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ABSTRACT

The difficulties with the usual formulation of Pocklington's equation
for numerical solution of thin-wire problems are examined and an integro-
difference equation is proposed which circumvents the difficulties and
whose solution can be shown to converge asymptotically at the same rate
as that of Hallén's equation with the same basis set and point-matching.
Furthermore, it is shown that testing Pocklington's equation with piece-
wise sinusoids results in a similar integro-difference equation but whlch
has a solution equal to that of the corresponding point-matched Halldn
equation. For any choice of basis functions, the integro-difference
equation has the simple kernel, the fast convergence, the simplicity of
point-matching, and the adequate treatment of rapidly varying incident
fields, but none of the additional unknowns normally associated with
Hallén's equation. Furthermore, for the special choice of piecewise
sinusoids as the basis functions, the method reduces to Richmondts
piecewise sinusoidal reaction matching technique, or Galerkin's method.

The treatment is generalized to the case of currents which exist on
co-planar surfaces and conclusions similar to the above are TFeached.
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INTRODUCTION

In order to handle more complicated geometries using moment meth-
ods, it is necessary to optimize the numerical solution procedures from
the point of view of speed and convergence. This leads one to a study
of the properties of various integral equation formulations and of the o
choice of basis and testing functions [1] in solution methods, both
with an end toward improving the numerical efficiency of given comput-
ations. Also desirable are techniques which are conceptuzlly simple
to apply (so as to minimize programming time) and which have a wide
range of applicaﬁility.

One difficulty whicﬁ frequently arises in the numerical solution
of an integral equation is the appearance of derivatives outside the
vector potential integrals on the induced currents. For thin wires,
this problem, encountered in Pocklington's equation, is usually handled
in one of three ways. First, the E-field integro-differential
equation may be converted to a Hallén type equation plus boundary con-

ditions on the current. This procedure has the disadvantages of intro-

ducing additional unknowns into the problem (associated with the homo- O



geneous solutions of the differential operator) and of producing a new

integral equation which does not incorporate the boundary conditions

on the unknown current, However, the Hallén type equation offers

good convergence for almost all commonly used basis functions. In

the second scheme, the kernel of the E-field integral equation is

made regular by approximations which result in the so-called reduced

kernel, and the differentiation is brought inside the integral and onto

the unknown current by integration by parts. When collocation
(point-matching) is used with this technique and a basis representation

for current is chosen which permits slope discontinuities in current,
€e.g., plecewise constant or piecewise linear representation , con-

vergence is relatively slow. Convergence can usually be improved by

a somewhat more complicated choice of basis functions having no slope

discontinuities. Finally, a relatively expensive testing procedure,

such as Galerkin's method, may be used to treat the derivatives and

to accelerate convergence.

In this paper, we present a method for treating the differential
operator which is simple, economical, and which renders the solution
of Pocklington's equation asymptotically convergent at the same rate
as that of Hallén's equation with point=matching. The procedure is
also approximately equivalent in the method of moments to testing with
either piecewise linear or piecewise sinusoidal functions. Furthermore,
it is demonstrated that testing of Pocklington's equation with piece-
wise sinusoids results in a slight modification of the method which is
exactly equivalent to Hallén's equation with point-matching for any

choice of basis functions and to Richmond's sinusoidal reaction



(1a)

(1b)

(1c)

matching procedure [2] when piecewise sinusoids are also chosen as
the basis functions for the current. Even though the method enjoys
the high rate of convergence of other more sophisticated techiques,
it is computationally equivalent to, and as simple to apply as, point-
matching.

Considered briefly are extensions of the basic idea to integral

equations for non-parallel wires and planar surfaces.

STRAIGHT WIRE .

We consider a thin cylindrical dipole of radius a formed by
a perfectly conducting tube of length L and driven at the center
by a delta-gap generator of V volts. Requiring the z-component of the
tangential electric field to vanish on the conductor results in Pock-
lington's equation,

2
—97 + kz Az(z) = -juueV 6(z), -L/2 <z <L/2 .
dz

where

' +L/2
= H t ot 1
Az(z) YT I(z")G(z-2")dz
-1/2
and the kernel is given by
1 Zm e~jk¢4?+4azsin2¢'/2

G(w) = o - do! .
V<?+4a25in2¢'/2

In the above expressions I(z) is the unknown total axial current,
M and € are the permeability and permittivity, respectively, of the
medium surrounding the tube, k is the wave-number or 2m/(wavelength in

the medium), and w is the angular frequency of the suppressed time

i



(1d)

(2)

(3a)

dependence exp(jwt).
For thin wires, one often uses the reduced kernel approximation [3],
e-jkvw2+a2

Y W2+a.2

The vector potential Az is evaluated on the surface of the tube and

G(wW) = K(w) =

is assumed to be circumferentially independent. We therefore exhibit
only the z dependence in writing (la).
In the simplest procedure, we point-match Eq. (la) to obtain the

set of equations

2

d 2 _ ~JwueV —n . oee
-c;_z- koA (z) z=z_ Az  “mo ° m=0,2 1, 052N,

where zm=mAz s Az=L/(2N+2) s

and 6mo is the Kronecker delta function. To obtain the right side
of (2), the delta function of (la) is approximated by a rectangular
pulse of unit area distributed over the subdomain m=0, i.e., over the
interval [-Az/2, Az/2], and the resulting driving field is sampled at
the center of the region.

Hallén's equation is obtained from (la) in the usual way and en-

forced at the match points z. to arrive at

_ Juue
2k

A (z) =B cos kz_ + C sin kz V sin klz l s
z-'m m m m

m=0, +1, <5 & (N+1) .



We also now require the current boundary conditions
(3b) I(x L2y =0 .

When the unknown current is expanded in terms of a set of basis functioms
£ (2),

- N

) 1) =3 IfG&)
n=-N

and substituted into (2) or (3), a matrix equation results for the
unique determination of the unknown current expansion coefficients
In. We assume in the following that the expansion (4) is chosen so

that (3b) is automatically satisfied.

Returning to (1), we may choose to replace the derivative operater

with the difference approximation “
2 2
d 2 v 1a 2
7 FRAE L 7 kA L,
dz Az

(5

Az(zm+1) - 2(1-k2Az2/2)Az(zm) + Az(zm_,l)
> .

Az

This form has been used by Tesche [4] and others with good success.

One line of reasoning suggesting this choice begins with a comparison

of Egs.(2) and(3). In Fig.lb we represent qualitatively both sides of

Eq. (3) in the case where the expansion functions are assumed to be of

the subdomain type. The resulting vector potential Az (z) ripples some-

what, but at precisely the match points Z the potential is required

to be equal to the right hand side of (3a) which is a smooth function. Q

For the purposes of illustration we regard the constants B and C as

6



already having been determined by the two equations m=#(N+1) in (3a).
Ideally, of course, the left-and right-hand sides should be equal for
all z, but this is unlikely in an approximate solution. We note fur-
ther that because of the rippled form of the vector potential, as re-
presented by the left-hand side of (3a) with subdomain basis functions,
derivatives of Az will be completely inaccurate (compared to those of
the "correct" vector potential) unless the subdomain size is extremely
small., Yet, Eq. (2) may be interpreted as a
constraint on a weighted sum of the vector potential and its second
derivative at the match point. The inaccuracy of the second derivative
of the potential produces resultant fields which are extremely peaked
at the match points. This is shown by Fig. lc which illustrates qual-
itatively both sides of Eq. (1) (subject to (1d)) with the pulse approx-
imation for the delta function and a point-matching solution. Because
of the unphysical behavior of the left-hand side of (1) due to the slope
discontinuities in current, the solution of Pocklington's equaticn
(2) tends to converge slowly as compared to that of Hallén's equation
(3) in which the unnatural slope discontinuities are effectively
smoothed. The choice of (5) to approximate the harmonic operator
might be expected to result in improved convergence for Pocklington's
equation since the derivative is calculated by "numerical differentia-
tion'" which, because of its gross sampling, is insensitive to the small
scale ripples introduced by the unphysical representation of the current
(subdomain basis functions). -

According to the procedure, we replace the derivative operator

in (2) with approximation (5), which results in the integro-difference



equation

2,2 ey
Az(zm+1)-2(l-k Az /Z)Az(zm) + Az(zm_l) = -JmusVAzémo

K4

(6)
m=0, +1,°°%+ N s
whose difference equation solution is easily verified to be
. .opeV _ sin|mo|
A(z)=Bcosmd+ C sin mO - que . s
(7) z''m X Ao kaz/2)%

m=0, &1, *°*° , *[N+1) s

where @=cos-1(1-k2Az2/2).
Eq. (7) corresponds.closely to Hallédn's equation (3a) as can be seen 0

by noting that for N large kAz<<l and we may write

K2Az%

2
.97
gcse « - 5T = 1- 5

from which we coriclude that

%im © = kAz .
N0

In a practical sense, the limit is approached rather quickly as illus-
trated in Table 1. When this limit is substituted into (7), Hallén's

(point-matched) equation (3a) is obtained. When a basis set is chosen

and a solution of (7) is obtained, we observe that it must necessarily
satisfy (6) and vice versa. We conclude that a solution of (6} will O
very quickly converge to the corresponding solution of Hallen's equationwith

point-matching. Furthermore, comparison of (6) and (3a) shows that
8
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9)

no extra calculations or integrations are needed in the integro-
difference equation formulation compared to Hallen's formulation and,

in addition, the two unknown constants B and C no longer appear. Figure
2 illustrates the convergence of the admittance of a dipole antenna

as calculated from Egs. (3) and (6). Because the dipole is near
resonant length, the susceptance behaves rather poorly, even for the
Hallén solution. Nevertheless, the convergence of the solution of

the integro-difference equation (6) to the Hallén solution is evident..
As verification of the statement concerning the equality of solutions

to (6) and (7), Eq.(7) was also solved and the current distributions were
found to be equal within machine accuracy. The basis set chosen in

this case was a set of piecewise linear or triangle functions defined by

Az—tz—z |
- m
Az s I 22 Znel ’
Tm(z)=
0, otherwise.

However, we emphasize that the conclusions above are independent of
the choice of basis functions. Also shown for comparison in Figure 2
is the convergence of the admittance obtained from a solution of (2)

with piecewise sinusoidal basis functions,

sin k(Az-lz-zm])

; <z <
Sm(z)= sin kAz s z 1%z 2z o

0 otherwise,

2

which approximate the piecewise linear functions (8) for small Az. Be-

cause of the aforementioned problems concerned with using (2), the

convergence in this case is rather poor. The use of this basis set



and its attendant problems have been investigated by Pearson and Butler 0
[s].

We can achieve an even closer correspondence between the integro-
difference equation and Hallén's equation,if we replace the factor
(1-k2A22/2) appearing in Eq. (6) by cos kAz, from which it differs
negligibly for small Az (N large). The resulting integro-difference

equation is

(10) Az(Zm+l) - 2 cos kAz Az(zm) + Az(zm_l) =-qusVAz6mo ,

m=0, + 1,°***, + N ,

for which we can write the difference equation solution immediately:

_ . . Juwpev kAz s
(11) Az(zm) =Bcoskz +Csinkz > {%in i ] sin k hm i

m=0, £ 1, ~**+, & (N+1).

This form differs from (32) only in the parenthetical terms of the
particular solution of (10). Hence, the solution of (10) and (11)
differs from the solution of Hallén's point-matched equation by a
factor (sin kAZ/kAz for any number of subdomains (of testing set).
An approach based upon an entirely different viewpoint yields
conclusions similar to those above and is even more illuminating. We
define the inner product [1] (or more accurately, the reaction)

between quantities g and h,

L/
(12) (oo by o= [ sememe




and use the piecewise-sinusoidal functions defined in (9) to test, in

the sense of the method of moments, the Pocklington equation,

13 —d2—+k2 A (2) = -jwueEt(z
(13) 7 ,(2) = -juueE (z) ,

dz

where E; is an arbitrary impressed excitation of which (la) is simply

the specialization to a delta-gap source. Hence we wish to evaluate

2 .
(14) < ;—‘3-2- . K A(2), Sm(z> - -jwu€<EJZ‘(z), Sm(z)> .

Integrating by parts twice, one may write the left-hand side of

(14) as

. S
sin kAz

L/2
‘][ [ 6(z-zm+l)—2 cos kAzG(z-zm) + 6(z-zm_1) ]Az(z)dz'
-L/2

from which we easily obtain the integro-difference equation

(15) Az(zm+l) - 2 cos kAz Az(zm) + Az(zm_l)
. Z .
_ _ Jwue m+l 1 . o
= . 5= ~[- E, (z)sin k(Az |z z Ddz ,
z
m-1

m=0, £ 1, =++, 4+ N

By direct substitution, it may be verified that a solution to the

difference equation (15) is

11



(16)

(17)

A
. m .
_ . _ Juue i . "
Az(zm) = B cos k zo + C sin k z _—T?-_[- Ez(2351n kLzm z}dz ,
0

m=0, £1, 77, £(N+1)

which is precisely the point-matched Hallén's equation for arbitrary
excitation. Hence, we reach the rather surprising but important con-
clusion that testing with piecewise sinusoids results in an integro-
difference eqﬁation whose solution is identical to that of Hallén‘s
equation with point-matching, independent of the basis set chosen to
represent the current.

The fact that this result holds for arbitrary excitation is also im-
portant because Hallen's equation, as doés now the integro-difference
equation (15), has the advantage that the incident field appears under
an integral so that the influence of a rapidly varying incident field is
properly reflected in the solution. With any of the usual point-match-
ing procedures and Pocklington's equation, often the excitation is
not sampled adequately [5].

It is also of interest to note that the use of piecewise sinusoids,
Eq. (9), as a basis set in (15) is precisely Richmond's so-called
piecewise sinusoidal reaction matching, and one can obtain his for-
mulas for the reaction between two sinusoidal dipoles [6] from the

left-hand side of (15) and the integral

z ot /2 12
4[2 et]kz o jkya"+(z-2'")
Ya%+(z-21)"

= 7 AR Ci () + §SECkuy) - Cilw) - 3Sitku)],

dz!

1

2 2
u, = ;(z—zi) - Ya +(z-zi) , i=1,2, o

12



where Ci and Si are cosine and sine integrals, respectively. The
procedure leading to (15) has the characteristics of testing with fun-
ctions other than delta functions and, indeed, is Galerkin's method if
piecewise sinusoids are used to represent the current, yet (15) pos-
sesses all the computational simplicity usually attributed only to
point-matching.

Finally, it is observed that testing of (la) with piecewise linear

functions (8) leads directly to (6) subject only to the approximation,

“mel
f Az(z)Tm(z)dz = Az Az(zm)
which draws attention to the fundamental similarity of such testing and
the difference operator approximation of (5) in Pocklington's equation.
Furthermore, the above observation leads one to recognize that a
solution technique in which the current is represented by piecewise
linear functions in the integro-difference equation (6) is almost
equivalent to Galerkin's method. Similar observations can be made
relative to (13} and (15) subject to small argument approximations for
the sine and cosine functions in (15). In summary, for kAz<<]l, the
piecewise sinusoid approaches the piecewise linear function so that num-
erically one finds them interchangable in the various schemes discussed

above and conclusions relative to one hold for the other.

GENERALIZATION TO CO-PLANAR CURRENTS

In the following, we consider the generalization of the ideas of

the preceding section to co-planar currents, i.e. currents in a plane

13



or in co-planar wires. Without loss of generality, we restrict our
consideration to scattering by a rectangular conducting plate S of
length 2a and width 2b. Consideration of co-planar wires is obtained
merely by appropriately defining the components of the vector potential.

Integral equations obtained by satisfying boundary conditions on the

plate are
32 .2 B .
(18a) — '+ kKA (x,y) i+ 5 %97 A ( »Y) = -jupe E (x,¥)
ax
) _ x,¥)e S,
2 2 3
(18b) [_3_2_ +k ]Ay(x,y) * gyax A (ReY) = -june E =y}
oy
where
b a 0
= 2 1 4t ! vt 1dy? -
(19) A GY) = [ f Ity )G (x=x", y-y')dxidy! , p=X,¥,
- -a

(20) G(u,v) = zeTT— .
+v

The terms with superscript i refer to incident field quantities which

we assume to be evaluated on S. Next we define an inner product

(or reaction integral)

b a
(21) (£:8) = f f £(x,y)g (x,y) dxdy
-b -a

and choose the set of testing functions

14



sin k(&x- k-x_|)
. (222) Sn(ul]) (x,y) = sin kAx 6@-yn) > Xno1 SX <Xy oo

o , otherwise

sin k(y-{ y-y_ |) .
- < v
(22b) Sn(n?x)‘ x,y) = sin Kby o) 5 Y SV SV

0 , otherwise,

for testing (18a) and (18b), respectively. For the rectangular plate,
we define the rectangular grid of points,

b

a
Ax = s Ay=N+1 )

M+T

X =mAx , vy =ndy ,

n =0, ils... s i(M‘*'l) »

n =0, 1, #(N+1)

We then form the inner product between (223) , (22b), and (18a),
(18b), respectively. For example, from (18a) and(22a), there results

25) A(xp 1aYp)- 2 cos KAX A (x ,y)) + A (x_1,Y)
1 [ s fmel _a_‘fz : |
e [ o f =~ sin k (Ax-| X=X | yax yey,
*n-1

- _ Juwue m+1 i . 1 oes N :
K ﬁlx E X,y )sin k(Ax-~ | x-x_|Jdx ,

‘ m-1

15
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A similar result follows from (18b). Again, the difference

equation for A.x in (23) may readily be shown to be equivalent tc the

point-matched Hallén~like form obtainable from (18a):

X
1 5 m BAY
Ax(xm’yn) + m -— j. sin k(xm - x) dx
0

oy Ix
Y=Y,
(24)
xm
- ' . . Juwue i : - o
= Bn cos kxm + Cn sin kxm X d[ Ex(x,yn) sin k(xm x)dx
0

7m7= O,i‘l,...,i‘(M'i'l)’

no= 0,+1,...,+(N+1),

Note that a distinct set of constants Bn’ Cn is required along every
constant coordinate Yy for which a solution of the difference equation

(23) is formed. Eq. (24) also requires the boundary conditions

= = ¥ = 0, 1,¢°" ,i'N'l"l) ,
(25) J (x,y) =0 5, m=31), n t ( o

16



in order to uniquely determine the solution. Finally, we note that the

triplet of integrals appearing in the terms in parentheses in (23) when

(19) is substituted can be reduced to a double integral with the aid
of (17). The result is

X
1 A
1| 2 m : oo dx
o) HEN R Rt o,
xm-l

= D (X, qs¥,) = 2 cos kAxD_(x , v} * D, (x) 45 ¥)

where

b a
- K 1t [X-X']G x-x', y-y')dx'dy!
Dx(X, y) = - an f j’a Jy(x 5Y") vy’ ( y=y
-b -

Equations similar to (23)-(26) are obtainable by testing Eq.(18b) with
(22b) and proceeding as above. Equation (23) and the corresponding
equation obtained from (18b) must be solved simultaneously.

Eq. (23) with (26) is much more convenient to solve than Eq. (24)

since the latter necessarily incorporates additional unknowns in the
form of constants of integration.

As another example, we consider an alternative formulation of

the plate problem due to Mittra et al. [7] who begin with a set of

equations originally obtained by Bouwkamp [8].

The equations used by
Mittra are

17



(27a)

(27b)

(28)

[+ o m=ng
i x,yYe S,
[Vz + k2 ]A (x, y) = -1 aHx
t y s 3z >
where
02 . 32 32
t - T 7t 7
ox 3y

and A = Axﬁ + Ay? is defined in Eq. (19). These equations do not
uniquely determine the induced current without use of an auxiliary

condition

Hi ! 0 y _ 1 aAk
z U ox "}IV:O s (X, y)eC ’

where C denotes the boundary of S. In their work, Mittra et al.
obtain from Egs. (27a) and (27b), Hallen-like equations which contain
two arbitrary functions in the homogeneous part of the solution to the
partial differential equation. Application of the condition (28)
determines a relationship between the two functions, and the boundary
condition constraining the current normal to the edge of the plate
to be zero then uniquely determines these two functions. Point-
matching the Hallen-like equation in the interior of S enables one to
determine the current when a suitable set of basis functions is chosen.
The principal advantages in numerical solutions of the equations
resulting from this formulation over those of the E-field formulation,

Eq. (18), are (a) the decoupling of the two components of current

18



appearing in Eq.(27) and (b) the elimination of any partial derivatives

of vector potentials except through the auxiliary condition (28).
Again, in order to obtain the advantages of the Hallén-1like form

of Mittra et al. without the additional unknown functions to deter-

mine, we consider approximating the partial derivatives (27) by finite

differences. In the simplest approximation, we write, for example,

2 , |
AL (x, ¥) . A oY) 2A (LY I+AL (X 5y )

X
3x° oy Ax?
y=y_

and similarly for 82/8y2.

Hence Eq. (27a) becomes

[Ax(xmﬂ Y= 2A (s v+ A g Yn) ] /sz

(29) ¥ [Ax(xm’ n+1d - 28y s V) * ALy yn—l)] /Ay2

2 2 i
*KTA (x, y )= M 57 By (X ¥)

and a similar equation is obtainable for Aye Eq.(28) is then enforced
by approximating the first partial derivatives appearing therein by
the appropriate difference approximations calculated on the bounding

contour C.
While a direct comparison of solutions obtained using (29) versus
the Hallen form used by Mittra et al. is not possible, we can make

an indirect comparison. This is done by comparing homogeneous solutions

of (27) with those of (29). Such a comparison is inclusive and com-
19



(30)

(31)

(32)

(33}

plete because equality of homogeneous solutions implies equality of
particular solutions since the latter can, in principle, always be
synthesized from the former. We find below, however, that equality
between homogeneous solutions of the differential equations (27) and
the difference equations (29) obtains only in the limit of decreasing
subdomain size. The relationship between the resulting solutions is
the two dimensional analog of the relationship between Egs.(3) and (6).

A spectral component of homogeneous solutions of (27}, when point-
matched, has the form

-jk_mAx -jk_nAy
e X e 7V s, k_ +k =k s

and a general homogeneous solution may be synthesized by means of a
weighted integral of such components. Homogeneous solutions of the
partial difference equation (29), on the other hand, have as spectral

components

E

.emjamAx e-jBnAy

where the constants o and 8 are related by the condition

cosadx-1 cosBAy-1 EE. =0
Ax* by 2

as may be verified by direct substitution of (31) into the homogeneous
form of (29). For that portion of the spectrum such that cAx<<l and

BAy<<1l, the condition (32) becomes approximately




(34)

(35)

Hence, for small Ax and Ay, homogeneous solutions of (27) and (29)
are very nearly equal over a large portion of the spectrum. We point
out that (29) is also obtainable by testing (272) with the two-

dimensional piecewise linear function

hx-pe-x |} | by-b-y 1] x <x<x

m~ - “m+l
T = Ax A *
mn(x:YJ 4 yn- f_ Y_<_. yn_‘.l

0 , otherwise

when one takes note of the approximations of the form,

n+1 by-ly-y; | R
Al M| == | &y =y A G, YD,
n-1

together with the corresponding dpproximations for integration over the
interval [xm-l’ Xm+1]'

Similar to the observations made in the one-dimensional case,
one sees that there exists a closé relationship between the finite
difference approximation of the (partial) differential-integral equation
and a corresponding Hallén-like equation with point-matching. Again, a
close relationship between the original partial differential equation
tested with either piecewise sinusoids or piecewise linear testing
functions and the corresponding Hallén-like equation is established.
Furthermore, the resulting integro-difference equation enjoys the rapid
convergence and incorporates the relatively simple kernel of Hallén-

like equations without the added complications due to the attendant

unknown constants of integration.
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CONCLUSIONS 0
It is shown above that testing Pocklington's integral equation with
piecewise sinusoids results in a sysfem of linear, integro-difference
equations whose numerical solution is identical to the collocation
solution of Hallen's equation for any choice of basis functions. This
formulation in terms of integro-difference equations enjoys the ad-
vantages normally associated with collocation solutions of Hallen's
equation, which are listed below.
(1) The method exhibits the same rapid convergence
rate associated with solutions of Hallen's equation.
(2) Only well-behaved kernels (exact) need be calculated
numerically.
B (3) The method admits the use with equal ease of any 0
form of excitation, e.g., delta-gap voltage source
and incident field illumination, and assures that
the forcing function is adequately sensed [5].
(4) The simplicity of collocation is retained.
On the other hand, the method does not suffer the major disadvantage
of Hallén-type equations; specifically, in the technique, no complicating
arbitrary constants of integration are introduced--the system of dif-
ference equations retains the boundary conditions of the problem. We
also mention that, when one uses piecewise sinusoids for basis functions
as well as for testing, the method suggested above readily specializes
to Richmond's piecewise sinusoidal reaction matching technique,
One draws an equivalence between piecewise linear testing of
Pocklington's equation and the approximation of its derivative operator o

by the corresponding difference operator. Furthermore, piecewise linear

22



and piecewise sinusoidal testing yield systems of integro-difference
equations which approach a common limit as the number of testing functions
is increased. Hence, in this limit, observations pertinent to one
hold for the other testing set.

Conclusions similar to those above hold for two-dimensional integral

equations discussed under Generalization to Co-Planar Currents. How-

ever, in view of the large matrices encountered in handling planar
structures, it is even more important to have a solution technique
which is simple, which converges rapidly, and yet which does not intre-

duce additional unknowns.
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Table 1. Illustration of the convergence
of the values of © to kAz with
decreasing subdomain size.

2, 2
kAz . G=cos-l[—k§z ]

1.5000 1.6961

1.3000 1.4152

1.0000 1.0472

0.8000 0.8230

0.6000 0.6094

0.5000 0.5054

0.4000 0.4027

0.2500 0.2507

0.1250 _, | o0.1251
0.6009X10_2 0.6001X10_2
0.6000x10 0.6000x10
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Current Distribution Resulting from
Piece-wise Linear Basis W

ZonZon - 24) Zo 2y 0 TN Zng
(a)
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=~ 2k ~:/A,(z) Resulting
from Assumed
Azl (éurrent.
' xpansion
*Zy gy P
(b ‘.’
(d%/dz2+k®)A(z) Resulting from
Assumed Current Expansion
)
Figure 1. TIllustration of (a) piecewise linear current

representation, (b) a point-matching solution
of Hallen's equation, and (c) a point-matching
solution of Pocklington's equation.
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Figure 2. <Comparison of the convergence rates of dipole admittance calculated

from Egs. (3), (6), and (7) with piecewise linear current representation

and Eq.

(2) with piecewise sinusoidal current representation.



