, so another constraint must be chosen
to relate these two potentials to one another. For the present purposes it is

particularly convenient to choose the Lorentz gauge relation

X

VeAt+e =0 (36)

because, upon taking the gradient of both sides, i.e.,
T -0 (37)
it can be used to uncouple A from o in Eq. (35):

7-9DE- % (38)
c
This wave equation for vector potential X is the direct result of and the

motivation for the Lorentz gauge. The vector potential A computed from

- |z-2
AT, t) = _Lf J<r;t- c ) qv’ (29)
T =4 l;_;/l

at each space point r and time t satisfies Eq. (38); the integration is

-
- . 4 o
carried over every point r° in space.¥

In the scattering'problem, 3 is unknown and therefore K cannot
be computed from Eq. (39) without further information. The added information
is the E-field boundary condition on the perfectly conducting surface; namely,
the component of Ei: tangent to the surface S’ vanishes everywhere on that
surface. Thus, for every point =’ on S’

<€t (;I’tDtan =0= <El (;,’t))tan + <§s (;,’t))tan

Rl —
*Here, J 1is in amperes/heter; A is in amperes.
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for all time. The above vector equation is equivalent to two scalar equations;
the same is true of those vector equations to follow, which, like the above,
allude to the surface tangent. Differentiating the above equation with respect

to time gives

and combining this with the tangential component of Eq. (32), i.e., with

s 22 -
eo(%%?) _____1_5__2_ -%(V-S—QE)
‘tan C2 3t” [ tan tan
gives
(78 L % =_e<aj_1>
° ot tan 02 Btz o \ot tan

tan

which is valid for all time but only on the scattering surface S’ . Sub-
stituting the tangential component of the gradient of the Lorentz gauge,
Eq. (36), namely

o (G(G’-K))ta: e, ¥ %)tan = 0

into the preceding gives

2— 23 :
== 1 o) Jol= ‘
FE-H) -5 |Z5] --¢ &) - (40)
tan ¢ ot tan

Again, this equation holds only for points on the surface S’ . Observe that
the forcing function on the right-hand side is known because it is directly
calculable by differentiation with respect to time of the incident electric

field, a given field in this problem.
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Equation (40) is one of the two equations solved numerically in the
present approach.” The other required equation is obtained from a specializa-
tion of Eq. (39). Since J vanishes everywhere outside the conducting surface,

the integration in that equation need be carried over the surface S’ only:

1 (r’ ; a )
A(r t) =4—j —», , (41)
R -

for any point T in space and every time 1t ¥

Equations (40) and (41) can be combined to give a single integro-

partial-differential equation for 3 in space and time

3;"t-J£;.£LL> o 3<;ft__l_____|_r-r'>
- — 1 [o] dsl - 1 e 1j ? [o] ds
ViV EI !I_‘,_-»,l 2 B't2 4 |"’_ /‘

S/ T c g’ r=-r tan

=3
=" % (%5? ) ’

tan

It is, however, more convenient for numerical solution to deal with the dis-
tinct equations (40) and (41). It remains to be shown that Egs. (40 and (41)
can in fact be solved numerically to yield the desired current density } ’

buried as it is in the kernel of an integral. This is done in the next section.

4.1.4 Analytical Expressions for the Numerical Solution of 3

The kernel in Eq. (41) is singular when the integration passes through
the point ;' =7 . Accordingly, the numerical solution for 7 begins with

the splitting of this integral into two integrals, one of which integrates the

kernel over a subsection S/ of the surface S’ . Subsection S’ includes

r T

- —_
*¥Here J 1is in amperes/meter; A is still in amperes.
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the point ; and has an area which is small compared to the area of s’ .
The second integral integrates the kernel over the remainder of the surface,
s’ -s’ s where the kernel is everywhere nonsingular. Thus, for each r on
s’

R -—)-'-)I o -)_-—),
o P R )d, 1 J(r',t-'l_‘l‘rcr )
= S +—j
Al ’t) 417 I I_’_;/l 4 l;';ll as” (42)
s’ t s-s/,
by r

for all time. It will be convenient to designate these two pieces that make up
the original surface integral by shorter labels; accordingly, let

- -,
3(;’,t_.|£:Ll>
C

RI(E,t) = o —— ds’ (43)
S/ ,I‘-I‘Il
T
and
o . ﬁ?gt_LL:£1>
A'(r,t) = Zﬁf S ds’ (44)
S/_ ) I‘-I‘I

so that A(r ,t) = A’(r,t) + A”(¥,t) everywhere and always.

Even though the kernel in Eq. (43) passes through a singularity,

-, =

A'(r 4t) can be approximated analytically. Appendix 8.1 demonstrates that if
S’ is a square patch of surface, 8§ on a side, and if J is assumed constant
over S’ and equal to its value at the center T of the square, namely

J(r st) 4 then '

6  4n(l+/2) 3{;’ £ .

T

R(z,t) ~
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The error in this approximation approaches zero as & - 0 . The fact that .

J 1is proportional to A’ everywhere and always is important to this numeri-
cal approachs the relationship as presented in Eq. (45) below is the one used

in actual computations

Heat) = s maara ATat) . (45)

To conclude the formulation of the computational formulas, Eq. (40)

is recast into Eq. (46) below by substituting K' + Aw for A and rearranging

some termss

Formulations (44) and (46) are due to Bennett, who applied
them in the simulation of a thin-wire scatterer of zero area. In this section,
they will be specialized to scattering surfaces of nonzero area. For this
purpose, the equations are quantized where necessary to permit calculation of

- -

A’ , A" , and J on a computer.

4,1.5 Quantizing and Processing for the Infinite Plane Scatterer

In the section to follow, Egs. (44), (4%) and (46) are specialized for
an infinite plane target of zero thickness. Space will be measured by a Cartesian

coordinate system whose x- and y-axes are located in the plane of the target.

Since the component of current density normal to the target, Jz
vanishes everywhere for all time, Eq. (45) specializes to the three scalar
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equations

JZ(X 'Y t)=0

T /
-J = ————————— A t
Y(x 2 Y 't) 5',611(1 +/2) Y(X9 Yo )

J (x 4y, t)= W)A’X(x, ¥y t) (4

which are valid at all points (x, y) on the scattering plane for all time.
Notice that the z-component of the above vector equation implies that

A;(x, vst) = O everywhere and always.

Equation (44) specializes to the three scalar relations below, and
these are valid at all points (x,y) on the scatterer and at all times t

A;(X,Y,t) =0
© ® 7 ( vt \/(X‘Xl)g'l‘ (V"YI)2)
X9Yst =
Wit yt) =2 [ | = — dx’ dy’
Y 4m -CO =0 /(vX'X ) +(y-yl)

® o« Jx (\Xlsylgt ‘\/<X’xl)2+ (Y-Y,)2) ’ ’
"o o (x-x)2 4 (y=-y)*° e

|
et
LS,
[

Va
Az(x’ Yo 't) =

Both of the above integrations are carried over the entire xy plane except for
a square patch of side & centered at the point (x,y) with edges parallel
to the x- and y-axes. Side & will be specified when these analytic formulas

are quantized for digital computation.

The gradient of the divergence of the vector potential required in
Eq. (46) is computed in Cartesian coordinates as follows. Recalling that
Vi I s " -
AZ = AZ + AZ = 0 everywhere and always, and letting A = <Ax’ Ay’ AZ> =

<A’A’O>=
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<1l
P
<
>
e
i
<]
3
+
Ji

3% 3%a 3% 3% 3% 3
< X v X v X v> ]

X2 + 3xdy ’ Oxdy + 2% 3wz T dydz

oy

Along the two directions tangent to the planar surface, namely the x-axis and

y=axis directions, Eq. (46) specializes, after some rearrangement, to

X 32p’ BEXi . azA;’c 82A>: BQA_\: %A BQA;
- —X= = ¢ iy + + + +
02 a_t2 o ot 02 5'{:2 ax2 IxdY ax2 %Y
and
. 32" B, 3%p" B2A>: aQA; 32 . 328"
2 7 T %% 2 ; + IXy N 3xay + ; (49)
c ot c ot 3y oy

4

both of which are valid everywhere on the scattering planar surface s’

which is also the xy plane, at all times.

For purposes of digital processing, the planar target is tessellated
into an infinite two-dimensional array of squares, each of side & = As .
Equations (47), (48), and (49) are computed at the center of each such square
patch. The origin of the coordinate system is such that patch centers are the
set of points (x,y)= (mls,nbs) , where m and n range over all the in-
tegers. Furthermore, the equations are computed only at the times t = k&t
where At 1is fixed in any given simulation and k ranges over all the in-
tegers. Time is measured from the occurrence of some easily specified event;
for this discussion t = O when the earliest nonzero portion of the incident .
wave first strikes any part of the target. This is a particularly convenient
choice of time origin because for all t < 0 , the target can be assumed to
have been immersed in field-free space, so that both 3 and K are zero

everywhere on the target for all negative times.
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To begin the description of the digital processing for this planar
target and others as well, it will be assumed that the fields 3, ;Q and
Rw have beenh computed at all patch centers on the target for all times that
are integral multiples of At up to and including the specific time k&t .
At the conclusion of one iteration of the processing to be described, the
fields J, A’ and A" will have been computed at all patch centers for time
kMt + At . If the processing is just beginning (i.e., if k=0), then the
past values of J, A/ and A" are all zero. In either case, the fact that
at the end of one processing iteration the values of these three fields are
known on the target for all times up to and including the time k&ot + At
implies that now they can be computed for time kAt + 2At in the next itera-
tion. Thus the assumption is proven valid, and by induction 3, XG and E?
can be computed for all k&t .

Consider any one patch center (ﬁﬁs, nAs) and the objective of com-
puting J at this space point for time kAt + At . Fields Ky A! and 7
are computed at this space-time point (mds, nds, kit + At) , in that order,
in the following manner.

Each integral in Eq. (48) is approximated by a double summation.
For A" ,

A;(mh,nm,kk-+kﬂ

/(mAs - m'As)2 + (nls = n'As)2

/ /
=(mfz§:&bAanmﬁM+M- S (50)

417
m’ n’ /?ﬁAs-m’As)z + (nAs-n'As)2

where the double summation is carried over all patch centers (m‘ds, n’ds) |,
except (m’As, n’As) = (mlAs, nAs) , the space point at which A; is being
evaluated. 1In the infinite planar target, this would imply that m’ and n’
each range from - to « . However, the summation need only deal with

"active" patches, i.e., those (m’As, n’As) for which

109



Y 2
//(mAs—m 8)” + (nds-n’ss)” 5

kot + 4ot - A . ‘l’

When the left~hand side of this inequality is negative, 3 vanishes and con-

tributes nothing to the summation. Indeed, the inequality is satisfied by
only those patch centers (m‘ls, n’ds) which are within a radius of c(kit + -

At)  from (mds, nds) o and these are always finite in number.

Another important consideration 1s that

»/(m/.\.s -m'As)2 + (nls - n"As)2
c

k&t + At - = kit

hold because if the left-hand side exceeds k&t , a future value of 3 is
required that has not yet been computed, violating the assumption made at the
outset of this discussion. Recalling that (mlds, nAs) is excluded from the
summation for A”(mAs, ndAs) , the left-hand side of the above inequality is

smallest at the four patch centers nearest (mAs, nls) , e.g., for (mls + As,

nis) . To satisfy the initial assumption~it is then necessary that

ﬁt-ﬁso .
c

If it has been selected to satisfy git < As , then J(m dsy nhs,T)

T = kOt 4+ At - V(mAs =m’ 4s)< + (nhs - n’As)<
c

J « However, it has not been computed if, as i1s generally the case,

.4
7 2] 2
/(mbs -m"As) g(nAs- n’bs) is not an integral multiple of At . In the
present approach, the required value of J% is obtained by linear interpola-

tion in time at the patch (m’As,n’As) in question. Thus

where

s is indeed a past value of

Jg(m'As,n'As,T) m:(Lg%J +1- j%) °J%<m'As, n'As,Lf%JAt) .

+ G- LD - e mom| e s ) o o)
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y?ere Lé%J is the floor of i% s 1.e., the largest integer not exceeding
i

For the special case in which the infinite plane is illuminated by
a plane wave whose front is parallel to the target, every patch receives the
same forcing field. Hence the vector fields J, A’, and A’ have time de-
pendencies that are common to all patches. Thus computation at any given
patch center, say that at the origin (0, O), solves the problem for the entire
target. Only J(0,0,kAt), A‘(0,0,kAt) and A”(0, 0, kAt) need be computed
and stored for k 20 , a fact which greatly simplifies the computer program

that simulates the infinite plane case. 1

The computation of A;/((mAs, nls, kit +At) is followed by the analogous
computation A;(mAs,nAs,kAt-+At)

/(KAS - m'As)2 + (nAs - n'As)2>

(As}2 Jv<m'As, n’bs, kit + At - -
= Tam z z
m’ n

(52)

/(mbs -m’8s)2 + (nds -n’as)2

summed over all patches (m’As, n’As)# (mlAs, nAs) , where the linear inter-

polation

3, (m'ts, n'ds, ) ~ Q_ZT%_‘ +1 -ﬁ-)-Jy(m'As, n'&,l_—&_lAt)

+ (ﬁ% - Lﬁ%J-Jy<m'As,n'As,Lj%JAt + At) (33)

is used on the active patches as required, with LA_::_\ and A_Tt as in Eq. (51).

Computed next are A; and A,)’, at (mls, nls, kit +4t) via a quan-
tized version of Eq. (49). Partial derivatives appearing in those two equa-
tions are replaced with the numerical approximation below, where F stands

/4

for any of the scalar fields A’, A‘, A", A"
. x* Ty Tk Ty
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2
g_;: (ms, nds, kit) E(mbs, nis, kit +At) -2F§mAs, nds, kAt) +F(mls, nlds, kAt - At)
3t (4at)

2
a_g (mbs, nbs, kit) %F(mAs + As, nis, kAt)(- 2§£mAs, nis, kAt) +F(mds - As, nAs? kAt)
Ix bs

F(mls, nls + As, kAt) - oF(mAs, nls, kAt) +F(mAs, nhs - As, kAt)

—= (mAs, nls, kAt)

ay” (8s)2

A A + A Jal - A As - A
3 (mds, nhs, kt) mF(m s +As, nhs + As, kAt) +F(mls - As, nls - As, kAt) '
ey 4(8s)?

F(mAs 4 As, nds = 8s, kAt) +F(mAs - As, nAs + s, kAt)
- 2
4(s)

(54)

It should be clear that for infinite plane parallel plane-wave illum-~
ination, all spatial derivatives of the above sort vanish, and only the tem-
poral derivatives remain. In the finite flat figures discussed later, however,

the spatial derivatives in general do not vanish.

With approximations (54) each derivative in Eq. (49) requires three

or four values of A’, A’, A", A’
X % X

Y
computed at this point in the processing with the exception of A;(mAs,nAs,
kat +4t)  and A;(mAs, nds, kA&t +4t) o Using approximations (54) then for the

derivatives in Eq. (49) and solving for the unknown in each equation, gives

s and of this collection, all have been
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A}:(mAs, nhs, kit + At) = QA);(mAs, nhs, kAt) - Aé(mAs, nis, kit - At)
5 aExl
+ (cit) €y —ag'(mAs, nls, kit)

- A;(mAs, nis, kit + At) +2A;/<(mAs, nbs, kit)

- Ai(mAs, nhs, kit - At)

2

+<9—A—t-> [A'(mAs +4hs, nhs, kAt)
As X

- QA;(mAs, nis, kit)

+A;(mAs - As, nhs, kAt)

+A;/<(mAs + 05y nhsy kAL) - 2A;(mAs, nls, kit) +A;(mAs - 0sy nhs, kOt)

. A,;_(mAs + As, nis + bs, kAL) +A;(mAs - As, nls - bs, kit)
+
Z

) A);(mAs +0s, nls - bs, kit) +A (mbs - bs, nls + s, kit)
B 4

A::_(mAs +4s, nhs + As, kit) +A;(mAs - Asy nls - Asy kAL)
Z

+

A’ (mbs + hs, nds - Asy kAt) +A” (mbs - Asy nids + Os, kAt)
-y 7 Y ] (55)

and
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A_y‘:(mAs, nhs, kAt +At) =

3 1
2A§;(mAs, nis, kat) -A};(mz_\.s, nbs, kit = At) + (cA'f:)2 eo-a% (mds, nls, kit)

- A;(mAs, nls, kit +At) +2A;’,(mAs, nhs, kit) - A;(mAs, nhs, kit - 4t)

2 }
+ (%ff—) LA}:(mAs, nis + As, kAt) -ZA}:(mAs, nls, kit) +A§;(mAs, nls - As, kAt)

+ A;(mAs, nls + As, kAt) - 2A;(mAs, nhs, kAt) +A_’;(mAs, nhs - bs, kAt)

A;(mAs +0s, nhs + As,y kit) +A>:(mAs - bs, nbs - s, kAt)

+ Z

A;(mAs +As, nbs - As, kit) +A>2(mAs - As, nbs + As, kit)
- : 4

A;(mAs +hs, nhs + As, kAt) +A;’((mAs - As, nhs - As, kAt)
+

4

A” (mAs + As, nhs - As,y kAt) +A;'<(mAs - As, nhs + As, kit)

- X 2 ] . (56)

The x- and y-components of the forcing field €y aa—Et-l can be evaluated at
each space-time point (mls, nis, kAt) directly from the time derivative of
the incident field Ei at each point, provided that Ei is differentiable.,
For the simulations to be discussed later, Ei was a smoothed impulse and
the required values of the forcing field were obtained from the analytic
expression for the corresponding smoothed doublet. Observe also that the
values of A’ and A  at the space-time point (mds, nAs, kAt +4t) are re-
quired in Egs. (55) and (56); these were computed earlier in Egs. (50) and
(52). All other field values appearing in those two formulas are at the
time k&t or prior. Thus A}:(mAs, nbs, k&t +At)  and A};(mAs, nhs, kit + At)
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are computed explicitly by Egs. (55) and (56) respectively; in particular no
matrix inversion is necessary.

The final processing step makes use of Eq. (47) to compute the cur-

rent density. Thus

i

- A /(mbs, nds, kit + At) (57)
bs An(1+/2)

J‘x(mAs, nls, kit + At)

and

i1

A’(mbs, nls, k&t +4t) (58)
bs dn(1+v2) ¥

Jy(mAs, nis, kOt + At)

This finishes the calculatlng required to compute J for any patch
center at time k&t + &t o When J has been computed for all patch centers
at kAt + At (points, which because of the explicit nature of this series of
computations, can be processed in any order) one entire iteration has been com-
pleted. Values of ?, Z’, A" are now known for all patch centers and at all

‘multiples of At wup to and including k&t + At . This is the required in-
formation for computing these three vector fields at k&t + 2At . By induc-
tion, this iterative procedure can be conducted out to k&t for any k >0 .

4,2 THE RECTANGLE AND THE CIRCLE

Spatial derivatives present a problem for finite figures that did not
arise in the infinite plane. For a patch centered at or near the edge (or cor-
ner) of a finite figure, one or more of the spatial derivatives in Eq. (49)
cannot be evaluated if they are approximated as in Eq. (54) because some of the
values of A’ and A" called for in Egs. (55) and (56) are not available at
such an edge-interior patch since they are values at spatial points outside the
scattering surface. For those patches which are properly interior to the figure
in the sense that all eight neighboring patches are interior, Egs. (50) through
(58) are used without modification. For those patches which are edge interior
in the sense that they are not properly interior, extrapolation procedures or

their equivalent must be employed.
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Clearly the values of J at edge-interior patch centers are part

of the information required to compute the scattered magnetic field H as
discussed in Sec. 4.1. These same values are also necessary to compute x
everywhere on the surface in the next iteration. If 3 itself is extrapo-
lated at the edge-interior patch centers, then it is necessary to compute R
at those same patches, but not R’ . The extrapolation procedure for J to

be described is applied to each edge-interior patch after all field values

have been computed in a given iteration using Eqs. (50) - (58) at each properly

interior patch center.

The following extrapolation brocedure was found to be numerically
stable for rectangular targets. It exploits the a priori behavior of J at
and near the edges of any thin scatterer, flat or otherwise. Figure 49{(a) pre-
sents a blown-up view at the edge of a thin scattering surface s’ , where
two orthogonal components of 3 in the plane that is tangent at space point

(xo, yg have also been represented.

Let p designate the function which with each point on S’ associates
“the (scalar) distance that it is from the nearest edge point. In the figure,
for example, (xo, yo) is distance p(xo, yé) from its nearest edge point
(x s Y, ) « Also shown in the figure is (x A } which is the component of
J at (x A ) parallel to the edge of the surface at point (x s Vo ) + Sim-
ilarly, J (xo,'y ) is the component of J(x s Vo ) which is perpendlcular to
that edge at (xe, ye) . The extrapolation procedure exploits the fact that
Jr(xo’ yo)mﬁo and J, (x s Y, Y= -T;—%?Fj for some constant K (Ref. 8,
p. 569). In fact, JW(X A ) incraases without 1limit as (xo, yo) is made .
to approach (xe,ye) , and Jl(xe,ye)— o .

Given now a rectangular target on which the x- and y-axes have been
aligned parallel to its two pairs of opposing sides respectively, it will be
assumed that the dimensions of the rectangle are MAs by NAs , where M
and N are positive integers, and also that the perimeter of the rectangle is
the collection of outside edges of all the edge-interior (square) patches.
Thus, if (mAs, nAs) in this coordinate system is the center of an edge-
interior patch in this rectangle, then p(mbs, nAs) = As/2 . An example of

such a tessellated rectangle is shown in Fig. 49(b).
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(0,3As)

1
p(0,2A5)=%// / } NAs=4As
A

FIG. 49 (a)
(b)

1 -DIRECTION

P(xg,¥) ~

\ 7 {xe,Ye)

s (Xor¥o) \ YL (Xgi¥o) \
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/ %// ‘

l
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e
; //// 7.
////%/W//

(21350)

e—As

(b)

Exploded view of planar scattering surface S’ near an edge.
|

A tessellated rectangle: the shaded patches are edge interior,
while the others are properly interior. Point (0, 3As) is
corner edge-interior patch center for which J (0, 34s, kAt) =0
and J (0, 34s, kAt) = 0 for all k . Point (2As O) 'is a
bottom’ edge-interior patch center for which J (2As, 0) = L

33, (24s, bs) and Jy(ZAs, 0) = 0 for all k ~%.
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Extrapolation for J at point (mAs, nis) near the right-hand edge ‘
of the rectangle in Fig. 49(b) will be demonstrated as a typical example of the

procedure. For this particular edge interior patch center:

J (mAS, nAS, kAt) = JX(mAS’ nAs’ kAt) =0
L
and
K
Jy(mbs,y nbs, kit) = J (mds, nds, kit) = -@Ej
2

for any integer k 20 . Constant K for this point is obtained from the
knowledge of J at neighboring patch center (mis - As, nAs) to the immediate
left of (mAs,nds) . Also, it is assumed that the hyperbolic behavior of qﬂ
extends at least a distance 34s/2 from the edge of the rectangle. Thus

K K
Jy(mAS - bsy nhs, kAt) = p(mlds - &s, nls) (3135;2) ’

This indeed provides an estimate for K because (mAs~As, nls) is a properly
interior point and therefore J(mis - As, nis, kAt) has been computed earlier

in this iteration. Using K computed from the above gives

(%) 3, (mds - 8s, nts, kit)
Jy(mAs, nis, kat) = <§§ = 3Jy(mAs - bsy nls, kAt) .
2

Of course, 3 at an interior patch center near another edge of the rectangle

is computed analogously. For example, for (mds, nds) near the bottom edge

J (mAs, nhs, kAt) = J&(mAs,nAs,kﬁi) =0 , .
L

and
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J, (mbsy nbs, kit) = JX(mAs, nis, kAt) = 3JX(mAs, nis+ As, kit)

for any integer k 20 .

In general then, Egs. (57) and (58) are, for an edge~-interior patch

center, replaced by

J (mAs, nls, kit +4t) =0 (57")
L

and

2 ‘ 2
/(mAs -xe) + (n'ds -ye)
p (mds, nds)

J, (mbs, nds, kot +4t) = J//(m'As, n'bs, kit +4t) , (587)

where (m’As, n’ls) is the nearest neighboring patch center to (mAs, nis)
that is also properly interior to the scattering surface S’ 3 and where
/leﬁs-xe)2-+(n'As-ye)2 is the distance from (m’As, n’fs) to (xe,ye) ,
the latter again being the edge point nearest (méds, nis) . These numbers are

dependent only upon the shape of-the target and the location of patch centers=—
they are time indepandent. In fact, for the rectangle and coordinate system

Jjust discussed, it is also true that

| p) 2
/(m’As-xe) +(n'2s -y )° = p(m'ss, n'ds) ,

so that the extrapolation for Jy as given by Eq. (58" is truly hyperbolic.
However, none of these features need hold for an arbitrary pairing of surface
and coordinate system. Indeed, this is true even of the rectangle whose edges
are not parallel to the x- and y-axes. It is this problem, but only this

problem, which requires further attention in simulation of the circular target.

To conclude the discussion for the rectangular target simulation,
the four corners are points where the perimeter has no tangent, and therefore

parallel and perpendicular directions there are at best ambiguous. For an
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edge-interior patch center (mAs, nds) closest to a corner of the rectangle,
Egs. (57) and (58) are replaced by J-0 there; that is:

11
(]

T (mbs, nbs, kit + 4t) (57")
L

and

(58")

1]
o
L]

J3,(mbs, nbs, kit + At)

4,3 THE PARABOLIC CYLINDER

In this section, Eqgs. (44), (45) and (46) will be specialized for
surfaces posseséing cylindrical:symmetry.' A surface possesses this é§mmetry
if it can be generated by the displacement, orthogonally, of a curve lying in
two dimensions into the third dimension. An example of such a shape, having

finite extent in all three dimensions, is presented in Fig. 50. There, the

cylindrical surface S’ is generated by some finite'c5§§€1é6§meﬁtffcv lying
in the yz-plane. Most precisely, C’ consists of the points (x, Y, 2)
having the form <O,'y,g(y)> for all y in the range 0 <y <b . Function
g is given, and for this discussion it must be everywhere differentiable.
Special attention will be given to the particular case where g defines a

parabola.

Cylindrical surface S’ , then, consists of all points (x, v, z)
having the form <x, y,g(y)) for all x and y 1in the ranges O s x < a
and 0 <y <b . The parabolic cylinder to receive particular attention
herein is generated by a parabola g(y) = Gy2 for some positive real number
G that is fixed for any given surface, for all y in the range -b =<y =sb
This particular class of parabolic cylinders passes through the x-axis and is
symmetric with respect to the xz-plane. Figure 51 shows such a parabolic
cylinder together with a fourth coordinate, the u-axis. The x- and u-axes
are a particularly convenient orthogonal coordinate pair with which to spe-

cialize Eq. (49). Generally, if the u-axis is made to pass through the curve
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______________ 5/
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X

FIG. 50 A surface S’ possessing cylindrical symmetry generated by
segment C’
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FIG. 51 A parabolic cylinder S’

(0,-b,Gb2)

|
|
|
I
|

{0,-b,0)

122

~

CURVE '
(0,y,6y2)

(0,b,Gb3)

|
|
.

(a,b,6b2)

(o0,b,0)

generated by segment of parabola C’




(O, y,g(y)) for all real y and if distance on the u-axis is defined ap-
propriately, then the form of the Eq. (49) is preserved; i.e., the equations
in x and u corresponding to those in Eq. (49) are obtained by replacing
every occurrence of vy in Eq. (49) with u , whether that occurrence be as a
subscript or as a differential. Indeed, with distance along the u-axis as
defined below, the "degenerate" case g = 0 vyields a generating curve c’
that is coincident with the y=~axis, so that the u-axis is identical to the

y-axis for this case.

Distance along the u~axis is the arc-length, parallel to the yz-
plane, measured from the x-axis. Thus, a point (x,'y,g(y)> on the surface
is specified in xu-coordinates by (x, u) where u = h(y) = g /l-+<g'(§)) dg

with g' designating the first derivative of g .+ This i1s summarized by

writing (x,‘y,g(y)) @ <x, h(y) ) , which expresses the correspondence — it
is not an equality — of the ordinates in different systems for the same point

in physical space.

’ can be spécified by the ordered pair

Since every point T on S
(x,u) , it is convenient to let h* designate the function relating the u-
component of any point ; on S’ to the y=-component of that same point. In
other words, h* is the inverse of h defined above, provided this inverse is
in fact a function. For the class of parabolas under special consideration
here, u increases monotonically with y over the entire range =« <y< +
regardless of the fixed positive G . Thus the correspondence between u
and vy 1is one-to-one, and it follows that h* is a well defined function
for each parabola. Appendix 8.2 shows how, for the u-component of a given
point r on S’ , the y-component vy =:h*(u) can be computed from the
transcendental Eq. (59) below.

If y=0 , then u=0 and for all y#0 , u takes on the

sign of y . This sign defines the sense of a u-directionj at surface point

X% N ol _A: . . -
(xo, uo)© [xo, h (uo), g(h*{uo)> » the u-direction is parallel to the yz

plane and makes an angle arctan g’(h*(uo)> with the y-axis. Letting
h*(uo) =y, so that on, h*(uo), gﬁh*(uo) = (Xo’ yo,g(yo)> , this angle
then can also be expressed as arctan g'(yo) +» The direction perpendicular
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to S’ at any point will be designated the p-direction. Its sense is such .

as to make Xs Uy p @ local right-hand coordinate system at the point.

The preceding definitions will here be specialized for the para-
bolic cylinder. Beginning with g(y) = Gy2 , G =20 fixed, it follows that
g’(y) = 2Gy for all y . Therefore

y
u = hiy) = f /14 (268)° dg = X 1+ (26y)° + ﬁé £n<2Gy-+/1 +(2Gy)2) (59) "
0

for all y 20 . Symmetry of the parabola implies that for y <0 ,
u = h(y) = =h(-y) .

Observe that G = O implies that the parabolic cylinder "degenerates"
to a rectangle of sides 2b by a , lying in the xy-plane. Also, taking the
limit in Eq. (59):

lim ufly) =

+ L= Yy
G-.0 2

N

for all y . This bears out an earlier observation that if function g is
the zero function, the u-axis does indeed degenerate into the y-axis.

Returning to the more general case of arbitrary g , with the ortho-
gonal x- and u-axes Eq. (45) can be specialized immediately to

T /
A (Xs U, 't) )
§ ¢+ 4n(1+/2) %

JX(X’ U, 't) ~

o
8« dn(l +/2)

(x5 Uy t) ~ AJ("’ uy t)

and

Jﬁ(x, u,t) =0 (60)
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for.all time t and each point ; given by (x, u) on the cylindrical sur-
face S’ . Here, J, (;,'t) is the component of 3(;,t) in the u-direction.
If the u- ax1s is not 1dent1cal to the y—ax1s, then the direction of J de-
pends on T s but regardless of g and T ’ Jﬁ is always perpendlcular to
ixﬁ and parallel to the yz-plane. Furthermore, Jg(r, t) , the component of
J(r, t) perpendicular to the cylindrical surface S’ , vanishes for all g

not just for the rectangular surface g=0 .,

In xu-coordinates, Eq. (44) specializes, as in the rectangular case,

to
J (I‘ t - .l—'r_l.>
A (Ty )= = f c ds’
Xr’ T 4m =y
Sl-S_: lr-r I
r

where the distance I;-;'| 1s not some curvilinear distance measured over
the surface S’ , but is rather the Euclidean "line-of-sight" distance be-
tween points T and r’ . For r and =’ both on S’ (i.e., given by

(xy u) and (x’yu’) respectively):

T = (00w - (du)] = Ax-x)% (px (o) - mea?) P |o(me(u) ) -o(nx ) P

Since the cylinder extends from h(-b) to h(b) along the u-axis and from

0 to a along the x-axis, the preceding surface integral specializes to

N (b) JX(X,u,t_I(x,U);(X',U’)I

4m

A;(x, u, t) = du’ dx’ (61)

o

(-b) ,(X,U)‘(X;U/)l

for every (x,u) on S’ .

Equation (44) cannot be specialized for A (r,’t) as quickly as it

was for A’ (r t) because, in general, direction u at r does not coincide
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with direction u’ at r’ . Rather, for any © on S' the specialization
must be obtained from A:;(;s t) A;(;, t) cos O (T) + Ag(;, t)sin 6 (r) for all '
time t , where

1

5 (30 -d2=2)
- L4 i
A”(I‘g t) =,4_lr?j Y. —~ -,C as’
Y S/_Sl Il‘-I‘Il
r
- 1 7,5 ¢ - Z22)
A'(ry t) = = — ds’
z 47 ’
5'-8! |=-="]
T

and 8(;) 8(x, u) = arctan i_g (h* u))] +» Figure 52 illustrates the situa-
tions it is apparent that for all T on S’ and for all time t ,

Jy(?, t) = J (Tyt)cos 8(x) ,

and

7 (F,t) =3 (T, t)sin0(z) .

Using these relationships in the two kernels and then combining them gives

VA 1 JU[<;,’t - ;r = -
Au(r, ::T f = N COS(e(r) - e(rl)> <ds’ .
l ir'r,{

H

That is, for r and r’ given by (x,u) and (x’,u’) respectively:

(b) J,<x,u,t-‘(x’u) (XQU)L)
u

o e

a
A" (x, u,t) = L
- Amzl; (-b) [(xy u) - (x5u”)]

° COS(G(X, u) - e(xl,u?)> du’ ax’ (62)
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ten8(L) = tanf (x,u)
=g'(h*(u))

7 du 6(r)
-
N |,
£ Jy = = —
7 y
/
» g(h*(u))
|/
_____ Iy — - ¥
(x,y,0) N

POINT r ON S' IS
GIVEN BY (x,u)=—s
(x,h{u),g(h {(u)))

— -
FIG. 52 Surface S’ with current density J resolved for the computa-
tions in Eq. (62).
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i

for all time t and all ({(x,u) on S’ .
1 7(5)! ' 7 .

Finally, Eq. (44) must also be specialized for Ag(r, t)s unlike

flat scattering surfaces, it does not vanish. In .fact,

A;(l?, £) = —A;(F, t)sin 6 (%) + A;(;, ) cos 6 (2) .

Using the same relationships leading to Eq. (62},

J. /;/ I;-;I‘)
’ — —
M 0= \ o esin(a(z") - o(9) ) as’
a4t I l;—;ll
E’

at every point = on S’ and for all time t .

It remains only to specialize Eq. (46) for the x~- and u-axes. For

any vector field F and scalar field f whose spatial derivatives all exist,* .

oF oF oF

— —)_ X u P
VeFersr Tt T
and
7o (2,220
VE =S/
Applying the latter to f = 7. F gives
I % 321= aF 2%, 82Fu 3°F, °F, 3%F, o%F
v(VeF) = 2+ 500t 500 Som t S S tSme t T3 -
ax % P’ au P P p op

*Recall that both Ax and Au are arclengths along the x- and u-axes
respectively. The p-~direction has been defined only where it is needed,

namely at S’ . There, &p can be defined as an arclength in the direction
perpendicular to S’ 3 its magnltude is small compared to the minimum radius

of curvature of curve segment C’ . ‘
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The tangential directions in Egs. (46) are x and u , so the spe-

cialization becomes

32A” ae ! S VS = A 3 A
Loox o o x_ Lo x, o x,_u, P, 5
.2 at2 o ot C2 at2 3x2  Oxdu Oxop ax Bxau Bxap

and

T e 1 3 A a A/ 82A' 32a! 32 Al 32" 3 A

1 u _ c u 1 + U D + + u
- - a a ¢

2 a2 03t 2 4,2 axau au2 dudp = Oxdu a2 T3 p

In Appendix 8.3 it is shown that the boundary condition

3A’  dA!
_b,_P_
Sp  dp
at S’ can be 1mposed without §1olat1§g the con51st8ncy of prev1ous equations
. . 3 324 <A 3247
= . + &4p 9%hp , 9%Ap
involving A A +A Thus 5—§g %3P and 3udp + 3uop both vanish,
yielding
d2A/ 3E i 52A” aQA/ a2A1 52A” a2Aﬂ
s X _ X 1 X L X s X u
2 at2 o 3t 2 at2 3 2 3xdu 3 dxou
and
2/ i 2// 2/ 2, 2// 2//
1 3 Au - . BEU i _L-a u, ) AX . 3 AL . ) AX . 3 Au (63)
2 at2 o ot C2 at2 dxou Ju dxdu au2

valid always and everywhere on S’ .

Comparison of Eq. (60) giving J on the cylindrical surface with
Eq. (47) for the infinite plane reveals that Eq. (60) can be obtained from
(47) by substituting u for every occurrence of y in Eq. (47), and p
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for every occurrence of z . Wave equations (63) are similarly obtainable
from those in Eq. (49), as is Eq. (61) from Eq. (48) for A; . Of course,
in Eqs. (48) and (61) the limits of integration are essentially differents

they would in fact also carry over if Eq. (48) were a specialization for the

rectangle rather than the infinite plane: then the limits would be common to -
both specializations because h(y) =y for all y if G =0 3 in particular

h(b) = b and h(-b) =-b . And finally, A; in Eq. (62) is obtainable from -
A; in Eq. (48) using the above letter substitutions if a trigonometric factor

is also introduced into the kernel for Ag . (The factor reduces to unity for

all planar scattering surfaces.)

It follows then that all of the digital processing equations devel-
oped for the rectangular scattering surface have the same form for the cylin-
drical scattering surface, with two exceptions. One is that Igt-;'l s which
occurs in the double summations for A; and Ag s must now be computed by
considering all three Cartesian components of T and T’ instead of just the
two components as in Eqs. (30) and (52) for A; and A; . The other exception
is that the trigonmetric factor must be included in the double summation for

A: « Neither of these exceptions presents difficulties for quantizing, so the

processing equations for the cylinder need not be rewritten here.

The iterative process for the cylinder is identical to that described
for the rectangle, including the treatment of edges and corners since, locally,

the edge of a region of a curved surface approaches that of a plane surface.

To conclude the discussion of the cylindrical scattering surface,
the above mentioned trigonmetric factor is derived below. This factor in the
kernel of Eq. (62) is equivalent to cos © (xyu)* cos ©(x%u’) + sin®(x, u) *
sin € (xyu’) . Let y designate the y-component of the point (x,u)®

[x, h* (u), gﬁh*(u))} = <x, y,g(y)) . Recall that tan®(x,u)= g’(y) ,
so that

cos 0 (x, u) = l/§1‘+<g'(y))2

and
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sin 8(xyu)= g’ (y) /{izigjz;;3§-

Performing the same calculations for (x‘yu’) and combining yields

1+g (m(w) + o’(h*(u"))

—\/[:l+|_g (re(w)) ]][1 +o(me(u’ )ﬂ

cos(e(x,u)—e(xﬁil

4.4 EXPERIMENTAL VERIFICATION

In time domain measurements made on the Sperry Research Center scat-
tering range, the observation point was selected at a distance that was much
larger than the longest dimension on the scatterer. Again choosing a coordi-
nate system with its origin centered on the scattering surface, this is equiv-
alent to saying that for the observation point ;, I;I>3>|;'| for all =’
on S’ . For this situation, Eq. (27), which gives the magnetic field vector
H® scattered back to r , can be simplified by employing the approximation

Ir - r'I kﬂl;l for all ;' on s’ .

Employing this approximation in Eq. (27) gives

bacd -_ -3/ — —)-—,' ¢
HS(I‘, 't)= 1—)2 J(I‘,, _IrCI‘ |> i dS/
4ﬂ|r| s’ II"
L (e By e
o
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The first integral is inversely proportional to IFIQ s Whereas the second is

inversely proportional to [r| . Thus, for |r| sufficiently great the first .
can be neglected altogether. The relation finally used to compute this far-

field H°f from J for comparing the computing total field HY with the

-
measured H is

— - I — —)__)l =
g5 (7, t) = 1 — f a—;g (r’,t EES I)x <Iif> ds’ (64)
4nc|r| 5 © r “

which is valid for all time t at any point ; sufficiently distant from
S

’ to permit the approximation |r-r’| ~ |F| for all r/on S’ .

Figures 53 through 56 are plots of backscattered magnetic field data
for the three target shapes considered in this report. Each plot compares the
data computed from the simulation of a specific target with measured range
data from a ftarget of the same shape. The measured data were obtained on the
time domain scattering range discussed in Sec. 3 of this report. The plotted
range data have been scaled in distance to account for differences in dimen-

sions between the actual and simulated targets. The data were also processed

to account for the difference in forcing functions generated by the actual

and hypothesized transmitters.

In all four plots the abscissa represents time; more precisely, the
quantity plotted is ¢t , which is measured in meters. When measuring time
in this manner the unit is referred to as a light-meter, so an event of dura-
tion p 1in light-meters is also the time in seconds that it takes light to

travel a distance of p meters.

All simulations assumed an incident plane wave whose time variation

was a smoothed (Gau381an) im lse. In other words, at time t the amplitude

was proportlonal to e ath s where for each of the four runs presented
he?e § inverse light-meters was chosen. More precisely, the variation
- ath

applies to the origin of the spatial coordinates. In every case
this origin was located on the scattering surface S’ at a point referred to
as the "center" of the target. Thus, for the purpose of these plots, and

contrary to the convention adopted in previous sections, c¢t = 0 now marks
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the time when the peak of the incident smoothed impulse strikes the center of
the target. In general then, the time variation of the incid?nt pla?e wave at
. -(ayct-z
an arbitrary point (x, v, 2) in space is proportional to e Ne .
The ordinate in Figs. 53-56 plots the normalized component of the
magnetic field which is scattered back to the receiver. Specifically, the

plotted quantity is

R, t)= |R [H_l(R;_OL 5SS (R, 1)

. |71 (R,0)|

where H Sf(ﬁ,tﬁ for any time t is the far scattered magnetic field given

in Eq. (64) for the point r=R s the location of the transmitter. Thus

Iﬁl is the distance of the transmitter from the centgr, of the target. Appear-
ance of the dot- PTOdUCt H SQR. t) with the vector I{i 9 of unit magni-
tude, implies that H, f(R, t) is the component of “%O) igsf(ﬁ,t) hav-
ing the same dlrectlon as the incident field H *(R,0) at the receiver site.
In the MKS system, magnetic field H is measured in amperes/meter; it follows

S
that the plotted quantity Hif is measured in amperes.

Also common to the four simulations was the size of the patch: side
= 0.25 meters in all of the figures. The time increment cAt = 0,20 light-
meters was common as well. This choice complies with the condition c¢&t < As

discussed in Sec. 4.1.

Figures 33 and 54 present the far reflections measured on the scat-
tering range from a square surface 8 inches on a side. Sides of the simulated
square were each 10As and 3 was computed at the centers of 100 patches. 1In
both simulations, ffi was parallel to one of the edges of the target. Inci-
dent angles (measured between ﬁi' and the direction normal to the plane of
the surface &’ ) were 0° and 45° in Figs. 53 and 54 respectively.
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FIG, 53 Comparison of measured and computed backscattered magnetic
field for 8" x 8" square target at 0° incidence.
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FIG. 54 Comparison of measured and computed backscattered magnetic
field for 8"x 8" square target at 450 incidence.
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Figure 55 presents the far reflections measured on the scattering
range from a d{é¢>8“iﬁches'in'diameter. The diameter of the circle in the
simulation was 84s and J was computed at the centers of 56 patches. Inci-
dence was perpendicular to the plane of the disc (i.e., the plane wave was
parallel to the disc itself).

To date, simulation of the disc has not yet been perfected. In the
—gimulation plotted in Fig. 55, the target's circumference was approximated by
a staircase-shaped curve; that is, the square patches near the circumference
were either entirely included or entirely excluded from the processing, de-

pending on whether the patch center was or was not inside the circle, respec-

tively. Refinement of this procedure will further improve the accuracy of the

simulation at times prior to about ct = 4 light-meters.

At about 4 light-meters an oscillation in the simulated magnetic
field becomes apparent; its amplitude increases with time thereafter. This
instability is due to problems of numerical approximations in the edge region
of the circle. As mentioned at the conclusion of Sec. 4.2, there are diffi-
culties in implementing the hyperbolic extrapolation technique at points on
the circumference where the tangent is parallel to neither the x- nor the

y=axis. This problem has not yet been entirely solved.

Figure 56 compares a computed reflection with a measured reflection
from a parabolic c¢ylinder. With reference to Fig. 51, the dimensions of the
cylindrical target measured in the scattering range were a = 8 inches deep,
2b = 8 inches wide at the throat, and the edges of the throat rise Gb2 =2
inches above the bottom of the cylinder (i.e., above xy-plane). Thus, b = 4
inches and the parabolic constant G = 2/42 =1/8 .

The dimensions of the simulated cylinder were: depth a = 84s 3
width, as measured along the u-axis, 2h(4) = 94s . Current density 3 was
computed at the centers of 72 patches. With reference again to Fig. 51, the
plane wave assumed in the simulation was incident in the -z direction, with

H? parallel to the y-axis.

For the cylinder, as for the rectangle, hyperbolic extrapolation at

the edges works well, and the solution is both accurate and numerically stable.
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FIG. 55 Comparison of measured and computed backscattered magnetic field
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FIG, 56 Comparison of measured and computed backscattered magnetic field
for a parabolic cylinder (a = 8", 2b = 8") at 00 incidence.
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SECTION 5
TIME DOMAIN APPROACH TO INVERSE SCATTERING
(R. Hieronymus, J. Delorenzo, and C. L. Bennett)

5.1 DEVELOPMENT OF SPACE-TIME INVERSION EQUATION

As early as 1958, researéherslo knew that if physical optics currents
are postulated on the surface of a scatterer, then they produce an approximate
impulse response that is simply the second derivative of the projected area
function of the target. It follows, according to this approximate theory,
that the ramp response is proportional to the area function which can then be
related to the linear dimensions of the scattering object. Many researchers
have developed schemes for obtaining target geometry from the area function

11,12

using the physical optics approximations. The results of these studies

have produced reasonable approximations to the target geometry.

In this study, the ihverse scattering problem is formulated as an
inversion of the space-time integral equation. This technique shows (as ex-
pected from the asymptotic nature of the physical optics solution) that the
relation between the impulse response and two derivatives of the area function
is exact only at the leading edge of the scattered field response, a single
point in time. After the leading edge, the response is altered by currents
arriving from other space points. Therefore, the physical optics solution
must be "corrected" by these currents flowing on the body. For a given object,
if the incident pulse width is short compared to body size (the optical limit)
then the correction currents will have a small effect, and optical rays can be
placed in one-to-one correspondence with points on the body. On the other
hand, 1f the size of the body is comparable to a pulse width, then the "cor-
rection" terms have a strong effect on.the solution and the physical optics
solution is degraded. In the case of small bodies, the correction terms dom-

inate the result and the physical optics solution is meaningless.

5.1.1 Derivation of General Egquation

The derivation of the inversion procedure begins with the exact
expression for the surface currents, namely
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J(F,t)= 28 X H' (z, t) +T (7, t)

where

T(T. e =L [ 3 L 107 2 ’
JC(r, t) = = f 4 X {[RQ + 3 a{] JHr'y 1) XaR}dS (65)
S

T=t=-R
ﬁi’(;,'t)= incident magnetic field
§n = unit vector normal to surface
T = position vector to observation point
;) = position vector to integration point
R = |r-1]
. L BT
R R
t = time inrlight-meters.

In the physical optics approximation, only the first term in Eq. (65)
is retained. The effect of this approximetion then is to neglect the currents
(3;) which flow on the surface after the incident field has passed over the

object.

The far scattered field,pf an quect, ﬁss(;,t) s 1s computed by

the quadrature

- § @ xafer (66)

=t=-R

once the surface currents are known. If the currents as expressed by Eq. (65)
are used in Eq. (66), the result is
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e, _L_B_J‘{ A =i, a } !
r H (r, t) =% 28 xH (ry 7) X & ds

T =1t-R
L2 (37 xd_}as’
+ =t Jc(r , T) X ar_}ds . (67)
T=1t=R

If the incident field is an impulse, then the first term in Eq. (67) is simply
the quadrature that has been recognized previously10 to be proportional to the
second derivative of the area function. Assuming the incident wave is an

electromagnetic impulse, then Eq. (67) becomes

d7s(t,) -
—g ,— _;_ s ~ _]__ij‘{"’ ! A} dSI
T ()= 5r 5 fwtamE Tl ™) Xa, (¢8)
T=t=R
where
roﬁaf(;; t) = the impulse response of the target
S(ts)= the silhouette area of the scatterer as
delineated by the incident impulse assumed
moving over the scatterer at one half the
free-space velocity
T, = distance of far-field observer from the origin
t =t +1r
s o)
o gl
ayy = 3
hOEY
JEI = j; that results from an incident impulse.
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This equation may be simplified by use of the theory of linear systems to .
obtain

=g —_ _ ‘_l_ ~
r H (ry t) = - S(ts) ay + 4n Fry f {JCR (r'yT) X a} ds’ (69)
' =+t =R

where

oHﬁ the ramp response of the target

—

ECR = JC that results from an incident ramp waveform.

Thus, by direct consideration of the space-time integral equation the exact
relationship between the target response and the target geometry has been ob-

tained. In particular, Eq. (69) gives the target ramp response in terms of

both the target area function and the contribution-due to the "correction cur-
rents," EC + Moreover, it is important to note that the correction currents ‘
as given in Eq. (65) are time-retarded functions of currents at other space

points, and thus will be zero at the leading edge of the incident wavefront

as it travels across the target. It is this feature, exclusive to the time

domain formulation, that allows the determination of the target geometry from

its ramp (or equivalently, impulse) response.

5.1.2 Derivation of Equation for Rotationally Symmetric Objects

The preceding paragraphs developed the exact relation between the
ramp response of an object, its projected area function and correction currents.
The salient feature of that result is that we can relate the target geometry
to a remotely measured parameter, the far-field ramp response. In order to
demonstrate the utility of these equations, the remainder of this section will
be concerned with the derivation of an inversion procedure for rotationally
symmetric targets.

Consider the case of the field backscattered from a target rotation-

ally symmetric about the z-axis with an axially incident ramp waveform as ‘
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shown in Fige. 57. The target is completely described by p = p(z) and the

area function is given by

s =mp(z, t) . = (70)

Hence, substituting into Eq. (69) and rearranging yields

- SN 1/2
p(z, t) = [QrOH;(r, t) - -;—;f {JcR(r’, T) X §r} ds’] . (71)
S

This equation gives p(z, t) in terms of the target ramp response, which is
known, and in terms of the correction currents at earlier times, which have
either been previously computed or are known to be zero., An iterative proce-
dure for determining the target geometry parameter p(z,t) can now be devel-
oped.

It is assumed that a far-field measurement of the ramp response of
an object or of some function from which it can be computed has been obtained.
The first step in the procedure is to obtain an estimate of p from Eq. (71),
neglecting the surface integral. With this estimate of p , the geometric
functions of p +that are required for the solution of Eq. (65) for the cor-
rection currents j;R are computed. Once these functions are computed, 3cR
is obtained by numerical solution in Eq. (65). The iteration proceeds with
the computation of the second estimate of p , another calculation of cor-

rection currents, and so on until p 1s determined to the desired accuracy.

A discussion of the implementation of the procedure and examples of
its use are presented in the following sections.

5.2 NUMERICAL SOLUTION

The implementation of the iterative procedure for determining the
target geometry function p(z, t) from its far-field ramp response was carried

out using numerical techniques on a digital computer. The core of the method
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FIG. 57 Geometry of rotationally symmetric scattering problem,
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was the program ROTSY, which calculates the surface currents and far-scattered
field of a rotationally symmetric object given an incident waveform and a set
of parameters describing the geometry of the scattering object. The general
flow of the iterative procedure is charted in Fig. 58. The computer program

INVER was written to implement this procedure.

An initial estimate of p(z,t) is obtained from Eq. (71) by neglect-

ing the surface integral, giving
I
oy (z,t)= [20 BEGE0) ]

From this estimate, the geometry parameters required by ROTSY are calculated.
Because of the integration necessary, a grid on the surface of the scatterer
must be defined. To accomplish this the surface is first divided into bands
of equal arc length centered on the z axis. Then each band is divided. into
patches of equal area. In addition to the grid, ROTSY also requires the mid-
point z.1 of each band, the corresponding p(zi) s and the components of the

unit normal at p(zi) .

These geometry parameters along with a defined incident ramp waveform
and the location of the far-field observer are then given as inputs to the

ROTSY program. ROTSY uses these inputs to first solve Eq. (65) for the cur-
rents on the surface of the scatterer and then from these, it solves Eq. (66)
for the far-scattered field. As noted previously, Eq. (65) can be solved
solely because the minimum spacing between grid sample points is greater than
the time step, which assures that the necessary correction currents have al-
ready been computed or are known to be zero. The result is that Eq. (65) is
a recurrence relation in time and is solved in ROTSY by incremental steps in
the time domain. The time derivatives in Eq. (65) are calculated by using a

four-point polynomial interpolatioﬁ.

The far-field response roﬁgi(iz t) generated by pl(z, t) is then
used in Eq. (69) to determine the far-field contribution due to the correction

currents, so that
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FIG, 58 Iterative procedure used in INVER,
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if" ) A} ’ - - 2
5 {?ER(T y T) X a. ds’ = 4ﬂroHRl(r, t) 2npl(z, t) .

T=+t=R

. . 2
This contribution is then used in Eq. (71) to obtain a new estimate of p“(z,t),

2 _ oS _l__@_f {" -, A} ’
polzs t)= 20 Be' = oo 5p ) (™) a5 dsy
S
1

This new estimate of p2(z, t) is then smoothed using the linear smoothing

2 +3 +3p
F p1’1-1 pl’l n+l
p = 8 .

It was found that smoothing was necessary because of the coarseness of the
integration time step necessary to keep computer run times within reasonable
limits. This particular smoothing technique was chosen because it seemed to
be effective along horizontal line segments while_also taking into account the
direction of convergence of the procedure.

From this smoothed pg(
It is then compared with pl(z, t) to see if the procedure has converged. If

z, t) , the next estimate 92(2, t) is obtained.

it has, the iterative process stops. If not, new geometry parameters are cal-
culated for p2(z, t) and the iterations continue until convergence occurs.
The convergence criterion used in INVER demands that the percentage change in

p(zy t) from one iteration to the next be less than some small number, i.e.,

pi-l(z’ t) - Pi<z9 t)

<eg yvelz,t) .
pi-l(z’ t)
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The choice of ¢ 1is described in the following section.

A computer plot routine was also written to give perspective plots
of the estimates of the target contour. All lines hidden from view have been

eliminated in the plots. The coordinate axis and the view angle for the plots

is shown in Fig. 59.

5.3 RESULTS

The iterative procedure described in the previous section was tested

for four rotationally symmetric objects:
(1) A sphere
(2) A cylinder with two sphere caps

(8) A cylinder with a flat front end and a sphere-capped back end,
and

(4) A cylinder with a sphere-capped front end and a flat back end.

For all four objects, the radius of the spherical segments was 0.5 meters. The
radius of the cylinder body was also 0.5 meters and its length was 1 meter.
Figure 60 shows the contours of the four queots tested. 1In all cases the
incident wave was axially incident and the far field was calculated in the
backscatter direction. Plots of the ramp responses of the four objects are

given in Fig. 61l.

For the computer runs made on these objects, the iterative procedure
was not terminated at some predesignated point of convergence. Rather, it was
decided to allow the procedure to continue in order to sfud& the stability of
the solutions. Studies were conducted after the runs were completed to deter-
mine the maximum percentage variation (as defined in the previous section) at

each step in the iteration. Those results are presented in this section.

The testing of the inversion procedure on these four objects gave,
in general, very good results. Two of the objects (1 and 3) converged exactly
to the desired solution and remained stable at that point. One of the re-

maining (object 2) reached the desired target contour but did not remain stable.
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FIG. 59 Coordinate axes and view angle for perspective plots.
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FIG. 60 Geometry of objects used for test of inversion procedure.
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The other (object 4) approaches but never actually reached the desired con-
tour.

5.3.1 Sphere

The results obtained for the sphere, as expected, were the most ac~-
curate of all the objects. Figure 62 shows perspective plots of several esti-
mates in the iterative procedure. Graphs of some of the p(z, t) contours for

the sphere are given in Fig. 63(a).

Note that at iteration 5 the results were in very close agreement
with the actual contour. The estimate then began to move past the desired con-
tour. It then corrected for this error by moving back outside the contour and
converging in again. The result remained stable at the desired contour after
iteration 19. The small error on the front of the sphere was a result of the
weights used in the smoothing technique, which tended to smooth those p(z, t)

values upward.

The convergence criterion worked very well for determining the con-
vergence of the sphere. The maximum percentage variation at iteration 20 was
less than 10% and by iteration 31 it had decreased to .04%.

5¢3.2 Cylinder With Two Sphere Caps

The cylinder with two sphere caps gave fairly accurate results, al-
though not as good as for objects 1 and 3. Figure 64 shows perspective plots
of the iteration estimates for this target; two dimensional contour plots are

given in Fig. 63(b).

The estimates were in close agreement with the actual contour along
the front sphere cap and the cylinder body. The estimates moved in at both
iterations 10 and 25 to closely approximate the back sphere cap. They did not,
however, remain stable at that point. At iterations 11 and 26 the estimates
moved back outside the desired contour and began to converge in again. It is
possible that if the procedure were allowed to continue through more iterations
a stable result could be achieved. This did not, however, appear to be the case

in the 30 iterations performed.
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FIG. 62 Perspective plots of contour estimates for a sphere.
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FIG. 64 Perspective plots of contour estimates for a cylinder with two

sphere caps.
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The convergence criterion did not indicate convergence for this
figure. There were periods of relatively small variation as the estimates
became close to the desired contour. The instability of the results, however,
caused the variation to increase dramatically once the actual contour was
(reached.

5.3.3 Flat=End Sphere-Cap Cylinder

The results for this object were also very good. It converged to
the desired contour and remained stable at that point. Perspective plots of
the contour estimates are given in Fig. 65; the two-dimensional contour is

shown in Fig. 63(c).

The flat-end, sphere-cap (FE-SC) cylinder converged directly to its
desired solution. There was some slight oscillation along the cylinder body,
but the agreement in general, was good. At iteration 20, the estimate first
reached the general desired contour. It then continued to smooth out the er-
rors along the contour. These successive iterations point out one character-
istic of this procedure — errors above and below the contour tend to cancel

each other. This tends to lead to a more stable solution.

It should be pointed out that for the FE-SC cylinder it was deter-
mined from the initial p(z, t) estimate that the front end of this object was
flat. At that time geometry parameters for ROTSY were determined for the

front, and these parameters were held constant over the rest of the iterations.

For the FE-SC cylinder the convergence criterion was not as effective
in determining convergence as for the sphere. There were some periods of very
small variation during the conversion process that were comparable to the vari-
ation found after convergence had occurred. A criterion requiring the maximum
percentage variation to be less than e for some number of iterations would

have been a more effective convergence criterion for this object.

5.3.4 Sphere-Cap Flat-End Cylinder

The results for the sphere-cap flat-end (SC-FE) cylinder were not as

accurate as for the other figures. This was expected, however, because of the
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F1G. 65 Perspective plots of contour estimates for a flat-end sphere-cap
cylinder,
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problem of getting the tail of the SC-FE ramp response to converge to a ver=-
tical line. However, the results, shown in perspective in Fig. 66 and in

contour in Fig. 63(d), were fairly close to the actual contour.

As with object 2, the estimates were in very close agreement with the
actual contour along the sphere cap and cylinder body. There was the same
slight oscillation along the cylinder body found in objects 2 and 3. The
estimates for the flat back moved in to within 0.3 meters of the desired re-

sult but never reachéd the vertical drop required.

The convergence criterion did not indicate convergence for this
figure. Theie weré, however, periods of slow variation during the convergence
process that would indicate that some modified criterion such as that dis-

cussed in Sec. 5.3.3 would be a more effective measure of convergence.
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SECTION 6
CONCLUSTIONS

In this study the technique for computing the impulse response of

smooth convex targets has been extended to bodies which have edges and to

open thin surfaces. The foundation of this technique is the space-time inte-
gral equation approach to the solution of the electromagnetic scattering prob-
lem. This coupled with the impulse response augmentation technique, is used
to yield the total impulse response or the frequency response over the entire
spectrum for a target. This, in turn, can be used to compute the response of
a target due to any incident radar waveform, regardless of waveshape or car-

rier frequency.

New numerical procedures for solution of the space-time integral
equation were developed for computing the smoothed impulse response of targets
with edges. These procedures allow a variable space patch size, while at the
same time removing the restriction that the time increment must be less than
the minimum distance between space sample points. This permits the use of
small patch size in the neighborhood of edges, where the spatial variation of
the surface current can be most rapid, and normal patch size over the smooth
convex regions of the surfaces. The net result is a more accurate, more ef=-
ficient (in terms of computer running time and memory requirements) solution
procedure. Using the resulting improved smoothed impulse response computa-
tions, the impulse response augmentation technique was applied to obtain the
total impulse response of two targets with edges. The modifications required
on the augmentation technique in order to make it applicable to targets with
edges was minimal. It was necessary to only change the parts of the augmen=-
tation function and the high frequency estimate which are used to account for
surface discontinuities. Results were obtained for a flat-end sphere-cap
cylinder at both directions of axial incidence and for a right circular cyl-
inder at axial incidence. The results obtained using this technique continue
to be encouraging and should be extended to off-axis incidence of these tar-

gets and to more complicated targets.
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Direct time domain smoothed impulse response measurements were made
on seven open thin surface geometries at a total of 47 target aspect angles.
The processing of the measurements was improved in this work to give lower
noise and to cast them into a form more suitable for direct comparison with
computations. The results obtained were used for verifying the present. nu-
merical computations and could be used to verify future computations. In
addition, these measured results provide insight into the scattering mechanism

and once again prove their value.

The space-time integral equation approach was extended in this ef-
fort to the solution of the open thin surface scattering problem. The E-field
boundary condition was used to deveiop a space-time integrodifferential equa=
tion for this scattering problem which had many similarities to the solution
of the thin wire problem. Numerical techniques were developed for solving this
integrodifferential equation for. flat surfaces with rectangular contours and
for flat surfaces with circular contours. In addition, numerical techniques
were developed'for treating concave rectangular surfaces. The technique was
demonstrated on a flat square plate, a flat circular plate, and a parabolic
cylinder section and the results were in good agreement with direct time domain
scattering range measurements. These results are particularly encouraging and
should be extended to additional target geometries.

A new approach to the inverse scattering problem was developed and
demonstrated in this study. This approach starts with a space-time integral
equation that represents the inversion process. An iterative technique was
developed for the solution of the inversion equation and applied for four tar-
get geometry cases. Results were obtained fog a sphere, a sphere-cap cylinder,
and a flat-end sphere-cap cylinder, all with axial incidence. The iterative
solution technique yielded convergence in most cases and provided results in
the form of contour plots that agree closely with the actual target geometries
used. Three-dimensional plots of the target surfaces were also displayed at
various steps of the iteration process. The results of this work provide a
sound foundétion on which a viable time domain approach to the inverse scat-~
tering problem can be built. The results obtained in this initial effort
should merit further effort.
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SECTION 8
APPENDICES

8.1 DERTVATION OF THE PROPORTIONALITY CONSTANT BETWEEN J AND A’

Starting with K'(r,’t) as defined in Eq. (43):

—_

AT, t) = o= — ds’
S/ II‘—I‘ l
r
_ i@, 1) [ = ,
A ORN B
r

provided that J can be assumed constant over patch area S:, and equal to

— - - — . T
the value of J at the center r'=r of the patch. Placing coordinates at
the patch center, as in Fig. 67, so that r ® (0,0) and r’® (x,y) and in-

tegrating over the 2¥ by 28§ rectangle gives

. +Y + 38
A'(r,t)=ﬂ£"1?t>j —L _ gy ax .
Y 5 VX 4y

(Y, 8) = 4

Q==

Y Y
1

f T dy dx = 4 f

0 YX +Yy 0
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¥y —— TA AY
(x’y)d——-—br' i T
|
|
]
— |
-y <>
(-7, 0) o r<(0,0) Ix ‘(+Y, O)$X

L
(Os _8)

FIG, 67 A rectangular patch with sides 2v and 26 for which local
coordinates, originating at the patch center, have been
constructed,
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A

$
and under the area-preserving transformation x — T dx = - d€ s

§2

%+/CJ§F + 6 4n }+fﬁi§a}.

I(Y,6)= 4 {Yﬁn

In particular, I(—- ——) = _4bs ¢ 4n(l+/2) , so that for a square patch As
* 408 4n(1 +/2) from which immediatelys:

Gl
Bl
(—’.

on a side, K'(;, t) =

-

T I
(rs t)= As.zn(l +\/“2") A (I" t) .

Gl

8.2 ITERATIVE NUMERICAL PROCEDURE FOR COMPUTING y = h*(u) WHEN g DEFINES
A PARABOLA

Given a parabola consisting of points (y, z)= (y, Gyz) , where
G~ 0 is given and fixed, for a specific point (Y,GY2) on the parabola.
Y can be computed given only the arc-length U along the parabola (0, 0)
to (Y, GY2) + The reverse problem of finding U from Y is not in fact a
problem because U = h(Y) can be computed explicitly from the formula in
Eq. (59) for h 3 this formula is repeated below under Step 2.

For the parabolic case under consideration, the number Y = h*(U)
can be approximated to any required accuracy by repeated applications of the
three-step algorithm below. Here, again, h%* is the inverse of function h 3
that is, h<h*(u)> = u for all real u . Thus the algorithm approximates
h*¥(U) with h?(U) where ¢ is the specified relative error in O <
h<h§(U)> -U

< .
T €

Only a slight modification in the algorithm to be described and proven
is required in order to compute h*(u) for all negative u as well. In the

steps below, i =1, 2, 3, ... refers to the number of the iteration.
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Step 1: For the first iteration (i=1) , take y; = U

Step 2: With a value for Yy in hand, compute

h(y;) = L V1+ (ZGyi)Q + L £n<2eyi +v/1 +(2Gy.1)§)

) 4G

h(y,) -U

Step 3§a2= If 0 =

h(y,) - U
then take v = - L

. Y. e
i+l i /l +(2GY1) 2
and return to Step 2, using the value of Yi+l in place of Yy e

h(y;) -U

Step 3(b): If = <eg

then the present value of vy, 1is acceptably close to Y and
1

Y = h*(U) ~ hg(U) =y, -

What follows 1s a proof that the numbers ML y2, y3, y4... with
Yl = U and the others generated in accordance with Step 3(a) above are all
positive and comprise a monotonically decreasing sequence whose greatest lower
bound is Y = h*(U) .

To begin, observe that h and therefore also h¥* are monotonically

increasing functions. Indeed, for h the derivative function h’ given by

h'(y) =/1+(26y)% for all y

is also a monotonically increasing function over the range 0 =y <« , which

is also the range of concern in this proof. A convenient way to express this
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"strong" monotonicity of h ist If o and B are any two numbers satisfy-
ing 0<ao<pB , then

h'(q) <2 BB :2 %) <n'() .

Here, s Bﬁ :2‘“ is the slope of the chord joining points (a,lu(a)) and

<5, h(5)> + This slope can appear in the above inequality as it does because
the Mean Value Theorem assures the existence of a third number Y 1in the range
h(g) ~hl«

@ <Y <B forwhich h'(Y) = . The above inequality then follows,
B -v

recalling that h'(«) <h’(Y) <h‘(B) must hold.

In addition to the "strong" monotonicity of h , the following lem-
ma will also be useful.
Lemma: Given two numbers s and Sy satisfying O < sy < Sy <« and any
number V , consider the horizontal line consisting of points (w, V) in the
wv-plane as in Fig. 68. Figure 68 also shows a second line consisting of the
points {(w, v) = <W,\f+ sl(w -w)> » where the point (W, V) is their inter-
section. In that same figure, W <w., and the sequence of numbers Was W

1

w «se satisfies the condition

3,

for every 1 =1, 2, 3 ... The claim is that limw, =W . This may be ap-

joe 1
parent from the figure, but a more rigorous substantiation follows.

Recursive application of the above formula givess

S S
_< _..l)w +_.]_'.W

Vo = S, 1 S,
S - S S
oom (2 [6-2) ] @)
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FIG, 68 Geometrical figure for the Lemma.,
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S S S S
e (2w [0 (-2 ] ()

I e e e L

w =
2 2
°1
The initial assumptions concerning slopes s and S5 imply 0 <1 - = <1,
so that together with this last line 2

lim W o= 0 W, o+ [1-0]W=W

n -9‘.@

and the lemma is proven.

Parameters in the above lemma can be identified with those in the
algorithme Observe first that Y <U , since after setting &« = 0 in the
statement of "strong" monotonicity for h , the first half of the inequality
béﬁ) for all B >0 . This, together with the ordinary
monotonicity of h¥ , implies h¥*(g) < h*(h(s)) =B , so that in particular
h*(U) <U , and finally h*(U) = ¥ <U . It follows that h’(Y) <h’(U)
so that the identifications s h'(Y) and s, = h'(U) are legitimate.

1 2
Letting W=1Y , the lemma then specializes to

reduces to 1 <

il

lim wi =Y H
i=ew

provided that w, = U and

1
_ h(¥)) h'(y
wi+l"<l'h’§U§>wi+h o Yo

It remains only to prove that for all i 22 it is true that Y < Y3 < We oo
As the basis of an inductive argument that this is indeed so, let o =Y and

8 =1U in the "strong" monotonicity statement. The second inequality there
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h(U) =h(¥Y
U-Y

now specializes to <h’(U) , so that

h(y.) -

) - U ;
- v - _ . h(w-us ., _h(U)-h{y} _
27" TJ@'lT“T%ET ENEOEITC R,
U-Y

Moreover, the first inequality specializes to h'(Y) <}1[&I:2 Y);Ithat is, ’
h(U) - w(y) > n'(¥) » (U-Y) . Hence y2=z1-h—éi}%UL)ti <y - ROU=Y), W, .

h“(U)
Thus the basis Y < Yo < W, is established.

For the inductive step, Y < Vs is proven to follow from

<w
+1 i+l
the assumption that Y < Yi < wi . Step 3(a) is equivalent to h'(yi) =

h(Yi)'h(Y)

Vi 7Y
"strong" monotonicity statement becomes

s which with o =Y and B vy in the second inequality of the

h(y,) =h(Y) o)
e st < h y' -
v, =Y L Vs “¥i41

h(y,) -¥

I}

From the first and third terms here, l/(yi-Y) < l/(yi-yi+l) and Y <y,
is established.

+1

. , . _hly)-n(Y)
Finally, using @ =Y and B = Y, s h'(y) < __7;_:7?__ ,

then h(y,) -U> h’(Y)-(yi -Y) . And since w, >y, , it follows immediately
that h(wi) - U>h'(y) (y.l -Y) . Thus, starting with Step 3(a) and conclud-

ing with the recursive formula for Wi o

h(y,) -U h'(¥) (y, -Y) h'(Y) (w, -Y)
Yigr = Y5 ° h’ZyiS<Vi' h(y,) Wy - O T .

With the inductive step thus completed, it follows immediately that
¥Y<1lim vy, < limw, = Y. This then completes the proof that for any

io® ime t
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U>0 lim hg(u) = h%(U) =Y .
e~ 0

0A
8.3 THE VANISHING OF 75? EVERYWHERE ON SCATTERING SURFACE S’

—

The boundary condition Ki = A2 everywhere at the interface be-

tween media 1 and 2 can be imposed because it is not inconsistent with
Eqg. (30).9 The thin-surface scattering problem presents a three-media

situation where free-space media 1 and 3 sandwich a conducting medium 2.

Thus, Ki = 22 everywhere at one interface and Ké = Ay

other. For a point (x, y,g(y)> on the surface 8’ of medium 2 together

everywhere at the

with two points (x%5y’z’) and (x"yy",2z") in media 1 and 3 respectively,
each a distance ¢ from and on the normal line to S’ passing through the

point (x, y,g(y)) , one obtains

A(XI3 Yla Z ’) ~ A<X9 Yo g(Y)>

and

“ -
A(X”s Y s Z”) A A<X9 Yo g(Y)> .
The error of these approximations approaches zero as ¢ - 0 . Thus
A (X/ / Zl) R'}A (X// I Z//)
p 'Y o D s Y

and since the two-sided space derivative at <x, y,g(y)> can be approximated

by

aA Ap(xl, Yl, ZI) -Ap(X//’ Y//’ z//)
—*= (x5 vy2) =~
% 2¢
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3A) A
the imposition of 75; + T 0 everywhere on S’ and for all time is not

inconsistent with Eg. (30). ' ’ ‘

8.4 PSEUDOFUNCTIONS

--%t-S/Z U(t) is a pseudofunction which is gefined as the derivative
(in the distributional sense) of the distribution t~ 2U(t) . As long as de-
rivatives are taken in the distributional sense, the effect of this distribu- -

tion can be found. For example, consider its convolution with e(t)

2(t) = o(t) #[- 378/2 o) |

We know from distribution theory that this convolution can also be written in

the form

r(t) = e’(t) *(t'%U(t))

Lw

where e’(t) is the derivative of e(t) . This particular form can now be

written as an integral provided e’(t) is bounded and absolutely integrable,

r(t) = [ e/(t-7) T F g .

€

This equation may be written as the following limits

@D

r(t) = lim fe'(t-'r) T-% at .

e™0
€

Performing an integrationrby parts, the result is
@ [ 3
—1 -
r(t) = lin [e(t-e)e F- [ 377 2e(eom) ] ar .

e 0
€

172




RN,

Re-writing the equation vyields

r(t) = lim T - %-T-S/Q[e(t QT) - e(t -e)] dt .

e~ 0
€

The limit can now be taken as

r(t) = | - % (t-fr)'3/2[e(t-fr)' - e(t)]'d'r .

o =8

This is the correct result provided e’(t) is bounded and absolutely integrable.
This technique may be applied to other pseudofunctions in the form taLLl(t) .
provided « 1is not an integer. The technique may require taking more than one

derivative.

The convolution can also be written in the equivalent form

r(t) = [ =% (=)o) - o(t) | ar .

o &—s38

8.5 CONVOLUTION OF DISTRIBUTIONS

In general, the convolution of two distributions, f % g , does not
exist. Under certain restrictions the convolution can be defined. The most

common conditions are as follows:
(1) Either f or g has bounded support

(2) Both f and g have supports bounded on the left
[i.e., there exists some constant T; such that
f(t) =g(t) =0 for t < Tl].

(3) Both f and g have supports bounded on the right
[i.e., there exists some constant T2 such that
f(t) = g(t) =0 for t > T2]
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(4) f is a temporal distribution and g 1is an
infinitely smooth function of rapid descent.
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