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ABSTRACT
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ulation and numerical-solution methods are summarized,

and applications are demonstrateid with numerous examples.
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1. INTRODUCTION N

Numerical methods based on integral-equation formulations are re-
ceiving increasing acceptance for application to real-life electro-
magnetic radiation and scattering problems. Computer codes have been
developed and validated for both surface and wire gecmetries in both the
frequency and time domains for modeling infinite, homogeneous medium
problems. Some of these basic procedures have also been extended to the
analysis of structures located near a planar interface. In this presen-
tation we will discuss the general topic of computer models for wire anten-
nas from a frequency-domain viewpoint with emphasis directed to antennas
located near the ground-air interface. Some preliminary considerations
are discussed in Section 2, followed by a brief summary of a snecific
formulation ahd numerical treatment in Section 3, with sample numerical

results given in Section 4,

2. PRELIMINARY COMSIDERATIONS

The derivation of an integral equation for a wire structure can he
accomplished in many ways. What is basically involved is the writing of
Maxwell's equations in integral form so that the scattered or secondary
fields are given in terms of integrals over induced source distributions.
By expressing the secondary field over loci of points where the behavior
of the total field (incident or primary plus secondary) is known via
boundary or continuity conditions, an inteqral equation for the induced
source is obtained in terms of the primary field. Two broad qeneral

classes of integral equations are obtained, depending upon whether the




forcing fﬁnction gives rise to a Fredholm integral equation of the first
kind, so called because the unknown appears only under the integral. A
magnetic forcing field gives rise to a Fredholm integral equation of the
second kind, in which the unknown also appears outside the integral.
While derivatives of the unknown may occur as well, these equations are
commonly called integral equations, rather than intearo-differential equa-
tions as would be strictly correct.

Generally speaking, it has been found that the magnetic-field type
of integral equation is better suited for smooth, closed surfaces than it
is for thin-plate or shell geometries and wires (Poqgio and Miller, 1973).
The converse is generally true of the electric-field type of integral
equation. It is the latter then that is most commonly employed for treat-
/ ing wire structures. Also involved in developing wire integral equations
. are the approximations that (1) the circumferential current is negligible,
(2) the circumferential variation of the longitudinal current can be ignored;
and (3) the thin-wire or reduced kernel can be used in place of the actual
surface integration.

Many analytically equivalent integral equations for wires based
upon the electric field can be derived. Three of the most commonly em-
ployed are the Hallen or vector potential tyne (Mei, 1965), the scalar-
vector potential version (Harrington, 1968), and the Pocklington inteqral
equation (Richmond, 1965). A1l are solved within the framework of the
moment (or matrix) method but each exhibits distinctive characteristics
wnich must be taken into account in its numerical treatment. The Hallen
equation, for example, can nroduce results using a pulse-current basis of

' accuracy comparable to those obtained from the Pocklington equation solved



wifﬁ a three-term (constant, sine, and cosine) basis for simnle structures
(Miller and Deadrick, 1973a). The Hallen equation is not, however, readily
extendable to the complex geometries that the Pock]ingtan equation can
handle (Butler, 1972). )

Although pulse-current (Richmond, 1965; Curtis, 1972) and linear-
current (Chao and Strait, 1970) bases have been ‘quite widely used, and can
under suitable circumstances be essentially equivalent, they are not as
efficient for modeling traveling wave structures, regardless of the inte-
gral equation employed, as are sinusoidal bases which possess non-constant
derivatives and which can closely resemble the actual current solution.
Sinusoidal bases have appeared in sub-sectional or subdomain form in both
the three-term expansion mentioned abové and in the piecewise sinusoidal
(Richmond, 1969) or two-term form. Fourier series have also been studied
as complete-domain sinusoidal bases, but have not been widely adonted

because they require more integration effort than subsectional bases and

can lead to ill-conditioned matrices (Richmond, 1965).

The weight or test functions most often used have been delta func-
tions, although Galerkin's method with both linear (two-term) (Chao and
Strait, 1970) and sinusoidal (two-term) (Richmond, 1969) functions has also
been quite widely applied. The term "point matching" refers to the use
of delta~function weights. A comparison of numerical convergence rates
for several common methods applied to a straight-wire scatterer is shown
in Fig. 1 (Miller et al., 1974).

In addition to the problem of choosing basis and weiqght functions,
there are other special aspzcts of the numerical development which must
be considered when selecting a code for computer modeling. Three of these

aspects are discussed below.
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2.7 JUNCTION TREATMENT

Any subsectional approach which employs finite-difference operators
in the integral equation or other than a pulse-current basis necessitates
special consideration of both simple (two wires) and multiple (three or
more wires) junctions. What is essentially required is a way to relate
in some physically and mathematically reasonable way the current basis of
each subsection (segment) to those of its neighbors. When pulse bases
are used in the scalar-vector potential inteqral équation, the finite-
difference operator spans two seaments and thus leads to a charage which
involves the two corresponding pulse-current samples (Harrington, 1968).
For two- or three-term bases, the condition of current amplitude and slopbe
continuity at each simple junction leads to equations which oermit all the
constants in the current expansion to be given in terms of current samnles
at the segment junctions or centers (Miller and Deadrick, 1973a). A

slightiy different handling of the three-term basis was developed by Yeh
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and Mei (1967), in which the current is extrapolated from a given segment

to the adjacent segment centers, but which is otherwise basically the
same. i

When a multiple junction is concerned, the treatment can get consid-
erably more involved. The pulse-basis approach mentioned above has bheen
extended to the multiple junction (Curtis, 1972) by dividing the total
junction charge between the junction seaments according to the ratio of
their individual areas to the total area. This approach has been found
useful for the three-term’expansion as wel1.(Milﬁer and Deadrick; 1973a).
The two-term expansions have been applied to multiple junctions by over-
lapping M1 - 1 of the bases a pair at a time at an M-segment iunction (Chao
and Strait, 1970). Application of the three-term expansion to the multiple
Jjunction has been accomplished by M3Associates using the Yeh and Mei simple-
junction procedure by incorporating a composite seqment havina the averacged
‘ length and total current of the M - 1 connected segments (Gee et al., 1971).
A more elaborate multiple-junction approach has been developed for the three-
term expansion by Andreason and MHarris (1968). Their procedure aoparently
is the only one in which the junction geometry plays an explicit role in
establishing the current relationships at the junction. Although all of
these approaches evidently can produce satisfactory results, there is 1jtt1e
or no direct evidence of their validity in terms of the junction current
and charge distributions. It should be noted that the numerical results
have been found in some cases to be quite sensitive to the junction treat-
ment (Miller and Deadrick, 1973a). Further, the above 1ist by no means
exhausts all possible alternatives for the junction treafment.

2.2 SOURCE MODELS

Determination of quantities such as absolute gain, efficiency, radia-



ted power, input power, etc. requires not only the antennsa current

distribution but alsoc the input characteristics, particularly the feed-
point impedance (or admittance). The feedpoint admittance can be found

in various ways, but when using the integral-equation approach one usually
defines it in terms of source-region current per unit of terminal voltage.
In order to calculate this quantity, a realistic source model is needed
that not only provides an appropriate means for numérica]]y exciting the
antenna but also permits ready evaluation or specification of the effec-
tive terminal voltage. Thus if, as in a point-matching procedure, the
excitation arises as a tangential field on the source segment of length

I.
1s constant on

A, the driving voltage might be assumed to be -ElA if E
the source segment and zero elsewhere. This assumption may be invalid,
however, with the result that the actual voltage can only be obtained by

integrating the tangential field in the vicinity of the source seament

(Miller and Deadrick, 1973a). Somewhat less amhiguity should arise from
Galerkin-type approaches where the boundary conditions are intearated,
so that the classical delta-function source might be numerically abprox-
imated. An alternative source model for point matching is nrovided as a
current slope discontinuity, which also approximates a delta-function
source field. The current bases, junction treatment, and weiaht functions
can all influence the usefulness of these alternative source models. In.
case of uncertainty, once the current distribution has been found, the
impendance can be computed from the classical EMF method, although at the
expense of the additional integration which this entails.
2.3 INTEGRATION

Integration is understandably an essential part of the moment method,
Seing involved in applying the integral operator to the current bases and,
in a Galerkin method, evaluating the inner product of this result with the ‘
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weight functions. For most wire programs, these operations, which lead

to the generalized impedance matrix, dominate the total solution time for
numbers of unknowns less than ~ 200. It is thus imnortant that the in-
tegration time be minimized consistent with the overall accdracy require-
ments.

One way to aporoach this goal is to choose appropriate bases and
weight functions. The two-term sinusoidal current basis, for example,
requires no numerical integration when the Pocklinaton integral equation
is used together with point matching. This particular combination is
not very accurate, however, (Miller et al., 1974). By adding the con-
stant term, much better results are obtainad, with the slight additional
expense of the numerical integration required to find the longitudinal
field of this current term; the radial component can be analytically ex-
pressed. Alternatively, use of a sinusoidal weight function (Richmond,
‘ 1969) also gives much improved results and surprisingly requires numerical
integration, at most, of sine and cosine integrals. The piecewise linear
basis used with the scalar-vector potential equation cannot be analytic-
ally integrated, but good results are obtained with four-point rectanau-
lar integration of both the operator and inner-nroduct inteagrals. In
addition, instead of applying a numerical integraticon to the self-term,

a series expansion which gives a closed-form expression is used (Harrinaton,
1967). Uhen numerical integration is resorted to, various adantive routines

and special techniques are available to irprove efficiency (Miller and

Burke, 1963).



3. WIRE ANTENNA AMALYSIS

It can be appreciated that there are many options qyai]abie to the
analyst concerning the integral equation to be selected and its numerical
treatment in developing a computer model for apoplication to wire antennas.
In order to limit this discussion to a reasonable length, our attention
will be primarily directed to an apnroach based on the Pocklington
integral equation solved using a three-term subsectional basis (constant,
sine, and cosine) and point matching. Unless otherwise indicated, antenna
sources are introduced as tangentfa] electric fields, with the Yeh and Mei
(1967) form of current extrapolation used for simple junctions and the
MBAssociates extension of this extrapolation method to multinle junctions.
Both the source model and junction (simple and multiple) treatment used
in this code may exhibit deficiencies, But when applied with care (e.aq.,
equal segment lengths near sources and at multiple junctions) the code has
proved to be valid and reliable. A brief overview of the relevant equa-
tions and numerical treatment used for free space and various interface
theories and some special topics is given in this section. HNumerical
results follow in Section 4.

3.1 INFINITE, HOMOGENEOUS, ISOTROPIC MEDIA
The Pocklington-type integral equation for a wire structure of contour

C(r) can be expressed in the form

SHORE B PR LR ) M
C(F)
where ]
solss') =515 e T EmE | g,
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e—\kR

go (r,r') = R
R=[r-r']>a(r), -
- velr) |
[vC(F)]
and
’s‘| - VC!Y"! .
jvc(r)]

where as usual k js the infinite-medium wave merber, the permeability

and permittivity are denoted by p and e, a{r) is the wire radius at r,

and quis the incident electric field.
Reduction of this equation to matrix form involves these seven steps:
(1) Approximating C(r) as a piecewise linear sequence of N segments

of length Ai’ i=1,. .., N, so that
N R
c(r) = Z Ay S5,
i=1

with §i the unit tangent vector to C(r) at r = r; (use of straight segments
is not mandatory, but it is very convenient in simplifying the current
integfation);

(2) Introducing the subsectional bases

Ii(s') = Ai + B, sin [k(s'_— Si)] + Ci.cos [k(s' - Si)]

to represent the unknown current (the final unknowns will be the N-samnled
current values Ii = Ai + Ci’ i=1,. .., N, at the center of each of the

N segments);
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(3) A current interpolation procedure whereby the individual Ai‘

Bi’ and Ci constants are expressed in térms of the samolgd current values;

(4) Use of the N delta-function weights §(s - sj), i=1, ... ,N,
to obtain an Nth-order impedance matrix of N independent field equations
(note that the weight functions sample the field at the segment centers,
and are thus "collocated" with the current sample locations);

(5) Specification of the N incident or primary field vector components
Ei = EI(sj)-gj,-j =1, .. ., N, which are the tangential fields at the
N segment éenters;

(6) Matrix manipulation to obtain an admittance equivalent of the
impedance matrix; and

(7) Computation of the current distribution and whatever field cém-
ponents, if any, are desired.

The total computer solution time is well approximated by AM? + BN?,
where the "A" term corresponds to step (4) and the "B" term to step (6).
For the code under the consideration here and for a CDC-7600 computer,
A=4 x 107" sec and B = 2 x 107% sec.

3.2 PERFECTLY CONDUCTING HALF-SPACE

Equation (1) as written applies to wire structures excited as antennas
or scatterers and located in infinite, isotropic, homogeneous media of
arbitrary (possibly lossy) permittivity and permeability. It can easily
be extended to permit the modeling of magnetic or electric image nlanes.
For example, the perfectly conducting ground analog of Eq. (1) is, for an
antenna elevated above a ground plane at z = 0,

seE!

(5) = [ tstieglsas) + 6yls,st)] g, (2
Clir)




where B

e—ikR*
9 = TRE
R = [F - 7'H],

r'*(x,y,2) = v (X,y,-2),

crx = _VC(r'*) .

[vC(r'*)|

Similar forms can be written for a magnetic interface and for an
interior right-angle corner. If the corner angle is otherwise arbitrary
but related to w as an integer multiple, a discrete spectrum of angular
images is obtained, but the essence of the integral equation form is
preserved. Precisely the same line of approach can also be used for
interior problems where the wire structure is located between two parallel
magnetic or electric planes (Taylor, 1970).

3.3 [IMPERFECTLY CONDUCTING HALF-SPACE

A problem which js not so computationally simple to handle, but
which is of perhaps greater practical interest, is that of an antenna
located (buried or elevated) near the ground-air interface. This is a
topic of considerable longevity in electromagnetics; a formal solution was
worked out for this problem in 1909 by Sommerfeld (Sommerfeld, 1909). The
numerical complexity of evaluating the Sommerfeld integrals (which appear
in the integral equation kernel) for arbitrary source and observation-
point locations and ground parameters, however; has prevented the Sommerfeld

theory from being routinely used for such problems. Consequently, while
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Consequently, while some progress h-as been made in apnlying the Sommerfeld . ‘
theory, alternative approaches té the antenna-ground brop]em have also
been pursued. These various methods are briefly discussed below.
3.3.1 The Sommerfeld Theory
Detai]s of the steps in deriving the Sommerfeld inteagrals may be found
elsewhere (Sommerfeld, 1964). Here we will simply write one version of
Eq. (1) which accounts for the interface reflected field via the Sommerfeld
theory; alternative forms are also available, differing essentially in how

the perfect-qround image terms are handled. It is

—

§-EI(S) = i%%- [ I(s') ds' « {~G0(s,s') + GI(s,s'*)
J

C(r)
+ [cos8 + 1 sin B' q,_ - cés B!
kZ 353z Hz sz
, . 192
+ sin B' [ sing cos (o - a') + ——'————r] s (3)
L k2 osat gHt

~

where a = a(r) and 8 = B(r) are the direction angles of the wire at r, t'

is the horizontal projection of $', J_ is the Bessel function of order n,

n

_ A -y(z+z")
Yy 2 f T JO(,\p) e da,
5)

and

It

- _ ' ” U - U _ ]
. zcos {6 - o) J £ . J;(%0) e v(z+#2')y2 gy
k2 0




!
Vix - x")?2+ (y -y")? + 2%,

o =
¢ = tan™! [y - y*)/(x - x")]1, ’_
y = Va2 - k2,

Yg = WJiEj:_EEEF;

with € the lower half-space permittivity relative to the upper.

The presence of the double integral in Eq. (3), particularly the
Sommerfeld portion, makes it quite time-consuming and sensitive to evaluate.
In spite of that, the basic moment method can be used to solve it, but,
in addition to the usual constraints imposed on current sampling, it is
necessary to take into account the source distance from the interface.

3.3.2 Modified Image Theory

In many cases, although they may not be always easy to identify a
priori, the rigor represented by Eq. (3) is unnecessary; various approxi-
mations will be found adequate. The accuracy actually required of the
computer model may be debatable, but it is probably reasonable to seek
something on the order of experimental error. One approach which has been
found, for simple antennas, to aaree within 10-15% of the Sommerfeld re-
sults for input impedance, and so which appears useful in view of the above
observation, is the reflection coefficient apnroximation (Miller et al.,
1972a, 1972b). It involves representing the interface-reflected fields
in terms of their perfect-ground images multiplied by the Fresnel plane-
wave reflection coefficients for the TE and TM field components evaluated

at the specular reflection point. This approximation leads to the integral
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equation given below:

-
2.¢l _ dwyp i e ' '
S'E(s) =77 | ] I(s') [Gy(s.s') + RyB;(s,s'*)
Je(r)
+ (RE - RM) sin B sin &' sin (¢ - a) sin (¢ - o') qI(F,F'*)] ds', (4)

where R. and R, are the TE and TM reflection coefficients given hy

VEE- sinZ & - cos O

R = '
'\EE - sin?2 g + cos 0

M

with @ the angle of incidence with respect to vertical. (Althouah Eas.
(3) and (4) are written expressly for the reflected field, similar expres-
sions also hold for the field transmitted across the interface.)

Since the reflection-coefficient integral equation (4) differs only
trivially from that for the perfect-ground case given by (2), it may be
appreciated that its numerical solution is obtained with almost equal ef-
ficiency, in marked contrast to the situation which holds for the rigorous
theory. The reflection coefficient approximation is, in addition, aoplic-
able to a laterally inhomogeneous ground with little further complication,
Layered grounds can also be handled using this approach.

3.3.3 Interface Source Distribution

The Sommerfeld theory is not the only rigorous formulation which can

be derived for the antenna-ground oroblem. Some variations of that approach
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which still involve integral-tyne elementary source solutions, are summa-
rized by Bafios (1966). A completely different method of treatment which
results in integration in real space (the interface) rather than wave-
space integration (the Sommerfeld or X intearal) can be postulated. One
way is to treat the interface tangential fields as unknowns in addition

to the antenna current distribution itself. One can then solve for these
surface sources together with the antenna current by applyina the moment
method to the coupled integral equations which result. An obvious disad-
vantage of this approach is that many more unknowns require consideration,
an infinite number in principle, but finite in practice since only the
region near the antenna need be modeled. Advantages are that the computer-
time penalty imposed by the interface-related calculation is relatively
independent of antenna size, and the Sommerfeld integrals are entirely
circumvented, with no nested numerical integrals being encountered.

The integral equation which results from this treatment has the form

SE(s) = T ) Gylsst) st - S ‘,-'{mu [z X A (7)1 qq (F.7")
“C(r) A
L REE X TR - BE(FR)I0a(FaF )da' b 5 seC(F) (5)
J
0=73X %‘;Jf I(s')Gy(F,s')ds' - 7= 2 X f{mu[i X H(r)gq(F,7)
c(r) A
- [2-?(?')]7'90(7,7' )} da'; ref
- 1o R ATVl (R
0=2zX9X 4—“J (_)I(s )GO(_r,s Yds' + v X j {me[z X E(r )]go(r,r )
C(r A

[E-H(F' )]V'go(?,F' )} da'; reA
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where A is an area on the z = 0 ground plane under the antenna, E(r')

and H(r') are the ground-plane source distributions, and

EO(F,S') = {§' + iﬁ-v(§'~v) } gO(F,F').

Note that the surface integrals in the latter two of the above equations
must be evaluated in a principal-value sense.

This approach has not yet been implemented.

3.3.4 Surface Source Approximations

In the same way that the reflection-coefficient apnroximation follows
in a straightforward way from the rigorous Sommerfeld theory, abproxima-
tions to the interface source distribution analysis discussed above natur-
ally suggest themselves. Two we consider here are the surface-impedance
and physical-optics approximations.

3.3.5 Surface-Impedance Approximation

Under tHe condition that the surface impedance concept is valid
[(sin? e)/aE<<1] (King, 1969a), the tangential components of the electric

and magnetic fields at the surface are to a good approximation related as

tan = Mtan Zsurf’

where

Zsur‘f - n/\/ g

with n the upper medium wave impedance.
Upon employing this relationship in (5) the surface integral equations
decouple and the number of surface unknowns is decreased by half. A cor-

responding reduction in the order of the overall linear system is thus
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achieved, with a potential significant saving in both the computer
storage and solution time. Either of the two surface equations can be re-
tained for use together with the structure-related inteqral equation. For
convenience we might select the electric-field equation since then all re-
guired interaction coefficients involve the electric field only.

3.3.6 Physical-Optics Approximation

Even further simplification of (5) can be achieved by invokina a
physical-optics type of approximation for the surface fields. But in con-

trast to the usual physical-optics magnetic field, which is given by H

tan
_ inc .
= ZHtan’ we instead use
_ inc
Hian = (1 + R)Htan’

with R the reflection coefficient together with the surface impedance
approximation for Etan to allow for a finite ground conductivity. This
permits the total-surface field distribution to be expressed in terms of
the currents on the wire structure and leads to the same numher of unknowns
as for the Sommerfeld theory, but with the advantage of a much simpler in-
tegral-equation kernel. A perfect-qround tyoe of intearal equation could
be derived by decomposing the surface source contribution to the fields on

the structure into a part due to the perfact ground (due to 2HI"CY | which

tan
can be analytically integrated to give the usual perfect ground image, and
a perturbation term (R - 1)H;2§, which will require numerical integration.

While in general we might use a Fresnel reflection coefficient for each
incremental source and surface path, it would be simpler, and not incon-
sistent with approximations already employed, to everywhere approximate R
by its normal incidence form. Note that by aopropriate pairing of Source
and observation points on the wire structure and use of a single reflection
coefficient evaluated at their specular point, we obtain the reflection co-

efficient approximation already discussed.
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3.3.7 The Compensation Theorem

Application of the comnensation theorem to ground-plane probhlems
has received considerable attention (Monteath, 1951; Mit%ra, 19A1; King,
1969b). It has been used to determine the input imoedanéé of vertical
monopoles located over various ground configurations, inciuding deter-
mining the effect of ground-screen size. However, more general antenna
problems have evidently not been attempted with this theory. The reason
for this lies, apparently, not in limitations inherent in the theory itself,

but in its numerical imolementation. A ground plane inteqral is involved,

which, for all but the simplest situations, requires numerical evaluation.

The compensation theorem "is essentially an exact perturbation technigue
in which the fields in the unperturbed state are known" (King, 1959b). If
the unperturbed state is the case of a perfectly conductina ground plane
and the perturbed state is the actual ground problem of interest, then we

obtain for the antenna input impedance

7' =7 + N ] Az x E' da,
2
I JA

where the primes denote perturbed quantities and I is the feedooint current.
Since the perfect-ground magnetic-field distribution can be accurately
solved for, evaluation of Z' hinges on finding E'. This is usually accom-
plished by using the surface impedance anproximation, i.e., Etan = "Htan‘

Zsurf’ and then assuming H; =t These steps facilitate the calcula-

tan {tan‘
tion and permit use of the perfect-ground result as a sort of canonical
solution to find the antenna impedance for the finitely conducting around.
3.3.8 Ground-Wave Propagation
Another important aspect of the antenna-ground problem is that of deter-

mining the propagation characteristics of waves launched along the interface.
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Such surface waves are an important mechanism for short- and intermediate-
distance communication. A common problem which arises in assessing the
path loss of a surface-wave mode link is that nresented by an inhomo-
geneous path due to surface impedance changes or profile variations from
the ideal smooth, curved earth.

A general integral-equation computer code for analyzina this problem
has been developed by 0tt (1971). The rigor of Ott's aporoach, while per-
mitting the accurate modeling of quite comnlex paths, is not needed for
many of the so-called mi xed-path problems, where surface impedance changes
on]y are of interest. For these situations, which typically involve propo-
gation across a coastline, an approximate procedure derived by Eckersley
(David and Vogue, 1969) and Millington (1949; Millington and Isted, 1950)
is quite adequate. It involves use of the standard Morton attenuation func-
tions and leads to the following generalized expression for the vertica1‘

surface-wave field EV over an N-part mixed nath as

Ng Ng+Nc -

V o_ Jwy B E l

D) Rt ) IiAifiJ "ol (6)
=1 =g

where superscripts B and E denote buried and elevated antenna sedgments,
respectively, there being a total of NB + NE, and Ii is the current at the

center of segment i of length Ai‘ coordinates Xis Y55 Z5 and direction

angles «.

5 and 81 with respect to the x-y (ground) plane and the x axis,

respectively. Further,

o, = + Vn? - sine, (
i3 n® - sin®e; cos (¢ - Bi) cos o



and

FEi = sin g2 sin 6 + Vn? - sinzmé} cos (¢ - Bi) cos o,

1

-

are the surface-wave launching efficiencies of the buried and elevated
segments, where n is the refractive index of the lower half-space at the

antenna location, and

,i = exp [—ikozi( Yn? -1+ 1)1,

-n
]

fi = exp {-ik, [sin ei(xi cos ¢ + y. sin ¢) - z; cos 61]¥ .

[ R
- : T
81 = tan {Z T Z-)’
\ 1y
lrIRT .;(\\
D = Ccos” | i
Lo Rpo
RT = z2 + r? -y,

with ¢ the observation angle with respect to the x axis, z the observa-
tion height, and r the radial distance to the observation point from the

origin. Finally, F_. is the mixed-path propagation factor, and has the

pi

form
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where Fi R is the TM-mode Norton attenuation function (King, 1956) calcu-

b

Tated for a path of length R and having electrical parameters £; and Oss

and with Ri given by
i

R.=E r.,
1 J

J=1

where rj is the path length across part j of the N-part path. The above
expression is written for a flat earth and assumes source and observation
points close enough to the interface that the Fresnel plane-wave reflection
coefficients are -1. Implicit in its derivation is the fact that the at-
tenuation rate of a surface wave is primarily determined by the local
wavefront curvature and local surface impedance.
3.4 SPECIAL TOPICS

In addition to the above topics, there are ather problem areas con-
cerning wire-antenna computer modelting that deserve attention. Some of
them are summarized here.

3.4.1 Ground Screens

The compensation theorem has been employed in various ways to analyze
ground-screen effects as mentioned above. The reflection-coefficient ap-
proximation has also been used for this purpose. It offers an easily im-
plemented procedure for analyzing a broad class of ground-screen configur-
ations with greater efficiency than available in general from the compensa-
tion theorem.

What is essentially required in order to include the ground—screen
influence in the reflection-coefficient calculation is a modified reflec-

tion coefficient which takes into account the reflecting properties of the



screen-ground combination. This is possible if the surface impedance of

the combination is known. For ground screens whose wires are in good

electrical contact with the soil, the effective surface impedance Zours

may be taken to be (Wait, 1969)

Z Z '
surf “screen

71 ~

7 ~
+

surf Zsurf Zscr'een

where ZScreen is the screen impedance. For a radial screen having N wires

of radius a, the screen impedance at distance p from the center is given
by (Wait, 1969)

. pwp
Zscreen N- In (p/Na).

A corresponding formula for a parallel grid of wires, whose center spacing
is d, 1is

o -
Zocreen ~ 1S$ In (d/2ma).

Meshes consisting of locally orthogonal wires having different spacings
might be treated as anisotropically conducting planes whose principal-direc-
tion impedances are obtained from the paraliel-wire formula using their cor-

responding spacings. From Z! we infer an effective ground permittivity

surf
for use in computing the Fresnel reflection coefficients, and are thus able
to include the screen in the integral-equation calculation. The anisotropic
case reguires decomposition of the TE and TM fields into components along
the orthogonal screen wires (Miller and Deadrick, 1973b). Note that this
method fails for vertical antennas located at the center of a radial screen.
An alternative possibility is offered by the work of Astrakhan (1968)

who derived reflection coefficients for infinite-plane wire grids. His re-

sults, given in terms of TE-TE, TM-TM, TE-TM, and TM-TE reflection coefficients




can be modified to include the effect of the ground itself and used in the

reflection-coefficient approximation. Of the above, only the radial-wire

screen analysis has been implemented.
3.4.2 The lLayered Ground
| Reflection coefficients are of course available for a layered ground.
For the special case of only two layers, and where the surface impedance

approximation holds, the effective surface impedance is given by (MWait,

1962)

feT+ 1/5_2 tan kh/e_]_

= Z ]
surf — “surf Ve, + i/Ey tan kh/Ey

with € and €y the relative permittivities of the two layers and h the
thickness of layer 1.

3.4.3 Geometrical Theory of Diffraction

The geometrical theory of diffraction (GTD) does not have obvious ap-
plicaticn to antenna-ground problems. There are however, two areas where
GTD may be beneficial: (1) ground-screen edge effects (diffraction) on
input impedance and low-angle radiation; and (2) effects of large-scale
terrain variations, e.g., diffraction at a cliff. Application of GTD to
both areas has been studied by Thiele (1373). His approach was to combine
GTD with the moment method to find the effect of the edge-diffracted field
on the current distribution of a monopole antenna located on a wedge. This
leads to an integral equation modified from that for free space by inclu-
ston of the diffracted fields, given in terms of the antenna current, in
the total tangential electric field on the antanna. Thus, no additional
unknowns are involved. The far field is treated in a similar manner. Re-

sults obtained to date are encouraging, although use of the technique to
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analyze a real ground screen awaits derivation of diffraction coefficients
for a perfectly conducting half-plane lying on a lossy interface.

3.4.4 Backscreen Evaluation )

It is fairly common practice to employ backscreens to improve HF
antenna performance. Backscreen are typically constructed of arrays of
parallel, vertical wires whose spacing and diameter are selected to maxi-
mize the antenna's front-to-back ratio or some other measure of its perfor-
mance. The backscreen parameters so chosen have necessarily been based on
design criteria derived from expefimenta] measurement and some simplified
-analysis for a limited number of cases {Moullin, 1949), and are thus un-
Tikely to truly optimize the resulting antenna characteristics. Computer
modeling offers some possibilities for improving this aspect of antenna
design.

One approach that might be considered would be that of including the
backscreen wires in the computer model. This could provide a very realis-
tic representation of the overall antenna-backscreen system, but at a con-
siderable increase in computer time, especially if extensive parametric
studies were to be performed.

As an alternative, the parametric evaluation could be instead based on
a two-dimensional integral equation, using infinite wires or strips for the
backscreen and antenna members. The effects of spacing and size of the
backscreen elements, backscreen width, antenna position, frequency, etc.
could be much more efficiently studied, while many physical features impor-
tant in the actual three-dimensional configuration could be retained. After
identifying parameter values of greatest apparent intzrest, it might be then
useful to perform limited calculations for the three-dimensional geometry

to ensure the essential validity of the two-dimensional results. Another
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possible alternative which is worth mentioning is the application of image
theory to the backscreen as well as to the interface. This is basically
equivalent to a two-dimensioné] screen model, while it retains the three-
dimensional aspects of the actual antenna. -

3.4.5 Impedance Loading

In many cases of 1ntérest, the antenna may be connected to fmpedance
loads of various kinds, or may even itself be lossy enough so that it can-
not be accurately modeled as being perfectly conducting. These situations
can be accormodated in the computer model by subtracting an appropriate
sg)Ij from the source term Ei’ where Zgg) is the load impe-
dance. When there are no mutual impedance effects, such as those due to

voltage drop Z

transformer or transmission line interconnection, then Zgg) = 51j2§§),
i.e., the Z matrix becomes diagonal. Lumped loads are simply specified in
terms of their resistive and reactive components. Their treatment is simi-
lar to that accorded sources, since the two can be viewed as mathematically
equivalent. Distributed loads wnich might be used to model wire losses
can be derived from the wire properties (Cassidy and Fainberg, 1960).

3.4.6 Sheathed UWires

Another problem of relevance, especially for antennas located in lossy
media such as ground or sea water, is that of a wire coated by a dielectric
layer. It has been suggested, but not demonstrated, that the sheath could
be modeled in the same way as a lossy wire, by a suitably derived impedance
load (Miller et al., 1970). An alternative, more rigorous approach has
been taken by Richmond (1973), who models the sheath with a radially directed

polarization current, reasoning that the tangential field, being much smaller.

is by comparison of negligible import. Since the radial sheath fields which
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determine thic current are known in terms of the charge density on the wire,
ﬁo additional unknowns are introduced. One simply obtains a modified integral
equation which can be solved in the usual way. -

'3.4.7 Time Domain Analysis

Previous discussion has dealt exclusively with frequency-domain formu-
Tations. It is worthwhile to poinf out that these problems can also be
attached from a time-dependent or time-domain viewpoint (Bennett and Yeeks,
1968; Miller et al., 1973a; Poggio et al., 1973). As one outcome of such an
effort, there can be derived time-dependent integral equations which corres-
pond c]osé]y to their frequency-domain counterparts. The solution procedure,
while also developed from the moment method, is significantly different in
that a solution is obtained as an initial-value problem via time stepping.
This leads to results which are valid for only a single incident field or
source configuration but over a band of frequencies, in contrast with the
more familiar. frequency-domain approach of which the converse is true. Solu-
tions may consequently be obtained more efficiently in the time domain than
in the frequency domain for certain types of problem, especially for wire

structures analyzed as antennas.

4. NUMERICAL RESULTS

In the cohtext of practical applications, judgment on the relative
merits of a particular computer model must ultimately depend upon the com-
parison of calculated results with independent data, preferably experimen-
tal, although other theoretically derived results may suffice. Unfortunately,
reliable experimental data is not always available so that in many instances

we may have to resort te various "computer experiments” and physical intuition
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when attempting to validate a numerical procecure. In the discussion

which follows, we present numerical results for a variety of problems,
accompanied where possible by measured data, to demonstrate the general
applicability of the computer modeling approach for wire antennas. The
order of presentation will foilow that of Section 3 above.
4.1 INFINITE, HOMOGENEOUS, ISOTROPIC MEDIA

Problems which involve isolated antennas in infinite, homogeneous media
are not frequently encountered, since, more often than not, environmental
influences due to ground planes or the installation are important. Never-
theless, this kind of problem does provide a good, controlled check on the
accuracy of computer calculations. Examples of such results are shown in
Figs. 2 through 5 (Gee, Miller, and Selden, 1370). The input impedance as a
function of frequency near resonance of a capacitively loaded circular loop
antenna is compared with measured data in Fig. 2. Results are shown in
. Fig. 3 for-the input impedance resonance freguency of a zig-zag antenna as
a function of the wire angle, also compared with experiment. A comparison
of two compgted near-field results for a circular loop antenna, one obtained
from a moment-rethod solution of Eq. (1) and the second from an alternative
analysis (Fante, Otazo, and Mayhan, 1969) are presented in Fig. 4. Finally,
in Fig. 5 we show a comparison of computed and measured pattern results for
a 19-element foreshortened log-periodic antenna (MBAssociates, 1970).
4.2 PERFECTLY CONDUCTING HALF-SPACE

Some results for antennas located near perfectly conducting boundary
planes are shown in Figs. 6 and 7. The computed input impedance for the top-
loaded monopole, a LORAN-C antenna, is compared with measured results in Fig.

6 (MBAssociates, 1970). Although the actual antenna is located over a finitely

' y
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conducting ground, its ground screen (120 radial wires) simulates a per-
fect ground quite well, as demonstrated by the computed results, which are
for a perfect ground. The input admittance for a ha]f—wavg antenna located
midway between infinite, parallel, perfectly conducting plates is shown as
a function of plate separation in Fig. 7, with the antenna angle relative
to the plates a parameter (6 = 90° corresponds to perpendicular orientation)
(Tesche, 1971). | |
4.3 [IMPERFECTLY CONDUCTING HALF-SPACE

Representative results for antennas over lossy grounds are given in
Figs. 8 tﬁrough 13. Sommerfeld theory and reflection-coefficient approxi-
mation results for vertical and horizontal half-wave dipoles are compared
in Figs. 8 and 9 (Miller et al., 1972a, 1972b). Results are included in
Fig. 10 for the current distribution, impedance, and near-field variation of

a Beverage antenna (Lytle et al., 1974). Comparison of current distributions

obtained from image theory with that computed using the Sommerfeld approach
reveals the potential limitations of the former for this case. The graph of
Fig. 11 illustrates use of the approximate surface-wave mixed-path model,
which is compared with the rigorous calculation due to Ott (1971). Figure
12 compares computed (using the reflection-coefficient approximation) and
measured impedancés of the sectionalized LORAN transmitting (SLT) antenna,
including the effect of a radial-wire ground screen in the computations
(Miller, Deadrick, and Henry, 1973b). The computed {reflection-coefficient
approximation) and measured simulated EMP response of the fan-doublet anten-
na are shown in Fig. 13 (Landt et al., 1973). A compensation-théorem result

for a vertical half-wave dipole is included in Fig. 8.
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4.4 SPECIAL TOPICS

The effects of various wire ground screens and the influence of a sub-
surface sea-water layer on the impedance of the SLT antenna are shown in
Figs. 14 and 15 (Miller and Deadrick, 1973b). The effect of an octagonal
ground plane on tne input impedance of a moncpole antenna computed using
a combined moment-method and GTD approach due to Thiele (1973) is illustrated
in Fig. 16.

The dependence of the front-to-back ratio of wire backscreens (two-
dimensional model) with various numbers of wires upon wire spacing and éize
is demonstrated in Figs. 17 and 18 (Bevensee, 1974). Figure 19, which depicts
the current distribution on a two-wire transmission line terminated in a
matched load, is included to show an impedance load calculation (Miller and
Deadrick, 1973b). The graph in Fig. 20 depicts results for a coated wire
dipole due to Richmond (1973).

The concluding results of Fig. 21 demonstrate the transient feedpoint
current response of a conical spiral antenna when it is excited by a Gaussian
pulse and its input admittance derived from a Fourier transform of the current

(Landt and Miller, 1974).
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