Interaction Notes

Note 223
May 1975

Analysis of Antennas and Scatterers with Non-Linear Loads

Tom K. Liu
The Dikewood Corporation, Westwood Research Branch
1100 Glendon Ave., Los Angeles, Calif. 90024

Frederick M. Tesche
Science Applications, Inc.
P.O0. Box 277, Berkeley, Calif. 94701

Abstract

Two methods for analyzing antennas or scatterers having non-linear
resistive loads are discussed. The first is a direct time domain integral
equation approach, whereas the second involves the use of frequency domain
data to compute the time dependent currents and voltages across the non-linear
load. Both transient and time-harmonic excitations are considered in the
sample problems illustrated here which involve a center-loaded linear antenna.
Although it is difficult to do so with the direct time domain method, the
second method of analysis may be readily applied to an arbitrary antenna

whose frequency response is either measurable or calculable.
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I. Introduction

Many physical phenomena are inherently non-linear in nature. In the
area of electromagnetics, non-linearities may be completely unforeseen and
undesirable in the design of a particular system, whereas others may be
essential in the functioning of the system. Non-linear effects are important
for antenna systems containing semiconductors, integrated circuits and
voltage limiters when they may be illuminated by an extremely strong signal,
such as that produced by a lightning strike or a nuclear EMP.

Currently, for a general system, most cases involving non-linearities
have been considered using direct time-domain techniques such as the state-
space method. In addition; specialized problems involving weak non-linearities
have been solved in the frequency domain [6] to obtain spectral components of
the solution at harmonic, sub-harmonic and combination frequencies. Such fre-
quency domain solutions almost invariably employ the techniques of perturbation
or iteration. Some of these mathematical methods have been applied to antenna
problems involving non-linear loads.

The determination of the behavior of an antenna or scatterer with a
‘ ' general non-linear load attached would usually be achieved by solving either

a set of coupled partial differential equations or an integral equation
directly in the time domain. Indeed, Schuman [8] has recently treated a non-
linear antenna problem using a space-time domain integro-differential equation.
Sarkar and Weiner [7] have solved the same problem using the Volterra series
method to directly obtain harmonic responses of the time-harmonic excited
system. Due to analytical complexity, the method is useful only if the
non-linearity is not too strong. The utilization of a frequency domain
method for finding the response of the antenna or scatterer with a general
non-linear load is not usually employed, but would be very useful in view of
the large amount of frequency domain data presently available for antennas and
scatterers.,

In this paper, two methods for amalyzing antennas having non-linear
resistive loads are described. The first, to be discussed in Section II, is
a direct time domain approach which involves solving a space-time domain
integral equation. The discussion of this method will be restricted to the case

of a linear wire antenna having a non-linear load. The integral equation and



the method of treating the non-linear loads are different to those of Schuman.

The second method, to be described in Section III, is a technique for
obtaining the response of the antenna by making use of frequency domain data
such as the short-circuit current and the driving-point admittance, both being
solutions to the antenna problem in the absence of non-linearities. This
method yields a non-linear integral equation containing a convolution integral.
The numerical -procedures of evaluating convolution integrals have been discussed
by Baum* in the study of buried transmission line simulators.

Throughout this paper, the latter method will be illustrated using the
same wire antenna as in the direct time domain solution. However, it is to
be emphasized that this method can be readily applied to any antenna system
for which the frequency domain behavior is known, either by calculation or by
measurement. The advantages of employing this method are that it can make use
of the large amount of existing frequency domain data and computer programs
for antennas, and it also permits the consideration of certain problems which
are too complicated to be treated by the direct time domain approach.

One such problem is a non-linearly loaded antenna over a lossy ground.
Another example is that of a non-linear microwave diode mounted under a con-
ducting post inside a waveguide. Such a configuration is often encountered
in microwave circuits, such as Gunn oscillators, mixers, and the like. The
harmonics generated by the non-linear device significantly affect the perfor-
mance of the circuit [1]}, making the solution of this non-linear boundary-
value problem essential. Although this problem is relatively difficult to
solve in the time domain, frequency domain data for the linear portions of the
problem exist [3]. Thus, the second method described in this paper is useful
in solving this important microwave problem.

It should be noted in passing that another method is currently being
used for certain non-linear antenna problems [5]. This involves solving the

time dependent differential forms of Maxwell's equations, as opposed to the

. ]
Baum, C. E., "The buried-transmission-line simulator driven by multiple capaci-

tive sources," Sensor and Simulation Note 49, August 1967.




integral equations discussed here. Such a method provides a solution for the
unknown fields in a volume surrounding the antenna, instead of just on the
surface. This necessitates longer computation time and much larger storage

for a computer solution, but is useful when the volume surrounding the antenna
has a non—linear character. An example is the source region EMP excitation
problem which involves field-dependent air conductivity near the antenna. For
the present discussion of an antenna with a non-linear load, which is localized
at a single point on the antenna, the integral equation approaches are more
efficient for obtaining a solution.

Throughout this paper, we shall consider the antenna configuration
depicted in Fig. 1. Most of the numerical results will be for the scattering
problem, but the case of the antenna driven through the non-linear load is also
discussed. The wire antenna has a length L and radius a and is excited by

an electric field E1nc

tangential to the wire. The non-linear resistive
element contained in the load, which is located at =z =zo, has a v -i charac-

teristic defined by

v (£) = F[i (6)] @)

where F is a known function and VL and iL are the instantaneous voltage
across and current through the load element. Such a device, having an explicit
v — i characteristic given by Eq. (1), can be considered as a current-controlled

device.



i, (D)

L | 1,
Z=2o ZVL(T)
—

v (1) = F[iL(t)]

Fig. 1. A linear antenna with a non-linear load.




II. Non-Linear Analysis Using Direct Time Domain Approach

The advantages of using the space-time domain integral equation of Hallén's

type for solving linear antenna problems have been discussed in a previous paper

[4]. We shall use this formulation for the solution of the induced current on

the antenna with a non-linear load. For the configuration illustrated in Fig. 1,

the integral equation for the current i(z,t) 1is given by

L L .
J i(z',t—lz—z‘]/c)K(z,z')dz' = E—Zl—[J Emc(z',t—]z—z'l/C)dz' —VL(t—lz-zol/c)J
0 o ‘0

+fl(ct—z) + fz(ct+z) 2
where the kernel is
2m
K(z,z') = E%E—J —‘—‘—‘*—‘75"}¥gi"*"‘-—-jfjj . 3
0 4n[(z-2')" + {2a sin(6/2)}°]*

The functions fl(ct—z) and f2(ct+z) are invariant along their respective
characteristic curves, dz/dt=c¢ and dz/dt=-c. These two functions are
determined by the end conditions 1i(0,t) = i(L,t) = 0. In Eq. (2), ZO ~ 377 Q
is the intrinsic impedance of free-space.

The numerical procedure of solving Eq. (2) is the same as that outlined
in reference [4], except at z=2z . Basically it is a step-by-step time-
1’ f2

and v along the characteristic curves through the point (z,t) are known

prior to time t. Following the usual numerical procedures of approximating

marching method, utilizing the property of Eq. (2) that the current, f

various quantities in Eq. (2), we obtain the following equation in the unknown

current i(z,t):

1

ai(z,t) = S(z,t) - (22)7 " v, (e=]z-z_] [o) (%)

where o 1is the value resulting from numerical approximation of the integral

of the kernel K(z,z') over the zone surrounding the point =z'=2z, and



S(z,t) is the numerical approximation of all the other terms except the term
(220)—1 vL(t_Iz_zol/c). The exact expressions of o and S(z,t) depend on
the numerical scheme (collocation method, Galerkin's method, etc.) adopted and
will not be detailed here. However, it is important to mention that o is a
positive quantity. A careful examination of Eq. (2) and Eq. (4) reveals that
S(z,t) 1is a known quantity.

For =z # Z s due to the time retardation effect, the quantity
VL(t-]z—zol/c) is known. Hence 1i(z,t) is simply given by Eq. (4).

For z = Z_» the second term on the right-hand-side of Eq. (4) is now
VL(t) = F[iL(t)] which is unknown. 1In fact, for the configuration under study,
i(zo’t) = iL(t) and Eq. (4) is a non-linear algebraic equation, the solution of
which may be obtained by a numerical procedure such as the Newton-Raphson method.
In the solution of this non-linear algebraic equation, one has to be careful
about the uniqueness of the solution, as more than one value of iL(t) could
exist. It is useful to consider the solution of the set of simultaneous equa-

tions, Eq. (1) and Eq. (4), i.e.,

ai () = 5z ,t) - (220" v, (©) (52)
v (©) = Fli (O] (5b)

Eq. (5a) can be represented as a load line with a negative slope in the VL'-iL
plane (see Fig. 2) whereas Eq. (5b) describes the device characteristic. The
solution of Egs. (5a) and (5b) is always unique if the two curves intersect at
only one point for any fixed value of S(zo,t). This condition may be violated
if the device exhibits negative dynamic resistance behavior, such as in the case
of a tunnel diode. This situation of possible multiple solutions of iL is
illustrated in Fig. 2. As can also be observed in Fig. 2, if the device charac-
teristic can be described by a monotonically-increasing function, i.e., the
device has only positive dynamic resistance such as in the case of an ordinary
rectifying diode, the solution would be unique.

For the special case that the non-linear v -1 relation can be described

by two piecewise~linear curves through the origin such that




'L - WITH NEGATIVE

\ RESISTANCE
LOAD LINE

/f/\\\\\\\\\
-

-

-

- WITH ONLY POSITIVE QL
RESISTANCE

Fig. 2. Graphical illustration of the solution of the non-linearly loaded
antenna problem at z =2z, and time t.  The load line represents
the antenna characteristic without the non-linear load. The two
non-linear device characteristics, namely, that with negative

resistance and that with only positive resistance, help to illustrate
the uniqueness of the solution.



vL(t) = R1 iL(t), iL(t) = 0

VL(t) R2 iL(t), iL(t) <0

it can be readily shown, by substituting these equations into Eq. (4), that

the resulting equation gives explicit solution of the unknown current iL(t),

i.e.

f

i (t) S(zo,t)[a+Rl/zzo]'1, S(z_,t) = 0

i () = Sz ,t) [a+R,/22 17, S(z_,t) < 0.

It should be noted, as pointed out earlier, that o is a positive quantity.

With appropriate values of R1 and RZ’ this special v -1i characteristic crudely
approximates that of a rectifying diode. Such a loading will be studied in
detail numerically in Section VI.

Special techniques exist so that one can avoid solving the non-linear
algebraic equation (4). In the circuit modeling, a physically-real small induc- .
tance is added in series with a current-controlled non-linear device, such as
that described by (1); or a small capacitance is added in shunt with a voltage-
controlled device. The presence of such elements yields a differential equation
containing a non-linear term in place of Eq. (4); the differential equation can
then be solved uniquely using some numerical procedures. This technique is
ililustrated in Appendix A for the case involving a voltage-controlled device.

It should be pointed out that in a physical device, small lead inductance and
small package or junction capacitance are present so that the above technique is
justified.

It should also be mentioned here that the method of solution for the case
that an antenna is driven via a non-linear element is very similar to that

described above and will not be detailed.

10
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I1I1I. Non-linear Analysis Using Frequency Domain Data

Referring again to the non-linear scattering problem illustrated in Fig.
1, an alternate approach for determining the load current is to first solve the
boundary-value problem in the frequency domain for the antenna without the
non-linear load, and then use that solution to treat the entire non~linear
problem in the time domain.

It is well known that the frequency domain behavior of the plane wave
excited antenna can be represented by the Norton equivalent circuit shown
in Fig. 3. The term Isc(s) is the short-circuit current at the antenna input
and Yin(s) is the input admittance of the antenna, both being defined as a
function of the complex frequency s. The calculation of these quantities for
the linear antenna is outlined in Appendix B. Despite the non-linearity, it
is still possible to formally define the Laplace transforms of vL(t) and
iL(t) to be VL(S) and IL(s). From circuit analysis, the load current in

the frequency domain can then be written as
= - Y .
I (s) = I_ (s) int8) V () (6)

I1f the antenna load were linear, VL(S) could be related directly to IL(s)

in terms of an impedance. This would then enable IL(S) to be obtained from

Eq. (6). The tramsient response iL(t) could then be determined by an inverse

Laplace transform. For the non-linear load, a different approach must be taken.
Noting that the product of two functions in the frequency domain implies

convolution in the time domain, Eq. (6) may be Laplace transformed to yield
t
lL(t) = 1SC(t) - J_m yin(t—T) VL(T)dT )

where yin(t) is the inverse Laplace transform of the input admittance of the
antenna. Physically, this corresponds to the current flowing into the antenna
at the load point =z =z due to a delta-function voltage source at t=0. The
term isc(t) is the time dependent short-circuit current at the load point

=z induced by the time varying incident plane wave, striking the antenna at

1
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| I () Yin(s) | /VL(s)
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Norton eq. cct. of antenna

Fig. 3. Norton equivalent'circuit representation of the antenna with
a non-linear load.
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By substituting in the v -i relation (1) for the load of the antenna,
the following non-linear integral equation of the Volterra type results for

the unknown load current iL(t):

t
iL(t) = isc(t) - I yin(t—r) F[iL(T)]dT. (8)

One method of solving thils equation iteratively is described by Pipes
%
[6]1 . By choosing an initial guess iéo)(t) for the load current, successive

corrections can be made of the form:
1Dy =1 (o) - ’ (e-1) F[1? (r)1dr
L sc _Vin L

t
120 = 1 () - J i (60 FligY (0147 @

t
ién)(t) =i () - J Vi (£ F[ién—l)(T)]dT
such that the solution to Eq. (8) is given by
i (6) = 1im i (o). (10)
L L

n>r

An alternate form of this equation is obtained by using the convolution

theorem on the integral in Eq. (8). This yields
. . _ -1 .
1L(t) = 1sc(t) L [Yin(s) £{F[1L(t)]}] an

which can also be solved iteratively for iL(t), but by using a numerical

. .
Care should be exercised in interpreting Pipes' equations due to his unconven-

tional definition of the Laplace transform as H(s) = Lh(t)= s f h(t) e °Tar.
o

13



transform algorithm instead of a direct evaluation of the convolution integral.
Here, the symbols £ and £_1 denote the Laplace and inverse Laplace trans-—
form operators, respectively.

The convergence properties of Eq. (9) have been discussed by Davis [2].
For cases of relatively small loading (i.e. F[iL(t)] being small for all t),
Eq. (9) can be expected to converge quickly to the proper functional form. For
very large loads (for example, a nearly open-circuit) the convergence of Eq. (9)
or Eq. (11) is not guaranteed. As an example; using Eq. (9) it was found that
the solution for a 1009 linear load required approximately 65 iterations
before convergence was achieved. A 500 /100Q piecewise-linear load required
approximately 200 iterations and the 50 /5 k§ piecewise-linear load case did
not converge, but seemed to oscillate about a solution. Thus, it is desirable
to find another method for treating this class of non-linear antenna problems.

Another approach is to evaluate iL(t) by a time-marching procedure.

At any time t, Eq. (8) can be written as

t
yin(t-T) F[iL(T)]dT - [t—ﬁ yin(t-T) F[iL(T)]dT (12)

t-6
iL(t) = isc(t) - J

-C0

where &6 1is small. Letting &6 -+ 0, the last integral may be expressed as

Flip ()] y;,(0) (13)
where
_ t
¥i,(0) = iig Jt_d yin(t—T)dT- (14)

Thus, Eq. (12) can be written as
— t_
i () + 5, (0) Fli (D] = 1_ (t) - f_m y, (=) Fli (D)]dr (15)

Since the quantities isc(t) and yin(t) are calculated from inverse

Laplace transforms of frequency domain data and are known for all time, and

14




since iL is assumed known for all times prior to the current calculation
time t, it is noted that the right-hand-side of Eq. (15) has a known value.
This results, therefore, in a non-linear algebraic equation for iL at the
current calculation time ¢t, and is easily treated using a standard root-
solving algorithm. The solution is then stepped along in time using this
technique.

The uniqueness of the solution of Eq. (15) has to be considered. Eq.

(15) can be re-written as

i (e) = A -y, (0) vy (t)
with

VL(t) = F[iL(t)].

This set of equations is identical in form to that of Egqs. (5). However,
because of the different methods of evaluation, the parameters,namely,

-1
s(zo,t)/a, (20 Zo)

course, as pointed out earlier,Eqs. (5) are strictly for a linear wire antenna,

, A and ;in(O) may be somewhat different in value. Of

whereas the above equations are more general. The discussions on uniqueness
in Section II applies equally well in this case. 1In addition, the technique
described in Section II of adding a small inductance in series with, or a
small capacitance is shunt with the non-linear device can also be useful for
this method.

When this method is applied to the transient scattering problem, it is
assumed that the antenna is initially relaxed and that the incident field
strikes the scatterer at t =0. Thus, the lower limit -« in Eq. (15) is
replaced by 0O and the condition iL(0)==0 is used to begin the time-stepping
procedure.

Once the load current is determined, the load voltage is easily found
from vy = F(iL). With the knowledge of this vocltage, it is possible to find
the transient behavior of the current at an arbitrary point zqs zl_#zo, on
the antenna structure, provided the quantities is(zl,t) (the field-induced
current flowing at =z with the input short-circuited) and yt(zl,t) (the

1

current at =z due to an impulsive voltage excitation at the antenna terminals)

1

15



are known. This relationship takes a form similar to Eq. (7) as ‘

t .
i(zl,t) = is(zl,t) - jo yt(zl,t—T) VL(T)dT (16)

where as before it is assumed that vL(t) =0 for t = 0. Due to the fact that
both Ve and v, ~are known, the evaluation of this integral is a straight-
forward task, compared with the solution of Eq. (8).

In certain circumstances, it may be desirable to compute the response of
a driven antenna through a non-linear load. This case is handled trivially
using the proceeding formalism, except that the short-circuit current isc(t)
is replaced by the current flowing into the antenna when excited by a local

source Vv (t) with no non~linear device present. This may be achieved by

defining i (t) as

i, (®) = &Hy, (9)slv_(0)]) (a7
and using Eq. (7) directly. .
Using the frequency domain method, the response of the antenna to a
steady-state excitation can also be computed. By starting a periodic excitation
at t=0 and solving Eq. (15) for times t >0, it will be noted that the
transient portions of the response soon die out, leaving the steady-state res-
ponse. As an indication to how long one must carry out the computation to
obtain the steady-state response, we can look at the rate of decay of the
currents on the unloaded antenna. For the relatively high 'Q" wire antenna,

the steady-state response may be obtained for roughly ct/L > 20.

16
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IV. Numerical Results

To investigate the effects of non-linear loading on antennas, the
structure shown in Fig. 1 has been analyzed. The antenna is assumed to be
excited by a step-function, broadside incident field, and it is center-loaded
by a non-linear resistor. In this example, an antenna with Q = 2 %2n(L/a) = 10
is chosen. The v -1 relationship of the load is represented by a piecewise-
linear function through the origin, having a 50 Q resistance in one direction
and a 5k resistance in the other direction. The device has only positive
dynamic resistance.

The application of the frequency domain method described in the previous
section requires a knowledge of the properties of the antenna with no load.

By solving Eq. (A4) for the scattering case at a number of frequencies, the
spectrum of the short-circuit current is obtained. Fig. 4 shows the magnitude
of the quantity. Note that this is the spectrum for a delta function excitation.
Hence, multiplying by 1/jw and taking an inverse Fourier transform*, the step
excited short-circuit current, isc(t), results and is shown in Fig. 5.

In a similar manner, the input admittance Yin(m) may be calculated
again from Eq. (A4) for the driven case. Fig. 6 shows this quantity as a
function of frequency, and its inverse transform, yin(t)’ is shown in Fig. 7.

Using isc(t) and yin(t) in Eq. (15), along with the specified load
characteristic, the load current can be calculated. Results are shown in Fig.

8 for the case that the load is so placed that the current initially flows
through the 50 % section. Also shown in Fig. 8 are the results obtained using
the direct time domain approach. The two sets of results agree favorably.

For comparison purposes, the load current for the case that the antenna
is loaded by a 50 linear resistor is also presented in Fig. 8. Careful inspec-
tion reveal; that for ct/L > 1, the non-linear load current oscillates at
about twice the rate of the linear load current. This phenomenon can be readily
explained. During the first transit period ct/L < 1, the current flows
through the 50 2 portion of the load and behaves in much the same way as the

short—-circuit current (Fig. 5). As the current is reflected at the ends of the

It is more convenient numerically to use Fourier transform in place of

Laplace transform.

17
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Fig. 4. Frequency spectrum of the magnitude of the short-circuit current at
the mid-point of the antenna excited by a broadside incident impulsive
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and the frequency domain methods are presented. Also included is the
current through a 50Q 1linear load.




antenna with reversed polarity, it sees the 5k portion of the load which is
large enough to reduce the amount of current flow. The 5k§ portion in effect
behaves like an open-circuit and the current is reflected at =z =L/2 with
reversed polarity and with reduced magnitude. Subsequent reflections at the
ends of the antenna again reverse the current polarity and the current again
sees the 5kQ portion at =z =L/2. This process continues and the antenna
effectively behaves like two coupled collinear antennas each with length L/2.
This behavior then accounts for the more rapid oscillation of the current.

The increase in the oscillation rate can be more easily observed in the
plot of the time response of the load voltage, as shown in Fig. 9. The non-
linear load voltage is obtainable from the v -i relation of the load. Also
included in Fig. 9 is the voltage across a linear 50 Q resistor which loads
the antenna at z =L/2. As may be noted, there is more than a 400% increase
in the maximum load voltage when the non-linearity is encountered. This effect
of increased voltage level should be taken into consideration in design to
prevent any possible damage toc the loading network.

The current at =z =L/4 1is shown in Fig. 10. Results from both the
direct time domain method and the frequency domain method are shown, the latter
being computed from Eq. (16). The results are in agreement, but do not agree
quite as well as in the load current case (Fig. 8). The reason for this is
that in the computation of the quantities is(zl,t) and yt(zl,t), a spatial
interpolation must be performed because the moment method solution of the
integral equation (A4) does not give the current at precisely z=L/4. This
interpolation procedure gives rise to errors in the antenna parameters used in
Eq. (16). It should be mentioned that the necessity of interpolation could
have been avoided had the number of zones been chosen properly. Superimposed
in Fig. 10 is the current at =z =1/4 when the antenna is center-loaded by a
linear 50 2 resistor. The more rapid oscillation behavior of the non-linear
case is again evident.

As mentioned earlier, the problem that an antenna being driven via a
non-linear load can be readily solved by methods identical to thoseused for
the scattering case. The case of an antenna center-driven by a step—-function

voltage source with magnitude V0 via a 502 /5kQ piecewise-linear resistor

23
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has been analyzed. Again, the initial current is assumed to flow through the

50 @ portion of the non-linear element. The driving—point current and the
voltage across the non-linear element are presented in Fig. 11. Also included
in Fig. 11 is the driving point current in the absence of the non-linear element.
As expected from the reasons given above for the scattering problems, the non-
linear case exhibits more rapid oscillations.

A more general class of non-linear loads is that whose response is
dependent on the magnitude of the exciting field, Eo’ or the exciting voltage
V . A simple example for the scattering case is the same piecewlse-linear load
treated above, but with an additional break point at v =-10 volts. For
VL < =10 volts, the load resistance is assumed to be 10 Q, instead of 5kQ.
This roughly models the reverse breakdown of a zener diode. Fig. 12 shows
the load current for three different values of EOL. For E01.=10 volts, the
result is the same as shown in Fig. 8 because the excitation is not strong
enough to drive the diode to breakdown. For E01.=50 and 100 volts, the effects
of the reverse breakdown are evident.

Fig. 13 illustrates the steady-state response over one period of the load ‘

current to a time-harmonic signal. The incident field is of the form
EC () = E_ sin(k L - ct/L) with kL=1.718, where k_ 1is the free-space
wave number. Thus, at t =0, the incident field is just beginning to grow in
time.

The same zener diode as employed in the previous figure is assumed to be
connected to the antenna. For E0L==10 volts, the diode does not break down
and the rectifying nature of the diode is obvious. As the excitation increases,

the zener breakdown begins to substantially modify the load current behavior.
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Time response of the driving-point current and the load voltage
when the antenna is center-driven by a step-function voltage source

(with magnitude Vo)

through a 50 @ /5kQ non-linear load.

Also

included is the driving-point current in the absence of the non-
10.

linear element.
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Fig. 12. Time response of the load current of an antenna center-loaded by
a50Q/5kQ /102 non-linear load, excited by a step-function,
broadside incident electric field with various field strength Eo.
Q = 10.
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V. Conclusions

Two methods of analyzing antennaé loaded by non-linear resistors have
been described. The results obtained using these different methods agree very
well. The second method, which makes use of frequency domain data determined
for the unloaded antenna is extremely valuable in view of the fact that large
amounts of frequency domain data currently are available for many different
types of antennas. This method can be easily implemented for many practical
antenna systems.

The idealized examples chosen fall into the category that the solution
of the non-linear algebraic equation (15) is unique. For a practical problem,
small package or junction capacitances and small lead inductances of the non-
linear device are present. As have been pointed out, these quantities help
to yield a non-linear differential equation which can be solved uniquely.

Both methods of solution can be easily extended to treat the case that
the load is either a non-linear capacitance or a non-linear inductance. Such
an extension will be useful in dealing with problems involving, for example,

varactor diodes or ferromagnetic devices. ‘

30



VI. Appendices

Appendix A. Voltage-Controlled Device in Shunt with a Capacitance

In this appendix we illustrate how to describe the problem of an antenna
with a non-linear voltage-controlled device by a non-linear differential equation,
of which a unique solution exists.

As mentioned in the text, a small but physically-real capacitance CS
is assumed to be in shunt with the non-linear load whose v -1 relation is

given by

i, () = F'lv (0] (A1)

where F' is a known function. This configuration is depicted in Fig. Al. For

z =zo, the antenna current i(zo,t) is found to be

i(z_,t) = i (t) +C_ EC'IE v, (1), (A2)
‘ Substituting Eqs. (Al) and (A2) into Eq. (4) yields
aC, EdE v (£) = S(z,t) - (2zo)‘l v () = oF' [v, (8)]. (A3)

Eq. (A3) is a non~linear differential equation in the unknown VL(t) and can
be readily solved at each time step, using a suitable algorithm for solving
ordinary differential equations. For z=#z0, the antenna current is given by

Eq. (4) where the right-hand-side is known.
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Fig. Al. Antenna with a non-linear load in shunt with a capacitance Cs’
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Appendix B. The Frequency Domain Integral Equation

To obtain a solution to Eq. (8) it is necessary to have the time domain
quantities isc(t) and yin(t). These can be obtained by the Fourier trans-
form of the corresponding frequency domain quantities Isc(w) and Yin(w).

These quantities can be computed for the linear antenna of length L

and radius a by using the Pocklington integro-differential equation

inc d2 2 L
-jweE (z,w) = (-——5 + k ) J I1(z',w) G(z,z';w)dz" (AL)
dz 0

where the Green's function G has the form

B 5 . (A5)

1 [ZW e—jk[(z—zf)z-F {2a_iin(6/2)}2]l/2 ad6

G(z,z';w) =
2na 0 4W[(z—z')2-+ {2a sin(e/Z)}Z]

In this expression, k=w/c, I(z',0) is the total axial current flowing in the
antenna and Einc(z,w) is the frequency domain component of the exciting elec-
tric field tangential to the antenna. For an accurate high frequency response,
the exact kernel is employed in Eq. (A5) instead of the easier to evaluate thin-
wire kernel [9].

The solution of Eq. (A4) is well documented in the literature [10], [11]
and involves the use of the moment method to form a system of linear, algebraic
equations with unknowns being related to the current distribution along the
antenna. Once the matrix of this system of equations has been inverted to find
the unknown current, it is possible to change the excitation of‘the antenna and
obtain the resulting current with very little additional effort.

Thus, at a particular frequency, Eq. (A4) is solved first for the scatter-
ing case which involves an incident electric field defined over the entire
structure to yield the short-circuit current at the antenna terminals, ISc(w).
Then the driven case is considered which involves a constant electric field
existing only over the antenna source region; the source region is assumed to

be finite in size to insure a finite capacitance [9]. The resulting current
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distribution is again evaluated and the input admittance of the antenna calcu- ‘

lated from the current at the terminals by

Y, @ =TI, (/v (A6)
where V is the exciting voltage defined as
vV = J Elnc(z)dz. (A7)

GAP

The previous calculations are repeated for a wide range of frequencies

(typically from kL =0 to kL=45 for the problems under consideration) so

that reasonably accurate time responses can be found using the Fourier transform

method.
In an analogous manner, the current induced at any point on the short-

circuited scatterer and the transfer admittance of the current at the same

point due to an applied voltage across the antenna gap can be computed. Again, ‘

time domain responses can be found using the Fourier transform method.
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