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ABSTRACT

The problems of aperture diffraction in an infinite
screen, aperture coupling into a two-parallel-plate region,
and scattering by infinitely thin planar scatterers in
intermediate and Tow frequency regions are investigated in
a unified fashion. Dyadic Green's functions for a two-
parallel-plate region and a semi-infinite space are con-
structed, using the theory of images. By employing the
dyadic formalism and enforcing the continuity of the tangen-
tial derivative of the normal E-field and the normal deriv-
ative of the tangential E-field, a new set of integral
equations is derived to formulate the aperture diffraction
and coupling phenomena. In these integral equations, not
possessing any differential operator, the tangential com-
ponents of the aperture E-field are decoupled. Furthermore,
the interaction of the aperture rim with the incident field
is accounted for by introducing a special set of homogeneous
terms in the formulation. The application of the so-called
edge condition is eliminated and, instead, the unique solu-
tion of the problem is determined by imposing the obvious
condition that the tangential component of the E-field at
the rim is zero. Similar integral equations are constructed
for the scattering problem of infinitely thin and planar




scatterers using vector potential formulation and enforcing
the condition that both the E-tangential and H-normal are

zero on the structure.

The structurally simple nature of the new integral equa-
tions makes them numerically attractive. The method of
moments is used as a basic technique of digitizing the integral
equations for numerical solution. Numerical results for
diffracted fields of an aperture in a single screen and in a
two-parallel-plate region are presented for various aperture
dimensions and incident fields, and compared with other avail-
able numerical and experimental data. The time domain response
of apertures, subject to an EMP, is also computed. In addition,
some numerical results are presented for the induced current
and RCS computation of rectangular scatterers. These results
are compared with other RCS computations using the geometri-
cal theory of diffraction, physical optics, and variational
methods.

The new integral equations are quite suitable for low-
frequency diffraction problems. The resolution of these prob-
lems is reduced to solving a sequence of successive integral
equations which possess an electrostatic-type kernel. The
first few terms of the Rayleigh series expansion are determined
analytically for a circular aperture illuminated by an obliquely
incident plane wave. The low frequency results of rectangqular
apertures are computed and their similarities with those of
circular apertures are shown.
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1. INTRODUCTION

The diffraction problem has received considerable attention in the
existing literature on the theory of electromagnetism. Advances in
understanding this problem span almost one century and clearly show the
inherent consistency between the laws of electromagnetism dictated by
nature gnd the abstract mathematical formulations expressed through
Maxwell's equations. Mathematically speaking, electromagnetic diffrac-
tion problems are classified as well-posed boundary value problems of
the second order. Since there is not a universal approach for rigorous-
ly solving these boundary-value problems in a general case, a variety
of analytical and approximate methods has been studied by researchers
depending on the technological needs and facilities of their eras. These
methods are best presented for description if the domain of the inter-
action between monochromatic electromagnetic fields and the material
realm is divided into three regions: (i) high frequency region, where
the wavelengths considered are small compared with the characteristic
dimensions of the diffracting aperture (obstacle), (ii) intermediate
(resonance) frequency region, where the wavelengths used are of the same
order as the aperture (obstacle) dimensions, and finally (iii) low fre-
quency region, where the wavelengths considered are long éompared with
the aperture (obstacle) dimensions.

The number of publications that have appeared either as scientific
papers or books in analyzing the diffraction phenomenon in the above
three regions is so voluminous that listing them alone may fill up a
book. This, of course, does not indicate that the subject is closed and
that everything has been done, but instead, reveals the vast number of
theoretical attempts in relation to time as technoiogy progresses, and

10



as science undertakes to fulfill the current technological needs.
A brief discussion of each of the three previously mentioned regions is
now given.

In the high frequency region, Kirchhoff's mathematical formulation
of Huygens' principle (l89l) pioneered the first reasonably rigorous
mathematical description of the aperture diffraction problem. However,
because of its scalar nature, this formulation did not account for the
polarization of the incident fiéld, and hence there has been an extensive
amount of work which modified Kirchhoff's form:lation. For instance,
Kottler (see Baker and Copson, 1953) introduced certain contour integrals
along the rim of the aperture to take into account the vector character-
istic of the diffraction phenomenon, and the vector equivalents of
Kirchhoff's formulation have been discussed in the literature, e.g.,
Jackson (1962). Most of these modifications are poor substitutes for
the rigorous diffraction theory because they do not correctly describe
the field in the vicinity of the aperture and the edge. Currently, the
high frequency diffraction problems are treated by an applicatibn of one
of the several different asymptotic methods that are available in the
literature. Notable among these are physical optics, edge wave theory
(Ufimtsev, 1962) and the geometric theory of diffraction (Keller, 1962).
A review of ray techniques, including Keller's Geometric Theory of Dif-
fraction, is given by Deschamps (1972). The interested reader is
referred to the excellent bibliographies assembled by Uslenghi (1972)
on this subject.

In the”low frequency region, Lord Rayleigh (1897) was able to es-
tablish the first quasistatic solution for the diffraction problem.

His method was based on the application of a series, named after him,
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the Rayleigh series. Later, Bethe (1944), Stevenson (1953), Bouwkamp
(1953, 1970), Kleinman (1967) and others used Rayleigh's series to
analyze fhe low frequency diffraction problems. It has been found that
the low frequency analysis offers much insight into the diffraction
phenomenon. The interested reader is referred to the bibliographies
given by Eggiman (1961) and those prepared by Van Bladel (1974).

In the intermediate (resonance) frequency'region, application of
the integral equation method has attracted considerable attention. The
integral equation is compact, has the important feature that the boundary,
as well as radiation condition, are incorporated into its formulation.
Classically, integral equations were solved by employing various approxi-
mate techniques, e.g., variational method (Levine and Schwinger, 1950),
and successive approximations (Suzuki, 1956). However, the advent of
high-speed computers has changed the philosophy of attacking these pro-
blems considerably. Most of the current numerical techniques are essen-
tially based on the application of the method of moments (Harrington,
1968) which has been shown to be an effective technique in solving the
integral equations encountered in the theory of electromagnetism
(Mittra, 1973). Although much has been written in this area concerning
the linear antennas and closed scatterers, very little has been done for
aperture coupling problems and scattering by infinitely thin open
structures. The primary difficulties in handling these problems are the
applications of the conventional integral equations, which have been
found unsuitable when applying numerical techniques.

The purpose of this work is to study the aperture diffraction pro-
blem, aperture coupling into a two-parallel-plate region, and scattering

by infinitely thin planar structures in the intermediate and low fre-
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quency regions in a unified fashion. The method of investigation is
based on a new set of integral equations which describes the diffraction
phenomenon completely, but is structurally simpler than conventional
ones. Results are presented for circular and rectangular geometries as
two representative examples. A brief summary of the discussions covered
in each chapter is given in the following paragraphs.

In Chapter 2, the mathematical description of the problem of electro-
magnetic coupling via apertures into a homogeneously filled cavity region
is presented. Using dyadic formulation, a complete set of mathematical
formulas is constructed to determine the diffracted field that would
exist in the inner and outer regions of the cavity if the cavity were
illuminated by an incident electromagnetic field. It is shown that the
knowledge of the tangential E~-field in the apertures will be sufficient
for determining the diffracted fields everywhere. Furthermore, the
mathematical procedure for deriving the dyadic Green's function for a
two-parallel-plate region is demonstrated. This construction is then
simplified to give the well-known half-space dyadic Green's function.

The problem of diffraction by apertures in a perfectly conducting
screen is formulated in Chapter 3. By using the dyadic representation
and enforcing the condition that the tangential components of E- and
H~fields must be continuous in crossing the aperture, a new set of inte-
gral equations is constructed to determine the tangential E~field in the
aperture. These equations are structurally simple and quite suitable for
numerical applications. Another important feature of these integral
equations is that the necessity of accounting for the so-called edge
condition is eliminated and, instead, the obvious requirement that the

field induced in the aperture must have no component tangential at the
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edge is enforced. Although the formulation obtained in this chapfer is
valid for any aperture shape, the numerical results are primarily cal-
culated for rectangular apertures. Previously, these geometries had not
been investigated thoroughly, though they have significant practical
applications. Numerical computations are carried out, applying the
method of moments, which reduces the integral equations to matrix equa-
tions. Results are presented for the E-field distribution in the aper-
ture and the diffracted field of the aperture for a variety of aperture
sizes and incident field. Comparison is made with available experimental
and theoretical results. Finally, some numerical results for the dif-
fracted field due to an EMP (electromagnetic pulse) incident field are
constructed by applying the FFT (fast Fourier transformation) algorithm,
which converts the frequency domain data into the corresponding time
domain data.

Since the understanding of diffraction of electromagnetic waves by
electrically small apertures does provide considerable insight into the
diffraction phenomenon, Chapter 4 is concerned with this investigation.
The analysis, which employs the integral equations constructed in
Chapter 3, demonstrates that these integral equations are indeed in a
very suitable form when the low frequency limits are considered. Using
the well-known Rayleigh series expansion, the solution of the integral
equations is reduced to solving a sequence of successive integral equa-
tions which possess an electrostatic-type kernel. As an example, the
classical problem of diffraction by an electrically small circular aper-
ture is investigated in detail. For this geometry, analytical solutions
are constructed in a systematic fashion, and results are presented for

the first few terms of the Rayleigh series expansion. The computational
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procedure for obtaining the electric and magnetic dipole moments is

also discussed. This chapter finally closes by presenting some results
describing the behavior of the induced and diffracted fields of an elec-
trically small, rectangular aperture.

Chapter 5 is concerned with the problem of scattering of electro-
magnetic waves by infinitely thin and perfectly conducting scatterers.
These structures are considered electromagnetically complementary to
apertures perforated in an infinitely conducting screen. Though it is
possible to apply Babinet's principle and construct the mathematical
formulas that describe the behavior of the induced current in the struc-
ture, an alternative approach is presented in this chapter. This
approach is based on the application of the vector potential, and in
contrast to the conventional derivations, incorporates the fact that
both E-tangential and H-normal must be zero on the structure. A set of
integral equations, which are structurally similar to those obtained in
Chapter 3, is derived. These equations are solved in conjunction with
the condition that the normal component of the current distribution
must be zero at the rim of the structure to determine the unique solu-
tion of the problem. Numerical results are presented for the induced
current distribution on rectangular scatterers of different sizes due to
the variety of incident fields. Finally, numerical results for the RCS
(radar cross section) computation are given and compared with those
based on GTID (geometrical theory of diffraction), PO (physical optics),
and variational methods.

The problem of electromagnetic coupling by apertures into a two-
parallel-plate cavity region is considered in Chapter 6. By using the

dyadic formulation established in Chapter 2 and following the procedure
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developed in Chapter 3, a set of integral equations is derived to deter-
mine the induced tangential E-field in the aperture. Due to the com-
plexity of the kernel of the integral equation, its behavior around the
resonant separations of the two parallel plates is investigated in
detail. Numerical results finally demonstrate the behavior of the aper-
ture E-field and the diffracted field in the two-parallel-plate region

for different aperture sizes and different two-parallel-plate separations.
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2. MATHEMATICAL FORMULATION OF THE ELECTROMAGNETIC DIFFRACTION o
BY APERTURES INTO CAVITIES

2.1 Introduction

This chapter is concerned with the behavior of the electromagnetic
fields in the presence of perfectly conducting structures. The discussion
is mainly devoted to investigation of the proper mathematical formulation
which governs the behavior of electromagnetic fields diffracted by
apertures into cavity regions. This problem may be considered as a
~subclass of the vector boundary value problems that appear in different
branches of mathematical physics. This class deals with vector sources
and vector boundary conditions., Since a vector source radiates a vector
field, the relationship between them is best described by employing the
dyadic formalism. Thus, in this chapter, the complete formulation of the
problem will be demonstrated by using the dyadic formalism as a
mathematical tool. The reader is referred to the works of Levine and
Schwinger (1950), Morse and Feschbach (1953), Van Bladel (1964),

Jones (1964), Tai (1971), and others who have applied the dyadic
formulation within the theory of electromagnetism., In this chapter, the
construction of the dyadic Green's function for the two-parallel-plate
region will also be presented., In conclusion, this construction will
then be used to generate the dyadic Green's function of the semi-infinite
space.

2.2 Statement of the General Problem

The geometry of the structure under consideration in this section,
which is shown in Figure 2.1, is a cavity with an aperture in its shell. -
Letter A is used to designate an open set containing the points in the

aperture resulting from an obvious extension of the shell, and symbol A
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N~
Figure 2.1. (a) Aperture in a cavity. (b) Cross-sectional view of (a)
where ) and /J]  are exterior and interior regions, res-
< pectively; A is the aperture and S is the surface of the cavity.
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is used to specify a closed set, constructed from A and its rim. The
shell itself is denoted by S, which is an open set. Letter C is used to
designate all the points belonging to the rim. Therefore, the entire

manifoldvﬂ?may be defined as
JMN=aucus=3uUs . (2.1)

Symbolsj%l an%}%L are used to indicate the exterior and interior regions
of the manifold, respectively. It is assumed thaquz anq/%L are filled
with a homogeneous and isotropic medium, and that S is made of a
perfectly conducting material.

Having described the necessary parameters that define the geometry
of the structure, the general problem can then be stated as follows:
What information is necessary about the electromagnetic fields in A so
that one can determine the fields ig/?l and/ZL due to an incident
electromagnetic field? The answer to this question will be clear in the
next section, where one proceeds to learn that the knowledge of the
tangential E-field in A will be sufficient for determining the electro-

magnetic fields iﬁ/”t anq[?+ .

2.3 Formulation of the General Problem

The starting point of this section is Maxwell's equations. Perhaps
these equations are one of the most celebrated sets of equations appearing
in mathematical physics. These equations enable one to predict almost
all possible behaviorsof the electromagnetic fields occurring at the
present time. 1In the flat space geometry, Maxwell's equations are
expressed as

| Vx jwu

= (2.2)
-jwe Vx



where ¢ and p are permittivity and permeability of the medium, respectively,

Jut is suppressed in the formulation. It will

and the time dependence e
be more convenient for later discussions to eliminate, for instance,

the H-field between the coupled-egquation (2.2), and to derive the following

inhomogeneous vector wave equation for the E-field:

>

(VxVx —kz) E = -V x ﬁ - joud . (2.3)

The above vector partial differential equation with a proper set of
boundary conditions must be solved to give the unique solution to any
problem appearing in the theory of electromagnetism. In fact, the
problem is not as simple as stated here, and all the available materials
in the theory of electromagnetism have been written for prescribing
different techniques in order to solve Equation (2.3) for the cases of
interest.

In this work, the dyadic Green's function technique is used to set
up an integral representation to solve Equation (2.3), subject to the
.proper boundary conditions. These boundary conditions will be introduced
shortly. The dyadic'Green's function E(§|§') is defined as a solution

of the following inhomogeneous vector wave equation

(v x v x -k%) &R = Ts@ - B) (2.4)

where I is the unit dyadic and ¢ is the Dirac delta distribution. It is
= 9 > = >
noted that V - G(R‘R‘) # 0, and hence G(RIR') does not satisfy the

inhomogeneous Helmholtz equation, viz.,
2 2. = > > = > >
(V" + k°) GR|R")# -I6§(R - R") . (2.5)
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For more detailed discussion regarding the application of the proper <
dyadic Green's function, the reader is referred to the work done by
Rahmat—-Samii (1974).

In order to establish a relationship between E and E, the Green's
theorem in dyadic notation is used. This theorem may be best presented

by introducing the following formula:

fff [E « VXxVxG-YzxVx E . E] dv = —ff n - [E xV x G+ (Vv x E) X E] da
\Y oV

(2.6)
where, in Equation (2.6), V denotes the domain of volume integration,
3V designates the closed surface surrounding the volume V and n is the
outward unit normal to the boundary oV. The proof of the above theorem
and application of some useful operations on dyadics are discussed in
Appendix A.

Given the Green's dyadic formula, the reader is now referred to the
geometry shown in Figure 2.1. For a complete analysis concerning the
derivation of an integral representation, two different cases will be
discussed in the following sections. First,‘Green's theorem will be
applied to the regionj”;,which is a bounded region. Second, Green's
theorem will be applied to the regioq/n_, which is an unbounded region.
This analysis will finally lend itself to the introduction of the proper

boundary condition on the dyadic Green's function.

2.3.1 Field analysis in the interior regioq/%L

In this section, the domain of analysis is restricted to the points

> = - ~
{R:  (x,y,2) €J%;} . Let us introduce G+, E, and n_ as an interior dyadic

+
Green's function, the interior electric field, and the outward unit
normal, respectively. In applying Equation (2.6), the volume of
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integration V becomes and the surface 9aV become%/O?. Substituting

+
Equations (2.3) and (2.4) in (2.6) and simplifying the resulting

equation, one obtains

E, @ = [[f -7 x K, - jund,] - G ®'[R) av'

My
S =4 ' AR ES 1 % c (B3R '

_Jé{ n_ - [E, x V' x G ®R'[R) + (V' x E)) x G (R'[K)] da'  (2.7)
where, as one recalls,k/n = aﬁz_. In the above equation the prime
symbol is used to indicate the operations on the prime coordinates, i.e.,
source coordinates.

Since the shell S is assumed to be a perfectly conducting material,

E; will satisfy the following boundary condition:

ﬁ_ x E+ =0 {R: (x,y,z) € S} . (2.8)

Now there is enough information to make a proper decision about the
A = 2, z . >

boundary condition of G+(R | ). Because, in general, the term V' x E+ s

defined in Equation (2.7), is not known o%j”, it will be desirable to

eliminate this term. This can be done by imposing the following boundary

condition on the dyadic Green's function, i.e.,
a_x G, (R|R") = 0 (R: (x,y,z)fjn} . (2.9)

Substituting (2.8) and (2.9) into (2.7) one finally derives the desirable
equation for the computation of the E-field in the interior region as

follows:
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>

EG = [[f -9 x &, - jeud,] - G R"[B) av

I,

- ff (n_ x E+) - V' x E+(§'|§) da' R : (x,y,z)éaﬁ0+}
A (2.10)

It is noted that the surface integration on the right-hand side of the
above equation is performed only on the aperture region A (without
affecting the result, the region of integration may be considered as A
or A). Perhaps the most significant characteristic of Equation (2.10)
may be stated as follows: for a given source distribution 3+ and E+ in
the interior regionjﬁ+, the knowledge of the tangential E-field ﬁ_ X E+
on the aperture A is sufficient to determine the field uniquely in the

entire interior regioq/” This result will be used in the next

+

chapters where one deals with more specific problems.

2.3.2 Field analysis in the exterior regioqj%L

In this section, the domain of analysis is restricted to the exterior
points, namely,{i: (x,y,z)éljn_} . Let E_, E;, and ﬁ+ denote the
exterior dyadic Green's function, the exterior electric field, and the
outward unit normal, respectively. In order to be able to employ the
dyadic Green's theorem, one must deal with a closed region. This is
actually done by introducing the fictitious boundarx/ZL, indicated by
the dotted surface in Figure 2.1, to enclose the exterior regioe/”_ .
Using Green's theorem (2.6) and denoting the exterior sources by j_ and

»
K , one obtains

23



E@ = [ff -9 x K- jupd ]+ C_®'[R) dv'

. [E_ x V' x E_(E'Iﬁ) + V' x E_ X E_(ﬁ'lﬁ)] da'

- [ n,
N

~ffa - Exv xG®|OD+7 xE xC ®[D]da" .

MNe (2.11)
Comparing Equations (2.7) and (2.11) it appears that an extra surface
integral must be performed in Equation (2.11).

In order to be able to evaluate the surface integral ove{/%L, one
must know the proper behavior of the E-field at infinity. It is
generally known that the unique solution of Maxwell's equation can be
determined by imposing the Sommerfeld radiation conditions on the

electromagnetic fields as follows:

LimR [VxE + jkR x £ ] =0 (2.12)
R0
which signifies that the electromagnetic fields behave as a plane wave
at infinity. Condition (2.12) is actually stronger than what is really
needed for fulfilling the uniqueness argument. The reader is referred
to the works of Sommerfeld (1967), Wilcox (1956), Werner (1963),
Van Bladel (1964), Muller (1969), and Tai (1971).
Substituting (2.12) into the surface integration as defined in
Equation (2.11) and performing the integration in a spherical coordinate

system one derives:

/f n_ - [E_ x V' x E_(E']ﬁ) + V' x E_ X E_(ﬁ'lﬁ)]da'
2 A > = — - A = - )
[ [ R'xE - [R'V' xC_(R'|R) + jkR'R'x G_(R'|K)] R' sin o' de'd¢'.
0

2.13
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The limit of the right-hand side in the above equation is zero provided the
dyadic Green's function satisfies
= > > ~ = > >
lim R [V x G_(R|R") + jkR x G_(R|R")] =0 . (2.14)
R -
Using the same argument as stated in the previous section, one can

determine the following boundary conditions forlﬁ_ and E_(R'|R) at the

surface Jy(

xE =0 (R: (x,y,2) € S} (2.15)

and

xc RIR") =0 {R: (x,y,2)EM} . (2.16)

Substituting Equations (2.16), (2.15), (2.14), and (2.13) into

Equation (2.11) one finally derives the desirable formula as follows:

>

E@® = [ff [V x K- juud ]+ G ®'|R) av'

-

- ff ﬁ+ X E_ « V' x E_(ﬁ'[ﬁ) da' {E: (x,y,z)é?jﬁ_} . (2.17)
A

Although comparison of Equations (2.10) and (2.17) reveals that E_ and
é+ have the same role, it should be noted that in general they are
= > > = > >
different, since G+(R|R') must satisfy Condition (2.7) whereas G(R|R")
. must satisfy Conditions (2.14) and (2.15).
Having derived the necessary equations for determining the fields
in regiongj”+ anq/n_ , the next section will deal with the determination

of the dyadic Green's functions for the geometries of the specific

interests of this work.
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2.4 Construction of the Dyadic Green's Function for a Two Infinitely
Parallel-Plate Structure

The geometry of the structure being considered in this section is
shown in Figure 2.2. This structure consists of two perfectly conducting
infinite plates with separation w located in a homogenéous and isotropic
medium. In order to orient the space a Cartesian coordinate system with
its z-axis normal to the plates and its x~y plane parallel to the plates
is erected as shown in the figure. Plates are labeled I and II to
denote the z = 0 and z = w boundaries, respectively. The interior
region {R: =o < x < ®, ~® <y < o, 0 < z < w}, which is calle%/n+, is
viewed as a closed domain.

The dyadic Green's function E+(§'|§) will now be determined for
the geometry described in the previous paragraph. Because in this

section only the interior region is of special interest, E+(§|§')

L+
must satisfy Equation (2.4) accompanied by the boundary condition (2.8).
This clearly is a vector partial differential equation and in general
there is no systematic method for constructing its solution. However,
for boundaries with separability characteristic (Mikhlin, 1967 ) there
are availéble methods to obtain the solution. Tai (1971) has used the
vector eigenfunction M and N, introduced by Hansen (1935), to determine
the dyadic Green's functions for cylindrical geometries, and the vector
potential approach is discussed by Collin (1960).

Since, in this section, one is dealing with planar boundaries that
extend to infinity, an alternative method is used. This method, which
is based on the application of the image theory (Jordan and Balmain, 1968),
will now be discussed.

To establish the formulation, one starts by locating the current

_+
element J+, as shown in Figure 2.2, in the region of the two parallel
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z2=0 Z=W

Figure 2.2. Two perfectly conducting parallel plates and the §-current
source ; positions and orientations of image-current sources
are shown for determining the dyadic Green's function.
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plates. This current element may be defined as:

"5+= as@® - R") (2.18)

+ . .
where a is a constant vector with a, and a, as its transverse and
->
longitudinal components, respectively. Vector a can then be decomposed

as follows

+az (2.19)

where t is a vector parallel to the x-y plane. Substituting (2.18) in

(2.17) one obtains

> . > = > > . = > >
E @ = [ff - jund, « G ®"[B) av" = -juua - G, R'[K)
e
> :
{R:  (x,y,2) q/ﬂ+} . (2.20)
It is noted that Z is an arbitrary constant vector. Since ﬁ_ X E; =0

overuﬂq, it is possible to compute E#jﬁ), alternatively, by employing
the theory of multiple images and vector potential technique. The
E-field obtained by using this approach is then compared with the
result obtained in (2.20) to determine E+(§'|ﬁ).

The multiple images of the current element ] with respect to the
parallel platés are constructed by finding its electrical images. This
construction is best understood by referring the reader to Figure 2.2,
The first image of the current element (2.18) with respect to the plate I
is obtained by locating an image current element in the location ﬁ', as
shown 'in Figure 2.2, such that its longitudinal component is the same as

+
the longitudinal component of the current element J, and its transverse
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>
component is the negative of the corresponding component of J. This

construction allows one to satisfy the boundary condition n_

automatically on plate L.

Since the boundary condition ﬁ_ X

>
E = 0

X
E =0
L -

must also be satisfied on plate II, two more image current elements are

introduced as shown in Figure 2.2.

one obtains infinitely many countable current elements.

This procedure is continued until

The location

of the current elements obtained through the imaging process and their

corresponding components are listed in Table 2.1.

TABLE 2.1

CURRENT ELEMENTS DUE TO IMAGING PROCESSES

Characteristic
Index of the
Current Location of the Component of the
Elements Current Elements Current Elements
0 R! = x',y',z") aé(ﬁ - ﬁ')
0 0
2 - ' "t > 3 _ 3
1 R} x',y',-z") aié(R ﬁl)
> > >
1 Rll = (x',y',2w - z'") aié(R - R:)
2 ﬁé = (x',y',~2w + z') as (R - Ké)
2 Ry = (x',y",2w + 2') as® - &)
Ty v o, o e T _ R
3 Ry (x',y',-2w - z') a6 (R ﬁé)
3 Ry = (x',y',4w - 2") a s@® - Ry
n R = [x',y', - 1D MW+ D% 2 s&®-RY
= n . 0 n
n (i) n
n R o= [x',y',@- D@ DWW+ (D' a _§&-R"
= D " 2
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In the above table the first column denotes a proper characteristic
index for each current element. For instance, index n indicates that
the coefficient of w, defined in the second column, is (n - 1) - (2)= . @)
where (2)= = 1 and (1)= = +]1 . The character '=' under number n is
used to specify that this particular current element is obtained by
finding the image of the current element (n - 1) with respect to the
vt

plate II. Character '-' is also used to denote that the corresponding

image is constructed with respect to the plate I. It is further defined

that (2) = 2, (l)— = -1, and a n = a, for n being an odd integer

and a n- 2 otherwise. In coizin three vector a has already been

definé;)in Equation (2.19), and vector Zi designates its image defined as
a,=-at+az . (2.21)

Having determined all image current elements, one now proceeds to
determine the E-field generated in regionlﬂ?+ by letting all the cufrent
elements radiate in the free space. Since one is dealing with a
phenomenon occﬁrring in free space, it is best to employ the vector
potential method (Harrington, 1961) to determine the radiated fields.
The radiating source may be defined by summing up the components

introduced in the third column of Table 2-1 as follows:

>

J

al6(® - ) + 6 - Ké) + 5@® - Ké) + ...

+ 3, [6@R - ﬁi) + 6 - Ri) + ... . (2.22)

Vector potential X is now defined by simply convolving the scalar free-
space Green's function go(ﬁ'Iﬁ) with the source distribution J in the
following way
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AR = u [[f TR g @' [B) av' (2.23)

where
> >
-ik|R-R"|
g (R|R') = &—n— (2.24)
0 ->
4w[R - ﬁ')
and
R =Vx-x02+ G-y + -202 . @2.25)

Substituting (2.22) in (2.23) and simplifying the result one obtains:

A®) = ula6 * a,6_] (2.26)
where ,
e—jk/(x—x')2+(y—y')2+(z—z'+2nw)2
6, = 1 (2.27)
€2 /f 2 2 2
n b V(x - X))+ (y -y + (z - z' + 2nw)
and

-jk/QQ-X')2+(y-y')2+(z+2'+2nW)2
) = . (2.28)

n€z 47 /Qx - x')2 + (y - y')2 + (z+ 2z' + 2nw)2

In Equation (2.27) and (2.28) the symbol Z is used to denote the set of
positive and negative integers, including zero.
Knowing K, one can then determine the E~field by readily using the

following formula:

1+ L vvj AR) . (2.29)

Substituting (2.26) into the above equation, one finally derives the
following equation for the E-field:
1+ vy

k2

> >
E,(R) = ~jwu

aG. + a.G
+ (a6, + 8,6

{R: (x,y,z)€J0&) ) (2.30)
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It should be noted that the E-field obtained in Equation (2.30)
satisfies all of Maxwell's equations and the boundary condition
ﬁ_ X E+ =0 overkﬁn. Therefore, this is the one and only solution that
can be accepted as a solution for the problem at hand. Comparing (2.30)
with (2.20), one con;ludes that béth of them are representing the same
quantity, i.e., the electric field E+(§). It is this comparison that
finally enables one to determine the dyadic Green's function E+(§"§).
To determine E+(§'|§) is just a matter of putting Equation (2.30)

in a dyadic form with a as its interior multiplier. This can be done

by performing the following manipulations. First, one observes that

> > > ~ 7 -> = A A
= - + = . -
aG+ + aiG_ a[G+ G_] ZZazG_ a [I(G+ G_) + ZZzG_]

(2.31)

where ; and Zi are defined in Equations (2.19) and (2.21), respectively.

Second, one can easily show that

Va6 =V'.aG_ (2.32)
and
L] _). = — ' . _>
v aG+ v aG+ . (2.33)
Using the above results it may be simply shown that
- -> >
. = . ' —
AY [aG+ + aiG_] Via v'( G+ + G)]

=3 . W'(-G +G) . (2.34)

In deriving the above formula, the following expression is used
V@ - V'E)=(a-V')VE=3a- V'V . (2.35)
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Substituting (2.35) and (2.31) into (2.30), one finally arrives at

@) = —juua - | [T -39 (6, -6 ) + 233G
n 2 + O -

{K: (x,7,2) GJOL} . (2.36)

The above equation is desirable in this form for direct comparison with
the result obtained in (2.20). Since (2.20) and (2.36) are representing
the same quantity for any arbitrary ;, one deduces that the dyadic

Green's function will take the following form:

il

§+(ﬁ'lﬁ) = ( - —12~ V'V (6, - G_) + 223G_ , (2.37)
3 _ _

where the scalar functions G+ and G_ have been defined previously in
Equations (2.27) and (2.28), respectively. It is easy to check that
the dyadic Green's function satisfies the following relation, namely,

6, & D17 = &, &IXH (2.38)
where the symbol "T" is used to indicate the transposed operator.
Equation (2.38) is an obvious consequence of the reciprocity theorem
(Stratton, 1941) which often appears in the theory of electromagnetism.

The dyadic Green's function obtained in this section will be used
in Chapter 6, where the problem of aperture coupling into a parallel-
plate region is discussed. It is also worth mentioning that the

derivation of the dyadic Green's function can be performed by using

the eigenfunction techniques described in Tai's book (1971).
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2.5 Construction of the Dyadic Green's Function for Semi-Infinite Space

This section can actually be considered as a special case of the
previous section and is treated in a separate section because of its
special importance which will become apparent in the next chapters.

The geometry of the problem under consideration can be constructed by
letting plate II go to infinity along the z-axis as in Figure 2.2.
According to the specification developed in Section 2.3, this structure
should be considered as an exterior region. Therefore, one must solve
Equation (2.4) subject to the boundary condition (2.16) and radiation
condition (2.13) in order to determine the dyadic Green's function

G, &' [K) .

The technique developed in the previous section is used to
construct the dyadic Green's function E+. For the simple geometry
considered in this section, there are only two current elements, as
defined in the first two rows of Table 2.1, that make contributions
in determining the dyadic Green's function. By using these two current
elements and following the steps developed in the previous section one
easily determines that

L

k2

V'Vl (g, - &) + 2z2g_ (2.39)

where 8, and g_ are constructed as follows:

g =G forn =0 (2.40)

+
!
|

&+

One can also readily verify that E+(K'|§) satisfies the radiation

condition defined in Equation (2.14).
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It is well known that the free-space dyadic Green's function has
a special singular behavior at the source region (Van Bladel, 1961;
Rahmat-Samii, 1974). This phenomenon is also observable for the case

developed in this section, since (T - L AR represents the

k2

free-space dyadic Green's function and g_ does not have any singularity

in regionb/n+.

&y
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3. DIFFRACTION BY AN APERTURE IN A PERFECTLY CONDUCTING SCREEN

3.1 Introduction

The problem of diffraction by an aperture in a perfectly conducting
screen is one which has drawn much attention, thus necessitating a great
deal of work since the era of Maxwell (1879;1904) or even earlier.
Mathematicians, physicists and engineers have used many different
analytical techniques and methods for solving this problem. Kirchhoff (1891)
and Lord Rayleigh (1897) were able to design the first mathematical
formulations of the high and low frequency behavior of the diffracted
field, respectively. Kirchhoff's mathematical formulation is based on
the application of Huygens' principle (Baker and Copspn, 1953) and
Green's theorem. This approach, which considers that the aperture
field is essentially the same as the incident field, uses this
information to determine the diffracted field. The basic idea of Lord
Rayleigh's formulation is that, in the vicinity of the aperture, the
electromagnetic field distribution can be calculatéd as though the
wavelength were infinite.

Advances in the early 1950's in microwave techniques led to a
renewal of interest in the diffraction of electromagnetic waves by an
aperture in a conducting screen. In particular, the experimental work
of Andrews (1950) and Robinson (1953), who measured the field within,
and in the neighborhood of, circular openings, gave a good basis for
comparing the results obtained from the existing theoretical formulation
and experimental data. It was found that most of the existing methods
were incomplete for determining the field distribution in the aperture

and neighboring points, when the aperture size was comparable to the
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wavelength. Bouwkamp (1953) then made a critical review of previous
work and was able to show the incompleteness of the formulation
obtained by Bethe (1944) and Copson (1946). Levine and Schwinger (1950)
used Green's theorem approach and applied a variational technique to
formulate the diffraction problem for circular apertures.

Keller et al. (1957) have applied the geometrical theory of diffraction
to determine the diffracted field. 1In the latter studies, the authors
have also made an interesting comparison among different existing
theorems in the high frequency domain. Suzuki (1956) has applied a
variational technique and the method of successive approximations to
solve the diffraction problem of a narrow slit in a conducting screen.
Neither of the above techniques were suitable for solving the diffraction
problem for nonseparable geometries, as with rectangular apertures in
the medium frequency regime, i.e., where the size of aperture is
comparable to the wavelength.

Recent advancement in computer technology has given new insight to
researchers in applying numerical techniques. Although it was first
thought that by using the computer all unsolved problems could be solved
numerically, it was soon discovered that that was not the case, and very
special care should be taken to obtain a proper solution. Researchers'
experiences have revealed that the choice of a suitable mathematical
formulation and a proper approximation technique is a very vital step
in successfully determining the numerical solutions. For instance,
recent publications about the numerical investigation of linear antennas
are good examples in displaying the difficulties which occur in the
numerical domain. Aperture diffraction has recently been treated

numerically via application of different formulations. For instance,
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the conventional E-type integral equation has been used by Spilegel and
Young (1973), and the wire-grid model has been employed by Lin et al,
(1974). It has been found that these techniques are not completely
satisfactory either to determine the E-field distribution due to an
obliquely incident field or to compute the near field of the aperture.

In this chapter, a formulation is developed for the aperture
diffraction problem which has many desirable characteristics. This
formulation is based on the application of a new set of structurally
simple integral equations which formulates the aperture diffraction
problem completely and provides good numerical behavior. Numerical
computation is mainly devoted to determining the diffracted field by a
rectangular aperture, a geometry that has not been investigated
thoroughly and is very'important from practical considerations. Results
are then compared with those of available experimental and theoretical
data.

3.2 An Investigation of the Vector Integral Equation

The geometry of the structure considered in this section is shown
in Figure 3.1. The notations introduced in Chapter 2 are assumed here
with no changes. Symboldﬂn+ is used to denote the exterior region in
the right-hand side of the screen shown in Figure 3.1, and symbolJO?_
designates the exterior region in the left-hand side of the screen.
Therefore, all the fields appearing in the region,ﬁ?+ and\jyz_ wiil have
indices "+" and '"-", respectively. It is further assumed that a
monochromatic wave Ei, ﬁi, originating from a source situated in the
half—space.'ht, is incident upon the screen. In this section, an

integral equation is constructed to compute the tangential E-field in

the aperture.
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Figure 3.1. Aperture in a perfectly conducting screen illuminated by a
plane wave.
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>
The electromagnetic field E, ﬁ, at any point in space, is split

- .
up into an incident field Ei, ﬁl, a reflected field Er, e (associated
with the reflected wave that exists when the screen is complete), and
s R . >d =d .
a diffracted field E°, H , due to the aperture alone. It is then found
that in [/{_
B =+ (3.1)
H = ﬁf +H + ﬁf (3.2)
and injqq+
} i = Ed
. = By (3.3)
io=1
L = H (3.4)
. 2r 3T
the reflected field E°, H_ can, in general, be constructed from the
N B

knowledge of the incident field and the reflecting surface (Jones, 1964).
To obtain the complete solution of the problem, the diffracted field
must be determined.

In determining the diffracted field, one employs Equation (2.10)

which reads as follows

"R

1@ = - ﬁ; x BRD - v x G, & D) da’
A

R:  (x,7,2) eﬂ?i} (3.5)

where E+(§'|ﬁ), which has already been defined in Equation (2.39),

takes the following form

= 203y = (3L oo
NS ¢, (R [R) = (1 -5 V'V

(8, - 8) + 2zzg_ . (3.6)
- + +

-
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By using the identities given in Appendix A, one easily finds that

= 23 - +z ~n iz ~ A X =X ~n
V'xGi(R'|R) = —:—-—_:'——yx+—_7—::—xy— I yz
IR = 0" IR - o' IR - o'
z'=20
' At A A
+ L =3 35N . -5k 1 ). 2g. (3" |R)
- -, > >, 0"
IR -~ o' IR - o'
(3.7)
where
> >
gy(p'[R) = g (x',y",z' = 0[R) = g_(&x",y',-2"' = 0[R) (3.8)
and
3' = x'x + y'§ . (3.9)

After substituting (3.6) into (3.5) and considering (3.7), one finally

obtains

>d > N
E:(ﬁ) = =2V x ff Eo(p') X ntgo(g'lﬁ) da'
A

R: (x,y,2) fﬂzi} ) (3.10)

The above equation,which is a manifestation of the Huygens' principle,
could be constructed directly by employing this principle. Equation (3.10)
was derived by Jackson (1962) using the scalar Green's function
formulation.

In Appendix B, it is shown that
E(g) X ﬁi = Eg(Z) X ﬁi = lim 2ﬁ+ x V x ff ES(S') X ﬁigo(g'li) da' .

z~>*0 - -

A (3.11)
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In the above equation, éince the limiting process is applied to a
singular integral (Mikhlin, 1957), it must be defined properly and care
should be exercised in evaluating the limit correctly. The details
of this analysis are discussed in Appendix 3-A.

In crossing the aperture from the half—spacg/%l to the half-space
an+’ the tangential components of the E-field and H-field must remain
continuous. This fact automatically states that all components of the
electromagnetic field are continuous in crossing the aperture. Upon
using the fact that 1lim [Ef + Ef) xn= 0, and employing the result

z~0
obtained in Equation (3.11), one can readily state

. >i > +d) N\ qs >d ~
iif4)<[E' +E +E| x n> iiio <E+ X ﬁ} (3.12)

where n can be viewed either as ﬁ+ or as ﬁ_. The above result is a
manifestation of the continuity of the tangential E-field in crossing
the aperture. It now remains to enforce the condition of continuity

of the tangential H-field in crossing the aperture. To do this, one

first observes that the following is true:
~ > ->
nxH ==-——nzxVxE . (3.13)

Thus, continuity of the tangential H-field is achieved 1f one requires
that the normal derivative of the tangential E-field and the tangential
derivative of the normal E-field are continuous in crossing the aperture.
Because the Cartesian components of the Ed—field are needed in
studying the continuity condition, one rewrites Equation (3.10) as

follows
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A

>
E

+

> - _8_ ~ - —>'+ '
®R) = 32 o f{ (Ex + E3) g (' [0) da
A

+ 22 | [[ E g, (3" [®) da' +a—ay- /] Eng(S'II{) da'| (3.14)
z y ’2

where in deriving Equation (3.14) on and EOy have been replaced by

Ex and Ey using Equation (3.11). Enforcing the continuity of the

normal component of the E-field determines that

9 TR ' 9 >0 13 ' S -5 & +r)
413 f_f_ E g,("[R) da' + 55 f{ E 8o |R) da n_ ‘E_ +E
A A z=0 z=0
->
{R: (x,y,z = 0) € A} . (3.15)

Later, the above equation will play a vital role in construction of the
integral equation. One can now easily verify that the tangential
derivative of the normal E-field is continuous in crossing the aperture.
To constrain the continuity of the normal derivative of the tangential

E~-field within the aperture, the following equation must be satisfied

2
a5 [f Ex+E5 g 6|0 da’
a2 |70 X y 0
z A z=0
= i i r o i r ~ >, -
= {32 { o PE | x+ E_y + E__y) yD {R: (x,y,z =0 €A} .
z=0

(3.16)

Equations (3.1), (3.3), and (3.14) have been employed to construct the
above equation. Simultaneous satisfaction of Equations (3.15) and (3.16)
by EX and Ey guarantees that the tangential H-field is then continuous

when the aperture is crossed.
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By employing the limiting procedure described in Appendix B, one

can readily show that the following is true.

82 82 2 >, > '
==+ ==+ k| [[ £0") g,("'|p) da
sz 2 - 0

A z=0 oy A

2 '+
*‘8—2- [] £6") gy [R) da’ = -
dz <

(3.17)

where f(g) is assumed to be a regular function, and 3 = xx + y§. Using

the above result, one can easily manipulate (3.16) to obtain

E E°_ + E
2 X -X -X

) ,
42— + B 42 /f g (3'[3) da' = - =
5 2 5 2 ‘. 0 9z .
x Y A|E EX +E
> -y 4 z=0
{o: (x,y) € A} . (3.18)

Perhaps it is now worthwhile to describe briefly what has been
done up to this point: the discussion presented above is essentially
concentrated around Equations (3.15) and (3.18). The solution of these
equations, tangential E-field in the aperture, obviously satisfies all
of Maxwell's equations, boundary conditions, and continuity conditions;
therefore, it is the unique solution of the problem. It should be
noted that there are three equations for determining the two unknowns
Ex and Ey in Equations (3.15) and (3.18). This may first look rather
astonishing, but it has been found that the correct result can not be
obtained, if one only tries to use two of them. For instance, an
attempt was made to construct the solution by employing the two equations
appearing in (3.18), and as expected, the obtained result did not show
the correct behavior. From what has been written, it is now apparently

desirable to find a set of two integral equations that incorporates the
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effect of all three equations with less singular behavior. This will

be exhibited in the following paragraphs.

Since in this work, the plane incident field is of primary interest,

one takes

>3 Al ad A i -jk (ax+By+yz)
= -+ R

E” xEOx yEOy + zEOz e (3.19)
where a = sin 6% cos ¢1, B = sin 6" sin ¢1 and y = cos 6" are the cosine
directors of the incident wave vector, and 6" and ¢l are the corresponding
elevation and azimuthal angles. It can be easily verified that the
reflected field Ef has the following form

E = |-xB, - YE; + zE, e Ik (axtBy=y2)

N ox 02 : (3.20)

Substituting (3.19) and (3.20) into (3.15) and (3.18), one finally

obtains

: ! ' 9 ' i -jk(ax+
2 5;‘[{ Ex(3|) 80(; lZ) da' + 2 F f{ Ey(g ) go(grlg) da' = X o7d (ax+8y)

0z
A A
{6: (x,y) €A} (3.21)
and
' i
E.(c") E
2 2 X ox
Z‘ELE + Ji5-+ k2 ff >, go(g'lg) da' = +jky i e Jk (axt+By)
ox ay i .Ey(p ) EOy
{g: (x,y) € A} . (3.22)

In order to determine the integrated form of (3.22), a form that does
not contain the two-dimensional wave operator, one first extends the

domain of {3: (x,y) € A} to the entire screen {3: x,y) €jn}. In this

45



extended domain, one then integrates (3.22) to obtain the following

result:
~ ‘
- Ex(;') Eéx . '
. Zz . -jk +
2 JJ by [ Bo®' o) dat =gy { g pff e (B2 5|3 -3 ]) da'
— 1
i Ey(p ) EOy
x(x,y)

+ (3.23)
hy(x,y)‘

where HE is a Hankel function of the second kind and the zeroth order,

and hx(x,y) and hy(x,y) are homogeneous solutions of the two-dimensional
wave operator, namely,

hX (x,}’)
=0 . (3.24)

hy(x,y)

The final step toward construction of the integral equation is the
determination of the proper homogeneous solutions hx and hy' One first

observes that the double integral, appearing in the left-hand side of

Equation (3.23), can readily be evaluated to give

/] e Jk(ax'+By") 2 (k|p -3 dat = —2 oTIR(X¥BY) £ L4 g

(jkY)2
(3.25)

In deriving the above equation, the fact that az + 82 + 72 =1 is
. employed. As a proper representation for the homogeneous solutions

hx and hy, the following expression is used:

h (x,y) c (&)
'~ =.% f Jk(xcos£+ys1n£) de (3.26)
h (x,y) 0 C (E)




where CX(E) and Cy(g) are two unknown functions yet to be determined.
It will be clear shortlvahy the‘above expression is indeed a proper
choice for the homogeneous solutions. One can easily show that (3.26)
satisfies (3.24). Upon substituting (3.26) and (3.25) into (3.23) and
requiring that Equation (3.21) must be satisfied, the following

relationship between CX(E) and Cy(&) can then be established:

CX(E) cos £ + Cy(E) sin & =0 . : (3.27)

In deriving the above equation, the fact that V - Ei = 0 is applied.

In order to satisfy Equation (3.27), one may define Cx and Cy to be as

follows:

"

CX(E) C(g) sin g (3.28a)

and

Cy(E) ~C(g) cos ¢ (3.28b)

where C(£) is an unknown function yet to be determined.

Then substituting Equations (3.28), (3.26) and (3.25) into (3.23),
one finally determines the most desirable form of the integral equation

as presented below:

EN _i 2 E
70 il P U L QU et
SVE [2n]p - o' kv gl
A Oy
2 sin £ .
+_% / c(e) eJk(xcos€+ysin£) dE
0 -cos &
{p: (x,y) € B} . (3.29)
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As indicated before, the information contained in Equations (3.21) and
(3.22) is now confined in Equation (3.29). In other words, the
solution of Equation (3.29) satisfies all of the Maxwell's equations,
boundary conditions and continuity conditions. Although one is now
dealing with two equations appearing in (3.29), one has already paid the
price by introducing a new unknown C(§). That is, there are two
equations and three unknowns. To determine C(§) requires the satisfaction
of the edge condition (Jones, 1964; Mittra and Lee, 1971) by the
tangential component of the E-field. For the structure being discussed
in this section, the edge condition may be stated as:
1. The component of E parallel to the rim must be proportional
to Sl/z,
2. The component of E perpendicular to the rim must be
proportional to S—l/z,
where S is the distance measured along the normal to the rim. As
discussed by Flammer (1933), imposing the condition that the parallel
component of E field must be zero at the rim implies .that :the edge
condition is satisfied. Thus, to ensure the unique determination of
the complete solution Equatiop (3.29) must be solved subject to the

condition

EG) - 1=0, {p: (x,9) €C} ; (3.30)

this point will be elaborated in the next section. It is worthwhile
to mention that the edge condition is satisfied directly if one solves
the set of Equations (3.21) and (3.22), because these equations are
dictating the laws of electromagnetism in a direct fashion. On the
other hand, one needs to enforce the condition (3.30) in solving
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Equation (3.29), since this equation does not manifest the law of
electromagnetism properly. Equation (3.29) shows that if one does not
use the condition (3.30), there will be many spurious solutions which
satisfy Equation (3.29) and are not physically realizable.

An alternative form of (3.29) can be obtained by representing
C(g) in terms of a Fourier series expansion. This new form gives a
clear picture of the homogeneous solution behavior introduced in (3.23).
Assuming that C(£) is a Fourier transformable function, the following
must be true

- . Jng '
c(g) nz-m C e . (3.31)

Incorporating (3.31) into (3.29) and employing the well-known representa-

tion for Bessel's function (Abramowitz, 1970), viz.,

.1l . .
J_(ke) = -‘]2——[ " oikecose _jng do (3.32)
0

one finally obtains

Eel  -ik|p-o"] Eox
ff e da' = 1 e-jk(ax+8y)
> > jky i
i Ey 2n|p - o' E0 ‘

+ I .n+l j(n+l)é
X {} L Cald " © I (k)

=1 .
+{ } PIEDY )| B @y €D
1
(3.33)

where (p,¢) are the polar coordinates of the point (x,y). One could
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have introduced the above homogeneous solution in solving Equation (3.23)

jn¢ is a solution of Equation (3.24)

directly, because z aan(kp) e
when it is written in the polar coordinate system. Since Ex and Ey are
square integrable functions, the left-hand side of Equation (3.33) is
always bounded, which readily implies that the right-hand of Equation (3.33)
is also bounded. Because the origin of the coordinate system being
taken in the set {3: (x,y) € K}, Hankel functions z ann(kpj ejn¢ can
not be an acceptable solution for this case, since they are singular
at point (0,0). Now it only remains to show that the infinite series
appearing in the right-hand side of Equation (3.33) wouldkbe a conﬁergent
series, when it is subjected to the condition (3.30). No attempt is
made to prove the convergence in an analytical fashion at this point,
but it will be discussed in the next section, where some numerical
results are presented.

Before closing this section, it is of interest to make a comparison
between Equation (3.33) and that of the conventional one. It is well

known that the tangential component of the incident magnetic field is

not altered in the aperture (Bethe, 1944), namely,

21

AxH=nxH {R: (x,y,2) € &} . (3.34)

This fact is used to write the conventional integral equation in the

following form (Spiegel and Young, 1974):

2 > 2 > >
3%~ (0" |e) 3%g (0" |0)

2 >y sCRPe v _ >y ____Q________ >y _0____ '
K ff E(") gy(e'le) da' - [[ |E (") —5 57 E (") > da
K I_X 9x )

WH .
e 0.1
=77 (3.35a)
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2 .
g (3'|E)
__..L______.f E (+|)
2 yp

2 > >
38 (0" |p)

]
| da
oy

< B G gy@'[8) aa' + [[ |- (B")

X
a A 9y

= ———H (3.35b)

where Hi and H; refer to the tangential component of the incident
magnetic field existing on the surface of the aperture, and g0(3'|3)
has been defined in (2.24). First observation reveals that Equation (3.35)
is highly singular when it is compared with Equation (3.33). Because
of this singular behavior, Equation (3.35) also suffers numerical
instability. Perhaps the reader has already recognized the resemblance
between Equations (3.35) and (3.33) with Pocklington's and Hallen's
integral equations (Collin, 1969) appearing in the theory of the linear
antennas. It may further be observed that the x and y components of
the tangential E-field are coupled directly in Equation (3.35), whereas
these components are decoupled in (3.33) and coupling only occurs
through the constant coefficients of the homogeneous terms. This
property of Equation (3.33) leads to important and useful consequences
when one analyzes the low frequency characteristics of the solution in
the next chapter.

3.3 Numerical Results and Discussions

3.3.1 Reduction of integral equations to matrix equations

In this section the procedure for extracting numerical solutions
of the integral equations derived in Section 3.2 will be outlined. The
integral equations will be converted into matrix equations using the

standard moment method (Harrington, 1968; Mittra, 1973).
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For a general equation written in an operator form
L(e) = £ , (3.36)

the matrix equation for unknown expansion coefficients Ei of the

. . i .
unknown e, expressed in terms of a set of basis functions e”, is given by

MI{E} = {x} (3.37)
where
= _ i
(M] = [m;,] = [<fj,L(e )>] (3.38)
tx} = {x} = <<fj,f>> (3.39)
fj = testing function
and
<EHE> =[£G £,61) dat (3.40)

A

The next step is to employ the above technique to derive the
numerical solution of the integral equation (3.33). Since there are no
differential operators in the kernel of (3.33), the pulse function and
§ function can be used as basis and testing elements, respectively.

To do this, the aperture is subsectionalized uniformly into M x N
patches as shown in Figure 3.2. The fundamental definition for the

pulse approximation is given by

It
=

M,y =1, &',y € ax) x oy!

I
o

, (xr,y')ﬁ‘AxI; x by! . (3.41)

Then employing (3.36), one finally derives a discretized version of

(3.33) which reads
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% 1§ fEx(xm,yn) 1 Eox —jk(ax2+8yp)
2g,(x,,y_3x',y') AX Ay e
o=1 n=lLE (x;n’y') 02’/ p’"m’’/n jkY Ei
Oy,
21
3 + — 1 -—
%' Jn+1e_](n l)¢J +1(kp) + jn leJ(n 1)¢J l(kp)
_L+1 " "
1
2' = l’ . . .,M; p - l’ « o ey N (3-42)
1/2

where p = [xi + yi} , ¢ = t:an_l (yp/xz), and 2L corresponds to the
total number of matching points on the rim. This procedure is followed
in anticipation of the application of the boundary condition E.1= 0,
which is eventually used to determine the unknown Cnfs. It should be
noted that at the point (x&,y&) = (xl,yp), the kernel 2g0 exhibits a
singular behavior; therefore, special care must be exercised in
evaluating the integral in the neighborhood of this singular point.
This is done by noting, in the first instance, that the self-patch

region may be approximated as

Ax/2 ?y/Z e—jk\/x'2+y'2

dx' dy' . L {}x Rnlfan t% + I tant AX-)|

i 2 Ax
-Ax/2 -4y /2 o x,2 + y,2
+ Ay n|tan (%—+ a"t Ax]| -] ————%}
(3.43)

The manipulations for the derivation of the above equation are summarized
in Appendix C.
Using matrix notation, (3.42) may then be expressed in the

following form:

54



[gy1{E} = (?i} + [h ]{C}
(3.44)
i
ENIGIE {ﬁy>-+ [ 1{c)

where [hx] and [hy] are (M » N) x (2L) matrices defined as follows:

( -3 (-L+2)¢ -jLé
—L+2 1 L 1
i e I (ko) 7 i e T ko) oo
[h ] = ‘_:J]J__Tr -ej¢l J. (kp.) - ~1 —j¢l J . (kp.)
x k|3 1P 33 e -1Y%P;
y
11 I FDe o,y - i1 3oy ko.)
J L+1%P1) ¥ 3 € L-1 %P,

J(-L+2)¢ -jL¢ R
,=L+2 MN .—L MN
j e I 4o keyn) 73 e J_p (kepnd
j¢ -j¢
1 -1 3%
je Jl(kpMN) i J_l(kpMN)
e IOy 0 e IO
1€ L+l Py’ ¥ I L-1 PN’
(3.45)

Note that coefficients -j and -1, shown in the r.h.s. of thekabove
equation, are used for hx and hy’ respectively, and "T" is used to
indicate the transposed operator. Equation (3.44) is subjected to the
condition E:+ T=0. This condition can also be stated in a matrix

form as

55



€N [ o |6

[t]{=rme = |=mmm | == [(-mmm

&) |0l <y>

(3.46)

where [t] is a (2L) x (2M « N) matrix. The elements of this matrix are

zero everywhere except at the prescribed edge patches where they are

set equal to unity in order to fulfill the condition E-7=o0.

Solving (3.44) for {Ex} and {Ey}, one obtains

(B} = [gy] " it lgy]  In llc)
(B} = [gg] " E+ [gg] I 1iC)

(3.47)

Subjecting the above equation to condition (3.46), the following form

is derived:

-1

[, 1l8g) ™" L) + [1,1lg,1  Ih J{C} = 0

-1 i -1
v, 081" £y ) + [7,1[8,1 " [ J{C} =

The above equation represents a set of 2L equations for the 2L

unknowns Cn s. This equation may be rewritten as

ERI N @i} (v, 1lgy] b, ]

______________________ {c} .

|
0 1lx gyl @ i (<, 1 Lg,)

Equation (3.49) can now be solved to obtain

] | [, ]lgy)
(C}==|--=m oo e = e o - -
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After the Cn's have been determined, the tangential E-field in the
aperture may be computed by substituting (3.50) into (3.46). Before
doing this, {Ex} and {Ey} are first decomposed into the following two

components:

{Ex} {Eix} + {Ehx} (3.51a)

]

E + .
{ y} {Eiy} {Ehx} (3.51b)
~ where subscripts i and h refer to the inhomogeneous and homogeneous

components of the field, respectively. By substituting (3.50) into

(3.46) and making use of (3.51), the following formulas are finally

derived:
N
-1/._1
{%ii} = [gy] ~ (E, (3.52)
iy y
-1 r -1 | i
-1[ [, 1lggl a0 | |7, 0lgg) " | 0 (E)
B =-lggd |b |-------+4|------ = =-=-- - -
hx 0 X
-1 | -1 A
hy. yJ|[7, 18y [hy] 0 RERICN g B

(3.53)

The numerical accuracy and stability of the solution of (3.53) may be
checked rather simply by verifying how well we have satisfied the

boundary condition

(3.54)

1
(o]

which requires that the tangential E-field in the aperture must be zero

at the rim.
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Since the elements of {Ex} and {Ey} are zero at the edge patches
located along the x—axis and y-—-axis, respectively, one may then use an
alternative scheme to that used in the previous paragraphs and rearrange
a new matrix equation. This is done by replacing the zero elements of
{Ex} and {Ey} by the elements of {C} and exchanging the corresponding
elements of the matrix‘[go] by those of [hx] and [hy]' After introducing
all of the changes as described above, the matrix equation (3,43) may
be rearranged to read as follows:

) (6
[tgols Iy 2o In 1) 4 (B, 3

@) &)

where [[go],[hx],[hy]] is a (2M * N) x (2M < N) matrix constructed by

(3.55)

incorporating the necessary changes, and {me} is the modified version
of {Ex} which is constructed by removing the zero elements of {Ex}.

The same construction is true for {Emy}. One can then solve (3.55) and
determine {mel, {Emy} and {C}. It should be mentioned that the matrix
[[go],[hx],[hy]] has many zero elements and therefore special care must
be exercised to invert this matrix economically. The form (3.55) is of
special importance in connection with the application of the singularity
expansion method (SEM) (Tesche, 1973),

3.3.2 Kirchhoff approximation

The Kirchhoff approximation has been used very extensively in the
high frequency domain analysis. Perhaps this approximation is one of
the simplest methods for treating the aperture diffraction problem.
This approximation has taken several different forms in the literature.

Three different ways of formulating the Kirchhoff approximation for the
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scalar wave function are described by Keller et al. (1957), and the
formulation of the vector equivalents of the Kirchhoff integral is
analyzed, for instance, by Jackson (1962). In this work the Kirchhoff's
E—approximation will be used in order to perform some numerical
comparisons,

In formulating the Kirchhoff's E-approximation, one assumes that
the E-tangential field in the aperture is the same as the corresponding
tangential field of the incident field at the aperture. Using this fact-
and employing Equation (3.10), the diffracted field in the z 5 0 region

takes the following form:

Ei(’ﬁ) = —ov x [ EREY) x Ag G [B) da’
A
(R: (x,v,2) EJQL} . (3.56)

In the following section some representative solutions of
Equations (3.52) and (3.53) will be presented. These solutions are
then compared with the results obtained from (3.56) for a number of
different aperture sizes and incident fields.

3.3.3 The numerical result of the field distribution in
rectangular apertures

A 1) x 1) square aperture illuminated by a normélly incident plane
wave as shown in Figure 3.2 is considered as the first example. The
solution is deliberately left in general format and no use is made of
the anticipated symmetry of the solution for the normally incident field.
This general format is also helpful in checking the accuracy of the
numerical solution by verifying that the proper symmetries are exhibited

in the solutions.
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The aperture is subsectionalized into 9 x 9 square patches and
the condition (3.46) is enforced at all of the edge patches [i.e.,
2(M + N) = 36 in Equation (3.42)]. Assuming that the incident field

has the following polarization

>1i

Pl ,El| "e—jkz

y s (3.57)

Equation (3.42) can then be solved by following steps (3.47), (3.49),
(3.50) and (3.52). Figure 3.2 shows the three-dimensional representation

of the amplitude of the E, field obtained by solving Equation (3.52).

iy
Note that because of the prescribed incident field (3.57), the
transverse field Eix is zero everywhere in the aperture. To obtain the
solution of (3.52) no homogeneous terms are used and, as Figure 3.2
exhibits, this part of the solution does not, by itself, satisfy the
correct edge behavior. Figure 3.3 displays the amplitude distribution
of the homogeneous solution Ehy’ obtained by solving (3.53) with the
use of homogeneous terms defined in (3.42). The total solution Ey is
now constructed by superimposing the two solutions as indicated in
(3.51a). From Figure 3.4 it is noted that this solution does indeed
exhibit the correct symmetry and edge behavior. The determination of
Ex, the cross-polarized component, also follows along the same lines.
It is interesting to note that Ex is identically equal to Ehx’ the
homogeneous portion of the solution, since the incident Ex field is
identically zero. Figure 3.5 shows that proper symmetry and edge
behavior are obtained for the x-component of the E-field also. The
above discussions make it patently clear that the inclusion of the

homogeneous term is essential for constructing the complete solution.
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In order to check the convergence of the satisfaction of the edge
behavior, Ex and Ey were recomputed by emnloying only 20 edge patches
where the condition (3.46) was imposed. Nc substantial difference in
the final results was observed between the 36-edge patch and 20-edge
patch cases. This appears to indicate that a solution satisfying the
proper edge behavior can be constructed by using substantially fewer
Bessel functions than the number 2(M + N) indicated in (3.42). An
additional convergence check on the matrix size also has been carried
out. The 1A x 1)\ aperture has been subsectionalized into 6 x 6 square
patches, rather than the original 9 x 9, and the numerical solution has
been found to be substantially unchanged. In particular, the computed
fields at observation points located behind the aperture are almost
identical for the two cases.

Figures 3.6a and 3.6b show the amplitude and phase distributions
Qf the Ex and Ey fields sampled along the principal axes of a 1A x 1A
square aperture. These results are compared with the ones given by
Kirchhoff's approximation, as plotted in the same figures. It is
obvious that the results obtained by employing the integral equation
technique exhibit the correct edge behavior, whereas those of Kirchhoff
do not. The two solutions deviate even further from each other in the
immediate neighborhood of the edges.

After determining the aperture field, the scattered E-field behind
the aperture may be readily computed using (3.10). Figure 3.7 displays
the behavior of the E-field sampled along two lines parallel to the
z—axls as indicated in the same figure. Due to the fact that the
incident field 1is polarized in the y-direction, the dominant field is
the Ey—field. The plot in Figure 3.7 shows that the field has a %—type

behavior away from the aperture.
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Figure 3.6.

Amplitude and phase distribution of the E_-field in a 1\ x 1\ square
aperture due to a normally incident plane’wave. (a) E,~field sampled
along a line parallel to the x-axes and passing througz the center.
(b) E _-field sampled along a line parallel to the y-axes and passing
through the center. Amplitude (——) and phase (-~--) of E_ from inte-

gral equation solution. Amplitude (—— -) and phase (— z—) of Ey
field from Kirchhoff's approximation.
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In Figure 3.8 a comparison of the square aperture results is made
with those obtained experimentally by Robinson (1953) who measured the
E-field across a circular aperture of one wavelength in diameter.
Observation shows that the two results are quite comparable even at the
edges where the field exhibits a singular behavior. It should be.pointed
out that this close agreement between the field distributions in circular
and square apertures is obtained only when one compares the fields along
the principal axes of the square aperture, a result which is not
altogether unexpected. Figure 3.9 shows a comparison between the
results obtained using our integral equation and Kirchhoff approximation
(3.56) for the field behind the aperture, and also a plot of the
experimentally measured results (Andrews, 1950) for a circular aperture.
All three solutions exhibit the same type of behavior, at least 1.5X
behind the aperture. It is further noted that the integral equation
solution shows a much better agreement witﬁ the experimental results
than the ones based on the Kirchhoff approximation. The deviation
between the integral equation solution and Kirchhoff's approximation is
about 18 percent at a point located two wavelengths behind the aperture
along a line which runs parallel to the z-axis and originates at the
center of the square. This deviation becomes progressively smaller as
one moves away from the aperture.

In order to examine the behavior of the E-field in the aperture due
to an obliquely incident plane wave, the apérture is illuminated with

the following incident field:

i i ~ ~ I -] o [ ° o
El - lEll (7x sin 60° + ¥ cos 60°) e jk(xsin30°co0s60°+ysin30°sin60°+zcos30°) .

(3.58)
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Figure 3.8. Intensity distribution of the E_~field sampled along the principal

axes of a 1A x 1) square aperture and a circular aperture of radius
1A. (a) Intensity distribution sampled along a line parallel to

the x-axis and passing through the center. (b) Intensity distribu-
tion sampled along a line parallel to the y-axis and passing through
the center. Integral equation solution (
(-—-) from Robinson (1953).

). Experimental results
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The above incident field is called E-parallel since the E-field is
parallel to the x-y plane which coincides with the plane of the aperture.
Figure 3.10 displays the behavior of the E-field sampled along the
center éxes of a 1A x 1\ aperture illuminated by the plane wave (3.58).
In contrast with the case of normal incidence the solution no longer
displays any kind of symmetry; however, the correct edge behavior is
still evident from the plot of the aperture field in Figure 3.10. These
results are again compared with those determined using the Kirchhoff
approximation. One observes that for an obliquely incident field, the
two results deviate more drastically than for the case of normal
incidence. These aperture field distributions have once again been

used to determine the E-field behind the aperture sampled aloné the
z-axis as shown in Figure 3.11. 1In contrast to the case of normal
incidence, all three components of the E-field have non-zero amplitudes.
Although the Ez component is almost 100 times smaller than the Ex and

Ey components, it shows a rather interesting behavior. Note that the

EZ component is zero at the center of the aperture, indicating that the
incident Ei—field, which is zero in this case,'is not perturbed. Away
from the aperture, it rises to a maximum, almost A/ﬁ behind the aperture,
and then decays with a l/r2 type behavior,

Another important problem in connection with the study of aperture
diffraction 1s the case of grazing incidence. In contrast with a number
of other techniques that have been employed for attacking this problem,
no special modifications are necessary in the integral equation approach
for handling this problem.' Consider an H-parallel incident plane wave

as follows:
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Figure 3.10. The amplitude distribution of E - and E ~-field in a 1A x 1A square
. X, .
aperture due to an obliquely incident p{ane wave. (a) E-field
sampled along the x-axes. (b) E-field sampled along the y-axes.
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g' = |EY| (v cos ¢T% + v sin ¢'y - sin 672) g kloxtytyz) (3 50

[, By > ¢i and Bi have been defined earlier in Equation (3.19)].

The H-component of the incident field is now parallel to the plane of
the aperture. Substituting Equation (3.59) into (3.42) and finding the
limit for the grazing angle, i.e., letting y = 0, the first term in the

r.h.s. of Equation (3.42) takes the following form:

Ei lEiI cos ¢i
0x| =-jk(ox +By.) -jk(ax, +By )
. 1 L "p 1 L 7p
lim ——— e = — e .
jky jk . .
>0 E- |E1| sin ¢1
Oy (3.60)

The field behind the aperture for the case of H~polarized grazing
incidence is shown in Figure 3.12. As expected, the Ez—field takes the
value of unity in the aperture which indicates that the z-component of
the incident field is still unperturbed by the aperture, It is
interesting to note that although near the aperture Ez has a higher
amplitude. than EX, the former decays more rapidly than the latter away
from the aperture. This is explained by the fact that the only nonzero
components of E are transverse, and hence all of the longitudinal
components must eventually approach zero.

3.4 Diffraction by a Narrow Aperture

The problem of diffraction of a plane electromagnetic wave by a
narrow aperture has attracted the attention of many investigators.
Among them, the work of Suzuki (1956) has received considerable
attention. In his work Suzuki introduced a magnetic-type Hertzian
vector and was able to construct an integral equation for the dominant

component of the E-field in the aperture. He further assumed that the
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other component of the field is zero in the entire aperture. In this
section the procedure outlined in Section 3.2 will be followed and
Suzuki's approximations will be incorporated in order to generate an
integral equation which is quite similar to his integral equation.

Let a plane wave incident field with E; polarization be illuminated
normally on a very narrow rectangular aperture, The long side and the
narrow side of the aperture lie along the x—-axis and the y-axis,
respectively. Since the incident field is polarized along the y-axis,
the dominant induced field in the aperture will be along the y-axis
too. It is then reasonable to assume that the Ex component of the
field has zero value in the aperture. Incorporating this assumption

in Equation (3.29) one obtains

~
‘Jklp"P'I _ 21 (sin £ ) ]
/] € ——— da' =.£i +_% f {: /}C(g) eJk(xcosg+y51ng) ac
% lg | 2nle =o' I gt 0 \-cos £
y, Oy
fo: (x,y) € A} . (3.61)

In order to satisfy the top equation of (3.61) it is clear that C(§)

must take the following form:

C(E) = AS(E) + BS(E - m) (3.62)

where A and B are two arbitrary constants yet to be determined.
Substituting Equation (3.62) into Equation (3.61) and simplifying the
result, the following equation is derived:
> >
— !
—ikle=0"|

[ E,&————da' === B} + I (-ae
X Y on|3 - 8| jk 0y -k

Jkx g -ikxy (3.63)
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which can be simplified even further by utilizing the fact that the
solution must exhibit symmetry along the x-axis. Incorporating the

symmetry, one may rewrite Equation (3.63) as follows

-jk|p-p ,
ff E &—  4da' = iL-El + E-cos kx (3.64)
y Zﬂlg _ g'l jk "0y k

where C is a constant which can be determined by‘ehforcing the condition

Ey = 0 at the edge of the aperture parallel to the y-axis. Integral
equation (3.64) is identical to the integral equation used by Suzuki (1956).
This equation has the same type of characteristics as the Hallen's

integral equation (Collin, 1969). Although (3.64) satisfies all of the
Maxwell's equations and continuity conditions, the solution Ey obtained
from this equation exhibits the correct edge behavior only when a very
narrow aperture is considered.

In the following section, after defining the transmission
coefficient, the complete integral equation, i.e., Equation (3.33), will
be applied to determine the field distribution in a narrow aperture and
hence to check the validity of the approximations employed in
constructing Equation (3.64).

3.4.1 Transmission coefficient

There is a quantity of physical interest in dealing with a problem
of aperture coupling known as the transmission coefficient. The
transmission coefficient "I" of the aperture, which is defined as the
ratio of the transmitted energy flux W through the aperture to the

incident energy flux w upon the aperture, is expressed as follows:

. (3.65)



The suitable expression for W is derived from the real part of the
Poynting vector theorem (Jordan, 1968) in a nondissipative source-free

region

*
Re [V-ZExH dv=0 (3.66)

where integration is performed in the half space in the right-hand side
of the screen, and "*'" denotes the conjugate operator. This integration

involves the quantity
: *
B=2Ex® (3.67)

the real part of which is the average energy flux density. After
integrating Equation (3.67) throughout the shadow half space, a
connection between the total energy flux at infinity and that through

the aperture may be stated as:

W = Re ff %-ﬁ - Ex ﬁ* da = Re ff-% z+Ex ﬁ* da = Re ff %-2 x E ﬁ* da
M M M
= Re ff %-2 X E o ﬁ* da . (3.68)

A

Since the tangential component of the magnetic field in the aperture
is the same as the tangential component of the magnetic field due to

the incident field, one obtains

W= Re [ @hH”* da (3.69)

Bl o—
Nj=
N>
]
=Y

where H™ is the magnetic component of the incident field.
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The incident field is defined as:

E-=E e . (3.70)
Using Maxwell's equations one readily derives

> € 2 >

H =/% kxEY . 4 (3.71)

Employing Equations (3.70) and (3.71) one can then define the total

energy flux through the aperture due to the incident field as

. 2
w = Re [ %—2 ok @l da = Re ff-i //5 [ESI z+ kda .

Bl

‘Substituting Equation (3.70) and Equation (3.72) into Equation (3.65),

the transmission coefficient T takes the following expression

%
Re [ z x E - [k x Ei] da
T = A (3.73)
EZ] AG - B

where A is the area of the aperture. The above formula will be used to
compute the transmission coefficient in the next sectionm.

3.4.2 The numerical result of the field distribution and the
transmission coefficient of a narrow aperture

To demonstrate the behavior of the field distribution in a narrow
aperture, Equation (3.42) has been used. Figure 3.13a shows the
Ey—field distribution inside a narrow aperture whose dimensions are

1A x .1A. This aperture is illuminated by a normal incident plane wave
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polarized in the y-direction. Figure 3.13 shows that the magnitude of
the cross component of the field, i.e., EX component, is at least
100 times smaller than the magnitude of the dominant component Ey.
This numerical result now justifies the assumption used to construct
Equation (3.64). It has been further noticed that the series appearing
in the r.h.s. of Equation (3.42) does not converge fast, and exhibits
an oscillatory behavior around the edge points. This indicates that
applying Equation (3.64) is more desirable for very narrow apertures
than using Equation (3.42). Figure 3.13b displays the behavior of the
E-field in a 1A x .1l) aperture illuminated by a normal incident field
with EX polarization. This solution is obtained by solving Equation (3.42).
The aperture responds weakly to the Ex polarization as compared to the
Ey polarization, a result that was expected. It is further noted that
the field distribution derived via the integral equation approach is
substantially different from that obtained by the Kirchhoff approximation,
as shown in the same figures.

The above aperture field distributions are used to evaluate the
diffracted field by the narrow aperture in the region z > 0; results
of which are shown in Figure 3.14., It is evident that the discrepancy
between the two solutions grows worse as one approaches the aperture.
This discrepancy is about 46 percent even at a distance of 2\ behind
the aperture. This is almost three times larger than for the case of
the 1 x 1A aperture investigated earlier.

In order to study the resonance phenomenon in ngrrow apertures, the
transmission coefficient of such apertures has been calculated by
employing Equation (3.73). The result,which is shown in Figure 3.15,

has been compared with that of Suzuki (1956) who solved integral
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equation (3.65) via the application of the successive approximation )
approach. Good agreement between the results has been found. It is

evident that the resonances occur when the length of the aperture is

approximately equal to A/2, 3A/2, 5)\/2, . . .; the transmission

coefficient has maxima at these points, -

3.5 Transient Response of Apertures Due to an EMP

3.5.1 Formulation of the time-domain problem

In the previous sections, the problem of computing the frequency
response of apertures due to..a given plane wave incident on the
structure has been discussed in great detail. This section will be
concernéd with the problem of determining the transient response of
apertures illuminated by an EMP from the knowledge of their frequency
domain behavior.

The incident EMP may take the following general form: -~/

gi(t,ﬁ) = zi[t - (ax + By + az)/e] 6 [t - (ax + By + az)/c]
(3.74)

where o, B, and y are the cosine directors of the direction of the

incident field, ¢ = L denotes the speed of light in the medium, and
Yue

® is the unit step function. It is further assumed that Equation (3.74)

satisfies Maxwell's equation in the time domain.

The Fourier transform and the inverse Fourier transform operators

may be defined as follows (Sneddon, 1972):

B(E,R) = FI3(t,R)] = [ o(e,B) e 327EE 4 (3.75)
and

2, = FLEED] = [ BeE,D 2 e L (3.76)
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Substituting Equation (3.74) into Equation (3.75) and performing the

operation results in

e = Fidte, B = {}[gé(t) 6 (t{[} Ik (oxctBytaz)

= Eé(f) ¢~ Jk (oxtBy+yz) (3.77)

where k = 2nf/c. Equation (3.77) clearly describes a plane-wave
incident field in the frequency domain. Therefore, for any given
frequency, one can solve the apertﬁre diffraction problem by simply
following the steps developed in the previous sections. This
calculation enables one to obtain, for instance, the diffracted field
E(f,ﬁ) in regioq/07+ in the frequency domain. Having determined the
frequency domain response, the time domain response ;(t,ﬁ) can then be
calculated by employing Equation (3.76).

Since one is dealing with a causal phenomenon, Z(t,ﬁ) must fulfill

the causality condition, namely,

e(t,§) =0 fort <0 and {R: G,y,2 €fl} .  (3.78)

Employing Equation (3.78) and using the fact that g(t,ﬁ) is a real
function, it can then be shown (Papoulis, 1962) that the knowledge of
either the real part of E(f,ﬁ) or its imaginary part is sufficient to
determine z(t,ﬁ). Introducing the symbols "Im" and "Re'" as the
imaginary and real operators, respectively, z(t,ﬁ) may be written in

the following alternate, but equivalent forms:

84



(=]

e(t,R) = 40(t) | Re [E(f,R)] cos (2nft) df
0
= 20(t) /| Re [E(£,0)] &J2"F 4 (3.79a)
and
e(t,R) = -46(t) [ Im [E(f,R)] sin (2nft) df
0
= =20(t) [ 1Im [B(£,B)] &327FF 4f (3.79b)

where 6(t) is the unit step function. In deriving the above equations
> > > > %k .

the fact that E(-f,R) = [E(f,R)] was used ("*" denotes conjugate

operator).

3.5.2 Numerical results and discussions

In this section, the time domain response of a éingle aperture
will be determined by employing Equation (3.79). As a répresentative
example, a double-exponential normally incident EMP illuminated on an
aperture, with the dimensions 115 x 1.3 cm, wiil be considered.

The incident EMP may be represented as follows:

e, = gr, ([0 L BlEmz/e)) g L g0

_ [e-a(t—T—z/c)‘_ e-B(t-T—Z/C)] o(t - T — z/c)> (3.80)

where
o =6.0x 106 sec_l
B =2.0 x lO8 sec_l
T = 2.04189 x 107° sec
_ 3
EO = 10" v/m
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The spectrum of Zi(t,ﬁ) can be readily determined by Fourier transforming

(3.80), which yields

rj2ﬂf1) e—jkz

>3, > - 1 1 _
g = 5[5 327 B+ jan)(l e - (.81

Figure 3.16 shows the behavior of ei(t,O) as a function of time and
Figure 3.17 displays the behavior of [Ei(f,0)| és a function of frequency.
To evaluate Equation (3.79), one must first compute E(f,ﬁ), the

frequency spectrum of g(t,ﬁ), as described in the previous section.
The aperture spectral response E(f,ﬁ) is computed at a set of discrete
frequencies, seventy in this example. Rather than sampling E(f,ﬁ)
uniformly in the frequency range 0 - 109.Hz, it is more desirable to
compute E(f,ﬁ) relatively denselybin the neighborhood of the resonant
frequencies of the aperture, where the response function f(f,ﬁ) varies
rapidly, and less frequently for the frequencies, where the variation
is relatively slow. Figures 3.18 and 3.19 display the behavior of
|E(f,x =0, y=0, z=2) and Re {E(f, x =0, y =0, z = 2)}, respectively.
The time domain response Z(t,ﬁ) may be computed from the knowledge
of E(f,ﬁ) via Equation (3.79). The integrals that need to be evaluated
in this process may be computed by the FFT algorithm (Brigham, 1974),
which is known to be very efficient in handling these types of integrals.
For an accurate evaluation of the integrals, E(f,ﬁ) must be adequately
sampled in the frequency range of interest so that the criterion
suggested by the sampling theorem (Ransom, 1972) is not violated. One
finds that, according to this criterion, it is necessary to evaluate
E(f,ﬁ) at least a total of 1000 points in the interval 0 - 109 Hz where

‘E(f,ﬁ)] decreases to 60 dB below its maximum value. This, in turn,
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Time domain plot of the incident pulse.
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at a point 2 meters behind the aperture on the z-axis.
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Frequency domain behavior of Re[E_(f)] sampled at a point 2 meters
behind the aperture as indicated in Figure 3.18.
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would require that the function E(f,ﬁ) be evaluated at 1000 points
also, which would clearly be extremely time consuming. However, one
can employ an interpolation scheme to compute E(f,ﬁ) at the desired
1000 points by using its seventy samples that have been previously
calculated. Extensive numerical experimentation has revealed that a
linear interpolation scheme is adequate to determine the function with
sufficient accuracy. The result of evaluating Equation (3.79a), using
the scheme just outlined, is plotted in Figure 3.20. This figure
displays the time domain behavior of the ey(t, x=0,y=0, z=2)
field sampled at a point located on the x—~axis, 2 meters behind the

aperture illuminated by the EMP (3.80).
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behind a single aperture as ifdicated in Figure 3.18.
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4, ELECTROMAGNETIC WAVES DIFFRACTED BY SMALL APERTURES
IN A PERFECTLY CONDUCTING SCREEN

4,1 Introduction

This chapter examines the behavior of the electromagnetic waves
diffracted by small apertures: The method of analysis is based on the
application of the formulas developed in the preceding_chapter. These
formulas have reduced the aperture diffraction problem to a solution
of two decoupled, structurally simple integral equations, and the
necessity for accounting for so-called edge conditions has been
eliminated. As was previously shown, the edge conditions have been
replaced by the obvious requirement on the edge that the field induced
in the aperture must have no component tangential to the edge. In this
chapter it is shown that for sufficiently small values of kD, where D
is a certain length characterizing the dimensions of the aperture, the
solution of the above-mentioned integral equations reduces to solving
a sequence of successive electrostatic problems.

As an example, diffraction of an arbitrary, plane-wave incident
field by circular and rectangular apertures is considered.

4.2 Rayleigh Series Analysis

The starting point is the application of the integral equation
(3.33) given in the previous section. Using the fact that

J_n(kp) = (—l)n Jn(kp), Equation (3.33) may be rewritten as follows:
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E > > E
—jk|p-p" 0
” x | ik|e-p'] dat - L S
’ >y Jky gt
i Ey anp p | 0y
N [ o <1
+ T ) J@tLe oI (mtl)e
k n -n
-1\t 1
-1
. s0tl j(n-1)¢ -j(n-1)¢
j Jn+1(kp) + e Cn + e C
1
-1
, sn-1 ji¢ -3¢ ] .
3 Jn_l(kp) + |e' 7 + e JJl(kp) C0
1

(4.1)

Next the Rayleigh series expansion method is employed to convert
Equation (4.1) into an integral equation valid for apertures whose
dimensions are small relative to the wavelength. The procedure is
based on a power series expansion in k and leads, in principle, to a
sequence of simple integral equations like those occurring in potential
theory. Rayleigh (1897) first ﬁroposed such a series expansion scheme
for determining the approximate solution to diffraction and scattering
problems using the application of the quasi-static analysis.

Stevenson (1953) later discussed the application of the Rayleigh series
in a rather rigorous mathematical fashion. He was able to show that
the field scattered by a conducting body may be determined exactly in
terms of the power series of k, if the Laplace equation separates for
the geometry in question. Werner (1963) presented a rigorous
mathematical justification for the application of the Rayleigh series.
Kleinman (1967) employed the series approximation and completed
Stevenson's work. The above-mentioned work, therefore, justifies the

application of the Rayleigh series which can be written as follows
94
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E= § E@m (4.2)
m=0
It is worthwhile here to quote the following statement given by
Kleinman: '"The validity of Rayleigh expansion has been established,

thus this need no longer be an assumption but is a consequence of
Maxwell's equations, the boundary conditions and radiation conditions."
A further assumption is that the coefficient Cn's appearing in

Equation (4.1) can also be expanded in terms of the powers of k:

c = § ¢ (4.3)
n n
m=0
In order to expand the Bessel functions appearing in Equation (4.1),
in terms of the power series of k, the following well-known expansion

formula (Bowman, 1958) is used:

2 4
_ )" | L (kp) (kp)
Jn(kp) ) 2 %- 2(2n + 2) T2 (2n+2)(2n + 4) ° ° .] .

(4.4)

After substituting (4.4), (4.3) and (4.2) into (4.1), and making
use of the expansion series for the kernel and the incident field, the

following relation is finally established
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. il &pfﬁlb_-——iﬁﬂi—+ h..)
| 2n+1(n + 1) 2(2n + 4)
21
+ i J@1)¢ Cém) + o J@1)¢ C_(r:)
1
. Jn_l (k )n_l 1 - _QE&).Z_.,. + C(m) j¢ + - -3¢ 4
2n—1(n - 1)1 P 2(2n) * 0 e € 2
’ 1
2 !
R R J : (4.5)

Since the above relation must hold for all values of k, one can then
conclude that the following equations must govern the behavior of the

induced field in the aperture in terms of the powers of k, i.e.,

(i) From the coefficient of k_l
i .~ (0) . (0)
L ) Fox €7 -3¢,
0= 3y +m (4.6)
Ei _C(O) _ C(O)
Oy 1 -1
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(ii) From the coefficient of ko

E(0) i
X 1 -1 Ox
T da' = — (ax + By)
O 2rlo - 0| Y g
=y Oy/
|-c
+ T
2
0
I BONMOIEL
D e
+ 7
1) _ (l)
1 -1

(iii) From the coefficient of kl

. 1 — ' +‘2J1'T'f
g | 2m|e - o' i
y
[y - 032} 0w g

£(0) el
X Ox
da' = —:;;
(0) 2jy i
E E
y Oy,

+ c(o) 239 4 zj(-cfo

tC£O) + C§0)) Q230 4 lcfg) + C§0)‘ AT Z‘C{O) .

0

e+ o) I oD - o
Sle® 4 o) ¢4 g [cD

oD e3¢
p +
+ Cél)) oJ¢
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(iv) From the coefficient of k2

e eN £(0)
x 1 i X 1 x > > .
ff > - da' + o f{ - da' - Z;'f{ 0) lp - 0'| da
i |g@| 2mle - o' ile 3|
y y y
i
, JFox 3
= (ax + By)
\ i
Oy
el 4 ¢ @) 364 O L GO 30
L . .
48 :
lC(O) + C(0)\ Q330 J(C(O) + C(0) o330
0) Y\ 3 0) (0)
+ [3c§ - 6C ] ed? (3c + 6C, ) ,
P
+ 3(3cS? + 6c{®) 3?4 5 lac P+ 6c{?)
e . o |
[l )l ) el ]
+3 P
8 234
D) (1) (¢} €D (D) @)
\(‘cl +C, ] e [c +C. ] + 2(c +C]
e .
(2) ) 3¢ (2) _ (2)) -3¢ [~ (3) (3)
-6, + ¢ | e (C o | e 3eg” - <)
+—12T- p + 7
o @) @ e o) o) T o
(4.9)

The above procedure may be similarly continued for higher-order powers
of k.
The most significant feature of the integral equations appearing

in (4.7), (4.8) and (4.9) is their resemblance to the integral equation
' 1

-3
allows one to construct an analytical solution for the geometries for

with the electrostatic—-type kernel, i.e., . This resemblance
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which the corresponding electrostatic-type integral equation is solvable.
For instance, the circular aperture will be discussed in the next
section and the analytical solution of Equations (4.7), (4.8) and
(4.9) will be presented.

Another important feature of the above equations is their coupling
characteristic which demonstrates itself in a successive manner. The

coupling that occurs among the equations is carried out by the constants

(m) [

X

s and the fields E s and E

Cém)' s from Equation (4.6) through

(m) ,
y

Equation (4.9) successively. Therefore, it is necessary to be able to

(m) ,

n

determine the constants C s in each previous step. This is actually

done by enforcing the condition (3.30), which is read as follows
@ 220 m=o0,1,2, ... . (4.10)

As will be shown in the next section, the above condition will be
sufficient to construct the unique solution of the problem and thus
the so-called edge condition need not be implemented.

4.3 Diffraction by an Electrically Small Circular Aperture

The problem of diffraction of electromagnetic waves by a circular
aperture and its complementary companion, a circular disk, has been
considered by many great scientists. Bethe (1944), who employed the
scalar potential function approach, was able to construct the first two
terms of the Rayleigh expansion series. Bouwkamp (1953) later developed
a set of integro-differential equations and discovered the errors in the
Bethe's solution. Following this line of thought, Grinberg and
Pimenov (1957) were ablé to develop a new integral equation determining
the series expansion solution for a circular disk due to a normal

incident plane wave. Later on, Kuritsyn (1961) used Grinberg's
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formulation and obtained the series expansion solution for an arbitrary
incident plane wave on a circular disk. Finally, Eggiman (1961)
implemented Bouwkamp's formulation and derived a set of recurrence
relations for determining the series terms due to an arbitrary incident
field for a circular disk. All of the above investigators followed
the line of thought originally developed by Lord Rayleigh, namely, using
Equation (4.2). Some of the researchers interested in this investigation
tried ta solve the problem exactly. Meixne£ and Andrejewski (1950)
utilized the spheroidal wave functions and solved the problem. Latér,
Flammer (1955) employed the vector wave function technique in the oblate
spheroidal coordinate system and presented the solution in terms of an
infinite series. Nomura and Katsura (1955) were able to apply the
method ¢f expansion in the hypergeometric polynomial and to construct
the solution of the problem for an incident plane wave. Jones (1956)
employed a Fredholm-type integral equation and analyzed the scalar
diffraction problem for a circular disc. ..Most of the above techniques
are highly complex, and therefore difficult 'to use.

The formulation developed in the previous section will be
employed in the next section to determine the solution for the first
few terms of the Rayleigh expansion. The method is simple and the
formulation is quite straightforward.

4,.3.1 Solution of an integral equation with electrostatic-type
kernel for a circular structure

The first step in determining the analytical solution of
Equations (4.7), (4.8) and (4.9) for a circular structure is the
determination of the solution of the following class of integral

equations:
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+ 322e2j¢]p2 + [al3ejq+a33e3j¢)p

0<¢<2r , 0<p=<a (4.11)

where A represents the interior domain of a circular structure with
radius a. Two different techniques for solving the above integral
equation are discussed in Appendix D. The techniques are developed
for more general cases than for that written in (4.11).

Using the result outlined in Appendix D, one derives the solution

of Equation (4.11) as follows:

o) = 2 [a® - p"-]_l/z agy + & [a2 - 7) T/ e
e e,
e 2 )T ey
T Kt PR
+ 32 [ 02]'1/2 2336333

0<p<a . (4.12)

The above result clearly exhibits a square root-type singular behavior
at the rim of the circular structure.

4,3.2 Zero-order solution of the field distribution in a
circular aperture

In this section, the task is to solve Equation (4.7) with the
application of Equation (4.12), which was developed in the previous

section. It is easily observed that Equation (4.7) is independent of

101



its previous equation, namely, Equation (4.6). Therefore, all of the

éo) 2(0)’ (g)’ £l>,and (l), and the

(0)

and Ey must be determined by solving

five unknown coefficients C

(0)

two field components E

Equation (4.7), subject to the condition (4.10). This condition takes
the following form for this case of interest

(0)( ) = Wo: 0 < ¢ < 27 and o] =a . (4.13)

Using (4.12), a solution to the integral equation (4.7) may be
written as
0) (i i
i +
oE cos ¢ BEOX sin ¢

Ox 4o

<|H

2 1/2

]
1\ cos ¢ + BEi sin ¢ T(a”~ - pz)
Oy Oy .

el < 50D con 0 [ - oD 2] e
+dn
2 ( c

(0 _ @ 56()
0

2 cos ¢ + (—JC(O) + C(O)} sin

(26D~ ¢V
4o [t -1 o

2 " o3 | 172
n(a2 - pz) 152C§l) - JZC(l) ﬂ(a2 - pz)

0) _ ‘E>E0) . (0)

Now by expressing E¢ sin ¢ + Ey cos ¢ and by enforcing the

(4.14)

condition (4.13), one derives the following set of equations:
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e 0@ 5@ - £y P e 4 @) < o
y 2 (J 2 I5-2 Y 2 7% o2 ) 7

—BEi . aEi .
0x T ()] 0) (0) 0 m 0) (0) ] _
-y +'%?'('C2 - C,0 T ] -t X [-c,” - €0~ 20, ‘ =0

BE _ oE .
Wé———YOX - l—céo) - c_(g) + zcéo)) - —lYO + (—céo) - céo) - 20(()0)] =0

(1) 1) _
¢l -c’ =0

{\ cil) + Cfi) =0 . (4.15)

The unique solution of the above set is easily determined as:

c{® - éﬁ%-(BEéx - aEéy, (4.16a)
c{? = 5%; (o + i) B} + (8 + ju) Eéy] (4.16b)
C_((Z)) = 2—715 [(a + jB) Eéx + (-8 + ja) Eéy] (4.16c)
e =0 (4.16d)
cP=0 . (4.16e)

Substituting the above results in expression (4.14) and using the

facts that
23 i i
. = + + = .
V+E aE . BEOy YEOZ 0 (4.17)
and
E¢ -sin ¢ cos ¢ EX
= (4.18)
E o i E
0 cos ¢ sin ¢ .



one obtains

E;O) =0 (4.19a)
0) _ 2p i
Ep = ; ; 172 EOz (4.19b)
m(a” - p7)

which complete the computation of the zero-order solution of the field
distribution in the circular aperture. Equations (4.19a) and (4.19b)
agree exactly with those of Bouwkamp (1953), Copson (1946), and

Bethe (1944), although they followed different lines of approach.

Equation (4.19) clearly manifests the fact that the E;O)

(0)
p

component of

the field is zero in the entire aperture and the E component is not

i

zero only if EOz

# 0. That is, for the normal incidence case, no
zero—order term will be induced in the aperture.

4.3.3 First-order solution of the field distribution in a
circular aperture

Having determined the zero-order solution of the field distribution,
the first-order solution will now be found by solving the integral

equation (4.8) subject to the condition

Eil)(S) =0 W¢: O0<¢ <2 and [p] =a . (4.20)

The method of solution is similar to the one presented in the previous

section. One notes that Equation (4.8) is coupled by Eio) and E;O)
: (0) (0) )
to Equation (4.7) and by Cl and C_l to Equation (4.6).

Using Equations (4.19) and (4.18), it is then easily seen that the

following is true:
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(500 £ cos o' = B sin 4

) x 2T al p )
ff da' =f I o' dp! dd" =0 .
K‘I?;O) - 00 EéO) sin ¢' + E;O) cos ' (4.21)

The above result exposes the fact that the first-order solution and the
zero—-order solution are independent of each other. This, of course, is

not true for higher-order terms.

In solving Equation (4.6), one readily derives Cio) and C(O)
(0) . )
€1~ 2ﬂy‘ ox T IEgy (4.22a)
0) _ )
¢, = 5 S—ed - JEoy , (4.22b)

and employing (4.12), a solution to the integral equation (4.8) may be

written as

a , 2
) ® - fi; -% [(—az + 82) cos 2¢ - 2aB sin 2¢] L
W\F(l) 1Y 2 2
v (@ =-»9")
N\
El
2 1/2( ) 0x
- @+ 8D 2+ 26+ 8@ - D)
@2 - o2 .
0)_ (0) 0),~(0) (0) .(0), .(0), .(0) .
2 qJ(C -1 —03 +C__.3 } cos 2¢ + (—Cl —C_l +C3 +C_3 sin 2¢
*t3
iJ {0)+cfg)&c§°)+cfg)) cos ¢ + Jﬁc(o) (2)+c§0)—cfg)) sin 2¢ ,)
. T (1), . (1) ey 1
2 ., -C,’+C; ) cos ¢ + J( —C 5 +2c0 ) sin ¢
1/2 . 1 .1 ) (l) (l)
(aZ _ 92) J(—C —C_2 - ] cos ¢ + {C _ sin #}/
(0) (0) (2)_ (2)
P 3l-eq ey ) + 23 oy I L
+
1/2 (0)_, . (0) (2) (2) 1/2
@2 - 02 [cl +c 2 }a - 2(01 o } @2 - o2
. [~ (0)_ c (O
J(Cl -1 ) , 4 12
+ 2 Lo, (0) (@™ - p7) . (4.23)
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In order to determine the unknown coefficients C » €37 €775 €L7%,

Cél), Ciz) and Cfi), Equation (4.22) is first substituted into (4.18)

to obtain E(l) and then condition (4.20) is enforced. After performing

some straightforward manipulations, the following results are obtained:

o __1 .2 2 . i i
C3 B 2my (o B 23&8)[E0x JEOy] (4.24a)
0) _ -1 2 g2 . i i
Coy” =gy (@ -8 7 23“3)(EOX + JEOy] (4.24b)
) _ @ _ ) _
C2 = C_2 C0 =0 (4.24c)’
(2) a2 2 2 i
Cl = 127T'Y [("CX - 58 - 430-8 + 5) EOX
+ (82 + 5a2 - 4308 - 5) jEéy] (4.24d)

2
@) _=a” [, 2 2., i 22 i
< - oy [a® - 56% + 4jag + 5) BT - (8% + So® + 4juB - 5) JEOy] .

(4.24e)

By substituting the above results into Equation (4.23) and making

use of Equations (4.17) and (4.18), one obtains:

. . . 1/2
(1) _ 83 i i 2 2
E¢ =3n Y EOy cos ¢ EOX sin ¢| (a” - p7)
. 1/2
43 . _ 2 2 i
+ 37 (o sin ¢ B cos ¢)(a e7) EOz (4.25a)
and
. . . 1/2 2
(1) _ 2] i i . 2 2 20
Ep 3 Y(on cos ¢ + EOy sin ¢) 4(a” - p7) + ; 5 72
(@™ - p")
. 2 2
_ 4 . p” + a i
3 (a cos ¢ + 8 sin ¢] T B. (4.25b)
(@™ - p")
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which completes the determination of the first-order solution of the
field distribution in the circular aperture. Solution (4.25) agrees
with Bouwkamp's result (Van Bladel, 1964) completely. This solution also
indicates the incompleteness of the result obtained by Bethe (1944),

Copéon (1946) and that given by Jackson (1962). It is noted that both

E(l) and E(l)
P ¢

incident angles.

components are induced in the aperture for all possible

For the cases where the wave vector of the incident plane wave lies
in the plane of the aperture, Equations (4.25a) and (4.25b) take the
following form:

1/2

E;l) - g%-(a sin ¢ - B cos ¢)(a® - p%) Eéz (4.262)
g1 _ Z41 + 8 sin ¢) o” + o B (4.26b)
0 = —5 (o cos [0 B sin ¢ 5 172 oz ° .
(a” - p7)

The above results demonstrate the fact that Equation (4.1) is valid
even as y =+ 0.

4.3.4 Second-order solution of the field distribution in a
circular aperture

Having determined the first-order solution of the field distribu-
tion in Section 4.3.3, it is the goal of this section to find the second-
order solution by solving the integral equation (4.9) subject to the

condition

EéZ)(E) =0 t4: 0 <¢ <2 and |p| =a . (4.27)

The method of analysis follows the same steps as applied in the previous

(0) (0)
1

sections. Here, Lquation (4.9) is coupled by C__l and C

éo), Cfg), Cil), Cfi), Eio) and E(O)
1) (1 (0) (0) 2) (2) (1)
270 o 7 G377 CL37s Cp7T, €T, B

to Equation

(4.6) by ¢, ¢
(1)
2 bl

to Equation (4.7),
(1

and by C CE and Ey to
Equation (4.8).
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Using Equations (4.19) and (4.25), one can, after some manipulations,

verify that the following relations are true:

Eio) cos ¢
1 > - 1l 2 3 i
- /! » o -5"| aa' = ¢ (2a%p + 0°) B (4.28)
A|E sin ¢
y
and
(1 ot i
. Ex 4a3 YEOx + 0LEOz
%TT' ij' D da' = 3 . (4.29)
- 1 i i
A EY ' —YEOy + BEg,

Substituting (4.28) and (4.29) into (4.9), and employing (4.12), the
following expression may be derived as a solution to the integral

equation (4.9):
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i cos ¢
_ Eoz 8a® 2 _ z)‘l/2 L 16 2 2)1/2 16 2 2)‘1/2 3
16 - P P T a -p p - 37 a =-9p P

sin ¢
i i
-YE + aoFE
) 4a3 0 0z 2 , 2 2)-1/2
m i A
—F +
YLOy BEO

1/2 -1/2
+%u3+%a82)[1—:(a2-02) p-%(z—pz) o]c05¢
-1/2
+ %azB - % 83) 3—i (a2 - oz) 03 sin 3¢
£l
1/2 -1/2 0x
+ (—2— 63 + —Zl aZB) [176 (a2 - 02) o - %—f’; (at2 - pz) 03] sin a ;
Eoy
0) @) 334 (0) () -33¢
('Cz +C, ) en " + lC-z —C e -1/2
. 32,22 3
48 0 , (0 i3 © , (O -i3|°>" " i
3[c{? + {0} 33 4 3 + ¢ @) &
0) (0) j¢ 0) .(0) -j¢
[CZ - ZCO ) e + (—C_z +'2CO ) e 1/2
+ 18 @ - 0%
16 . . m P e
j(Céo) + zcéo)] e3¢ 4 j(CEg) + zcéo)] o190
1 i2¢ . (1) ~j32
-1/2 -5 Ped? jelye -1/2
16 , 2 2 3| o« 16 , 2 2 2
-—3?(8—0) p]+-§ . " §;(a—o) 0
(D326, (D) 320
3 -3
(—C§2)+Cézq I? 4+ lc(g)-céz)]e’j¢
T - 4 2,212
2 . m
oL 2) (@) 3 , (2) )} -i¢
J[-Cz ~C, ]eJ¢ + J(:C_z - ¢, ]e ]
+ -12; % - 0% (4.30)
IONNCY
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Although the above equation is valid for any angle of incidence, the

computation of the field distribution will be performed only for the

.. . i
case of normal incidence, i.e., o = B = EO

2 0. Using (4.18) and

(4.30) and enforcing the condition (4.27), one arrives at

0) _ -0 _ () _ Q) _ (2 _ (2) _ (2 _
C, =Cl  =¢Cy  =c3’ =c" =cy” =c =0, (4.31a)

3 .
NONTE (Ei !
1 y

7 |Eox 0 (4.31b)
37
and
3
(3) _ 2ja i i
C_l 3ﬂ2 —on + EOy . (4.31c)

It can be noted that the above results are only true for the case of
normally incident electromagnetic plane waves.

Substituting (4.31), (4.24), (4.22) and (4.16) into (4.30), one

obtains
E;Z) -0 (4.32a)
ESZ) -0 (4.32b)

which completes the computation of the second-order solution of the
field distribution for the normally incident plane waves. The calcula-
tion of the higher-order terms of Expansion (4.2) may proceed in a simi-
lar manner discussed above.

In conclusion, the field distribution in the circular aperture takes

the following form for the case of a normal incidence wave:

. . . 1/2

8 i 2 2 3

E¢ = 3% Eéy cos ¢ - on sin ¢ [ (&~ - p") k + 0(k”) (4.33a)
N 1/2 2

- 21 ( i i 2 2 2,2 3
E) = 37 |Eox 08 ¢ + EOy sin ¢ | 4(a ) + 5 172 k + 0(k™)

(@ - p7)
(4.33b)
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The above equations will be used in Section 4.4 where a comparison is
made of the field distribution of a small square aperture with the field
distribution of a small circular aperture.

4,3.5 1Induced electric—dipole and magnetic—-dipole moments

A technique based on the application of the equivalent electric and
magnetic dipoles has been used extensively in low frequency analysis.
Bethe (1944), Bouwkamp (1953), Grinberg and Pimenov (1957), Eggiman (1961)
and others computed the dipole moments for different orders of k. Later
Chen (1970), Taylor (1973), -Chen and Baum (1974) and others used the
concept of dipole moment and investigated the problem of excitations of
cavities with small openings. In this section, in order to complete our
analysis for the problem of diffraction by circular apertures in the low
frequency regime, the equivalent dipole moments will be determined by
employing the formulas developed before. The results obtained here will
be compared with those for the rectangular aperture in the next section.

Knowing the E-field in the aperture, the magnetic current can be
defined as

@) =22 x B(G) . (4.34)

~

Then the magnetic charge distribution takes the following form:
m) =dv . ¥ . (4.35)
Using the above formulas, the induced electric-dipole and magnetic-

dipole moments are defined by

B = %—ff 3' x K da' (4.36)
andr A
M=-=f[3 maa (4.37)
A
respectively,
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Substituting (4.19) and (4.25) into (4.34) and simplifying the

result one arrives at

E;O) + Eél)k) o+

=

K= - 2)

Eéo) + Eél)k) s + 0(k (4.38)

By substituting (4.38) into (4.35), the magnetic charge distribution 1is

readily determined to be

_ -8 i i . i _ el p
m = (—yEOX + aEOz sin ¢ + bEOy BEOZ) cos ¢ 5 172 k .
' (a” - p")
(4.39)
Upon using the fact
VxE o= —jeuHt (4.40)

it can be readily shown that Equation (4.39) may further be simplified as

TR i P
m = [HOy sin ¢ + HOx cos ¢] Z iz - (4.41)

2
(a” - p")
Inserting (4.41) into (4.37) and performing the integration, one

finally obtains the following expression for the magnetic-dipole moment

fo 262 (gt s + 0(k%) (4.42)
3 0x Oyy : :
After substituting (4.38) into (4.36) and performing the integration, the

electric-dipole moment P 1s determined to be

_ 8 3 i 2
'ﬁ-3aesozz+0(k) ) (4.43)

Equations (4.42) and (4.43) represent the well-known first-order
solution calculated by Bethe (1944). Although Bethe's formula for the
magnetic vector K was not complete, his result for the dipole moments as
shown here is correct. This conclusion was first verified by Bouwkamp

(1953) using a different approach.



Having determined the electric and magnetic dipoles, the radiated

field may then be computed by applying the following equation (Jones, 1964)

—jk.R . n o~ 2,\ ~ -
z.e Loy A& 3R - B)-F1 -5 Rx ®RxP)
4me 3 2 R
R R
1 mikR(k K gy
+He 2 TR RxM . (4.44)

R

4.4 Numerical Result for an Electrically Small Rectangular Aperture

In the previous section analytical results for the circular aper-
ture problem were presented for the low frequency regime. The rectan-
gular geometry, however, does not lend itself to analytical processing,
so the associated integral equation for this problem must be solved
numerically, As will be apparent from the discussion to be presented
in this section, a comparison of the results for the circular and rec-
tangular apertures provides considerable insight into the low frequency
behavior of the aperture coupling problem. In particular, it will be
shown that it is possible to extrapolate the results for a rectangular
aperture over a sizeable range in the low frequency regime, with a
minimal amount of numerical work.

4,4.,1 Field distribution

Integral equation (4.1) 1is used to generate the solution of the
field distribution in an electrically small rectangular aperture. The
solid curves in Figure 4.1 show the behavior of the E-field sampled
along the principal axes of a square aperture excited by a normally
incident plane wave. Only the dominant component of the field, i.e.,
E , is shown in the figure. Presented here are the results for the
aperture which was sectionalized into 5 x 5 square patches. Three

different dimensions (D/X = .1, .02, .05) have been considered.
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(a)
(b)

-D/2

Figure 4.1.

-D/2 0 D/2

E-field distribution in electrically small square and circular

apertures. (a) E,-field sampled along y-axis. (b) E,-field
sampled along x-aXis. Integral equation (——) solution for square
aperture. First order (---), low frequency, analytical soluticn

for the circular aperture (D/A = .05).



The numerical results plotted in Figure 4.1 demonstrate that proper
edge behavior has been achieved for all three cases. The same figure
also shows that the induced field in the aperture decreases steadily by
increasing the wavelength. For the limiting case D/A -+ 0, the induced
field in the aperture is, of course, zero.

Next, the results for the square and circular apertures will be
compared. To do this, one returns to Section 4.3.4 and employs Equa-
tions (4.33a) and (4.33b). Since the incident field being considered
is normal to the plane of the aperture and polarized along the y-axis,
(4.33a) and (4.33b) may be simplified to yield the following expressions

for the E-field in the circular aperture:

. 2 1/2 .
E¢ = Eél)k = %gl %ﬁ - p2 E;y cos ¢¢ (4.45a)
2 1/2 2 . ~
EE = E(l)k = %% 4 %—-- p2 + ————EE—__E7§ E;y sin ¢p . (4.45b)
2 .
D 2
£

The above equations are employed to generate the dashed curves which are
also plotted in Figure 4.1 for convenience of comparison. These curves
exhibit the behavior of the E-field along the x and y axis of a circle
inscribed within the square aperture. Comparison between the dashed curve
and the solid curve in Figure 4.1 reveals that for D/X < .1, the first-
order analytical solution for the circular aperture and numerical solu-
tion for the square aperture agree well along the x and y axes. For

D/A < .1, it becomes necessary to include higher-order terms in the
expansion (4.33) in order to obtain an accurate solution for the cir-

cular aperture problem.
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The solid curve in Figure 3,18 displays the variation of the Ey-
field as a function of D/A sampled at the center of a square aperture.
This result is compared with that obtained using (4.33) for a circular
aperture of diameter D/A, Simplifying (4.33) for the particular inci-

dent field shown in Figure 4.2 results in

> ~—>(l) =§12 i~
Ey = Ey k 3 E'y .

(4.46)
The above equation verifies that the variation of the amplitude of

Ey/Ei as a function of D/A is linear and that its phase is always 90°
(see Figure 4.2). Thus, there is the important result that in the low
frequency regime there is a great similarity between the field behaviors

in square and circular apertures.

4,4,2 Diffracted field

In this section, the formulation given in Section 4.3.5 is used to
compute the field radiated by the equivalent dipoles of a small cir-
cular aperture. This result is then compared with that obtained for
the square aperture using the numerical technique.

The dipole moment representation is possible only for aperture
geometries for which Laplace's equation is separable. This, of course,
is true for the circular aperture, as discussed in Section 4.3.5.
Equation (4.44) has been used here to generate the dashed curves in
Figure 4.3. To make a comparison with the square aperture, equations
(3.42) and (3.14) have been used to construct the solid curves shown
in the same figure. The phase plot, represented by the solid curve,
coincides entirely with the phase curve obtained for the circular aper-
ture. Comparison of the amplitude curves in Figure 4.3 shows that the

dipole moment results for the circular aperture and the integral equation
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E,-field at the center of square and circular apertures. Amplitude
curves (——) obtained from integral equation solution for a square
aperture. Amplitude curve (——-) for the circular aperture. Phase
curve (—— -) for square the circular apertures.
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Figure 4.3. E_-field distribution sampled along the z-axis. Integral equation
solution (—) for square aperture. Dipole moment results (----)
for circular aperture. Phase curves (—— -) obtained from integral

equation and dipole moment techniques.
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results for the square aperture exhibit very similar behavior for dis-
tances z/\ > .08 behind the aperture. However, for close distances, i.e.,
0 < z/)x < .08, the two curves deviate considerably from each other.

The solid curve, which has been obtained numerically, shows a more
correct Behavior for distances close to the aperture in comparison with
the dashed curve generated by the dipole moment approach. In fact, the
solid curve monotonically approaches the correct value of the field at

z = 0, whereas the dashed curve shows a singular behavior. These

results show that one should be careful in using the dipole moment
technique when computing the fields in the immediate vicinity of an

aperture.
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5. SCATTERING OF ELECTROMAGNETIC WAVES
BY INFINITELY THIN PLANAR SCATTERERS

5.1 Introduction

In this chapter, the problem of scattering of electromagnetic
waves by infinitely thin planar scatterers will be discussed. This
problem has received considerable attention in recent years, because of
its importance in modeling complex bodies. Many different techniques
have been suggested to obtain a proper formulation of this scattering
problem in different frequency ranges. Most of the available methods
are mainly concerned either with smooth closed scatterers, or with thin
structures which possess a continuous curvature at the edge (regular
curve)., In this work, a new set of integral equations is derived to
determine the induced current distribution in a thin planar scatterer
of any arbitrary shape.

A perfectly conducting, infinitely thin, planar scatterer is the
complement, in the electromagnetic sense, of a perfectly conducting,
infinitely thin screen from which an érea having the shape of the
scatterer has been removed. Therefore, one possibility for invoking
the proper. formulation of the thin planar scatterer problem is to
apply Babinet's principle [see, for instance, Jones (1964)] to the
formulation obtained for the aperture problem in Chapter 3. However,
this approach is not taken in this chapter, but instead, a direct
method based on the application of the vector potential technique
(Harrington, 1961) will be presented. The results obtained here will

then be compared with those in Chapter 3.

120



5.2 Integral Equations for Infinitely Thin Planar Surfaces

The necessity of applying a new set of integral equations
originates from the fact that the conventional E- and H-integral
eéuations (Poggio and Miller, i973) do not exhibit good numerical
behavior when they are used for infinitely thin structures. For
instance, the question of the failure of the H-integral equation for
infiritely thin structures, which has been examined by Mittra et al.
(1973), shows that, for thin structures, the H-integral equation is not
complete by itself and an additional condition must be added for
completeness. The numerically ill-conditioned nature of the E-integral
equation for thin cylindrical structures has been discussed by
Davis (1974), who has shown that improper coupling between the
current components results in unstéble numerical solutions.

As an illustration, take the case of a plane electromagnetic wave
with arbitrary polarization which is incident upon an infinitely thin,

perfectly conducting plate. The geometry of the structure is shown in

jwt

Figure 5.1, Assuming e time convention, the incident wave may be

written as

>i i - i A i A\ jk(ox+By+yz)

+ + .

H (Hox x+Ho §+Hy z)e (5.1)
where o = sin 67 cos ¢l, B = sin 8" sin ¢l, Y = cos 81, k = 2r/Xx, and
6" and ¢l are the elevation and azimuthal angles of incidence,
respectively.

If the induced current in the structure is denoted by

> ~ A
Jé(z) = (Jx X + Jy y) 6(z), the vector potential K takes the following

form:
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Figure 5.1. (a) An infinitely thin scatterer lying in the x,y plane. (b) Induced
currents in top and bottom surfaces of (a).
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K= 1] 35" gu®'[B) da'= [[ Tgy &' [®) a2’ 5 (5.2)
S

g9 is defined in Equation (2.24). The interior region and the rim of
the scatterer shown in Figure 5.1 are denoted by S and C, respectively.
The symbol S is used to designate the union of S and C, i.e., S=S UC .
Clearly, in performing the surface integration in Equation (5.2), the
distinction between S and S makes no difference.

Using the fact that the scattered H-field is

*S

B° = v xA (5.3)
and employing Maxwell's equations, the scattered E-field will then be
jweﬁs =VxVx i - 36(2) . (5.4)

Since the scatterer is perfectly conducting, the total tangential

electric field on its surface must be zero, i.e.,

A

:x BT +8) =0 (& (x,y,z=0) €5 . (5.5)

By using Maxwell's equations the following statement can be verified
(Javid and Brown, 1963): 1if the tangential E-field is zero on a
surface S (S is a closed set including the rim), then the normal
H-field would be zero on S (S is an open set constructed by excluding
the rim from S). Perhaps it is worthwhile to mention that the converse
of the above statement is not generally true. Employing this fact, one
concludes that

) =0 {R: (x,y,z=0) €58} . (5.6)
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Substituting Equation (5.4) and Equation (5.3) into Equations (5.5)

and (5.6), respectively, one arrives at

zx [VxVx X - j&(z)] = -zxVx ﬁi {ﬁ: (x,y,2z =.0) € s} .7)

and

2 - Vxh=-2+H {R: (x,y,z=0) €58} . (5.8)

As a first step toward obtaining the desired integral equation,
the x and y derivatives of Equation (5.8) are substituted into

Equation (5.7) to obtain

2 i
JLE R+ j&(z) =z x é%; R: (x,y,z = 0) € S} . (5.9
9z

-+ >
+ 2+ 2“+k .A=FJ6(Z)

2 2 2
3 d 3 2
( , (5.10)

and comparing Equation (5.9) with Equation (5.10), one finally arrives at

8%

sz

2
+ 24 i) [ Tg @ [8) aat = -E x 5T B @y €58 .

ay S

z=0 (5.11)

The similarity between Equations (5.11) and (3.18) is now quite
obvious. This result can be used as a basis to give‘:)a gimple proof to
Babinet's principle.

It should be noted that the range of validity of Equation (5.11) is
strictly restricted to {3: (x,y) € S}. Specifically, this equation

is not valid at the rim (edge) of the structure, i.e., {3: (x,y) € C},
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because Equation (5.8) was not defined at the rim. One further notices
that if Equation (5.1) were to represent a complete description of the
problem, it would have implied that the two current components JX and J
are indeed uncoupled with respect to the incident polarization. It is
well known that this situation is true for an infinite planar structure
only, and that two components of the current are always coupled in a
finite structure. This coupling phenomenon becomes evident, however,
when Equation (5.11) is transformed into an alternate form, shown below,
and when appropriate boundary conditions are imposed on Jx and Jy at
the rim of the structure.

By following the same analytical scheme as was developed in

Section 3.2, one finally arrives at the desired integral equation

_ k|—> —>'l Hé
e kip=p y Al Y\ jk(ox+8y)
ff B E—— da Tiv . e
4n|p - p'| J5Y ) gt

Ox _

a1 - .+l 3§ (L) ¢ 1\ .n-1 j(n-1)0 .
+ m ; nZ_w Cn j e Jn+l(kp) + ) i e Jn—l(kp%
{p: x,y) €35y . (5.12)

In the above equation (p,$) are the polar coordinates of the point (x,y).
The reader is referred to the work of Rahmat-Samii and Mittra (1974)
for the derivation of the above equation. The similarity between
Equations (5.12) and (3.33) is indeed a clear manifestation of Babinet's
principle. It should be noted that Equation (5.12) satisfies both
Equation (5.8) and Equation (5.11).

The unknown currents Jx and Jy and unknown coefficients Cn's can

be obtained by solving Equation (5.12) in conjunction with the condition
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J.9=0 {3: (x,y) € C} (5.13)

where v is a unit normal to the edge of the structure in its plane.
Condition (5.13) is used to ensure the uniqueness of the solution.

For more detailed discussion, Jones' paper (1952) on diffraction by an
edge is recommended. The procedure of obtaining the solution of
Equation (5.12) follows the same steps as described in Section (3.2).
Note that in contrast .to the conventional E-integral equation there are
no differential operators in the kernel of Equation (5;12), making it
rather convenient for numerical processing.‘

Often, it is desirable to compute the induced current distribution
on planar scatterers due to a plane wave incident at a grazing angle.
This computation then allows one to determine the scattered field and
consequently the radar cross section at this angle. The grazing angle
incidence (edge on incidence) occurs when the wave vector E lies in the
plane of the scatterer. Obviously, for this case 6 = 90° and y = O,
and Equation (5.12) does not hold in its present form. In order to be
able to extend the domain of validity for Equ;tion (5.12) to the
limiting situation y - O, the two following cases will be discussed:

(i) Hi ~ parallel polarized incident field, and (ii) Ei - parallel
polarized incident field.

In case (i), the ﬁi—field is parallel to the plane of the scatterer,
ie., z » ﬁi = 0. One also obtains -z x V x ﬁi = 0 for the edge
incident case (8 = 90°). Therefore, the right-hand sides of both
Equations (5.7) and (5.8) are zero, indicating that the first term in
the right-hand side of Equation (5.12) is zero, too, Imposing

condition (5.13), it is then easily observed that Cn‘s = 0, and hence
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J=0 for the Hi—parallel field and 6~ = 90° . (5.14)

The above result is not totally unexpected, because for this special
case, the incident wave cannot detect the existence of the scatterer
and thus passes by without any alteration.

In case (ii), ﬁowever, one expects that the induced current is not
zero. In this case, the Ei-field is parallel to the plane of the
scatterer, and hence the tangential Ei-field will not be zero on the
scatterer. Since the Ei-field is parallel to the plane of the

scatterer, the H'-field takes the following form:

ﬁé = (-cos ei cos ¢i X - cos ei sin ¢i y + sin 6i Z)H . (5.15)

The limit of the first term in the right-hand side of Equation (5.11)

may now be determined as

i
H
11 -1 Oy jk(xsineicos¢i+ysineisin¢i)
im | ——— e
i jk cos ei i
o+90° | J -H
Ox

)/H sin ¢i 1 1
ejk(xcos¢ +ysing™)

K . (5.16)

H cos ¢i

Substituting the above equation into Equation (5.12), one finally
obtains the desired integral equation for the Ei-parallel polarized
incident field propagating at a grazing angle.

The far field scattered by the obstacle may be readily computed,
using Equation (5.4), once the current distribution on the obstacle has

been determined from the solution of Equation (5.12). The scattering
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cross section may then be evaluated by employing the following

definition (Mentzer, 1955; Hollis et al., 1970):

2
. . S S S
o(6%,6116°,6%) = Lim 4r? [E(0u0))]

Roe

2
S s .8
R2 ‘H (e s¢ )|2 (5.17)

lut ot 0D |

= 1lim &7
R

i, i i
|E" (67,47 |
i i s s . . . . .
where (67,4 ) and (6 ,4 ) are directions in spherical coordinates of

the incident and scattered field, respectively., Furthermore,

g =0y [monostatic cross section or radar cross section (RCS)], if

% (bistatic cross section), otherwise.

5.3 Integral Equation for Infinitely Long Strips

The geometry of an infinitely long strip is shown in Figure 5.2,
The strip, which lies in the x-y plane, such that its edges are
parallel to the y-axis, has a width designated as W. It is then assumed
that the wave vector of the plane-wave incident field is normal to the
y—-axis.

Since the structure 1s infinite along the y-axis and since the
k vector is normal to this axis, the solution of the problem will be

independent of the y-coordinate and will be reduced to a two-dimensional

problem. Using this fact, Equation (5.11) may be written as follows:

32 2 0 > ® e N aﬁi >
—+ k f Jdx f g (p'lp) dy' = -z x — {x: x €(-W,0)}
2 0 9z
ax -W —00
z=0 (5.18)

The infinite integration can easily be evaluated to result in
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Figure 5.2. Geometry of an infinitely long strip. (a) -ﬁl—polarization.
(b) ﬁl—polarization.
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© e—jk\/(x—x' ) 2+ (y-y") 2

dy' = ZE-H (k|x -x']) (5.19)

= 4 Sx - ¥ + (3 - yh)2

where Hg is the zero-order Hankel function of the second type.

In Appendix E, a simple technique has been introduced to show that

the following well-known equation holds

2
&
dx

e—jklx—x'|

23K = -8(x - x'") . (5.20)

Applying Green's function technique (Stakgold, 1967) to Equation (5.18)
and using the above result, it can be demonstrated that the following

equation is true:

0 0 = |
3 1y e Vo f g L 8HL 1 —dk[x-x'|
{w J i (k] x'|) dx fw 2 x =7 23K © ' dx
z=(

+ El cos kx + EZ sin kx (x: x € [-w,0]} .

(5.21)

In the above equation cos kx and sin kx are the homogeneous solutions

2
4+
dx

of the operator

> -
, and Cl and C2 are two unknown constants yet

to be determined.

The incident plane wave may be written as below

it - ﬁg ok (axtyz) (5.22)
_ i - i > i A i - i -
where o = sin 07, vy cos 6 and Ho,denotes either HOy y or HOx x + HOz z

as shown in Figures 5.2a and 5.2b. Substituting Equation (5.22) into
Equation (5.21) and performing the resulting integration in the
right-hand side of Equation (5.21), one obtains

130



+ - - z x ﬁl

23k 0 € .

1 -ik(lH+a)W —-jkx ., 1  jkx
[1 +a® © + l1-a
(5.23)
. . . 2 2
In deriving the above equation, the fact that o° + y = 1 was used.

To simplify Equation 5.21, two special cases will now be considered:

(i) The polarization of the incident field is such that the
ﬁl-field is parallel to the edge of the strip, as shown in Figure 5.2a.
In this case, the induced current in the structure will only possess

the JX component. Using this result, Equation (5.21) may be written as

= ti éy ejkax + Cl cos kx + C2 sin k?5,2&)
To derive the right-hand side of the above equation, the second terms in
the r.h.s. of Equations (5.21) and (5.23) were combined to give the
second term in Equation (5.24). It can be readily seen that Equation (5.23)
satisfies Equation (5.8), and hence Equation (5.24) is indeed the
desired integral equation.

In order to be able to obtain the unique solution of Equation (5.24),
one should first determine C, and C,. This is done by imposing the

1 2

condition (5.13), which reads
Jx(O) = Jx(-w) =0 . (5.25)

(ii) The polarization of the incident field is such that the
i, .
E"-field is parallel to the edge of the strip, as shown in Figure 5.2b.
In this case, the induced current in the structure will only possess the
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J component. Using this result, Equation (5.20) may be written as
y .

0 :
f Jy —i-Hg(klx - x'|) dx' = S
-W

43 jky T0x : (5.26)

In contrast to Equation (5.24), there are no homogeneous terms in
Equation (5.26), as the satisfaction of Equation (5.8) results in the

following condition:

-y i 1 -jk (lta)W -jkx 1 jkx] -
23k Hox{ff;—a e e +‘I—:7; e + Cl cos kx + C2 sin kx o .

(5.27)
Equation (5.26) is the desired integral equation, and it need not be
subjected to any auxiliary condition as Equation (5.23).

5.4 1Integral Equation Representation of Induced Shadow-Side Current
for Infinitely Thin Obstacles

The induced current J of an infinitely thin obstacle may be

decomposed into 3+ and 3; components as follows:

> > -
J = J+ +J_ ., (5.28)

where j+ andlj_ designate the induced current in the upper surface and

the lower surface of the obstacle, as shown in Figure 5.1, respectively,
J, is called the lit-side induced current (ﬁ+ .k <0), and J_ is named
the shadow-side induced current (ﬁ_ . ﬁ > 0). It can then be shown that

the following is true (Mittra et al., 1973):

J -3 =22xE . (5.29)

For the special case, where the obstacle is an infinite plane, one

readily concludes that j_ = 0, and hence 3+ =3 =25 x ﬁi
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Substituting 3+ from Equation (5.28) into Equation (5.27), the

following equation results:
F=27 +22x0 . (5.30)

The desired integral equation for the shadow-side current can now be
constructed by simply substituting Equation (5.30) into Equation (5.12)

to obtain

p—p —H;LC 'jklg'g'l
2jf P —— da'+2ff () 5 da'
4n|p -p' s Hy 4rlp - p'|

= right-hand side of Equation (5.12) . (5.31)

The above equation must be solved in conjunction with the condition

~ N >1 -

37 ==%+2x% {o: (x,y) € C} (5.32)

in order to obtain the unique solution.

Integral equation (5.31) has some special features when it is used
for large obstacles (high-frequency regime). It is noted that 3_
decays rapidly away from the rim of the obstacle (Li, 1972), and hence
the first integral in the right-hand side of Equation (5.31) may be
approximated by simply performing the integration over a marrow ribbon
around the rim of the obstacle. One hopes that future numerical
calculations will exhibit the use of integral equation (5.31).

5.5 Numerical Results and Discussions

In this section, the procedure for extracting the numerical
solution of integral equation (5.12) will be outlined. Some numerical

results will be presented for the induced current distribution in
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rectangular scatterers. Numerical results will also be obtained for
the radar cross section (RCS) of rectangular scatterers for different
angles of incidence.

By following the same steps as developed in Section 3.3.1 and
employing the moment method, a discretized version of Equation (5.12)

can be constructed as follows:

1 1
% N Jx(xm’yn)
) 8o (%,,y_3x',y') Ax' Ay’
m=1l n=1 |J (x‘,y‘) 0 2 p-mrn
vy m’'n
Hi
1 Oy eJk(ax£+Byp)
jky i
-H
X
1 I 1
s .n+l j(ntl)e . ,n-1 j(n-1)¢
+ " z Cn 3j e Jn+l(kp) + i e Jn_l(kp) .
. n=-L+1 7
S 1
L=1, . . L,M;p=1, .. .,,N (5.33)
9 2 1/2
where p = (x2 + yp) , ¢ = arctan (yp/xl), and 2L corresponds to the

total number of matching points on the rim.

A general computer program has been written for the IBM 360/75
system that computes the current distribution and RCS for an arbitrary
incident angle, arbitrary polarization, and arbitrary dimensions of the
rectangular scatterer. Figures 5.3 and 5.4 show the distribution of
the two components of the induced current sampled along the principal
axes, for an obliquely incident plane wave with Ey polarization. Note
that the two components of the current exhibit correct behaviors at the
edge of the scatterer, and that they are significantly different from
the results given by the physical optics approximation, i.e.,
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Figure 5.3. Amplitude of current distribution on 1A x 1\ plate. x = A/2 and
y is a variable.
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Figure 5.4. Amplitude of current distribution on 1) x 1x plate. y = A/2 and
x is a variable.
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FO -0z x W (5.34)

In the process of analyzing the numerical behavior of Equation (5.33),
it has been noticed that even when the condition 3 « V=0 is applied
to only a fraction of the subsections around the rim, this condition
is satisfied at the in-between point as long as the separation between
the match points is not too large. The behavior of the solution is
shown pictorially in the three-dimensional plots of Figures 5.5 and 5.6.
Figure 5.5 shows the Jy component of the current distribution due to a
normal incident field only prior to the incorporation of the contributions
of the homogeneous terms in Equation (5.33). It is obvious that by
itself this current distribution does not have the correct behavior at
the rim, since it exhibits a singular behavior all around the rim.
This was to be expected, however, because the solution of Equation (5.13)
is not complete without the homogeneous terms. Using the homogeneous
terms and requiring that the normal component of the current must be
zero at the center of the dashed regions as indicated in Figure 5.6, one
obtains the current distribution as shown in the same figure. The
curreﬁt distribution now has the correct behavior around the entire rim,
even though the condition J + 9 =0 has been imposed at only a third of
the subsections around the rim. It may be of interest to mention that
the above numerical results have been obtained with a matrix size of
8l x 81 for the 1A square scatterer.

In solving Equation (5.33), similar processes described in
Equations (3.50), (3.51) and (3.52) are followed. More precisely, one
first enforces the condition J + 9 = 0 at thé edge patches to determine

+ . . g +
cn's, and then uses these cn's to evaluate the current distributicn J
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on the entire structure. Therefore, it would be of interest to check
how well the enforced condition ¥ + 0 = 0 will be recovered at the end
of the process. This is done by displaying some numerical results for
the two components of the current distribution on a square plate for
a normally incident plane wave with the Ei-field polarized along the
y-axis, The plate is one wavelength square and is subsectionalized
into 81 subsections. A general computer program, which was written for
handling arbitrary incident angles, is used to derive the solution and
no advantage is taken of the symmetry of the problem, although the
matrix could be reduced considerably for this special case. The
numerical results for the real and imaginary parts of the two current
components are displayed in Tables 5.1 and 5.2. It is readily noticed
that the condition J * U = O has been recovered perfectly, as the normal
components of the current distribution at the edge patches are of the
order 10_16, which is practically zero. One further notices that the
current components exhibit the desired symmetrical and asymmetrical
behaviors completely. These results indicate that the numerical
stability in deriving the final resqlt, current distribution is fairly
good.

Figure 5.7 shows the RCS versus the angle of incidence for a
1A x 1)\ scatterer illuminated with an Ei—polarized plane wave. This
result has been compared with those derived by using the physical
optics approximation (PO) and the geometrical theory of diffraction (GTD).
For this comparison the formulations given by Ross (1966) have been used,
and the results of computations obtained employing his formulas have
also been plotted in Figure 5.7. For angles of incidence less than 20°

from the normal, all three methods are in good agreement. Even better
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TABLE 5.1

FOR A NORMAL E;—POLARIZED INCIDENT FIELD

REAL AND IMAGINARY PARTS OF THE Jy—CURRENT ON THE 1.X x 1.X PLATE

J
y

10(-16) 1.2462 2.6700 3.7203 4.1247 3.7203 2.6700 1.2462 10(-16)
-j10(-16) § -j.3562 | -jl1.4611 | -j2.5249 -32.9419 | -j2.5249 | -3jl.4611 | -j.3562 -310(-16)
10(-16) 1.0400 1.8900 2.5274 2.7637 2.5274 1.8900. | 1.0400 10(-16)
-310(-16) | +j.4368 +3.0100 -j.4473 -§.6371 -j.4473 +3.0100 | +j.4368 -j10(-16)
10(-16) | 1.1047 1.9491 2.5687 2.7966 2.5687 1.9491 1.1047 10(-16)
-j10(-16) | +j.6151 +3.3394 | -3.0055 -j.1534 ~3.0055 +3.3394 | +j.6151 -j10(-16)
10(-16) | 1.1493 2.0078 2.6309 2.8591 2.6309 2.0078 1.1493 10(~16)
-j10(-16) | +j.7001 +§.4974 | +3.2070 +3.07939 |  +3.2070 +5.4974 | +j.7001 -310(-16)
10(-16) | 1.1654 2.0312 2.6577 2.8868 2.6577 2.0312 1.1654 10(-16)
-j10(-16) | +j.7252 +§.5441 | +5.2699 +§.1482 +3.2699 +§.5441 | +3.7252 -310(-16)
10(-16) | 1.1493 2.0078 2.6309 2.8591 2.6309 2.0078 1.1493 10(-16)
-j10(-16) | +j.7001 +§.4974 | +3.2070 +3.0793 +3.2070 +§.4974 | +3.7001 -310(-16)
10(-16) | 1.1047 1.9491 2.5687 2.7966 2.5687 1.9491 1.1047 10(-16)
-j10(-16) | +j.6151 +3.3394 | -3.0055 -3.1534 -3.0055 +§.3394 | +j.6151 -j10(-16)
10(-16) | 1.0400 1.8900 2.5274 2.7637 2.5274 1.8900 1.0400 10(-16)
-j10(-16) | +j.4368 +§.0100 | -j.4473 -j.6371 ~j.4473 +§.0100 | +j.4368 -j10(~16)
10(-16) | 1.2462 2.6700 3.7203 4.1247 3.7203 2.6700 1.2462 10(-16)
-j10(-16) | -j.3562 -j1.4611 | -j2.5249 -32.9419 | -32.5249 | -jl.4611 | -3.3562 -310(-16)




A A

REAL AND IMAGINARY PARTS OF THE JX—CURRENT ON THE 1.x x 1.X PLATE
FOR A NORMAL E;—POLARIZED INCIDENT FIELD

TABLE 5.2

J

Yy X
-10(-16) -10(-16) -10(-16) 10(-16) -10(-16) 10(-16) 10(~16) 10(-16) -10(-16)
+j10(-16) | +j10(-16) | +j10(-16) | -j10(-16) -j10(-16) | -j10(-16) | -jlo(-16) | +3j1l0(-16) -310(-16)
.6037 .1736 .0936 L0416 10(~11) -.0416 -.0936 -.1736 -.6037
-3.1708 -3.1043 -i.0726 -3.0377 -j10(-10) { +3.0377 +3.0726 +3.1043 +3.1708
.6228 .2019 .1089 L0484 10(-11) -.0484 -.1089 -.2019 -.6228
-3.2915 -i.1214 -1.0795 -3.0401 -310(-11) | +j.0401 +1.0795 +j.1214 +3j.2915
.3912 .1309 .0712 .0317 10(~11) -.0317 -.0712 -.1309 -.3912
-3.2035 -3.0803 -3j.0509 -3.0253 -310(-12) | +3.0253 +3.0509 +3j.0803 +3j.2035
-10(-10) 10(-11) 10(-11) 10(-12) 10(-12) 10(-12) -10(-11) -10(~11) -10(-11)
-310(-10) | =-j10(~11) | -j10(-11) | +3j10(-11) +310(-11) | +j10(-11) | +j10(-11) | +310(-10) +310(10)
-.3912 -.1309 -.0712 -.0317 10(-11) .0317 .0712 .1309 .3912
+3.2035 +35.0803 +3.0509 +37.0253 +310(-12) -3.0253 -j.0509 -j.0803 -3.2035
~.6228 -.2019 -.1089 -.0484 10(-11) .0484 .1089 .2019 .6228
+3.2915 +j.1214 +3.0795 +3.0401 +310(-12) -j.0401 -3.0795 -j.1214 -3.2915
-.6037 -.1736 -.0936 -.0416 10(-11) .0416 .0936 .1736 .6037
+3j.1708 +3j.1043 +3j.0726 +3.0377 +310(-12) -3.0377 -3j.0726 -3.1043 -3.1708
-10(-16) 10(-16) 10(-16) -10(~16) 10(-16) -10(-16) | -10(-16) -10(-16) -10(-16)
H - -4 - s . . .
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Figure 5.7. RCS of 1) x 1) plate versus aspect angle. PO and GTD curves have
been obtained by employing the formulations given by Ross (1966).
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agreement might have been ogtained by imposing the boundary condition
F-0=0at precisely the physical edge of the plate rather than at
the center of the edge sections. For angles of incidence between 20°
and 65°, one observes that the resulﬁ obtained in this work shows better
agreement with the GID than with that obtained by using the physical
optics approach. For angles greater than 80°, the results computed from
the GID formula given by Ross (1966) appear to become increasingly
inaccurate; however, the results obtained via the present approach
appear to be good for the entire angular range.

Figure 5.8 displays the plot of RCS computations of a square
scatterer for normal incidence and different scatterer sizes and a
comparison‘of these curves with the corresponding ones reported in

the Radar Cross Section Handbook (Ruck, 1970). In this figure, the

solid curve has been computed via the present formulation; circles
indicate the experimentally measured data (Ruck, 1970); and the dashed
curve has been obtained by applying the variational technique (Ruck, 1970).
It is evident that the result obtained in this work exhibits a closer
agreement with experimental data than those computed via the variational

approach,
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Figure 5.8. RCS of square plate for normally incident plane wave. Measurement

and variational technique curves are given in the Radar Cross Section
Handbook (Ruck, 1970).
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6. ELECTROMAGNETIC COUPLING THROUGH AN APERTURE
INTO A TWO-PARALLEL-PLATE REGION

6.1 Introduction

Recently, the problem of electromagnetic compatibility of electronic
systems, subject to EMP, has revived researchers' interest in analyzing
the coupling phenomenon through apertures into cavities. The use of this
study is vitally important in solving many typical problems. For in-
stance, apertures may occur because of a shielded door being improperly
seated, défects in weld, etc., all of which may provide points of entry
via the aperture coupling.

Though the problem of electromagnetic coupling through small aper-
tures into a cavity has received considerable attention, little is known
about this problem when the aperture size is approximately that of the
wavelength. The reader is referred to the works of Muller (1961), Liu
(1969), Chen (1970),‘Sancer and Varvatsis (1970), Van Bladel (1972),
Taylor (1973), Chen and Baum (1974) and others who have investigated
small aperture coupling problems. The basic idea behind their approaches
was that the aperture field could be approximated as though the aper-
ture were perforated in a single infinite screen, using Bethe's approxi-
mation. This approach, however, fails when the cavity is at resonance,
or when the size of the aperture is of the order of the wavelength.

In this chapter, by using the results obtained in Chapters 2 and 3,
an integral equation will be constructed to determine the induced field
in an aperture perforated in a structure with two-parallel-plate geometry.
This problem is an example which is analytically tractable and its numer-

ical solution provides some insights into the coupling problems.
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6.2 Derivation of an Integral Equation

The geometry of the structure under consideration in this section
is displayed in Figure 6.1. This structure consists of two perfectly
conducting, infinitely thin plates located at distance w parallel to
each other. 1In order to orient the space, a Cartesian coordinate sys-
tem, with its z-axis normal to the plates and its x-y plane parallel
to the plates, is erected as shown in the figure. The plates are la-
beled I and II to denote the z = 0 and z = w boundaries, respectively.
Plate I is perforated by an arbitrarily shaped aperture, as shown in
the figure. The notations introduced in Chapter 2 are assumed here with
no changes. It is further assumed that a monochromatic wave Ei, ﬁi,
originating from a source situated in the half spaceJO?_, is incident
upon the structure. In this section, by exactly following the steps
developed in Section 3.2, an integral equation wiil be constructed for
determination ofAthe tangential E-field in the aperture.

The starting point is to split up the electromagnetic field E, it
at any point in space, into an incident field Ei, ﬁi, a reflected field

>r Ir , . .
E", H  (associated with the reflected wave that exists when the aperture

is closed), and diffracted field Ed, ﬁd, due to the aperture alone.

It is then found that inJOY_

=t a (6.1)
and inpﬂ0+
> >d
E+ = E+ . (6.2)

In the above equation, E may be replaced by i to determine the proper
equation for ﬁ_ and'ﬁ+ fields (Equations 3.2 and 3.4). The reflected
field can, in general, be constructed from the knowledge of the incident
field and the knowledge of the parameters which describe the reflecting
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Figure 6.1. Aperture in a perfectly conducting screen with a back plate
illuminated by a plane wave.
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To determine E_ and f+ in Equations (6.1) and (6.2), diffracted fields

Ed and Ei remain to be evaluated. This is done by employing

Equations (2.10) and (2.17), which read as follows:

Ei = - ff ﬁ_ X Ed(ﬁ') - V' x G (ﬁ'lﬁ)da'
z I ¥

{R: (x,y,2) €ﬂ+} (6.3)

_(§'|§) have already been defined in Equations (2.37)

(1]

where E+(§'|§) and

and (3.6), and may be rewritten as follows

G, -G G
oo Ne 2 d TN, (6.
g_ - 8, g_

In Equation (6.4), the scalar functions G+, G_, g_, and g,s are those

C,.R'|R) = (T - L gy
T 12

introduced in Equations (2.27), (2.28), (2.40), respectively.

As was discussed in Chapter 3, the next step requires that both the
tangential E-field and the tangential H-field must be continuous in pass-
ing through the aperture. Continuity of the tangential E-field at the
aperture is automatically guaranteed once Equation (6.3) is used. The

continuity of the tangential H-field may be enforced by employing Equa-

2
tion (3.13) and noticing that the following is true
~ > ~ -> ~ > ~ >
lim n x H+ = lim n x H <=> lim n - E+ = 1lim n * E_
z+0 z+-0 z++0 z+-0
and
d A -
lim 35 0 X E+ = lim %;-n X ﬁ; {E:(x,y,z) € A} (6.5)
z>+0 z>~0
where n may be considered either as ﬁ+ = z or as ﬁ_ = —;. Equation

(6.5) exposes the following fact, namely, continuity of the normal com-

ponent of the E-field, along with continuity of the normal derivative of
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the tangential E-field in the aperture, enforces continuity of the

tangential H-field in the aperture A.

The desired integral equation can be constructed by substituting

Equations (6.1) and (6.2) into Equation (6.5). Prior to the substitu-

tion, one first simplifies Equation (6.3) by applying the identities

given in Appendix 2-A.

>

V' x G, R'|R)

+

It is then found that

G, - G_ _ |
x I+ 27! X zz. (6.6)
g_ - 8, g

=V'

By substituting Equation (6.6) into Equation (6.3) and using the fact

that

S
=13 G+ ?

z'=0 z'=0

and

/Qx—x')z + (y—y')2 + (z+2nw)2 |3 -5+ (z+2ow) 2|, (6.7)

one finally obtains the simplified form of Equation (6.3):

t=
]
1+

3 o ~ >y 12
2 5;/ (E.x + Eyy) g, ('|R)da'

X
0

| —

.~ [ 3
+22|5=[[E g (|R)da’ +Wff E, g, (0'|R)da'| (6.8)
A 0 A
where

z e—jkl3-3'+(z+2nw)2[
- - (6.9)
neZ 4w|3-3'+(z+2nw)z|

>4 12 _
g (°'[R) =G

z'=0
in which Z is the set of all positive and negative integers, including
zero. Equation (6.8) is quité similar to Equation (3.14) and, in fact,
Ef is the same in both equations. Later, Equation (6.8) will be used to

compute the diffracted field in the cavity regionjcq+.
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Enforcing the continuity of the normal component of the E-field by
simply substituting Equation (6.8) into Equation (6.5), one readily
derives the equation

) &Ik €Ik 1 ) > 13
20 3% f{ E [g,(0'|R) + g (p |R) 1da +-33;ff; Ey[go(p |R)
A

+g_('[R)]da’ =a_ -+ (B +E)
z=0 - |2=0
-
{R: (x,y,2) € A} . (6.10)
Similarly, the continuity of the normal derivative of the tangential

E~field results in

2
2 %‘3 {U (E x + E_y) (g, "B + gn(S'lR))da'J
z -
A z2=0
= %; [<Efx + B )x + (Efy + Efy)§]
z=0
{Ki(x,y,2) € A} . (6.11)

Employing Equations (6.10) and (6.11), and following the steps developed

in Equations (3.17)-(3.33), one finally determines the desired integral

equation:
E, 3|65 "+ (2mw) 2|
/f >, ~ da' = Right-hand side of
i E neZ 2rlp - o' + (2nw) z | Equation (3.33).
fo:(x,y) € A} (6.12)

where Z+ denotes the set of all positive integers including zero. In

deriving Equation (6.12) the following formula was used
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e-jk|3-3'+(2nw>;|

]

[g,G'1®) + g G'IR] . - (6.13)
: neZ 2w|p—p'+(2nw)z]

z=0 +
As described previously, Equation (6.12) must be solved in conjunction

with the condition (3.30) to provide the proper solution.

6.3 Numerical Results and Discussions

6.3.1 Matrix equation and kernel evaluation

This section will be concerned with extracting the numerical solu-
tion of the integral Equation (6.12) by applying the moment method.
Because of the almost identical structure of Equations (6.12) and (3.33),
the numerical procedure developed in Section 3.3 can be readily employed
to determine the solution. Therefore, Equation (6.12) may be discretized
in the manner demonstrated in Equation (3.42).

Since the kernel of integral equation (6.12) is more complicated
than that of Equation (3.33), it should be analyzed in more detail.

An analysis of the kernel shows that the singular term arises when

n = 0 in the summation appearing in the kernel. This, as a result,
allows the self-patch integration as obtained in Equation (3.43) for

the singular term to be used. Since an infinite summation cannot be
handled directly by the computer, it must be truncated in a manner that
provides an acceptable numerical approximation to the summation (Hamming,
1973). For the infinite summation given in Equation (6.13), one first
truncates the summation and then approximates the residual terms.

Truncating Equation (6.13) results in the following equation:

e—jk|343'+(2nw)§| L e-jk|343'+(2nw)§|

- - + R (6.14)
m—:Z+ 2ﬂ|3—5'+(2nw)z| n=0 2ﬂ|3—3'+(2nw)2| L
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where RL denotes the residual term. For the index L such that

> >,
p-p'|
——ZLW << 1 , (6.15)
the residual term RL may be approximated as follows
> >, ~
o e—jkip—p +(2nw) z| o e-jk(2nw) L e-jk(an)
= - % ———————— — ———————
RL n=L+1 2w|3—3'+(2nw)z| n=1 27 (2nw) n=1 27 (2nw)
(6.16)
Upon using the following formula (Collin, 1960)
v e-jnx -ix X =X
y = -4n(l-e °7) = -4n(2 sin ) + J -5~ , (6.17)
n=1 n 2 2

0 < x < 27
Equation (6.14) may finally be approximated in the following form
e—jk|3—;'+(2nw)2| L e-jk|3—3'+(2nw)5|

n, -
- i -
neZ+ 2n|3-3'+(2nw)z| n=0 2n|3—3'+(2nw)z‘

L -ik(2nw)
2 + 1 n(l-e
4w 4w

“32kwy | (6.18)

n=1
The terms appearing in the bracket on the right-hand side of Equation
(6.18) are independent of the location of observation points (3) and
source points (3'); hence, they can be evaluated once for all the points.
This approximation introduces only a small loss of accuracy but produces
a substantial saving in computing time. It is further noticed that the
aforementioned infinite series is not uniformly convergent and, in fact,
it is divergent for the values of w= A/2, A, 3A/2,.... These values
are related to the resonances of the two-parallel-plate structures.
Numerical results have revealed that for values of |3-3'|/A < /7,
w/A > 2, and slightly away from the resonant separations,L = 20 would
provide an adequate approximation in Equation (6.18). The validity of
using Equation (6.18) is studied in detail in Appendix F, and the inter-

ested reader 1is referred to this appendix.
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6.3.2 Resonance solutions

Since only for the resonant values of w = 1/2, A, 3\/2,..., does
the kernel of integral equation (6.12) fail to converge, this inteéral
equation cannot be used to determine the E~field in the aperture for the
resonant values of w. Furthermore, one expects that the aperture tan-
gential E-field must be zero at the resonant separations, because only
for zero value of a tangential E~field could both the r.h.s. and 1l.h.s.
of Equation (6.12) match.

To study the behavior of the integral equation (6.12) at resonant
situations, one starts by assuming that an incident plane wave originat-
ing frombﬂv_ impinges on the structure as shown in Fig. 6.1. This inci-

dent field may take the following form:

ik (k. -ptyz)
e @ 4+t % ey (6.19)
= Yor T "0z %€ :
+ 0
{R: (x,7,2) 6;[& }
where Ei = AEi + AEi K = a§ + BA an; o, B d have already bee
Ot X 0x y oe* “¢ Y ’ and 'y y n

defined for Equation (3.19). Using Maxwell's equations, it is readily
found that the H' -field is

'ﬁi

-% (ﬁt +yz) x B (6.20)

(R: G,y,2) € fI] )
where n = Yu/e is the intrinsic impedance of the medium. The field

reflected from plate I when the aperture is closed may be written as:

i
Ot

{ﬁz(x,y,Z)ELﬁv_}

Similarly, the reflected H -field takes the following form:

> -> A | k_12+)
EF = (-E- + zE(l)z)e"j (kero=yz) v (6.21)
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>Tr

H = %—(Kt-yi) x EF . (6.22)

>
{R: (x,y,2) €ﬂ_}
The total field in the regionuﬂﬂ_ is obtained by simply adding the

incident and reflected fields, namely,

A
E=E +% = [—Zjiét sin (kyz) + 2E; 2 cos (kyz)] oIklkeo]
{R: (x,y,2) 6/1)_} (6.23)
and similarly
=8+ % . (6.24)

It is now desirable to determine under what conditions E and H,
defined in Equations (6.23) and (6.24), can be extended to the region
J7z+ to provide the complete solution of the problem, both in theuﬁn_ and
\ﬂ0+ regions. To investigate this, three different cases will be examined:
i)

> >
kw # nm/y where n €'Z+. Extending E and H to the regionuﬁn it is

+?
easily seen that Maxwell's equations and the continuity conditions
will be satisfied, but the solution fails to satisfy the boundary
condition (2.8) on the plate II. Therefore, Equation (6.23) does
not provide the complete solution and, as indicated before, the
integral Equation (6.21) must be solved to construct the complete
solution of the problem.

ii) kw = nm/y where n € Z+ and y #vl. Extending E and ﬁ‘to the region
[ﬁ”+, one readily observes that Maxwell's equations, the continuity
conditions and the boundary conditions are satisfied. One may
first believe that this is the complete solution of this particular
problem. However, careful examination reveals that this solution
does not satisfy the radiation condition (2.12) in the regionvﬁ&

+
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along'a direction parallel to the plates; hence, this construction
(6.23) cannot provide the proper solution for this case. The pro-
per solution is obtained by solving the integral equation (6.21).
It is noted that for the values of kw = nmn/y, the kernel of the
integral equation is convergent.

iii) kw = nm where n €'Z+ and y = 1. Extending E and H to the region
fﬁLJ one readily finds that all the Maxwell's equations, the con-
tinuity conditions, the boundary conditions and the radiation con-
dition are satisfied in both theJ/b[ andvﬁv+ regions. Therefore,
by employing the uniqueness theorem, this will be the only possible

solution of the problem, and it takes the following form:

i

0

(R: (x,y,2)€ /)7_ 'uﬂ}

It is further noticed that for the values of kw = nm, the kernel

E = -2jE . sin (k2) : (6.25)

‘ of the integral equation (6.21) diverges, indicating that this
integral equation cannot be used to provide the solution.
‘ In conclusion, it has been found that the complete solution
of the problem could be constructed analytically (Equation 6.25) for the
case of normal incidénce (y = 1) and resonant separations (kw = nm).
Determination of the solution for the case kw = nm and y # 1 deserves
special treatment, which has not been completed in this work.

in this work.

. 6.3.3 The numerical result of the E-field distribution in the
aperture and in the cavity regionvp7+

- In this section some numerical results will be presented for the
two parallel-plate structure. The numerical results for the aperture

field are obtained by solving integral equation (6.2) in the manner
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discussed in the previous sections. The Ei-field is then evaluated by
performing the integration given in Equation (6.8). As an example,
rectangular apertures are considered here, although the method of solu-
tion is almost the same for any aperture configuration. The basic dif-
ference is the description of a proper algorithm for enforcing the condi-
tion E + T = 0 at the rim, which is done very easily for rectangular
apertures. |

Figures 6.2 and 6.3 show the amplitude distribution of the Ey—field,
dominant component of the induced field, along the principal axes of
.32 x .3Xx and .5) x .5\ apertures, respectively. As shown in these
figures, the incident field is normal to the plates and polarized along
the y-axis. These results, which have been compared with those of a
single aperture (no back plate), show that away from the resonant separ-
ations - in this case, for example, w = 2.8\ - the aperture fields are
almost the same and no substantial changes could be observed. Figure
6.4 displays the behavior of the Ey—field in a rectangular aperture
sampled at two different points as a function of the separation distance
w/A. Except around the resonant separation, this field varies very
slowly as a function of w/\, and does not show substantial change when
compared with the case w/A = »(no back plate). At resonant separation,
however, the field tends very sharply towards zero, as described by
Equation (6.25) (this is not shown in Figure 6.4).

After determining the aperture field, the diffracted E-field in
the cavity regionuﬁv_ may be readily computed using Equation (6.8).
The results derived in this manner are plotted as curves shown in

Figures 6.4 and 6.5. Figure 6.4 displays the behavior of the amplitude
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Figure 6.2, Amplitude distribution of the E_-field in a .5\ x .5\ square aperture

with back plate due to a normale incident plane wave. (a) E_-field
sampled along the x-axis. (b) Ey-field sampled along y-axis.
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of the dominant component of the E-field sampled along two different
lines parallel to the z-axis and Figure 6.6 shows the field coupled into
the parallel-plate region via a rectangular aperture of dimension

1IN x 1) illuminated by a normally incident plane wave.
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Figure 6.6. E_-field sampled along a line parallel to the z-axis and passing
through the center of the aperture in the two-parallel-plate region.



7. CONCLUSIONS AND RECOMMENDATIONS

‘In this investigation the problems of aperture diffraction in an
infinite screen, aperture coupling into a two-parallel-plate region,
and scattering by infinitely thin planar structures in intermediate
and low frequency regions were investigated in a unified fashion.

Based on the application of the dyadic and vector potential formalisms,
a new set of integral equations was constructed to formulate the problem.
These integral equations, which are structurally simple, were found
suitable for numerical analysis.

The knowledge of the tangential E-field in apertures was shown to
be sufficient for calculating the diffracted field in a cavity region,
if the proper dyadic Green's function had been constructed. The dyadic
Green's function was determined for a two-parallel-plate region and a
semi-infinite space by employing the theory of images.

Considering diffraction by apertures in a perfectly conducting
screen, a new set of integral equations was obtained, determining the
tangential E~field in the aperture. This integral equation was con-
structed in a novel way by simply enforcing the continuity of the tan-
gential derivative of the normal E-field and the normal derivative of
the tangential E-field. The aforementioned continuity conditions were
shown to automatically satisfy the necessary continuity condition for
both tangential E- and H- fields in crossing the aperture. The struc-
turally simple nature of the new integral equations was compared with
the conventional ones. The tangential components of the aperture
E-field were decoupled in new equations, making them numerically

attractive. Furthermore, their kernels did not possess any differential
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operator which made them less singular than conventional integral equa-
tions. The interaction of the aperture rim with the incident field was
accounted for in the integral equations by introducing a set of partic-
ular homogeneous terms in the formulation. The necessity of applying the
so—-called edge condition was eliminated and, instead, the unique solution
of the problem was determined by imposing the obvious condition that the
tangential component of the E-field at the rim was zero. Numerical re-
sults were presented, supporting the validity of the formulation. Rec-
tangular aperture results were calculated for the induced tangential
E-field and diffracted field due to various incident fields and aperture
dimensionsi The time domain behavior of the diffracted field by a narrow
aperture was also calculated using FFT algorithms. Results were compared
with those obtained through application of other fechniques and experi-
mental data.

The low frequency analysis of the aperture diffraction problem was
presented in a systematic fashion, employing the integral equation con-
structed in this thesis. These equations were found quite suitable, con-
sidering the low frequency regions, and the problem was reduced to solving
a sequence of successive integral equations which possess an electrostatic-
type kernel. The first few terms of the Rayleigh series expansion were
determined analytically for a circular aperture illuminated by an oblique-
ly incident plane wave. The incompleteness of Bethe's and Copson's solu-
tions were pointed out. Results were compared with those obtained by
others énd perfect agreement was observed. Furthermore, the low frequency
results of rectangular apertures were computed and their similarities with
those of circular apertures were shown.

The problems of scattering of electromagnetic waves by infinitely
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thin and perfectly conducting planar scatterers were investigated in
great detail. Using the vector potential formulation, a new set of
integral equations was constructed determining the induced current in
the structure. The expected similarity, due to Babinet's principle,
among these integral equations and those obtained for the aperture prob-
lem was discussed. The integral equations were further simplified to
compute the induced current in an infinitely long strip, and their
similarities with that of the well-known Hallen's integral equation were
demonstrated. The method of moments was used as a basic technique of
digitizing the integral equations for numerical solution. Results were
presented for the induced current distribution and RCS computation of
rectangular scatterers. These results were finally compared with those
obtained using GTO, PO, and variational methods.

The problem of electromagnetic coupling by an aperture into a
two-parallel-plate region was investigated. To obtain a complete set of

integral equations for determining the tangential E-field in the aperture,

- the dyadic formulations were used. It was found that these integral

equations could have been considered as a generalized version of those
obtained for apertures in an infinite screen. The complex nature of the
kernel of the integral equation around the resonant separation of the two
plates was analyzed. It was found that, for some special cases, an
analytical solution could be constructed for determining the induced field
inside the two-parallel-plate region. Numerical results were presented
for the induced field in the aperture and inside the parallel-plate region
as functions of aperture dimensions and parallel-plate separations.

Some comments about the possible future investigations branching from

this study would be of interest. In this thesis the numerical calculation
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has been merely done by applying the step function as the basis function
and determining the numerical solution of the integral equations for
rectangular-shaped structures. It would be of interest to use higher-order
basis functions particularly to investigate their effecf in computing

the field or current components at the rim of the structure. Application
of the integral equations obtained in this thesis for analyzing more
complicated shape structures would be worthwhile. Furthermore, an
investigation on the numerical stability of the integral equations for
large structures (with characteristic dimensions larger than one

wavelength) would be significant.
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APPENDIX A

DYADIC GREEN'S THEOREM

In this appendix a proof is given for the construction of the dyadic
Green's theorem. Some identities which are used very often in the dyadic
operational analysis are also listed in this appendix.

The starting point for the construction of the dyadic Green's
theorem is to employ the Gauss theorem. This theorem states that for
any vector function F with coﬁtinuous first derivatives throughout a

volume V and over the enclosing surface 3V, the following relation holds
fffv-Fav [[F-nda (A.1)
v MY
where n 1s the outward unit normal. By letting
F= 3 xVxB-7x vV x 6 , (A.2)

and substituting it into relation (A.l), one easily obtains the follow-

ing equation which is known as vector Green's theorem

fff (F + Vx Vx 6 - 6 + VxVx ﬁ) dv = ff (6 xVxP-BxVx 6) - n da.
v oV
(A.3)
Let Q by a dyadic function with a necessary differentiability property,
and let a be an arbitrary constant vector. One can then define the
>

vector Q to be

G=Q-a. (A.4)
Substituting (A.4) into (A.3) and using the identities listed at the end

of this appendix, one arrives at

= ~ff [hxVxP) Q-a+@xD) - Vx Q - a] da
v
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—->
Since the above relation holds for any vector a, one concludes that

[[f B+ vxvxQ-vxvxBP-Q dv
\Y
= —ff [@a x V x F) . 6 + (ﬁ x 3) + V x 3] da
v
= —ff n - [V x P x a -P x V x 3] da . (A.6)
Vv
The above equation is known as the dyadic Green's theorem (Tai, 1971).

Some useful relations in dyadic analysis are listed below (Van

Bladel, 1964):

W @ QY-b=3a-@Q@ " PH=3-a0-0b

2) @xB) +Qq=a- GxQY=-b" @ExQ

3 @°Qxb=a-(@Qxb)=2a-Qxb

4) @xQxb=ax@xb)=2xQqxb

5) a+Q-b=%-0Q -2

6) vV@- b)) =& -Vb+@-V)a+taxVxb+bxVxa
(7) V-VxQ=0

(8) V=xVa=0

(9 v Q) =V - Q+ ¢V - Q

(10) vV x (4Q =6 xQ+ ¢V x Q

where in the above equations ¢ , a and 6 are differentiable scalar func-
tion, differentiable vector function, and differentiable dyadic func-

tion, respectively.
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APPENDIX B

LIMITING PROCEDURE FOR INTEGRALS

In this appendix, the limit of a singular integral, which was pre-
sented in Chapter 3, is discussed. It is shown that the limit must be
defined with great care if the correct answer is to result.

The singular integral to be considered in this appendix has the
following form

S® =22xVx/f EQR) x 2) g, G'|B) da' | (B.1)
A
Clearly, this integral has a singular behavior at point 3‘ = K. It is

expected that the limit of 3 as z - 0 approaches -z x E(Z)., To show

this, one needs only consider the x-component, which reads
= - —8—— +' +l 1
s, (R) = -2 & f_f E.(Y) gy G |X) da' . (B.2)
A

In order to exclude the region of singularity, A is decomposed into two

regions as follows

w1
n

(A - AA) U A, (B.3)

\

where AA is a circular region centered at 3 with radius A. Using

(A.3), the limit of Sx may be expressed as

: > - > >
ms @ =5 @ =-24 EGYL g @D aa
X X y dz
z->0 A-A
A 2z=0
] > > | >
— 1 1 1
Lin 2 5 /1 E (") g, (3 | %) aar . (B.4)
z~>0 AA

It can be readily verified that
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e—jkv/(x—x')+(y—y')2+z2

3 >z _9__ - ' -
—a";go (p IR) =5z 0, p ¢AA

2=0 47r\£c—x')2+(y—y')2+zz 2=0 (B.5)

Therefore, the determination of Sx will be completed if the second
term in the right-hand side of (B.4) is determined. To simplify the
computational procedure, the origin is shifted to the point 3 and Sx is
written as

= _ 9_ >y >3 1

5.(0) = -lim lim 2 o f][ E (0 ")ggl |R) da

A0 20
AA

2, 2
) A 27 e-jk/é' +z
-lim lim 2 — [° f Ey(O) p'dp'de' - (B.6)

dz

A+0 2~0 0 O 4 @,2+22
In constructing the above equation, it is assumed that E_ is regular in
region A, Further simplification of (B.6) provides the following
desirable result:

3z

S_(0) = -E_(0) lim lim &— JA [l-jkVp'2+z2 + kz(p'2+z2) +
x Y A0 250

..} —e do' = -E_(0) lim lim 2—-£A —_—t do'

y 9z
/p 2, 2 A+0 z>0 /p 2,2

= -E_(0) lim lim g;- /£2+22 -2z =E (0) . (B.7)
y A0 z>0 y

An important consideration is that

1 1
lin lin = % —B—— o' = 1im 1w [P L L g

9z
A>0 20 0 p'2+22 A>0 2z>0 0 p'2+22
1
# lim fA lim-@——-L—dp' =0 . (B.8)
0z
A>0 O z-0 2, 2
p +z
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Therefore, it has been found that the "lim lim f" procedure must be fol-
A0 z>0

lowed to obtain the correct result. The reader is referred to the work

of Mikhlin (1957) and Davis (1974), who have considered different types of

singular integrals.
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APPENDIX C

SELF-PATCH INTEGRATION

In this appendix the computational procedure of the self-patch

integration is summarized. The self-patch integral has the following

form:
2 2
—Jkvx! Ty
I =k Jox/2 byl2 e dx'dy" (C.1)
-Ax/2 -Ay/2 o /x'2+y'2
where

x and y are the dimensions of the rectangular patch over which

the integration is performed. Using the symmetry of the kernel with res-

pect to the origin and performing the integration in polar coordinates,

(C.1) may be written as:

-jkp' m/2 Ay/2s1n¢' —jkp'
_ o (Ax/2cosd e ]
1y = e (p [0 T g ] s’ '
o O P 0
-1 (C.2)
where o = tan ~ Ay/Ax.
To

1]
approximate the integration given in (C.2), one expands e ke in

terms of the Taylor series and integrates the result as shown below

2
. 2k a 2 Kk '
{? 2cos¢ (2cos¢ -3 ZCOS¢] + "'} d¢

+ iﬂ/z {29?n¢ (281n¢) (251n¢] + "'] d?i}' (.3)

Finally the above equation may be simplified (Dwight, 1965), resulting in the

following equation:
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+ 1 T+l anl Ay T4l le
I < @Axmnham(4 + 3 tan Ax)| + kAy2n|tan(4 + 3 ta ) |

2 2
-jk A y k Ax Ay Ax ™ + Ay + 1 2n|tan(1+
2Ax2 2 4

% -l _X) |] kBAJf [Ax:/sz + ij | 1

T
> + 35 gn| tan(z +

2Ay
1 -1 Ax
5 tan -A?) |]} . (C.4)
For the case of a square patch, i.e., Ax = Ay, the following is true

inftan (F + 2 tan " %;E)| = 2n(l + v2) . (C.5)
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APPENDIX D

SOLUTION OF AN INTEGRAL EQUATION WITH ELECTROSTATIC-TYPE KERNEL

In this appendix two methods are discussed for deriving the solu-
tion of the integral equation
[ —2— aa' = 3™ £() (D.1)
'y 2n|p=p |
where A is a circular region with radius a. The discussion is mainly
based on the analysis done by Sneddon (1957).
The first method to be considered here is che dual integral equa-
tion technique, which can be constructed beginning with the Laplace

equation in polar coordinates

%g—p(p%)+u22)-+l—2-aj%=0, (D.2)
0z p- 99
subject to the following.mixed boundary conditions
P = ejn¢ £f(p) onz=0,0<pc<a (D.3)
and
. 0 onz=20, a<p. (D.4)

9z

A general solution of Equation (D.2) can readily be constructed by apply-
ing the method ¢f separation of varilables. This solution takes the
following form:

b= s et 3 (pE) dg (0.5)
0

where Jn is the nth order Bessel function and S(£) is an unknown func-
tion determined below. Imposing the mixed boundary conditions (D.3) and

(D.4), one arrives at the dual integral equations
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[ 8(8) 3_(pg) dE = £() , O<p < a (D.6)
0

[TE8E) I () dE=0 . a<p . (.7)
0

General techniques for solving the above equations have been suggested by
Titchmarsh (1937), Mittra (1961) and others. Sneddon (1957) used Titch-
marsh's solution and gave the following expression as a general solution

of the dual integral equations (D.6) and (D.7):

f2 |.172 a n®Em) a ;“*l
S() = /= [E J &) ———dn + dg
T n-1/2 { Yal- n2 { 2 2

a -g

[° &% £o) 3,0, ) dn] : (0.8)

Obtaining ¥ from Equation (D.5), the unknown o, defined in (D.1l),

may then be determined as follows:

N 1)
o= 2 |3z

i)

Y .9

z=+0 z==(0

It is important to mention that ¢ may be interpreted as the charge dis-
tribution on an electrified disk with potential distribution ejn¢ fl).
Substituting (D.5) into (D.9) and simplifying the result, the following
equation is obtained:

o(p,¢) = I [7 s 3,60 a . (0.10)

As an example, the following special case is considered:

ij ___9___ da! = Dn ejn¢
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Substituting £(p) = pn into (D.8) and simplifying the integrals by using

the integral table of Magnus (1954), o is then determined to be

2 _T(ntl) .2 2
° == T/ (a™=p ")

-1/2 n (D.12)

where T' is the Gamma function.

The second method to be discussed in this appendix is based on
applying Copson's formula (Sneddon, 1957). The functional representa-
tion of the solution of (D.l) using Copson's formula takes a simpler form
than the result obtained by using (D.8). Employing Copson's formula,

the solution of Equation (D.l) is determined to be

N 5 = - % ejn¢ pn—l d_ ra f(n) } .

do g 2n 1/§§——§ dE { V/”"_

‘ (D.13)
‘ As an example, the following special case is considered
ff — 9 da' = el? p3
2 l+_—+'|
A “TIP—P
Upon substituting f(p) = p3 and n=1'into (D.13) and evaluating the
integrals by using the integral table of Dwight (1965), o is determined

as follows:

p3(a? - pHH2) ¢

_16 (. 2 21/2
o =3 [3p(a p7) (a
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APPENDIX E

2
GREEN'S FUNCTION OF THE OPERATOR Q—E-+ k2
dx
In this appendix the validity of equation
2 -ik|x-x"|
4 e o 8 (x-x") (E.1)
dx2 2jk :

will be presented via application of some simple properties of the gen-
eralized functions (Arsac, 1966).

One can readily verify that the following is true

d dkfx=x'| | . -ik|xx'| 4

dx -jke Ix (|x-x"])
- —_!
= —jk[6(x-x") - 8(x'-x)] * e Jk|xx"| (E.2)
where & symbolizes the unit step function, i.e.,
1 x>0
8(x) = (E.3)
0 x <0
Evaluating the derivative oflE.Z)results in
2 - -! - _!
Q—E-e Jelx=x"| s (xex') = k2] e JKIxE] (E.4)
dx

In deriving the above equation the following formulas have been used

%; 8(x) = &(x) (E.5)

and
[6(x-x") - 8 (x"-x)][0(x-x") - 6(x'-x)] = 1 . (E.6)

The validity of'E.l}can now be confirmed by simply substituting @.Z)into

the left-hand side of (E.1.
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APPENDIX F
CONVERGENCE TEST FOR THE KERNEL OF
INTEGRAL EQUATION (6.12)

This appendix is concerned with the numerical behavior of the ker-
nel of integral equation (6.12). Extensive numefical results will demon-
strate the behavior of this kernel close to the resonant situations. The
validity of applying the approximated Equation (6.18) will also be tested.

The kernel of the integral equation (6.12) may be. denoted by S(=),
such that S(N) is defined as follows:

N ko= + (20w

sN) = )
n=0 2rk|p-p' + (2nw)z|

(F.1)

'As was discussed in Chapter 6, S(») diverges for the values of w/\ = 1/2,
1, 3/2,..., and converges otherwise. Actually, it can be readily shown
that only the feal part of S(») diverges and its imaginary part is al-
ways convergent.
The behavior of S(Nj has been tested for several values of N and

different values of w/A. Throughout the calculation, the value

|3—3'|/A = /2 has been chosen, which is the maximum separation that may
exist between the source points and observation points for 1A x 1A
aperture. The results of calculating S(N) for different values of N and
w/\A are listed in Table F.l. 1In this table, the numerical values of S(N),
for values of w/\ very close to the resonant separation w/X = 2, are
displayed. The values show that S(N) converges more slowly by getting
closer to the resonant separation w/\A = 2; and exactly at this separation,
the series shows a diverging behavior. This result also indicates how

close one may actually get to the resonant separations before the
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TABLE F-1

KERNEL EVALUATION

180

SNy = ? Ik[3-3"+(2nw)2| / 2nk|g-3"+(2nw) 2]
n=0
~___ W ] o
W/ 20 100 1000 10000
~.2085(-2)" | .3759(-1) | .9577(-1) .1541(0)
2 -§.3422(-1) | -4.4035(-1) ~§.4177(-1) -35.4192 (-1)
.3853(-2) .3304(-2) .3203(-2) .3193(-2)
¢ +9.1169(-1) | +§.1125(-1) +§.1112 (1) +§.1111(-1)
-.7443(-3) -.1114(-2) | =.1197(-2) -.1205(-2)
i ~3.1451(-1) é -.1453(~1) -.1456 (~1) -3.1456(-1)
~.1154(-1) % ~.1181(-1) -.1188(-1) ~.1189(-1)
. -j.1814(-1) ; -1.1797(-1) -3.1795(-1) ~3.1794(-1)
. 1686(-1) | -.1702(-1) -.1707(-1) -.1708(-1)
- -4.1613(-1) ~§.1571(-1) | ~4.1562(-1) ~§.1561(-1)
_.2893(-2) L1716 (-1) .4627(-1) L7542 (-1)
= ~3.3069(-1) -.3223(-1) | -1.3259(-1) ~1.3263(-1)
~.1067(-1) -.1072(-1) -.1075(-1) -.1075(-1)
o -§.1094(-1) | -§.1054(-1) | =-j.1045(-1) -5.1044(-1)
-.1083(-1) ~.1040(-1) -.1042 (1) -.1043(-1)
=2 -3.1015(-1) | =-3.1075(-1) | -j.1064(-1) -5.1063(-1)
~.9102(-2) -.9847(-2) ~.9869 (~2) -.9872(-2)
o ~3.1105(-1) -3.1096(-1) | =-3.1081(-1) -3.1079(-1)
-.9987(<2) -.8813(-2) -.8827(-2) -.8830(-2)
18 -3.1118(-1) ~§.1120(-1) | -4.1098(-1) -§.1095(-1)
- 4694 (-2) -.6433(-2) -.6416(-2) ~.6418(-2)
i -§.9797(-2) | =-3.1150(-1) | -§.1115(-1) ~§.1110(~1)
% (-2) means 10




TABLE F-1 (CONTINUED)

.999

.9999

.01

.02

.03

.04

.05

. 8456 (-4)

-3.1924(-1)

1639(-3)

-3.2055(-1)

-.2018(-3)

-2069(-1)

_j.

-]
-]

_j_

-]

_j.

1124(-1)

2900(-1)

.1927(-1)
j.2383(-1)
.2013(-1

.2123(-1)

.2293(-1)

1923(-1)
)

.2317(-1)
j.1620(-1)
.2277(-1)
.9094(-2)
.1730(-1)
<4944(-2)
.1362(-1)
.6012(-2)
.1187(-1)
.8189(-2)

.1407 (-2)

1742(-1)

.8072(-2)
.1387(-1)
.9889(-2)
.2030(-1)
.9855¢2 )
.2108(-1)
.1282(-1)
.2696(-1)
.1813(-1)
.2397(-1)
.2089(-1)
.2120(-1)
.2244(-1)
.1874(-1)
.2329(-1)
.1656 (-1)
.2290(-1)
.9249(-2)
.1741(-1)
.4972(-2)
.1372(-1)
.5968(-2)
.1197(-1)
.8037(-2)
.6642(-2)
.1767(-1)

=J

_j.

.5303(~2)
.1172(-1)
.2215(-1)
.1389(-1)
.2441(-1)
j.2117(-1)

.1281(-1)

2741(-1)

.1815(-1)
.2420(-1)
.2091(-1)
.2135(-1)
.2247(-1)
.1885(-1)
.2332(-1)
.1665(-1)
.2293(-1)
.9286(~2)
.1744(-1)
.4980(12)
.1374(-1)
.5960(-2)
.1199(-1)
.8004(-2)
.1828(-1)

.1773(-1)

_j.

.5340(~2)
.1127(-1)
.1935(-1)
.1173(-1)
.3897(-1)
.2118(-1)
.1282(-1)
.2745(-1)
.1816(-1)
.2422(-1)
.2092(-1)
.2137(-1)
.2247(-1)
.1886(-1)
.2332(-1)
.1666 (-1)
.2293(-1)
.9290(-2)
.1744(-1)
.4981(-2)
.1375(-1)
.5959(-2)
.1150(-1)
.8001(-2)

.2994(-1)

1773(-1)
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formulation breaks down. In the same table, the behavior of S(N) is tested for
values of w/)A different from those of the resonant separations, and good
converging behavior is observed. The values of S(10000) will be used as

a testing base for determining the correctness of the approximated series
(6.18) in the next paragraph.

The approximated series (6.18) is denoted by s(L) and takes the

following form:

L e-jklg—g' + (2nw)2|
s = ] - -
n=0 27k|p-p' + (2nw)z|

L e—jk(an) 1

+ -j2kw
4mnkw 4dkw

n=1

1n(l-e ). (F.2)

In Table F.2 the relative error r(L), as defined below, is listed for
different values of L and w/A. The relative error r(L) is defined as

_ 15(10000) - s(L)|
| s(10000) |

r(L) x 100 . (F.3)

Table 6.A.2 has been divided into four sections. The first section
displays the values of r(L) for small values of w/A such that
.1 < w/A < .5. The second section shows r(L) for values of w/\A close to

the resonant separation w/A = 2, namely, 1.95

1A

w/XA < 2,05. The third
section exhibits r(L) for values of 2.1 < w/A < 10.5. For all the cases
mentioned above, except exactly at the resonant separations, Equation
(F.2) provides a good approximation to Equation (F.1l) when L < 20. For
L = 20, the relative error is less than 1l percent, which indicates that
rather than summing up (F.l), for instance 10000 times for each value of
3—3'|, one can only sum them up 20 times and use Equation (F.2). This,
of course, provides a very significant saving of computer time. Table

F.2 also shows that calculations may be performed with good accuracy for

values of w/\ very close to the resonant separations.
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TABLE F-2

RELATIVE ERROR

r(L) = |§(10000) - s(L)| x 100/|s(10000) |

L
w/\ 5 10 20 40 60 80 100

.5 355.9 352.6 351.8 353.5 351.6 351.6 351.6

.6 24.92 7.215 1.925 . 4959 .2229 .1267 .8219(-1)

.7 9.129 2.609 .6930 .1784 .8028(~1) |.4571(-1)| .2978(-1)
.8 4.695 1.351 .3599 .9275(~1) | .4179(-1) |.2385(-1)| .1561(-1)
.9 5.288 1.577 .4258 .1103 .4981(-1) |.2852(-1)| .1876(-1)
1. 333.4 332.7 332.6 332.6 332.6 332.6 332.6
1.95 3.021 L9471 .2634 +6941(-1) |.3199(-1) [.1907(-1)| .1341(-1)
1.96 3.517 1.144 .3244 .7654(~1) | .4656 (~1) .1736(-1)%.1669(—1)
1.97 4.272 1.441 .4099 .1042 .5750(-1) .4021(—1);.2245(-1)
1.98 5.554 1.9773 .6323 L1776 .6599(-1) .2840(—1);.3490(-1)
1.99 8.246 3.272 1.098 .3810 L1294 .1153 .7719(-1)
1.999 9.231 6.903 3.358 1.539 .9129 .5880 1.3932 ;
1.9999 10.06 6.295 4.259 3.201 2.843 2.663 f2.555
2. 298.2 298.1 298.1 298.2 298.2 298.2 | 298.2 :
2.01 3.562 1. 409 L4915 .1258 .8163(-1) .3475(—1)!.2799(—1) E
2.02 2.610 .9199 .2688 .1256 (-1) | . 4062 (-1) .2745(-1)i.1462(-1) !
2.03 2.074 .6762 .1998 .5564(-1) | .2098(-1) .7992(—2)!.9963(-2) %
2.04 1.731 .5378 .1493 .4358(-1) | .1377(-1) .1315(—1)5.7641(—2) f
2.05 1.494 L4541 1244 .3240(-1)|.14851(-1)|.8854(-2) .6268(-2) i
2.1 .9652 .2760 .7340(-1) |.1897(-1) | .8700(-2) .5201(-2)i.3695(-2) ?
2.2 . 7666 .2145 .5664(-1) |.1463(-1) | .6730(-2) |.4045(-2)| .2895(-2) E
2.3 .8439 .2372 .6276(~2) | .1624(-1) | .7494(-2) |.4529(-2)| .3265(-2) i

|
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TABLE F-2 (CONTINUED)

2.4

2.5

10.

10.1

10.2

10.3

10.4

10.5

1.240
299.3
235.8
.5384(-1)
.3455(-1)
.3503(-1)
.5596(-1)

221.2

.3604

299.3

235.8
.1544(-1)
.9659(-2)
.9817(-2)
.1617(-1)

p21.2

.9660(-1)
299.3

235.8

.4132(-2)
.2567(-2)
.2617(-2)
.4374(-2)

221.2

.2514(-1)

299.3

! 235.8

| .1186(-2)

.7394(-3)
.7568(-3)
L1276 (-2)

221.2

.1165(-1)
299.3

235.8

.7284(-3)
.4545(-3)
.4662(-3)
.7878(-3)

221.2

.7084(-2)
299.3

235.8

.6183(-3)
.3853(-3)
.3952(-3)
.6672(-3)

221.2

.5145(-2)
299.3

235.8

.5871(-3)
.3639(-3)
.3732(-3)
.6293(-3)

221.2
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