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Abstract

To test the efficacy of a direct integral equation approach to the study of
cavity-aperture interactions, the problem of an E-polarized plane electromagnetic’
wave incident on a thin, perfectly conducting cylindrical shell with a slit aperture
is considered. A computer program is constructed for the solution of the approp-
riate E field integral equation. Data are presented showing the behavior of the field
inside the cavity and in the aperture for a variety of aperture and cavity dimensions,

and some information is obtained about the SEM singularities and their dependence
on aperture size.




SECTION I
INTRODUCTION

The present study was motivated by some recent investigations of the coupling
of an electromagnetic field into a spherical cavity. In the particular case when the
cavity is bounded by a thin, perfectly conducting shell having a circular aperture, it
is not unnatural to expand the interior amd exterior fields in s pherical modes, and as
shown in ref. 1 it is then possible to calculate the fields inside the cavity. Unfor-
tunately, there are difficulties, most of which are attributable to the poor convergence
of the interior mode expansions in the vicinity of the boundary. These have been dis-
cussed by Senior (ref. 2) who has proposed instead an alternative formulation based
onthe E field integral equation for the total current induced in the shell. The result-
ing coupled integral equations for the tangential components of the current appear quite
amenable to solution by the moment method, and are also convenient for the numerical
determination of the complex frequency singularities of the singularity expansion
method (SEM).

In order to demonstrate the efficacy of this approach, we here consider the
simpler two-dimensional problem of a plane wave incident on a thin, perfectly conduct-
ing, cylindrical shell having a slit aperture. In most respects, this problem is phy-
sically and mathematically akin to the s pherical one, and our original interest was to
pursue the solution only far enough to verify that there are no difficulties involved.
Nevertheless, the problem does have interest in its own right, and data have been ob-
tained for the currents, aperture and interior fields for a variety of aperture angles
and ka in the range 0.25 < ka < 4.0 where ka is the electrical circumference of the
(closed) cylinder. Selected data are presented in Section ITI, along with information
about the first few complex singularities and their dependence on aperture size. A

description and print-out of the computer program are included as an Appendix.




SECTION II
MATHEMATICAL FORMULATION

A thin, perfectly conducting cylindrical sheil of radius a having a slit aperture
of half angle ¢o is illuminated by an E-polarized plane wave incident in a plane perpen-
dicular to the z axis of the cylinder. In terms of the polar coordinates (p, ¢, z) the
equation of the shellis p = a, ¢o <P< 27r-¢0 , and the incident electric field is taken
to be

plo2 e-ikp cos (f - @) (1)

(see Figure 1), where a time factor e“iwt has been assumed and suppressed.

Figure 1. The Geometry

Since the shell is infinitesimally thin, it can be represented by an electric
current sheet of strength Jz(s'), where J(s') = 2 Jz(s ") is the total current borne by

the shell. The scattered electric field at a point having the position vector p is then
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E'p=-12 "'4‘9 J,(s" Hc(,l)(kR) ds' (2)
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where Z0 = l/Yo is the intrinsic impedance of free space, H(()l) is the Hankel function
of the first kind and R is the distance between the integration and observation points.
The integration is along the shell ('one side' only) in the plane perpendicular to the z

axis containing the observation point, and consequently s' =af' with ¢o <pr< 21r-¢0.

The total field is obtained by adding (1) and (2), and if we now allow the observa-
tion point to lie on the shell and use the boundary condition at a perfect conductor, the
following integral equation results: |
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This is merely a special case of an integral equation for resistive sheets previously
considered by Knott et al (ref. 3), and a computer program for its solution is described
in the Appendix to this report. Having found the current Jz, the field at any point can
be calculated from eqs. (1) and (2). We note in passing that for an H-polarized incident
plane wave, the integral equation for the total current induced in the shell is more
complicated than (3), but a rather general computer program with which its solution

can be obtained is available (ref. 4).

In contrast to the mode-matching method used by Senior and Desjardins (ref. 1)
in the solution of the corresponding problem for a sphere, the direct integral equation
approach is convenient for the calculation of the complex frequency (SEM) singularities,
and the determination of their dependence on aperturé size. For the interior region

p <a, the cylindrical mode expansion has the form
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and if the cavity were closed, the singularities would be the real resonant frequencies
corresponding to the zeros of Jn(ka), i.e.

[a

W=u c
mn

where umn is the mth zero of Jn(u). When ordered in increasing magnitude, the

first few are

w = 2.405 c/a (m=1, n=0)
=3.832c/a (m=1, n=1)
= 5.136 o/a (m=1, n=2)
= 5.520 cfa (m=2, n=0) .,

Each bas its counterpart in the case of a spherical cavity, and the first two are even
similar in magnitude to those for a sphere. If the slit is now opened, the complex
frequencies must take on a negative imaginary part associated with the radiation
damping of the modes, and in addition it is expected that the real parts will decrease

with increasing aperture size.

The exterior region p>a is rather different. The cylindrical mode expan-

sion here is
00 .

z b 1) 2 ?
n n

n=-o

and for a complete perfectly conducting cylinder the complex frequencies are
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where vmn is the mth zero of Hill)(v). The nature of these zeros is discussed in

ref. 5 (see also ref. 6), and the zero with the smallest imaginary part is

Y10 =-2.404 - 10.3405.

In addition, there is a branch point at w = 0, which has no counterpart in the case of

a finite body.



SECTION III
NUMERICAL RESULTS

With the aid of the computer program described in the Appendix, the integral
equation (2) has been solved to give data for the fields inside the cavity and in the
aperture, as well as some information about the complex frequeﬁcy singularities.

No difficulties have been experienced in any of the more than 100 individual runs that
have been made so far. Although many of these runs have been directed at the complex
frequency singularities, with the program interrupted following the computation of the
determinant, it is evident that only a small selection of the data can be presented here.
For the data which follow, the number of sampling points used was increased almost ;
linearly with ka, from a minimum of 12 for ka < 1.0 to a maximum of 48 for ka 2> 3.5.
The largest ka considered was 4.0, and most attention was directed at cavities having
aperture half~angles ¢o = 10° and 30° with the plane wave at symmetrical incidence,

ie. a=0.

The amplitudes of the total currents JZ(¢) induced in the shell are illustrated
in Figures 2 through 5. Since « =0, the currents are symmetrical about ¢ = 1800,
and only the ranges g <p< 180° are displayed. As expected, the currents are
infinite at § = ¢o’ The curves become increasingly complex as ka increases, and
we note the enhanced values of Ile for § = 30° when ka = 2.3, i.e. close to the first
resonant frequency of the cavity. The amplitudes of the corresponding aperture fields
are shown in Figures 6 through 9. The fields are zero at §§ = + ¢0 in accordance with
the edge condition, and in contrast to the shell currents, the aperture fields are rather
simply behaved. This is in line with the observation in ref. 1 , though we note that
even for ¢0 = 30° and ka = 4.0, the aperture is still only 0. 67X in width. The fields
are a maximum at the first resonant frequency of the cavity, but very small at the next

(ka = 3.83), and the variation with frequency is brought out in Figure 10, where the



0
amplitude at the center of the aperture is plotted as a function of ka for ¢o =10 and
¢0 = 30°. Not surprisingly the fields are larger for the larger aperture, but the general
behavior is remarkably close to that found in- ref. 1 for a circular aperture into a

spherical cavity. The effect of oblique incidence is illustrated in Figures 11 and 12,

The prograni was also designed to compute the fields inside the cavity at
sampled points along the line ¢§ = 0 from the center of the cavity to the aperture, and
some data for the amplitudes as a function of poéition are presented in Figures 13 through
16. The curves are all for a =0, and the strong excitation when ¢o =30 and ka =2,3
is very clear. Increasing « decreases the excitation, and this is shown in Figure 17
in which the amplitudes for a = 0(45° 1180° and ka = 2.5 are plotted. To bring out the
resonance effect, the f1eld amplitude at the center of the cavity is plotted as a function
of ka for¢ = 10° and¢ = 30° in Figure 18. As expected, opening up the aperture
detunes the cavity and shifts its resonance to a lower frequency. Tms is more evident
at the first resonance than at the second, and because of the sharpness of the first

resonance, particularly for the smaller aperture, we have replotted the data of Figure

18 on a logarithmic scale in Figure 19.

In line with our original objective of investigating the integral equation approach
‘in all phases of its operation, we have also given some attention to the complex fre-
quency singularities of SEM. To locate a singularity, the bprogram was run at each of
a set of complex frequencies surrounding the expected value, with the program (in general)
interrupted once the determinant had been computed. From an examination of the results,
a new set of frequencies was selected, and so on until the zero of the determinant was

found to the accuracy desired. No attempt was made to mechanize the procedure.

A plot of the first interior resonance as a function of the aperture half-angle ¢0
is shown in Figure 20. Although any opening of the cavity must shift the frequency into
the lower half of the complex w plane and decrease its real part, the effect is very

small for a 10° angle, but increases rapidly with increasing ¢°. The computed values




are listed in Table 1, along with isolq;%fd data for other resonances. For the second

Table 1
SEM SINGULARITIES
wefa Interior Exterior
¢0, deg. first second first

0 2. 405 +| 3.832 -2.404 - i 0. 341
10 2.400 -10.001

ﬁvi
20 2.359 -10.015
30 |. 2.302-10.067 3.827 -1 0.003 -2.38 -10.39
40 12,253-10.160 <

.
interior resonance, even ¢0 = 30° gi%es only a small shift in frequency comparable

to that produced by ¢O = 10° at the fixjst resonance. The first exterior resonance
proved more difficult to locate: the ixéi:tial (sparse) sampling of the complex frequency
plane pointed inexorably to the logarit*hmic singularity at w = 0, and only after a more
detailed search was the zero found. As regards the determinants considered, it is
believed that the data for the interioriresonances given in Table 1 have at most an
uncertainty of unity in the third decimgl, but no statement of absolute accuracy is pos-
sible without a more detailed investigation of the effect that the number N of sampling

points has.



SECTION IV
CONCLUSIONS

The results obtained leave little doubt that the E-field integral equation is an
effective approach to the analysis of the thin-shell cavity problem, and provide en-

couragement for a study of a spherical cavity using the formulation given in ref. 2.

However, the data for a circular cylinder are also of interest themselves,
and it would seem desirable to pursue the present calculations further to locate more
of the SEM singularities, including their complete dependence on ¢o’ and their

excitation coefficients.
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Figure 3. Shell current amplitudes for 910 = 100, a =0 and various values of ka.
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Figure 4. Shell current amplitudes for ¢o = 300, a = 0 and various values of ka.
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Figure 5. Shell current amplitudes for ¢O = 30°, a = 0 and various values of ka.
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Figure 16. Interior field amplitudes for ;60 = 300, a = 0 and various values of ka.
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| APPENDIX
SLOTTED CYLINDER COMPUTER PROGRAM

INTRODUCTION

We here describe the essential features of the computer program that solves
the two~dimensional integral equation (3) for the total current induced in the wall of
a perfectly conducting cylindrical shell having a longitudinal slot. The electrical size
of the cylinder and the angular size of the slot are the only body variables subject to
control by the user of the program, but there is no limit to the number of angles of
incidence that may be specified.

The program is named RAMP and is written in FORTRAN for MTS (Michigan
Terminal Service) at the University of Michigan, where the basic machine is an IBM
360 computer. Because some features of the MTS system differ from those of other
computer facilities, minor alterations would have to be made if RAMP were run
elsewhere. The program is patterned after others developed at the Radiation Labor-
atory that solve similar two-dimensional problems but involving more general profiles.
However, little attempt has been made to exploit the specific symmetry of the slotted
circular cylinder, so that the program is not as efficient as it might be. The matrix
for this geometry is, for example, symmetric, and the running time could be reduced

somewhat were this symmetry to be used.

MATHEMATICAL FORMU LATION

The program solves the E field integral equation (3) for any complex number
k whose real part is the free space propagation constant. The contour C extends
from one edge of the slot to the othér along the cylindrical shell, and is subdivided
into M cells, where M is an integer specified on input. Thus, each cell has an
angular width

Ag =2(7r-¢0)/M
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where ¢0 is the half angle subtended by the slot. The width chosen reflects the
judgement of the user, since small widths tend to improve accuracy but also to increase
machine running time. Much recent data generated by RAMP were obtained using cell
widths of A/12 or less, implying

M > 12 ka.

The linearlization of eq. (3) produces M simultaneous equations for the unknown
currents JZ, assumed constant over each cell. Program RAMP creates an M x M
matrix of complex numbers associated with this system of equations, inverts the
matrix and then multiplies the resultant matrix by the incident field to obtain the sur-
face currents. The currents, now being known, may be used to calculate the scattered
electric field at any point in space from eq. (2). In the actual computation, of course,

the program approximates the integral by a discrete sum of M contributions.

Although eq. (2) allows the fields to be calculated anywhere, the program is
very specific and computes them only over the slot aperture (at constant radius a) and
along a radius that terminates at the midpoint of the slot. Moreover, it is the total
field that is computed, so that once the integration required by eq. (2) is performed,
the program then adds the incident field (1) to obtain the total field.

PROGRAM DESCRIPTION

Program RAMP is an outgrowth of a previous, more efficient version in which
the wavenumber ‘k was a phre real number. In general, however, the interior
resonances occur at complex wavenumbers, especially for aperture half angles greater
than about 10 degrees, hence the generalization to complex k was necessary. In order
to achieve this, two modifications were made: a) the provision of a complex number
(KFAC in the program) which is chosen by the user, specified on input and subsequently
multiplied by the (real) free space wavenumber to generate complex k, and b). the
development of a subroutine to generate Hankel functions for complex arguments. It is

mainly this latter provision that makes RAMP less efficient than its predecessor,
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RAMP consists of a MAIN program and two sﬁbroutines, FLIP and HANK,
MAIN reads all input, prints all output, fills the matrix elements, computes the field
distributions from the current distribution and indexes through the desired range of
incidence angles. FLIP performs two functions; it inverts the original matrix and
multiplies the inverted matrix by the incident field to obtain the surface currents.
The bulk of FLIP is virtually a copy of IBM's matrix inversion routine, but modified
for complex elements, with a handful of statements added at the end to perform the
matrix multiplication operation. The MAIN program prudently calls for the inversion
from FLIP only once, and thereafter expects FLIP to merely supply new current
distributions for new angles of incidence.

Subroutine HANK is based on the ascending series representation for the Bessel
functions of the first and second kinds of order zero. The program decides how many

terms of the series to use from the criterion
n=6+135w ,

where n is the number of terms used and W is the complex argument. Although the
criterion was selected so as to provide absolute precision of better than 10-5, internal . :
round-off errors tend to be wérse than this for complex arguments having large _
imaginary parts. For real W the accuracy is better than 10-5 for arguments as Iarge"?'t_f.;
as 10.0. Since HANK uses double precision arithmic on the IBM 360, it would have to
be modified for, say, the CDC-6600 system.

Briefly, the program RAMP operates as follows: input data for a single fre-
quency and aperture half angle are read from two consecutive cards from the input
stream, as described below. The first entry on the first card is the integer M (the
number of sampling points on the cylinder profile) and is also used as a key to shut down
the program; i.e., if M = 0 — which can be synthesized with a blank card — the program
terminates. The MAIN program then fills the matrix, calling on subroutine HANK for
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the appropriate Hankel functions. The incident field structure is computed for the first
angle of incidence and MAIN then calls FLIP to invert the matrix and supply the current
- at each cell on the profile.

The currents are weighted and summed according to eq. (2) to obtain the total
electric field distribution at N discrete points over the aperture and at L discrete
points along a radius. N and L are controlled by the user as input data. Since the
weighting function is a Hankel function, much of the machine time is spent carrying out
operations in subroutine HANK. After the fields over the aperture and along a radius
have been computed and printed on the output record, MAIN indexes to the next angle
of incidence by adding an increment (specified as input data). Subroutine FLIP is
called, but since the matrix has already been inverted, FLIP merely supplies new
values for the surface currents, which MAIN then uses to compute new field distribu-
tions. If the new angle of incidence exceeds the limit specified by the user, the program
returns to the input stream and reads the first of a pair of cards required to specify a

new geometry. As mentioned earlier, a blank card will shut down the program.
INPUT DATA FORMAT

The two input data cards required for a single geometry should contain the
following information:
Card 1: FORMAT (315)
M the number of sampling points on the profile,
N the number of field points in the aperture,
L the number of field points along the radius.

Card 2; FORMAT ( 8F10. 5)
A the radius of the cylinder in inches,
HANG the aperture half-angle in degrees,
WAVE the incident wavelength in inches,

KFAC a complex number whose real part (always 1.0) and imaginary
part constitute the fourth and fifth entries on the card,

34
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FIRST the first angle of incidence in degrees,
LAST the last angle of incidence in degrees,

INK the increment to be used in indexing through the incidence angles.

In hindsight, the variables A, WAVE and KFAC could- have been incorporated
in a single complex variable (say KA) making the input structure a little less complicated,
but at the time the program was being prepared the variations to be studied were not »
known precisely. This is because the previous version of RAMP (for real ka only)
was modified by the inclusion of the factor KFAC to permit complex values for ka. ‘
Consequently the user must decide beforehand what value of (complex) ka is of interest,

then calculate A, WAVE and KFAC to be read in as input in order to generate this vahie.
PROGRAM LISTING

A listing of the main program and the two subroutines are given on pages 36
through 39, i .The entire program occupies 30584 32-bit bytes of storage as listed;
the required storage will change, of course, if the arrays are re~dimensioned so as to |
accommodate other cylinders (i.e., differént surface field sampling points). The

program is presently limited to 50 sampling points.
OUTPUT SAMPLE

Pages 40 and 41 contain a sample of output to illustrate the format. The first
page lists the current distribution over the cylinder surface and the second lists the

total field distributions over the aperture and along a radius.
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10

15

25
35

40

.45

50
55

60
62

IMPLICIT COMPLEX (K)
COMPLEX AA(50,51) ,KJ (50) ,PINK (50) ,SUN,B
REAL LAST,INK

DIMENSION FEE{50),FEAT(50)

DATA RED,DIG,/0.01745329,57.29578/

READ 100, M,N,L

IF (M.EQ.D) GO TO 95

READ 200, A,HANG,WAVE,RFAC,FIRST,LAST,INK
K=6.283185%KFAC/WAVE

KA=K*A

KTA=2.0%KA

DEEFEE=2. 0% (180.0~HANG) /H
DEFEAT=RED*DEEFEE

ADFEE=A*DEFEAT/WA VE

KDA=0.,25*%KA*DEFEAT

DO 15 I=1,M

FEE(I) =HANG+DEEFEE* (I-0.5)

FEAT (I)=RED*FEE (I)

po 35 I=1,M

DO 35 J=1,M

IF (I.EQ.J) GO TO 25

ANG=ABS (FEAT (I) - FEAT(J))*O 5

SANG=SIN (ANG)

KR=K TA*SANG

CALL HANK (KR, KH)

AR (I,J)=KDA*KH

GO TO 35

AA(I,J)=ADFEE*CMPLX (1.570796,0.02879837+ALOG (ADFEE))
CONTINUE

DEL=2.0%HANG/N

TETA=FIRST- INK

TETA=TETA+INK

IF (TETA.GT.LAST) GO TO 10

THE=RED*TETA

DO 45 I=1,M

K ANG=KA *COS (THE-FEAT (I) ) *CMPLX (0.0, -1.0)
PINK (I)=CEXP (KANG)

IF (TETA.EQ.FIRST) GO TO 50

CALL FLIP (AA,M,PINK,KJ,SUM,ANG,2)

GO TO 62

CALL FLIP (AA,M,PINK,KJ,B,DHMAG,1)

PRINT 4060, KA,HANG,TETA,DMAG

PRINT 300

DO 60 I=1,M

AMP=CABS (KJ (I))
FASE=DIG*ATAN2 (AI ¥AG (KJ(I)) ,REAL (KJ (I)))
PRINT 500, I,FEE(I),AMP,FASE,I

PRINT 700, KA,HANG,TETA

PRINT 900 »

DO 75 J=1,N

SUM=CMPLX (0.0,0.0)

ANGLE=DEL* (J-0.5) -HANG

ANG=RED*ANGLE

DO 70 I=1,M

SANG =SIN (0.5%ABS (ANG-FEAT(I)))
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KR=KTA%*SANG
CALL HANK (KR, KH)
70 SUM=SUM-KJ (I)*KH
SUM=KDA*SUM
KANG=KA*COS (THE-ANG) *CMPLX (0.0, ~-1.0)
SUM=SUM+CEXP (KA NG)
AMP=CABS (SUM)
FASE=DIG*ATAN2 (AIMAG (SUM) , REAL{SUHM))
75 PRINT 600, ANGLE,SUM,AMP,FASE
IF (L+N.LT.47) GO TO 82
PRINT 700, KA,HANG,TETA
82 PRINT 800

DIP=A/L
LL=L+1

Do 90 J=1,LL
R=DIP* (J~1)
RA=R/A

SOM=CHPLX (0.0,0.0)
DO 85 I=1,M
KR=KA*SQRT (1.0+RA* (RA-2.0%COS (FEAT(I))))
CALL HANK (KR, KH)

85 SUM=SUM=-KJ (I) *KH
SUM=KDA*SUM
KANG=K*R*COS (THE) *CMPLX (0.0,-1.0)
SUM=SUM+CEXP (KA NG) .
AMP=CABS (SUM) ~
FASE=DIG*ATAN2 (AIMAG (SUM) ,REAL(SUN))

90 PRINT 600, R,SUM,AMP, FASE
GO TO 40 i

95 CALL SYSTEM

100 FORMAT (3I5)

260 FORMAT (8F1).5) :

300 FORMAT (' CELL NUMBER ANGLE CURRENT AMPLITUDE !,

& *CURRENT PHASE CELL NUMBER'))

400 FORMAT ('1',27X,'SLOTTED CYLINDER'/20X,'KA',14X,2F8.3/20X, ,
&' APERTURE HALF-ANGLE',F13.3/20X, 'INCIDENT FIELD DIRECTION'., .
§F8,3/20X, '"DETERMINANT',E21.5//)

500 FORMAT (I7,F15.2,F17.5,F16.2,112)

600 FORMAT (F9.2,F17.5,F12.5,F16.5,F14,2)

700 FORMAT ('1',27X,'SLOTTED CYLINDER'/20X,'KA', 14X, 2F8.3/20X,
E!APERTURE HALF-ANGLE',F13.3/20X,'INCIDENT FIELD DIRECTION',F8.3/)

800 FORMAT ('O DISTANCE',8X,'FIELDS ALONG A RADIUS',7X,'AMPLITUDE...
£8X,' PHASE'/) .

900 FORMAT ('O  ANGLE',12X,'APERTURE FIELDS',10X,'AMPLITUDE',
£8X, 'PHASE!/) _

END
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100

SUBROUTINE FLIP (A,N,X,Y,D,DMAG,IAT)

COMPLEX A (50,51),X(50),¥ (50),D,BIGA,HOLD

DIMENSION L (50),M (50C)

IF (IAT.GT.1) GO TO 150

D=CMPLX (1.0,0.0)

DO 80 K=1,N

L (K) =K

M (K) =K

BIGA=A (K,K)

DO 20 J=K,N

DO 20 I=K,N

IF (CABS (BIGA).GE.CABS (A (I,J))) GO TO 20

BIGA=A (I,J)

L (K)=1I

M (K)=J

CONTINUE

J=L (K)

IF (J.LE.K) GO TO 35

DO 30 I=1,N

HCLD=-A (K,I)

A (K, I)=A (J,T)

A (J,I) =HOLD

I=M (K)

IF (I.LE.K) GO TO 45

DO 40 J=1,N

HOLD=-A (J.K)

A (J,K)=A(J,T)

A (J, I)=HOLD

IF (CABS(BIGA).NE.C.0) GO TO S0

D=CMPLX (0.0,0.0) A

RETURN

DO 55 I=1,N

IF (I.EQ. x) GO TO 55

A (I,K)=-A(I,K)/BIGA

CONTINUE

DO 65 I=1,N

DO 65 J=1,N

IF (I.EQ.K.OR.J.EQ.K) GO 70 65

A (I,J)=A(I,K)*A (K,J)+A(I,J)

CONTINUE

po 75 J=1,N

IF (J.EQ.K) GO TO 75

A (K,J)=A (K, J) /BIGA

CONTINUE

D=D* BIGA

A (K,K)=1.0/BIGA

BN=FLOAT (N)

DMAG=CABS (D) * (2. 0**BN)

K =N

K=K-1

IF (K.LE.O) GO TO 150
I=L (K)

IF (I.LE.K) GO TO 120

DO 110 J=1,K

HOLD=A (J, K)
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110
120

130
150

200

10

30

A(J,K)==A(J,I)
A (J,I)=HOLD

J=M (K)

IF (JJ.LE.K) GO TO 100
po 130 I1=1,N
HOLD=A (K, I)
A(K,I)==-A(J,I)

A (J, I)=HOLD

GO TO 100

DO 200 I=1,N

Y (1) =CMPLX (0.0, 0.0)
DO 2C0 J=1,N

Y (I)=A(I,J)*X (J)+Y(I)
RETURN

END

SUBROUTINE HANK (Z,H)

COMPLEX Z,H

COMPLEX*16 J,Y,%ZZ,DUM

REAL*8 A,B,F

A=DBLE (REAL (Z))

B=DBLE (A IMAG (Z) )

22=-0.25%DCMPLX (A*A-B*B, 2.0*A*B)
F=CDABS (22)

X=SNGL (F)

MM=6 +IFIX (1.35%X)

F=1.0

M¥=MM-1

DO 10 K=2,MM
B=1.0/DFLOAT (K)

FP=F+B

B=1.0/DFLCAT (K+1)
A=DFLOAT (K*K)

DUM=2Z7Z/A

J=1.0+DUN

Y=F+ (F+B) *DUM

DO 30 I=1,MM

K=MN-TI+1

B=1.0/DFLCAT (K)

A=DFLOAT (K*K)

DUM=22Z/A

P=F-B

Y=F+DUM*Y

J=1.0+DUN*J

Y=(0.57721566490153+CLOG (0. 5%2) ) *J-Y

Y=0.6366 198*Y

A=DREAL (J) ~DINMAG (Y)

B=DIMAG (J) 4DREAL (Y)
—CMPLX(SNGL(A),SNGL(B))

RETURN

END
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CELL NUMBER

- -
SOV NONIE WK -

BN ad cd wd vod od wd b
QWO EWN

NN NN
ELWN -

NN
~No o,

WNN
O WX

SLOTTED CYLINDER
2. 300

EA

APERTURE HALF-ANGLE

INCIDENT PIELD DIRECTION

DETERMINANT

ANGLE

35.00

45.00

55.00

75.00

85.00

95.00
105.C60
115.00
125.C0
135.00
145.00
155.00
165.00
175.C0
185.00
195.00
205.C0
215.00
225.C0
235.00

. 245,00

255.00
265.00
275.00
285.00
295.00
3¢5.00
315.00
325.00

8.97951
3.05661
1.77597
0.85976
0.49555
0.93305
1.41335

1.74348

1.89528
1.88554
1.76117
1.58776
1.43204
1.33522
1.29643
1.29644
1.33520
1.43205

. 1.58773

1.76118
1.88556
1.89525
1.74348
1.41337
0.93306

- 0.U49554

0.85976

1.77595

3.05662
8.97952

40

-0.200
30.000

0.0

0.47255E~-14

-122.16
-114.21
-114.87
-123.67
178.16
143,93
144,67
152. 30
161.23

169.21.

174.67
- 176.50
174.62
170.74
167.79
- 167.78
170,74
174.62
176.50
174.67
169.21
161.23
-152. 31
144.67
143,93
178.16
-123.67
-114.87
-114.21
-122.16

CURRENT AMPLITUDE CURRENT PHASE CELL NUMBER

NN N
2 WN -

NN
o~

29

W
o

N b od o b o ad b ed o
OVONOONIETWN=O VDTN E WD

-

«




SLOTTED CYLINDER
KA 2.300 -=0.290

APERTURE HALF-ANGLE 30.000
INCIDENT FIELD DIRECTION 0.0

ANGLE APERTURE FIILDS AMPLITUDE PHASE
-28.00 -0.98021 0.64451 - 1.17312 146.67
=-24.00 -1.36907 0.94723 1.66u481 145,32
-20.,00 ~-1.66180 1. 17919 2.C3766 144, 64
~16.00 -1.88785 1. 36086 2.32721 144. 21
~12.00 ~2.05832 1.49933 2.54650 143.93

-8.00 -2.17896 1.59731 2.70C99 143.74

-4.00 -2.24926 1.65587 2.793C4 143,64

0.0 -2.27291 1.67536 2.82364 143,61
4.00 -2.24927 1.65587 2.793C5 143.64
8.00 -2.17806 1.59731 2.70099 143.74

12. 00 -2.05832 1.49932 2.54649 143.93

16. 00 -1.88784 1. 36085 2,32720 144. 21

20,00 -1.66179 1.17918 2.03765 144.64

24.00 -1.36906 0.94721 1.66479 145, 32

28.00 ~0.98020 0.64450 1.17310 146.67

DISTANCE FIELDS ALONG A RADIUS AMPLITUDE PHASE
0.0 0.32772 2.98781 3.00572 83.74
1. 00 0.20584 3.05992 3.C6684 86.15
2.00 0.04669 3.06825 3.06861 89.13
3.00 -0.14866 3.01551 - 3.01917 92.82 .
4,00 -0.37864 2.90761 2.93216 97.42
5.00 -0.64144 2.75355 2.82727 103.11
6.00 -0.93482 2.56475 2.72981 110.03
7.00 -1.25507 2.35369 2.66741 118.07
8.00 -1.59489 2.13142 2.66207 126, 81
9.00 -1.94090 1.90484 2.71947 135.54

10.00 -2.27291 2.82364

1.67536
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