INTERACTION NOTES

Note 226
June- 1970

INTEGRAL EQUATION APPROACH TO WIDEBAND
INVERSE SCATTERING:

Volume 1

Development of Procedures for Numerical Solution

C. Leonard Bennett
J. D. Delorenzo
Alethia M. Auckenthaler

Sperry Rand Research Center

ABSTRACT

The primary objective of this program was to develop practical pro-
cedures for calculating the pulse scattering characteristics of five realistic
satellite shapes. Past attempts to apply frequency-domain techniques to this
problem have been, at best, only partially successful. The approach taken in
this program was to solve the problem directly in the time domain using a smoothed
impulse function instead of a sinusoidal wave to represent the incident field.
This procedure essentially eliminates the time and inaccuracy that are intro-
duced in frequency-domain analysis by Fourier inversion of many data points,
with the data at each frequency point being obtained by procedures that are com-
parable in complexity with our complete time-domain solution. Moreover, the
time-domain solution is a relatively simple voltage versus time waveform that
contains all the amplitude and phase versus frequency information over several
octaves of bandwidth. By using the time domain, we have the advantage of being
able to compare the computed results with those obtained on the time-domain
scattering facility. This report is primarily concerned with the development
of techniques to solve scattering problems involving short pulses and compli-

cated shapes, and is presented in two volumes.
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SECTION 1

INTRODUCTION

This document is submitted as the final report in response to the
requirements set forth in Contract No., F30602-69-C-0332 between the Sperry Rand
Research Center, Sudbury, Massachusetts and the Air Force Systems Command, Rome
Air Development Center, Griffiss Air Force Base, New York. The primary objec-
tive of this program, performed during the period 12 May 1969 through 15 May
1970, was to develop practical procedures for calculating the pulse scattering
characteristics of five realistic satellite shapes. Past attempts to apply

frequency-domain techniques to this problem have been, at best, only partjally

successful,

The approach taken in this program was to recognize that since the
ultimate objective is to obtain the short-pulse response, then it is more
natural to solve the problem directly in the time domain using a smoothed im-
pulse function instead of a sinusoidal wave to represent the incident field.
This procedure essentially eliminates the time and inaccuracy that are intro-
duced in frequencv-domain analysis by Fourier inversion of many data points,
with the data at each frequency point being obtained by procedures that are
comparable in complexity with our complete time-domain solution. Moreover, the
time-domain solution is a relatively simple voltage versus time waveform that
contains all the amplitude and phase versus frequency information over several

octaves of bandwidth,

In order to evaluate a theory the computed theoretical results should
be compared with some experimentally measured results. This task would be
virtually impossible from a practical standpoint if the frequency domain had
been used for comparison. By using the time domain, we have the advantage of
heing able to compare the computed results with those obtained on the time-

domain scattering facility.

This report is primarily concerned with the development of techniques
1o solve scattering problems involving short pulses and complicated shapes, and
is presented in two volumes. The discussion of the technical approach, results
and conclusions is presented in this volume (Vol. I). Computer program descrip-

tions and listings are presented separately in Vol. TII,
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In Sec. 2 the general equation covering three-dimensional scattering
surfaces is derived. Three procedures are developed for solution of these
prohlems. The use of these procedures is based on the symmetries present in
the problem. A problem is either asymmetric, plane symmetric or rotationally
symmetric. In each of these cases numerical procedures are developed, repre-
sentative calculations are made and the results are compared with those

obtained experimentally.

In Sec. 3 a new integro-differential equation for obtaining the cur-
rents on a wire scatterer or antenna is developed. This equation explicitly
displays the wave nature of the solution, the excitation coupling, and the loss
mechahism, Procedures for numerical solution are developed and demonstrated

and the results are then compared with experimental results.

The fourth section combines the procedures of Sec. 1 and Sec. 2 and
results in the derivation of an integral equation that represents the currents
on a three-dimensional body containing wire antennas. The procedures for solu-
tion are developed, tested on models of specific satellite shapes, and comparecd
with measured data. The degrees of agreement in these comparisons are truly

remarkable.

The final section presents a summary of the reported results and

discusses the need to extend the techniques to the large-body problem.




SECTION 2

SCATTERING BY THREE-DIMENSIONAL CONDUCTING SURFACES

The general scattering problem is shown pictorially in Fig., 1. 1In
this problem there is a magnetic field ﬁi incident on a conducting body which
may be considered to be the field that would exist if the scatterer were not
present. This incident field sets up currents 3 on the surface of the
scatterer such that

(Y}
1l
B>
x
xi

where

-
H = total magnetic field
8 = unit vector normal to surface.

. . . . s
These currents in turn radiate and produce the scattered magnetic field H

which is defined as

HS = H -

H'

Once the surface currents have been determined, the far field may be calculated
and the scattering problem has been solved. The purpose of this section is to

derive the integral equations that represent these surface currents and to de-

velop procedures for solution of these integral equations.

2.1 DERIVATION OF THE GENERAL SPACE-TIME INTEGRAL EQUATION

One way to derive the integral equation for the surface currents is
to consider the equivalent problem shown in Fig. 2, in which the scatterer has

been replaced by source currents J which are equal to

Since these currents are radiating in free space, the free-space Green's
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FIG. 2 Equivalent of general scattering problem.




function may be used to find the expression for the total H field at an
arbitrary point in space, which is

t
A0 = B0 + 5 {[RB = aT]J(r ) x4 fds” (1)
- S
T=1t -R/C
where
- - » .
r = position vector to
the observation point
- T o= position vector to
the integration point
- R = l? - ;’,
-~ _ r - rl
BT TR
¢ = the speed of light
' ‘ An integral equation for the current density J may be obtained by specializ-

ing the arbitrary space point r to a point on the surface of the scatterer

—

and then applying the boundary conditions to cast H in terms of J . Perform-

ing the limiting procedure and applying the boundary condition yields the
integral equation

IF0 =28 (B0 4y {[ +Rc BT]J(r Ty A bds (2)
- T=1t-R/c
- where r is now located on the surface of the scatterer. Equation (2) is a

space-time vector integral equation for the current density J on the surface
- of the scatterer. The first term in the right-hand side of Eq. (2) may be con-
sidered the source term and represents the direct influence of the incident
field in the current at the observation point (r.t) . Moreover, this term,

when applied to the illuminated side of the scatterer, yields the familiar



physical-optics approximation for the surface current. The integral term on '
the right-hand side of Eq. (2) represents the influence of currents at other

surface points on the current at (?,t) . The crucial observation here is that

the influence of other currents on the current at (?.t) is delayed by R/c ,

which makes numerical solution of Eq. (2) feasible.

In most applications the quantity of interest is the far scattered
field. The far-field expression for the scattered magnetic field, H® , may be
obtained from Eq. (1) by noting that the contribution of the first term within

the integral becomes negligible when R becomes very large. In addition,

aR - ar

and
1.1
R T

Thus, the expression for the far field becomes

as = 01 3G T Ly A ar
H (T 1) = = | {55 }x §_ds’ . (3)
S

T - t-RE

2.2 SOLUTION OF THE SPACE-TIME INTEGRAL EQUATION

The space-time integral equation in Eq. (2) represents, in principle,
the complete solution of the general scattering problem for an excitation with
arbitrary time dependence. However, in most practical scattering problems the
incident field is a plane wave, This is the space variation which has heen
used to date, but it should be pointed out that the solution of the scattering
problem for other space variations of the incident wave (e.g.., a sphervrical
incident wave) would be equally easy to implement. On the other hand, the time
variation of the incident wave in a practical radar system can assume an

arbitrary number of different forms, and although the integral equation can be

used to solve each of these scattering preblems separately, it is very
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inefficient to do so. An efficient way to approach this problem is to compute
the scattered response when the incident wave is an electromagnetic impulse.
Once the electromagnetic impulse response of a particular target has been ob-
tained, the response due to any incident wave can be calculated from it by con-
volving the impulse response with the specified incident waveform. Moreover,
the impulse response is intimately related to the actual geometry of the targel,
and thus the potential for developing techniques to determine the electro-

magnetic impulse response of a scatterer by a simple inspection of its geometry

is ever present.

For numerical solution of the space-time integral equation in Eq. (2),
the incident wave was taken to be the standard Gaussian regularization of an

impulse, namely,

_n -r? 2
6n(t) = —=

(
N e 4)

which converges to the delta functional as n goes to infinity, The time-
domain integral equation can be solved exactly for bodies with linear dimen-
sions up to several pulse widths of this regularized impulse. In this report

consideration is limited to bodies of this size.

Procedures for numerical solution of the integral equation (2) will
be presented in the next sections, For this purpose, procedures are developed
for three classes of scattering problems. The asymmetric scattering problem is
considered in Sec. 2.3. 1In this case the current density must be computed and
stored at all space sample points, and thus the computer time and memory are
proportional to L3 ., where L is the characteristic linear dimension of the
scatterer, Also presented in Sec. 2.3 are procedures for solving Eq. (2) for
scattering problems with symmetry about a plane., With planar symmetry present,
the current density need be computed at only half the space sample points, .and
thus the computer time and memory are proportional to L2/2 . Finally, the
selution of Eq, (2) for scattering problems with rotational symmetry is pre-
sented in Sec. 2.4. Since the current density need be computed at only one
value of <+ at each point along the axis of symmetry, the computer time for
rotationally symmetric scattering problems is proportional to L . Hence, a
significant saving in computer time and memory is possible if all symmetry
is properly exploited,
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2.3 ASYMMETRIC AND PLANE SYMMETRIC SCATTERING PROBLEMS

The space-time integral equation (2) gives the current density on the
surface of an arbitrarily shaped three-dimensional scatterer due to an arbi-
trary incident wave. It is convenient at this point to change the units of
time from seconds to light-meters, where one light-meter is defined as the time
it takes an electromagnetic wave traveling at velocity c¢ to travel a distance
of one meter., This change of units facilitates interpretation of the results
and removes the cumbersome factor ¢ from the formulation and the numerical

solution. Upon making this change, Eq. (2) becomes

- - _(o\ -] - th 1 l@_j—._.[ A / =
J(r,t) _Z%IXH(rJ)+%T anx-{[ﬁg+RaTJMr J)XaR}dS (5)
S

T=1t-R
and the expression for the far scattered field, Eq. (3), becomes

1 T L) | L A ,
4mr J oT f % ar ds * (6)

S

A3(r,1) =

To handle arbitrarily shaped geometries completely, it is convenient

to expand Eq. (3) in the rectangular coordinate system. Doing this gives tre

components of J as

J aJ J 3J
(y, 1y _ (2.1 7z) ’ -
<R3+R aT )nynRx (¥+R T /nanx.} ds (va)
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: . i J 1 aJ
= 2("2” anz) +2_T|'.J { (ﬁg."'ﬁ oT >("z"Rz+ nx"Rx)
S .
ad J ad
z (x, 1" x { ac? 7b)
T >"z"Ry <F+Ra'r )nanyf d> (b
T=1-R
. . ) J AJ
- _ i iy L1 ( z 17"z
JZH.U-_ZQJ%—n¢&>+2ﬂJ { RBHtR 37 >Q&%&+nfhﬁ
S
J 3J J dJ
x 1 " x <_x l_x> '
-lE*i o >nanz_ TR 3T nynRz} dS (7c)
T=1t-R
where
J=J4 +J4& +17Ja
X X yy z 2
A = na +na +n.a
n X X yy 2z
a.=n _a +n a -+ n_a

The coupled integro-differential equations in (7) give the solution of the cur-
rent on the surface of the scatterer. However, since the current is con-
strained to flow on the surface, only two of these equations are independent.
Hence, only two of the components of J need to be found from Eq. (7). The

remaining component of 3 is given by
nJ +nJ +nJ =0 (
X x vy 2"z

where nx , ny , and nZ are the rectangular components of the unit normal at

the observer.
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To find the far field from the current density for arbitrarily shaped

geometries it is convenient

Carrying out this operation

to expand Eq. (6) in rectangular

yields

coordinates,

ad aJ
HS:-I—J‘ (—ln - —%q )dS'
x ~ 4mr dT 'rz BT ry (9a)
S
T=1t-R
aJd dJ
S 1 ( Z X > ’
= = —Z - —= 0
Hy drr 3T rXx aT nrz ds (9b)
S
T=1t-R
aJ aJ
S_l [ x Y ’
Ho=2m | \37 “ry T 37 nrx) ds (9¢)
S
T=1-R
where
HS = u®a + v%3 + w3
X X yy z z
a = a +n 4 +n_4a
Y X X ryy rz z
2.3.1 Numerical Solution

The solution of the coupled set of simultaneous space-time integral
equations in (7) and (8) for the surface current density was obtained by carry-
ing out both the integration and differentiation numerically. As noted previ-
ously, only two of the components of currents need be computed using Eq. (7)
and the remaining component can be obtained by applying Eq. (8). To eliminate
the possibility of division by zero in Eq. (8), the current component with the
largest unit normal component at a particular space sample point is the one

selected to be computed with Eq. (8).
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is the integrand of Eq. (7a) evaluated at the integration
point ¥, when the observer is at ?i

f . is the integrand of Eq. (7b) evaluated at the integration
point ?k when the observer is located at ?i'

ASk is the surface area of the patch at ?k .
The time differentiation and interpolation necessary for the evalua-
tion of the integrands appearing in Eq. (7) were performed numerically by rep-
resenting the current with a fourth-order polynomial. In order to achieve the
best accuracy, the five points used for the polynomial representation of the
current were chosen such that the current would be evaluated as near as possi-
hle to the middle of them. 1In the representation in Eq. (10) the contribution
of the currents on the self patch (patch i) to the current at the observation
point ;i has been neglected, Moreover, it can be shown that this contribu-
tion goes to zero as the principal radii of curvature at T, become large. 1In
particular, when the patch is planar, there is no contribution from the self
patch. Another way of stating this condition is that the contribution from the

self term is proportional to the solid angle subtended by the self patch,

It is important to note that since the minimum spacing between space
sample points on the surface is greater than At , then Eq. (10) gives
Jx(?j.t) and Jy(?j.t) in terms of other currents a1l times earlier than
(t -41) , which are already known. Thus, Eq. (7) has been reduced from an
integral equation to the recurrence formula im time given in Eq. (10) and the

need to perform a matrix inversion has been eliminated.

Equation (10) is solved with a digital computer for the current
density by simply marching on in time. The computation starts at a point in
time before the incident field reaches the scatterer and proceeds sequentially
in time in the same manner that nature would solve the problem in the real
world, Once the current density has been obtained, the far scattered field is

computed by performing the integration in Eq. (9) numerically.

The parameters of scatterer geometry and incident field are displayed
in Fig. 3 for the asymmetric and plane symmetric scattering problems. The

direction of propagation of the incident field lies in the y - z plane and makes

15
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The surface current J 1is computed at points in space-time. The
choice of these sample points is carried out in the following manner. First,
the scattering surface is divided into curvilinear patches of approximately
equal area with a space sample point at the center of each patch. The spacing
of these sample points (and thus, the size of the patches) on the surface is
chosen small enough to give both a good representation of the scatterer and
also a good representation of the currents that exist on the scatterer. Nexi,
the time increment Ot between the points in time at which the current is com-
puted must be less than the time it takes a wave, moving at the speed of lignt,
to travel between the closest space points, As will be seen later, the satis-
faction of this condition insures that Eq. (7) can be solved without resorting
to a matrix inversion. The first sample point in time is taken to be earlier

than the time at which the incident field reaches the scatterer,

For the purpose of discussing the numerical solution of Eq. (7), it
is assumed here that the x and y components of current density are computed
with Eq. (7) and the 2z component is obtained using Eq. (8). The space inte-

gration in Eg. (7) is carried out numerically and may be represented as

- _ L1 \’
Jx(ri,t) = Jx(ri.t) + ) fxik ASk
k#1i
(10)
(—‘.,t = 17 “
1,70 = 3E L ) £ ik 05
k#i
where
?j is the position vector to the point at which the current
is being computed (observation point)
?k is the position vector to the integration point
INE 0 = 2nnt-nph)
x i y 2z zZy
INE 0 = 2nH - n_pl)
y i ZX X z
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an angle of ~ with the positive z axis. The polarization of the incident
field is specified by the angle B , which is the angle the incident electric
field vector makes with the x axis. For example, B = 0 corresponds to
vertical polarization and B = /2 corresponds to horizonial polarization. As
indicated earlier, the scatterer surface is broken into curvilinear patches of
approximately equal size. Each patch is represented by its coordinates

(x.,¥..2.) , its unit normal (n_.,n_.,n_.) , and the area of the patch, AS,
i'7itm xi' yi' zi ]

A sketch of the geometry parameters used for the description of the
far scattered field is drawn in Fig. 4 . 1In this sketch the incident field is
shown propagating in the y -z plane and making an angle o with the z axis.
The scattered fields produced by the surface currents are then computed in the
two principal planes, The scattered field is computed in the y -z plane at
angles Q&Z with respect to the direction of propagation of the incident wave.
In this plane the two orthogonal components used to represent the scattered
field are the component perpendicular to the y-z plane, H;zx . and the
component tangent to the y-2z plane, H;zt . The other plane in which the
scattered field is computed is the p-x plane, which is formed by the direc-
tion of propagation of the incident wave and the x axis. 1In this plane the
two components used to represent the scattered field are the component perpen-
dicular to the p-x plane, H;xp . and ithe component tangent to the p-xX
plane, ngt . These scattered fields are computed at angles i%x which are
measured with respect to the direction of propagation of the incident wave.

The procedures described above were implemented in the form of two
computer programs., The computer program ASSET computes the surface currents
and far fields produced by a Gaussian-shaped incident pulse for the scattering
problem with no symmetry accounted for, The program description and listing of
ASSET is found in Vol., II. For scattering problems with symmetry about a plane
the surface currents need be computed on only one side of the plane of symmetry.
For the geometry used in Fig. 3 1two polarizations are treated: vertical
polarization (B=0) and horizontal polarization (B=m/2) . These produce

the symmetry conditions on the surface currents shown in Table I,

17



{1G. 3 Parameters of scatterer geometry and incident field for
asymmetric and plane symmetric scattering problems.

A X

px plane
/ T S
[T s ST e
" pr* .

yzZ plane

F16. 4 fGeometry parameters used for description of far scattered field.
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Vertical rFolarization Horizontal Polarization
Jx(x.y.z.t) = Jx(—x.y.z.t) Jx(x,y,z.t) = -Jx(—x.y,z.t)
J (x,y,z,t) = -JT (-x,y,2,t) J (x,y,2,t) = J (-x,y,2,t)

y y y y y y y y
Jx.y,2,1) = -1 (-x,y,2,1) J(xy,2,1) = J (-x,y,z,t)
TABLE T

symmelry Conditions vn Surface
Current for Planar Symmelry

The planar symmctsy comhitions were incurpovaled and computer program PENSY

resulted. A poogeae deseryption and Listing of PPNSY is presented in Vol. 11.

2.3.2 Representalive tuimputations

The compuier program ASSET was written tu response to contract re-
quivemints and solves the problem of scattering from bodies with no regard for
symnetry consideratiors, The scatterer surface is represented by curvilinear
patches and the current is computed at the center of each patch on the body,
The case of a sphere with a diameter of one-half of a pulse width was used to
check out the proyram, and for comparison with the cesponse of the small scien-
Vific sated ite moded, whieh is presented in a leteyr section. lor this case,
the sphere surface wus bruken into 48 patches, giving a pateh size of approxi-
mately onc-e1ghih of a pulse wirdth on a side. The results compare well with
thuse computed previOuF}).l and the snapshot plot is displayed in Fig. 5. This
figure and those inat {nillow may be considered as space "snapshots" of the far
scatlered magnetic fields in which all dimensions are to scale except the dis-
tance from the scatterer. The large circle is the distance reference and rep-
resents the distance vhe peak of the incident pulse would have reached if it
had been reiiected from the origin, the cenler of the sphere in this case. The
ampl itude oi the scattered field is normalized by a multiplying factor of ar .
where a is the radius of the sphere and r, is the distance of the far-field
observer from the viigin, Tthe scattered field in the backscatter direction con-

sists of an initial pulse. which represents the contribution due to specular

19
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FIG. 5 Smoother impulse response of sphere computed with ASSET.
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vreflection, followed by a negative swing that would be predicted by the physi-
cal optics approximation. Finally, the second positive pulse may be inter-
preted as due to a wave traveling around the rear of the sphere. Inspection of
the current density on the surface does indeed reveal two pulses, one on each
side of the sphere, traveling from the illuminated side into the shadow region
of the scatterer. These two current pulses continue on into the shadow region,

diminishing in amplitude uniil they meet, at which time they coalesce and lose

much of their shape and identity.

The case of scattering problems with symmetry about a plane was con-
sidered and the symmetry conditions on the surface current displayed in Tabhlel
were applied in the computer program PLNSY, which is described in Vol. II. The
program was checked out initially using the case of the sphere. Some represen-
tative results of computations performed by PLNSY are displayed in Figs. 6 and
7. The smoothed impulse response of a sphere-capped cylinder with broadside
incidence and with the incident electric-field vector perpendicular to the
cylinder axis is shown in Fig. 6. 1In the backscatter direction the initial
pulse is the specular return, followed by a negative swing predicted by the
physical optics approximation. The second positive pulse appears at a point in
time that indicates il can be attributed to a wave traveling circumferentially

around the cylinder.

The smoothed impulse response in the backscatter direction from a
sphere~capped cylinder with broadside incidence, but with the incident electric
field polarized parallel to the cylinder axis, is shown in Fig. 7. Again, in
the backscatter direction the specular return followed by a negative swing is
noted, The timing of the second positive peak indicates that it is due to a
wave iraveling around the rear of the cylinder, but this time in the longitudi-
nal direction, This traveling-wave mode dependence on the polarization of the

a2
incident wave was expected and has been rigorously explained by Delorenzo.

2.4 ROTATTONALLY SYMMETRIC SCATTERING PROBLEMS

In the previous section it was shown that by application of the
symmetry conditions to scatiering pfoblems with planar symmetry the computer
time and memory could be reduced by a factor of one-half. A further reduction

in computer time can be realized in scattering problems that possess rotational

21
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Smoothed impulse response of sphere-capped cylinder
(broadside incidence with perpendicular polarization).
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_ FIG. 7 Smoothed impulse response of sphere-capped cylinder
(broadside incidence with parallel polarization).
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symmetry, if the symmetry conditions are properly exploited. This section de- ‘
velops the procedures for applying the symmetry conditions to rotationally

symmetric scattering problems.

The geometry of the rotationally symmetric scattering problem is
displayed in Fig. 8. For convenience the polarization of the incident field
was taken to be vertical, since the ¢ reference is arbitrary in rotationally

symmetric problems. The scatterer surface is defined by the contour

P = p(z)

where o (the usual cylindrical coordinate) is the distance from the z axis.
The contour, produced in the y=0 plane, starts at the most positive point in
z and moves along the curve in the negative z direction. The surface is then
generated by rotating the contour about the z axis. The unit vectors of in-

terest are

a = the unit vector normal to the surface

a., = the unit vector tangent to the surface which lies in
the plane generated by the z axis and the position
vector T. (This corresponds to ﬁe in the spherical
coordinate system.)

a., = the unit vector tangent to the surface which is perpen-
dicular to &, . (This corresponds 1o ﬁw in the

spherical coordinate system.)

It is also convenient to define

g = 1 (11a)

(11b)




g

f. ‘ i [

y

FIG. 8 Geometry of rotationally symmetric scattering problem.
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which yield the following relations

4 = - gpap - 93, (12a)
g = aQP ‘12?)
8, = 94, - 953, - (12¢)
For reference, the space-time integral equation (35) is rewritten here:
- = ~ =] = 1['0 {rl 18}""/ -~ ’
- —_— X . = 2
J(r,t) = 28 xH (r.t)+5- | & | R2*% o J(x’,7) x &, 1 dS (5)
S
T=1-R
Defining the source term in Eq. (5) to be
s i ~ =} —
J(r,t) = Zan X H(r,t) (13)
and carrying out the indicated cross product yields
=g i A~ » .
J(r,t) = mi(z.t)[azcosm+33gp51an (14)
where 71(?,L) was taken to be

HU(E 1) = - ayHi(z.t) )

By virtue of the rotational symmetry in this problem the total sur-
-

face current J may be written

- -

Jr,t) = Jz(zz.t) cos ¢ + a,J (£z,t) sino (15)

a9 3Y3

where zz is the position coordinate in the 52 direction on the scatterer
surface. Substituting Eqs. (14) and (13) into Eq. (5) and performing some
algebra yields
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J2Ulz,t) COS P = cOS P 2Hi(z,t)

- [ﬁ%"'Rl—a -g—;] {3,027, cos (99
S

. [(g'pl.,.gpl(z_zl))cos ((P_cpl)_pg,] } 4s*

T=1-R
- - 2—11-TJ l:ﬁl-5+RL3 %1-_] {JB(I,ZI,T)(z—Z ) sin? (p-p) } ds’
S
T=1t-R

(16a)

. . N P
J3(£z,t)51n¢ = sin®p|2H (z,t)gp

L

+ 1
2m

[_F{—lg+R3 —g—,r-] {Jz(l,z',T)

)

- . (—gpg'p'+gégp—gpg‘;(z-z') j| sin® (p-¢”) }ds'

T=1-R

- . [ (-gp(z-z') +gp > cos (p-p') - gp']cos (cp~cp')J\dS' .
T=1-R
(16b)

Equations (16) are valid for any value of ¢ ; however, it is conve-

. nient to solve Eq. (16a) for J, when ¢ =0 and to solve Eq. (16b) for .13
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when ¢ = g . Substitution of these values of ¢ into Eq. (2.16) yields the

following two coupled integral equations:

J.(4 1) = 28 (z,1)
2 "z

l 7 ] 1 2 [ ‘
--2-—T—TJ I:E'Q"FF 'é?:l lJz(ﬂz.T)-coscp'
S

. [(g'p'+gl;(z—z’)) cos @’ - pg'] } as’

T=1-R

_]‘__a.._ ’ 7 .oa /| ’
,r] {33(2Z.T)(z—z ) sin® @ I ds

1
o
3
;_.
—
-
W
+
=
a
o

T=1-R

L 7 ’ ’ ! ¢
. | - + - (z-z )] cos® ds
[ 9,9 P+ 9 9= 9,9, 05’ f

T=1-R

-‘:(-gp(z~z')+gp)Sinw"'gleSi"wl} ¢s’

T=1-R

28

(17a)

(17b)




2.4.1 Numerical Solution

. The solution of Eq, (17) is carried out on the digital computer in

much the same manner as was done for the cases of asymmetric and plane symmet-

ric problems. The surface of the scatterer is divided first into circular

- bands whose center is the z axis. Next, each band is divided into patches to

carry out the surface integration. However, in this case, where rotational
symmetry exists, it is only necessary to compute the current at the center of

each band and not at the center of each patch. This produces a significant
saving in computer time.

In particular, Eq. (17) is represented for numerical calculation as

J(z,,t) = 2Hi(z.,t)
= 1 1

15 2 { 1 1 g_}
"o L4 Taije VB T RE, o S G 5y
j 4 1) 1JL
T:L—Rijfa
57T e (w3
" o Toije VR P RE, o J J50%0 ™ 85 (18a)
- j o2 ij ij
~ =t=Risg

+5_l5 2 % feiju {R‘ai;““g—ilz%;} I,(z.,T) 85,
- J
TEU-Rig
— +—21F 2 ; fdijz {R_ailﬁ+Rzile%;} J3(zj.7) AS, (18b)
J
) T=t-R
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where

z, designates the band on which the observer is located.
Zj designates the band on which the integration point is located.
P, designates the patch on band j on which the integration

point is located.
fal‘_]z = cos P {[gp.+g ,(Z,_Z_)] COSQPL_p.g.}
£ N s X R T i9j

.2
fbijl = sin“9, (zi—zj)

f .. 2 [ ]
cij4 = cos" 0, Lgpjgipi"gpigij gplng( i_Zj)

= sin®, {[q p. -gp (z. i7%5 )] sin P, - 93 J}

jul
—-
L
ES
|

is the distance between the observation point and the

integration point.

The operator in the curly brackets in the integrand of Eq. (18) is represented

by Lagrange's interpolation formula as

r 1 }
{ e J(z . t-R ) =a...,Jd}l z..,t + a,..pJd4) z.,1
LR1 s R?1 ’ aT ij2 0ij# 3k gt ] 1ij2 J'kLy
J J J J
a .., J1] z.,t )
L ’ -
2ij ( J kij 2 1
where  a is the first Lagrange coefficient in a three-point representation.

0ij4
Morcover, some of the Lagrange coefficients in a particular band may be com-

hined with each other because the currents for which they are coefficients

are the same. Carrying out the combination and also incorporating the "f"
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coefficients yields the coefficients a, b, ¢, and g4 , and Eq. (18) may be
. written as

Coud
Iz, 0) = 20'(z,,0)

ij+2-n

N, .
ij

= —Z L Zijn J2(zj'tk
n

J

ij+2—n) (19a)

I (z,, 0 = 2H1(zi,t) g

pi
N..
i
-
. +L2—9-ijn J2[Zj'tk..+2 )
i n ij+2-n
N..
1)
- + ZL oo Tzt
4‘ ; Bk 3( J kij+2_n) (19b)
J

The a, b, ¢, and d coefficients in Eq. (19) represent the influence
- of currents at other points in space-time on the current at the observation
point. These “influence" coefficients are dependent only on the geometry in
the problem and not on the time dependence of the currents, and thus need be
computed only once for a particular target. They may also be considered as the
weighting functions for the numerical integration performed on Eq. (17). Hence,
the effect of rapid variation in the geometry function of the integrands in
Eq. (17) in the vicinity of edges can easily be accommodated by modifying the

- particular group of influence coefficients near the edge region.
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Again, since the minimum spacing between space sample points is
greater than At , then Eq. (19) gives Jz(zi,t) and JB(Zi't) in terms of the
incident field, which is known, and other currents at times earlier than
(t = A7) which have already been computed. Thus, Eq. (17) has been reduced to
the recurrence relation in time given in Eq. (19) and is suitable for soluticn

on a digital computer by marching on in time.

A sketch of the geometry parameters used for the description of the
far field scattered in rotationally symmetric problems is drawn in Fig. 9. 1In
this sketch the incident field (vertically polarized) is shown propagating in
the negative =z direction. The scattered magnetic fields produced by the
induced surface currents are then computed in the two principal planes: the
E plane at angles 9E with respect to the =z axis and the H plane at

angles GH with respect to the =z axis.

Applying the rotational symmetry condition to the expression for the
far scattered magnetic field given in Eq. (6) yields the scattered field in the

two principal planes as

s, _ 1 a j\ / / ’ ‘ 7 R /
HE(r,tf) = I 5{; J2(z ,T) cos® (gp cos @ cos GE—-g sin BE) dS
S

+ j JS(ZI,T) sin“o’ cos BE as’ (20a)
S

where

[ ’ /
T = te ¥ (p sin eEcoscp + z cos GE)

t., = t-r = the far-field clock

o
f

= the surface current clock.
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FIG. 9 Geometry parameters used for description of far scat-
tered field in rotationally symmetric problems.
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G, = 1 o J ‘. ‘ 2 4 L
HH(r.Lf) = drr 3L J2(z ,T) gp cos“@ dS
f
S
! . 2 1 4
+ j J3(z .T) sinp dS (20b)

S

where

T=t,+ (p/sine

. ’ /
¢ sin® + z cos QH)

H

The far scattered fields are compuled numerically on a digital com-
puter using Eq. (20). The integration and differentiation in these equations
are performed in the same manner as was done for the asymmetric and plane sym-

metric problems discussed earlier.

2.4.2 Representative Computation

The computer program ROTSY was written to implement the procedures
described in the previous section for the rotationally symmetric scattering
problem. A program discription and listing of ROTSY can be found in Vol. II,
This program was checked out initially for the case of the sphere and the re-
sults were found te he in good agreement with earlier compulations without
symmetry and with the inverse transform of the classical frequency-domain
result. As noted earlier, the improved account of interaction in the vicinity
of edges was incorporated into the influence coefficients in the neighborhood
of the edge. Several smoothed impulse responses that were computed using ROTSY

are now presented.

In Fig. 10 the smoothed impulse response of the advanced defense
communications (ADC) satellite model is shown. As noted earlier, all dimen-
sions are drawn to scale in this "space snapshot" except the distance from the
scatterer. In the neighborhood of the origin the contour of the ADC satellite
model is also shown drawn to scale. This model is a composite body made up of

a right circular cylinder with a stub at one end.
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FIG. 10 Smoothed impulse response of ADC satellite model computed with ROTSY.
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The space snapshot displays the scattered field in all directions.
In particular, it is interesting to relate the response in the backscatter
direction to the actual geometry of the target., First, the response from the
stub on the target is hardly discernible. The return from the flal end of the
target, however, is large and approximates the derivative of the incident
pulse. This is followed by a near zero return indicating a small return in
the backscatter direction from the sides of the target. Next, there is a nega-
tive pulse followed by a positive pulse. The timing of this response indicates

that it can be attributed to the rear edge of the ADC satellite model.

As a check on the numerical results from ROTSY, an ADC model was
fabricated and the smoothed impulse response was measured on the time-domain
scattering-range faciliry.3 The result is displayed in Fig. 11 and compared
with the numerical calculations. The agreement is good for the return from the
front end of the model and the return from the side of the model. However, the
portions of the returns that may be attributed to the back edge differ from
each other, with the measured result heing somewhat smoother than the numerical
results, This discrepancy may be due to small errors in both the numerical
computation and the measured results. The numerical calculations would be im-
proved if the band and patch size used to represent the ADC target numerically

were reduced.

Fiqure 12 displays the smoothed impulse response of the university
explorer satellite (UES) model that was computed with ROTSY. The contour of
Ut5 1y shown in this figure in the neighborhood of the origin. As can be seen,
this target consists of three composite right circular cylinders that may be
viewed as a large right circular cylinder with a circular stub at each end. It
is interesting to note that in the backscatter direction the return from the
stub on the front end is clearly evident and is not completely obscured by the
large return from the front end of the cylinder. This large return that fol-
lows the return from the stub again approximates the derivative of the incident
pulse. However, the next region of the response is no longer near zero. Based
on previous experience with the right circular cylinder and the sphere-capped
cylinder the variation in this region of the response is not attributed to the
sides of the large cylinder, but rather to interaction between the front stub

and the front face of the cylinder. Moving further along the response, one
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(a) Measured ADC response

( horiz. scale=05nsec/div. )

A

-

(b) Calculated ADC response

FIG. 11 Comparison of calculated and measured
ADC response in backscatter direction.
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Smoothed impulse response of UES satellite model
computed with ROTSY.
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reaches the portion that can be attributed to the return from the back edge

regions of the target.

In order fto check these calculated results the smoothed impulse
response was measured experimentally on the time-domain scattering range. The
result of this measurement is compared with the calculated result in Fig. 13.
The agreement between the two results is good over the majority of the response

duration.

As a final example of numerical results ohtained using ROTSY, scat-
tering from the gravity gradient test satellite No, 2 (GGTS-2) wmodel was con-
sidered.  The smoothed impulse response is displayed in Fig. 14 along with the
contour of the GGTS-2 model used for the calculation. This scatterer consisty
of a composite of three right circular cylinders with different radii and
lengths. In the backscatter direction the response from the front of the [irst
cylinder is clearly evident and is followed by a negligible return from the
sides of the tirst cylinder. Next, the return from the face of the second
cvlinder is observed, closely followed hy the very large return from the face
ol the third cylinder. The returns from each of these faces approximate the
derivative of the incident pulse, as expected. The variation in the portion of
the response ihat appears after the return from the third cylinder face appears
to be rcaused by inic-raciions between the current on Lhe third cylinder and the

current on the second cylinder,

Again, the voijdity of the caleulated results was suhstantiated by
peasaring the smoothed impulce response of o fabricated GETS-2 model in 1 he
harkscatter direction on the time—-domain scattering vange. The results of this

measuvement are in close agreement with the calculated response, as can be <een

in Fig., 15,
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(a) Measured UES response

( horiz scale= Q.5 nsec/div. )

(b) Calculated UES response

FIG. 13 Comparison of calculated and measured
UES response in backscatter direction.
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FIG. 11 Smoothed impulse response of GGTS-2
satellite model computed with ROTSY.
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(a) Measured GGTS—-2 response
( horiz.scale = 0.5 nsec /div. )

S
'.

(b) Calculated GGTS-2 response

FIG. 15 Comparison of calculated and measured GGTS-2
response in backscatter direction.
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SECTION 3

SCATTERING BY FINITE WIRES

The numerical solution of scattering by finite wires has been treated

in some detail in the frequency domain, 3190

The basic approach used in this
treatment has been to make a thin-wire approximation to the electric-field
integral equation and then proceed to solve the resulting integral equation
numerically by matrix inversion on a high-speed digital computer. The treat-
ment of transient scattering by finite wires in the time domain is much less
well developed, and apparently the only work published to date has either been
done or referenced by Sayre and Harrington.7'8 In the technique developed by
Sayrejvthe thin-wire approximation was applied to four simultaneous field
equations for the electric charge, the electric current, the electric polential,
and the magnetic potential. These four equations in the time domain were then
approximated numerically and solved on a digital computer. For the case of
oblique angles of incidence, Sayre's results exhibited an oscillation in both
the current and the far scattered-field computation that suggest chronic numer-

ical inaccuracy in the formulation,

A different approach to the solution of the problem of transicnt
scattering by finite wires is developed in the following sections. This
approach solves the problem directly in the time domain on a digital computer
by marching on in time in much the same way as was used by Sayre. However,
the numerical starting point occurs after a single space-time integro-differ-~
ential equation for the wire current has been formulated. In addition to
eliminating analytically three of the four unknowns that Sayre eliminates
numerically, this formulation provides significant insight into the transient
mechanism even before numerical techniques are applied. In particular, the
form into which this equation is cast specifically displays the wave character
of the currents, the coupling of the currents to the excitation, and fhe elfec!

of the wire ends on the currents.

3.1 DERIVATION OF SPACE-TIME INTEGRO-DIFFERENTIAL EQUATION

A straightforward way of deriving the integro-differential equation

is to start with the expression for the electric field in terms of the electric
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and magnetic potentials. The geometry of the problem is displayed in Fig. 17.
In this particular formulation, the wire axis is parallel to the x axis and
the incident wave makes an angle of 8' with the x=0 plane, For this

geometry, the total electric field is given by

E(r,t) = EXNT,t) -1 SLJLQ—.-VEJ(?,U (21)

where

A= magnetic vector potential such that H=9VxA

® = electric potential

b = permeability of space

€ = permittivity of space
Next apply the Gauge relation

oK. 2
A+€Bt 0

to £q. (21) to obtain

—_ - -—4j . 27

¢ zf(rLll = € S% (r")-kGV(V - A) -ue %TQLE*LL . (22

Considering only the x component and substituting the expression

- "‘L'I { J(r /
AT = | {22y s
S

T=t-R/C

where S is the surface of the wire, into Eq. (22) yields
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FIG. 16 Geometry of finite-wire scattering probhlem.
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A .Ex(r.t) B aEx(r,t) . < 82 1 82 ) _LJ‘ { Jx(r ,T)} ds’ (23)

T Y 3C "2 at?/ | an R :
S T=t-R/c

Next, the thin-wire approximation is applied in which the width of the inci-
dent pulse is much larger than the diameter of the wire, yielding a surface
current density that is independent of angular position at a particular value
of x on the wire. In addition, the boundary condition on the tangential

electric field at the surface of a conductor is applied to Eq. (23), yielding

32 1 32 1 Ix(x'.T) , AE;(x,t)
e R e B (2
2 T=t-R/c
where
2 = length of the wire
R = a%+ (x-x)?2

It

radius of wire

At this point it is ronvenient to change the units of time Irom

seconds to light-meters. Carrying this out in Eq. (24) gives
1 1(x',7)
~2 [ L Ix .7 ’ __\/E__ -
411!{ R dx = ey (23)
) T=t-R

where

—a 2 32
. represents the wave operator By llevr-
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Finally, the wire is divided into segments and the current is eval-
uated at the end of each segment. For the case of the two end-points on the

wire the thin-wire approximation is applied, yielding

I(zl.t)

1]
o

)_

1
Q

ot
where

tl = lower end of wire

=
i

5 = upper end of wire

For the interior points on the wire the integral over the wire that appears in
Eq. (23) is evaluated over two regions: the region on which the ohserver is
located (the self region) and the remaining region (the nonself region). The
evaluation over the self region is evaluated analytically after assuming the

current to be constant over it. This yields

L {2 g = erex (26)
self T=t-R

~here

Substitution of Eq. (26) into Eq. (25) and rearrangement of terms gives the

integro-differential equation for the current on a finite wire as

02 O Y Cl' L o2 [ {Im} g
1,0 o \/:Bt Tam RS X (27)

nonself T=t~R

It is interesting to note that this integro-differential equation

displays the wave character of the currents by virtue of the wave operator on
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the left-hand side. Moreover, it also displays the coupling between the exci-
tation Ei(r,t) and the current through the coefficient @ , Finally, the
zffect of the ends of a nonzero radius wire on the current is contained in the
second term on the right-hand side of Eq. (27).

The expression for the far scattered field for the case of finile
wires can be obtained by applying the thin-wire approximation to Eq. (6),

which yields

S = I{BI(X o .
H (r,tf) 4Wr dx sin eE (28)

where

8 is defined in Fig. 9

E
/
T = tf+-x cos GE
tf = t-r = the far field clock

t = the wire current clock.

3.2 MNUMERICAL SOLUTION

The numerical solution of Eq. (27) was accomplished by treating fhe
right-hand s~ide as a forcing function that is known. This is possible in this
case since the right-hand side contains only the incident field, which is known,
and wire currents that have been previously computed. Thus, the problem is
then reduced to the solution of a one-dimensional wave equation with a forcing
function, This was accomplished numerically on a digital computer by marching
on in time using the standard five-point difference approximation to the one-

dimensional wave operator.

In this solution the wire was divided into equal-lenglh segments and
the current was computed at the end of each segment. The time increment
was chosen less than or equal to the lengthof the space segments to insure
stability of the solution.q This choice also insures that the right-hand side

of Eq. (27) is a function of entirely known quantities.
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Using a five-point difference approximation of the wave operator,
Eq. (27) may be represented numerically as

-2 . . s . -2, . ,+1I. .
Ii"lni"l Iix_]-1+11+11_]-1 Il,i-2 Ill]-l 1..!..]_ = _F (")())
- Ax? - M2 i,j-1 B
- where
I, . = I(x,,t,)
— 1.] 1]
Ax = space increment
- At = time increment
AEN(x,,t ) .
- F :_1_[\,3_______1“ L + L o2 _l
i,j ¢ HoAt 47 9ij
Xi-1 2y
/ 7
® o = [ {Renmp g {2 g
ij R R
4 T=t, R Ti+l T=t, -R
-— J J

The integration in g;; was performed numerically by using the trapezoidal

rule and the wave operator was applied to g;: by means of the five-point
difference approximation. The recurrence relation for the curvent on a finite

wire may be obtained by rearranging terms in Eq. (29) and becomes

> e _ 9 ' TR
i o (= e Y o) - (e ) @

Equaiion (30) is solved on a digital computer for the current densiiy

by simply marching on in time. This computation starts at a point in time
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hefore the incident field reaches the wire and proceeds sequentially in the ‘
same manner as was used for the solution of the space~time integral equation

“or surface scatterers. Once the wire current has been obtained, the far

scattered field is computed on a digital computer using a numerical represen-

tation of Eq. (28),

3.3 REPRESENTATIVE COMPUTATIONS

The computer program WSCAT was written to implement the procedures
described in the previous section for the solution of the transient finite-wire
scattering problem. A program description and listing of WSCAT is included in
Vol. II. This program was initially checked out for the infinite-wire case
and the result was in good agreement with the inverse transform of the classi-
cal frequency response. In addition, the far fields scattered by wires of
various length-to-diameter ratios were measured on the time-domain scattering
range3 and compared with the results calculated with WSCAT. An example of the
good agreement obtained is shown in Fig. 17 for the case of a finite wire with
a length-to-diameter ratio of 10 and a diameter of one-tenth of a pulse

width, The wave shape, the period, and the rate of damping are in close agree-

ment in the two results,

In Fig. 18 the space snapshot of the response from a finite wire with
a length-to-diameter ratio of 10 and normal incidence is shown. Note fha:
the response has decayed to less than one-tenth of the first peak value afrer
three periods of the response and that the distance between zero crossings is
approximately 1.25 times the time it takes a wave moving at the velocityv of

light to traverse Lhe length of the wire,

The smoothed impulse response of a thinner wire (L/D =100) with nor
mal incidence is shown in Fig. 19. Note that for this thinner wire the re-
sponse is smaller but decays more slowly than for the case of the wire in
Fig. 18, In addition, the distance between zero crossings is reduced to approx-
imately 1.08, as expected. In the limit of zero wire thickness the distance
between zero crossings approaches ihe time it takes a wave to traverse the
iength of the wire traveling at the speed of light; however, the amplitude of
the response will approach zero., This effect is predicted by the integro-

differential Eq. (27) since @ goes to infinity as the wire radius (oes to zero. I
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(a) Measured finite wire response (L/D=10)
(horiz.scale = Q0.5 nsec /div. )

(b) Calculated finite wire response (L/D=10)

FIG. 17 Comparison of calculated and measured finite-
wire response in backscatter direction.
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FIG. 18 Smoothed impulse response of finite wire with L/b=10 and ! OO.
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As a final example, the result of scattering by a wire of length-to-
diameter ratio of 100 with an oblique angle of incidence is displayed in
Fig. 20. In this case the amplitude of the scattered field is smaller than
for the case of normal incidence shown in Fig. 19; however, the rate of decay
and period of the response remains essentially the same. Moreover, this pro-
vides an additional check on WSCAT in that it produces results which are con-
sistent with the time-domain reciprocity theorem.lo That is, the field scat-
tered at - 60° when the direction of incidence is 0° in Fig. 19 is the same
as the field scattered at 0° when the direction of incidence is -60° in

Fig. 20.

FIG. 20 3Smoothed impulse response of finite wire with L/D=100 and 1= _p0"
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SECTION 4

SCATTERING BY THREE-DIMENSIONAL CONDUCTING SURFACES WITH WIRES

The problem of determining the scattering by three-dimensional sur-
facrs with wires attached is of great practical interest, since this serves as
a model for numerous satellite-type objects thal possess transmit and/or
receive antennas. Morcover, to ignore the effect of the wire antennas will
produce very poor results. To the authors' knowledye, there has been no
adequate procedure developed for the solution of this complex scaltering prob-
lem in either the time domain or the frequency domain. The following sectians
describe a new procedure that has been developed for solving this difficult
scattering problem. Briefly, this procedure consists of the development of
two simultaneous space-time integro-differential equations and their subse-
quent solution by marching on in .time on a high-speed digital computer. These

equarions contain terms which may be interpreted as

{a) The influence of wire currents on other wire currents
(b) The influence of wire currents on surface currents
() The influence of surface currents on other surface currents

(d) The influence of surface currents on wire currents.

The neighborhood of the point where the wire is attached to the surface is

accounted for by application of boundary conditions at the end of the wire,

i 1+ DERLVATION OF SPACE-TIME INTEGRO-DIFFERENTIAL LEQUATION

The technique used here ro develop the space-time integro-ditferen-~
tial cquation for surfaces with wires is to consider the equivalent of this
scattering problem shown in Fig. 21. In this equivalent statement of the
problem the conducting surface has been replaced by source surface currents
and the conducting wires have been replaced by source wire currents, Since
thesce source curvents are now radiating in free space, the techniques used
for the case of scattering from surfaces alone can be combined with the tech-
nique used for the case of scattering from wires alone to solve the probiem of

scattering from surfaces with wires attached.

In particular, the space-time integral equation for surface currents

that appears in Eq. (5) may be augmented by the magnetic field ﬁ;(;,t) that
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FIG. 21 Equivalent problem of scattering from surfaces with wires.
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is produced by the wire currents, yielding the inteqgral equation

Jur,t) = 2a x HY(r,t) +2a x H (r,1)
n n W

2_111 e T]E(F’,t) X 3o} as’ (31)

T=t-R
where the geometry parameters are defined in Sec. 2.2, The magnetic field

Hx(r:l) is found by applying the thin wire approximation to Eq. (1) to obtain

.. — _ —L r { ‘: 1 l i— Tt — ~ } ’ .
Hoo =gz 1 wres | TG xap dat’ . (32)
2

T=t ~R

The space-time integro-~differential equation for the wire current
that appears in Eq. (27) may be augmented by the eleciric field ES(;,L) that

is generated by the surface currents, producing the integro-differential

ecquation
C i .
o {. A
?I(X I) —«_l \/E_.l_::.._x(_x.'—)._'_ _e.—bix(_k'_‘_)_

’ T o VRN Vi At

1 ) I(x , 1)
—2 AlX ! s
e J { 7{*-— } dx (a2

nonself T=1t -R

wvhere the geometry parameters are defined in Sec. 3.1. At this point the wire
is assumed to be parallel to the x-~axis for case of presentation. In this
case il is necessary to compute only the x  component of Es(r,l) . Thes s

carried out starting with Maxwell's equat ion

E (;,t)
S
At

p

= vuTq(F,r) (3

57



—

and the expression for HS .
i _LJ‘{[L i.é_J"—f'- } 2
Hs( T z+g 57 J J(r ™) X apf dS (35)
S

where the units of 1ime are light-meters.

Next, Eq. (35) is substituted into Eq. (34) and the indicated vector

operations are carried out to give the x component of Eq(r,t) as

3E (r,t) . ’ 2
g__sx_'___l_j x—x{ '[_3_ 33 X o
b ot T 4m R3 x| gz TR AT*'afzj I lr ™
S
+ (y-y’)[:R%+% \72} I ('™
+ (z—zl)[ ﬁ%“*% v \TQJ J (r’,T)}

LI L 1 }
T J SNt Y Ol BTN E TS

T=1-R

Thus, two simultaneous space-time integro-differential equations
which are given in Eqs. (31) and (33) have been derived for the currents that

are set up on a surface with attached wires.

It is of interest to examine the terms that appear in these two
equations. Equation (31) gives the surface current in terms of the incident
field, the wire currents, and other surface surrents, The first term is the
source term and represents the influence of the incident field on the surface
current. The second term on the right-hand side is the magnetic field produced
by the wire currents and represents the influence of the wire currents on the

surface currents. The third term on the right-hand side of Eq. (31) represents
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the influence of the surface currents at other points on the surface current
at the ohserver,

Equation (33) gives the wire current in terms of the incident field,
the surface current, and other wire currents. The first term in the right-hand
- side is the source term, which is a function of the incident field. The sec-
ond term is a function of the electric field produced by the surface currents
and represents the influence of the surface currents on the wire currents.
Finally, the third term on the right-hand side of Eq. (33) represents the

influence of other wire currents on the wire current at the observer.

The wire currents at the free-space end and at the surface are given
by the boundary conditions

I(x,t) =0 free-space end
I(x,t) =0 surface end . (37)

X

Thus, the space-time integral equations (31) and (33) together with

‘ “ne boundary conditions in Eq. (37) and the defining relations in Eqs. (32)
and (3h) form the solution of the problem of scattering by surfaces with wires
- attached.

4.2 NUMERICAL SOLUTION

The numerical solution of Eq. (31) for the surface current was car-
ried out in exactly the same manner as was the numerical solution of Eq. (3)
and is described in detail in Sec. 2.3.1. The new feature in Eq. (5) is the

addition of the term 25n * Hw(r,t) , which may be written as

_ 2§n ¥ Hw(r.7)+-{ 5x [(y—yl)ny-*-(z-z/)nZ J-—ﬁy [(y-—yl)nx J

|~

i, ax | L G

oy

T

N / _1_ l 1
- - a, [(z—z )nxJ } o j { RS TRT
!

T=1t-R



The integration, differentiation, and interpolation in Eq, (38) were carried .

out numerically employing the techniques described in Sec. 2.3.3.

The numerical solution of Eq. (33) for the wire current was performed
in exactly the same way as the solution of Eq. (27) and is described in detail
in Sec., 3.2. The new feature in Eq. (33) is the addition of the electric field
produced by the surface currents. This contribution was evaluated numerically
from Eq. (36) using the techniques described in Sec. 2.3.3. Finally, the wire
currents at the end of the wires were computed by numerical application of the

boundary conditions in Eq. (37),

4.3 REPRESENTATIVE COMPUTATIONS

The computer program CSCAT was written to implement the procedures
described in the previous section and used to solve the problem of scattering
by conducting surfaces with wires attached. A program description and listing
of CSCAT are presented in Vol. II. This program was checked out for the case
of a finite wire on a ground plane and the result was in good agreement with
the result obtained for the case of the finite wire in free space. The results

obtained for two satellite models that have wires attached are now presented.

In Fig. 22 the small scientific satellite (SSS) model is shown. This
consists of a sphere centered at the origin with four wire antennas protruding
from the sphere along the positive and negative x and y axes. For the pur-
pose of demonstrating the validity of the procedures that were presented in
See. 1.2, the case of a vertically polarized incident wave on the 555 was con-

sidered, and the planar symmetry present was exploited.

Figure 23 displays the smcoothed impulse response of SS5S model that
was computed by CSCAT. As noted previously, all dimensions in this "space
snapshot" are drawn to scale except the distance from the target to the observ-
er in the far field. At the center of this space snapshot is the contour of
the S8S model, which is also drawn to scale. This figure displays the field
scattered by this target in all directions. In particular, it is interesting
to relate the response in the backscatter direction to the target geometry.

The specular return from the nose of the sphere appears first ard is of the
same value as was obtained in Fig. 5 for the case of scattering by a sphere.
Next, there is a second peak that can be attributed mainly to the specular

return from the wire antennas. This is then followed by a damped oscillation ‘
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INCIDENT WAVE

SS5 satellite model (length-~to-diameter ratio of each antenna is
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Smoothed impulse response of SSS satellite model computed with CSCAT,
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with a spacing between zero crossings that is approximately 2.5 sphere diam-
eters. This is less than the distance between the opposite free tips of the
wire (3 sphere diameters) but more than the length of an image representation
of each antenna (2 sphere diameters). Moreover, the decay of these oscilla-
tions is much more rapid than would occur for the wires alone in free space
with the same length-to-diameter ratio.. This demonstrates the significant

interaction between the antennas and the sphere surface,

As a check on the validity of these results a SSS5 model was fabri-
cated and its smoothed impulse response was measured on the time-domain scat-
tering range.3 The result of this measurement was compared with the calculated

S5S5 response. As can be seen in Fig. 24 the agreement is good.

The final satellite-type scatterer to he considered is the early
warning reconnaissance satellite (EWRS), The model of this satellite is shown
in Fig. 25. This model consists of a right circular cylinder with a length
three times as large as the diameter. In addition, the cylinder has two anten-

nas attached, each with a length equal to the cylinder diameter.

The smoothed impulse response of this target is shown in Fig. 26,
along with the contour of the target. The initial portion of the response in
“ne backscatter direction approximates the derivative of the incident pulse
and can be attributed to the front end of the cylinder. This is followed by
a damped oscillation that hay be attributed mainly to the currents traveling
on the wires. After the third positive peak in the backscatter response, a
departure from regularity in the damped oscillation can be noted. The timing
of this departure indicates that it is due Lo a return from the back edge of

the cylinder.

Finally, as a check on the validity of thesc calculated results, a
mode]l of the EWRS was fabricated and the smoothed impulse response was mea-
sured in the backscatter direction. The result of this measurement is compared
in Fig. 27 with the calculated response and demonstrates the good agreement

that was obtained.
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(a) Measured SSS response
(horiz. scale =05 nsec/div.)
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(b) Calculated SSS response

FIG. 24 Comparison of calculated and measured SSS
response in backscatter direction.
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INCIDENT WAVE

F16G. 25 EWRS satellite model (length-to <diameter
ratio of each antenna is 50).
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FIG. 20 Smoothed impulse response of EWRS satellite model computed with CSCAT.
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(a) Measured EWRS response
(horiz.scale = O.5nsec /div.)

M P

(b) Calculated EWRS response

F1G. 27 Comparison of calculated and measured EWRS
response in backscatter direction.

67



SECTION 5

CONCLUSIONS

The results of this study demonstrate that the space-time integral
equation approach to short-pulse scattering calculation is extremely powerful.
Moreover, these solutions are carried out directly in the time domain in much
the same manner that nature herself solves the problem in the real world,
eliminating the time-consuming process of matrix inversion that in the past has

been used to solve the integral equation in the frequency domain.

In particular, procedures have been developed and implemented for
five cases of the general scattering problem. These specific cases are:

(1) asymmetric scattering problems involving composite
surfaces,

(2) plane symmetric scattering problems involving
composite surfaces,

(3) rotationally symmetric scattering problems involv-
ing composite surfaces,

(4) scattering by finite wires, and
{5) scattering by surfaces with wires attached.

In this work new and significant techniques have been developed for
the solution of the problem of scattering by finite wires and the solution of
the problem of scattering by surfaces with wires attached. These procedures
have then been applied to satellite-type objects which include the UES, ADC,
GGTS-2, SSS, and EWRS satellites, and the smoothed impulse responses of these
targets were computed., Finally, it is important to note that the calculated
responses have been compared with measured responses from the time-domain

scattering range and that the agreement was good.

The technique at present is limited by the size of the body relative
to a pulse width that may be treated practically. The procedures developed
here give good results for body sizes up to several pulse widths., Treatment of
larger bodies at this time is restricted by limitations of high-speed computer

memory and running times.
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The next logical phase in the solution of short-pulse scattering

‘ problems is the extension of the space-time integral equation approach to
- bodies which are much larger than a pulse width.
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