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ABSTRACT

The problem of electromagnetic field coupling through an aperture
loaded by a sheet admittance is examined in this report. The combined
field, current, charge, vector and scalar potentials are defined. Sym-
metry decomposition of the field with respect to a plane is discussed.
Expressions for the cbmplemen‘cary field, current, etc., are derived us-
ing the combined field, current, etc., and an expression for the surface
admittance of the complementary scatterer is derived. Complementary
antennas are defined and the current distributions and the surface ad-
mittances of the original and the complementary structures are dis-
cussed. Self-complementary antennas are defined for the admittance

loaded siructures.
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FOREWORD

' said Alice, for though the flowers

"I think I'll go and meet her, '
were interesting enough she felt that it would be far grander to have a

talk with a real Queen.

“"You can't possibly do that,' said the Rose. 'I should advise you

to walk the other way."

This sounded nonsense to Alice, so she said nothing, but set off at
once toward the Red Queen. To her surprise, she lost sight of her in a

moment, and found herself walking in at the front door again,

A little provoked, she drew back, and after looking everywhere for
the Queen (whom she spied out at last a long way off), she thought she

would try the plan, this time, of walking in the opposile direction.

It succeeded beautifully. She had not been walking a minute before
she found herself face to face with the Red Queen, and in full sight of the

hill she had been so long aiming at.

Lewis Carroll,
Through the Looking Glass
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CHAPTER 1

INTRODUCTION

Since Booker's now classic work on Babinet's pr‘inciple1 for the
electromagnetic fields, there appears to have been little work done to
extend this principle, Neugebauer2 has expounded on the problem of
diffraction by an aperture in an absorbing screen. The present report
extends Babinet's principle to include impedance loaded planar struc-

tures. We formulate the problem using the combined field.

Chapter 2 of this report deals with the combined field, potentials,
etc. The combined field, current, charge and potentials are defined and
the Helmholiz equations for the combined quantities are exhibited. For
more detailed information regarding the :combined field, the reader is

referred to the work by C. E. Baum and B. K. Singaraju. 34,5

In Chapter 3, symmetry decomposition of the electric, magnetic,
combined fields, etc., is discussed. Symmetry and antisymmetry are
defined with respect to a plane., The relationships between the field

quantity and the image quantity are derived.

Chapter 4 deals with the boundary conditions. Boundary conditions
at a perfectly conducting plane and a sheet impedance plane are derived
in terms of the electric, magnetic, and combined fields. Symmetry de-
composition of surface currents is discussed and it is shown that the

scattered field by plane scatterers is symmetric,

Chapter 5 can be considered as an extension of Chapter 4 to in-
clude apertures. In this chapter, aperture fields are defined and bound-

ary conditions for the aperture fields are derived.

Chapter 6 deals with the complementary fields and the generalized
Babinet's principle. Complementary fields, admittance, etc., are de-
fined and their transform relationships are derived. Relationships be-

tween the aperture fields and the scattered fields of the complementary

-




problem are derived and & relationship for the complementary admittance

is obtained. The generalized Babinet's principle is also enunciated.

Chapter 7 deals with the integral equations for sheet impedance
loaded scatterers. An integral equation is derived for a general sheet
impedance loaded plane scatterer and is specialized to calculate the

aperture field.

In Chapter 8, complementary and self-complementary antennas
are discussed. Some current and admittance relationships between com-

plementary antennas are derived and self-complementary antennas are

defined.



CHAPTER 2

THE COMBINED FIELD AND POTENTIALS

The combined field and potentials play an important role in Babi-
net's principle, As a consequence the combined field, current, charge,
etc., will be reviewed in this section. The fields and potentials consid-
ered here are Laplace transformed with respect to the time variable t.
The Laplace transformed components are denoted by the symbol tilde ~

above the quantity and the complex frequency is denoted by s. 7

Maxwell's equations when electric, magnetic charges and currents

are present are given by

VX%=~SE.%—}m (2, 1a)

VxH-se. BT (2. 1b)

v.D=3 2. 1c)

v . % = "p‘m (2. 1d)
and the continuity equations are given by

7 . } = ~sp (2. 1e)

v o E’m = -sp (2.1f)

Although in general magnetic currents and charges do not physically ex-
ist, they form a g}seful tool in analyzing aperture problems. For our
purposes we let € be equal to < and /j equal to My and define the rela-

tionships




v = -z’— (propagation constant) (2.2a)
¢ = (propagation speed in free space) (2.2Db)
M € N
00
Zo e (Wave impedance in free space) (2.2c)
o)

The Helmholtz equations for the electric and magnetic fields can be

obtained to be

2 2> > Vo >

(V -fy)E-s)qu+?-+V><Jm (2. 3a)
o

2 2> = > 1

(Vo =9y )H = -VXJ+s8edJ + —Vp (2. 3b)
om M m
o
and the radiation condition is given by
E(r, 5) . /E,s) .

im r|V X |~ +7er>< ~ =0 Re(s) > 0 (2.4)
>0 H(r, s) H(r, s)

In terms of the scalar and vector potentials, the electric and magnetic

fields can be expressed as

B--v3-s2--2vxa , , (2.5a)
€ m
O
H=-v3 +L1vxZ-sk , (2.5b)
m “O m i

The combined field vector Fq is now introduced; it is defined by



=yl
i e

F = E + qiZ

q o q = &1 (2. 6)

Similarly the combined current density is defined as

£ =7+£7  a-m (2.7

and the combined charge density is defined by

~ o~ qi ~
= + —= = + 2.8
Qq e Zo p q = +1 ( )

The ambiguity sign ! associated with the separation index g is used to
reconstruct the electric and magnetic quantities from the combined quan-

tities.

Maxwell's equations can now be written in terms of the combined

field and current density as

~J

[VX - qw]i:q = qizoi{’q (2.9)

The divergence equations (2, 1c) and (2. 1d) can be written as

vVeF =23 (2.10)
€O q

and the continuity equations reduce to
VK =-3Q (2.11)

Combining (2. 3a) and (2. 3b) the Helmholtz equation for the combined

field can be written as




2 2. = 1 o~
- = - 1 I —_—
(Vv v )Fq (sptO qlzo) \q Q

(2,12)
€
o
and the radiation condition is given by
lim r[VX + ve_ ><]§ =0 Re[s] >0 O (2.13)
e

In an analogous way we can also define the combined vector and
scalar potentials. They are defined by

6q = A+ inOKm (combined vector potential) (2.14)
Eq = ?jf + inOEm (combined scalar potential) (2.15)

Then the combined field vector is given in terms of the combined poten-
tials by

F = -V + [-8 + qievX]C
q <i>q [ gic ]q

(2.16)
and the Lorentz gauge is given by
> s
VeC +— =0 (2,17)
q 2 3q
c
It is easy to show that the combined potentials satisfy
2 9 > >
Vi - v]C = -u K (2.18
[ ] q o q )
Vo - 7v1¢ —Q (2.19)
q %

and the radiation conditions for the combined potentials are given by



Re(s) > 0 2.201

2%
I
o

9
: N TR
]:nn ¥ [31’ ’}] q

I'co

0 Re(s) > 0O (2.21)

1 [—E-)— + |3
il EY v q
—0

-10~



CHAPTER 3

SYMMETRY DECOMPOSITION OF-FIELDS, CURRENTS,
CHARGES AND POTENTIALS WITH RESPECT TO A PLANE

Consider a symmetry plane taken as the z = 0 plane as shown in

Fig, 1. Here the z = 0 plane is taken as the symmetry plane for con-

venience only. It is clear that any arbitrary symmetry plane can be

transformed to that shown in Fig. 1 by a simple coordinate transforma-

tion.

Symmetry
plane S

Figure 1, Symmetry Plane

In Fig. 1 P is some arbitrary point on one side of the symmetry
then is the image of P with respect

—_

plane with the position vector F, PI
to the symmetry plane S with the position vector Lo Defining a reflec-

tion dyadic R such that

-11-




R =(R.,) = |0 1 0 (3. 1)
1]
0 0 -1
then
rI—RV-r, r'—R-rI .
It is clear that § is its own inverse and hence
R-R=1 (3. 3)

—

where ~f is the identity dyadic.

— —
Corresponding to the reflection of r to r_, we can also make re-~

I
flections of the field quantities. These image fields can be written as ‘
EI(*) - R - E(?I) (3.4a)
5I(r) =R . 3'5('}1) (3.4b)
pz(r) = p(rI) (3.4c)
EIG«’) =R - 3’(%) ' (3.4d)

for the electric quantities, and for the magnetic quantities they are given

by
E’I(F) = -R . ]‘3’@1) (3. 52)
EI’I(F) = -R . ﬁ(E’I) (3. 5Db)

-12-




Ke)

5

T

)
2

mI I
T (%) =-R . J (v
rnI m I

(3.5¢)

(3.5d)

where the subscript (I) denotes the image quantities. In Fig. 2, these

relationships are exhibited.

Field Quantity

4

/bH

Wy e

i cy ? b
el a1

[

8

Symmetry Plane S

Image Quantity
EI’ DI

osi %
T

®° ®
~ e

o ™ o I
Figure 2. Reflection of the Field Quantities

Through a Symmetry Plane
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We now define a symmetric (antisyvimmetvic) quantity as one hall the
sum (difference) of the original quantity and ils image quantity. Reproe- ‘
senting the symmetric and antisymmetric quantit'ies wifh the subscripts
sy and as, respectively, the symmetric and antisymmetric parts for the

fields, currents and charges are given by

E, 0 = -Z-[E(r) + R+ B (3. 62)
as
o = —[D(r) £ ® . B (3. 6b)
as
: B i (:; > :: ’:; —
B, () = -é-[B( I B(rl)] (3. 6c)
as
5 7 F[HO FR - H(rI)] (3. 6d)
as
3,0 = E[J(r) + B . J(rI)] (3. Be)
as
T - é—[ﬁ’m@ TR . E‘m(FI)] (3. 6£)
sy
as
~ _ _]__ ~ ,~—>
psy< ) = Z[p( ) = p(rI)] (3.8g)
as
b (r) = -;—[Em(F) ¥ B’m(?l)] - (3.6h)
sy
as

where the first sign is associated with the symmetric part, while the

later is associated with the antisymmetric part. Decomposition of the ‘
-14-
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fields, currents and charges into symmetric and antisymmetric parts
simplifies analysis of problems where a symmetry plane exists, Some
interesting physical structures have a plane of symmetry and as a conse-
quence, symmetry decomposition becomes a valuable tool in analyzing

these structurés. From k3.4a) through (3.5d) we can write

E (r)=+R « E_ () (3. 7a)
sy 1 sy
as as
D (r)=4+R +« D_(r) (3. 7D)
sy I sy
as as
H (r)=TR - B &) (3.7¢)
sy 1 ‘ sy
as as
B (r) =7TR « H () (3.7d)
sy I Sy
as as
szﬂrl) = R - sz(r) (3. 7e)
as as
I <£’I) = FR Fm () (3. 7f)
sy sy
as as
psy(rl) = ipsy<r> (3.7g)
as a.s
P (rI) ,= :Fpm (r) (3.7h)
Sy sy
as as

-15-



similarly the combined ficld, current density, charge densily and polen-

tials can also be decomposed into symunetric and antisymmetric pavis as

@ =L[F D +R.F &) (3. 8a)
dgy 2t ¢q -gq 1
as
E (D =l[f<’ Hrn B <?)| (3.8b)
qsy 20 q -q 1
as
~ = ]_ ~ > ~ —
9,5 - Flae=a. 6] (3. 8¢)
as
& <F>=l[6 H LR C <§~’)] (3.8d)
qSy 21 q -g I
as
T =[50 7 ()] (3. 8e)
A 2l7q -q 1
y
as

Symmetry decomposition of the fields, currents, charges, etc.,
does simplify a certain class of problems; this will become clear. in the
later part of this report. A more detailed discussion of the symmetry

decomposition is available in a report by C. E, Baum.6

-16-




CHAPTER 4

GENERAIL BOUNDARY CONDITIONS

Our main aim in this report is to obtain a generalized Babinet's
principle appropriate for impedance loaded apertures., Before we exam-
ine this generalization, we will obtain some boundary conditions appro-
priate for our work, We will primarily be interested in aperture anten-
nas and coupling through apertures, The apertures are assumed to be in
a perfectly conducting infinitely thin plane and the surface of the aperture

could be covered with a thin sheet impedance surface,.

4,1 Boundary Conditions on a Perfectly Conducting Plane

Let S represent a perfectly conducting plane surface, This con-
ducting plane could be in the x-y plane in the cartesian coordinate system;
however, this specialization is not essential. Let ;f represent a unit nor-
mal to this conducting plane, Let an arbitrary electromagnetic wave be

incident on this conducting plane which induces surface current density
=

Js and surface charge density Es on the conducting plane, If is well
known that on the conducting surface (with n pointing away from the side

of interest)

AXE =0 (4.1.13)
rTx?I=.TS (4.1.1b)
D = ’;S (4.1.1c)
LB =0 (4.1.1d)

—_—
—
T

Letting n = gz, a unit vector in the z direction, we define a djfadic

such that

-17-



BR2

(t. 1.2)

1]
—
(e
o

As a result of (4, 1.2), we can replace nx by 7 +. We define another

dyadic T as

1 0 0
T.= -nXnX = |0 1 0 (4.1.3)
0 0 0
and a dyadic n as
0 0 0
n=|0 0 0 (4.1.4)
0 0 1

The dyadics T and n as given by (4.1.3) and (4.1.4) are simply the pro-

jection dyadics as defined by Halmos. 7 They have eigenvalues which are

either 0 or 1. They also have the property T« T =T, n+* n =n and

—> —_
—>

T+n=1 These projection dyadics play an important part in analyzing
=

plane waves through anisotropic media. In (4.1.4) n can be considered

in some sense as a complement of i: We can write (4, 1, 1a) through

(4,1.1d) as

T-E=0 e (4.1.5a)

TeH==r+7F =-nx7 (4.1.5b)
S S

ne+D = 'ES (4.1.5¢)

- -18-




sS4

o

=0 (4.1.5d)

In terms of the combined field and current we can write (4. 1. 5a),
(4,1.5b) as

mqied w2, 13 pd
T .. F = - T [K + K } ' (4.1.6)
q 2 S S
g -q
where I_{>Sq represents the combined surface current. Similarly (4,1.5d)

can be written as

;J.)’ [ﬁ - ﬁ ] = 6 (4- 1. 7)
q -q
and (4.1.5¢) as
o [é% . T ]::—l—ﬁi + 3 ] (4.1.8)
q -q 2¢ q -q ,

These equations then represent the boundary conditions for the fields and

the combined field at the surface of a perfectly conducting plane.

4,2 Sheet Impedance Boundary Conditions

We now consider the case in which the plane S described in section

W

4,1 has a finite admittance, We represent this sheet admittance by YS,
a dyadic. Since the sheet is infinitesimally thin, all components of

?s associated with the z coordinate (normal to the plane) are zero, Let-
ting n be the outward normal, we represent the magnetic field on either

side of S by I—I ~and H as shown in Fig. 3.

-19-
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~®-
TR
e

Figure 3. Impedance Sheet

~

In terms of the electric field E on the impedance sheet, the surface
current 3; is given by

J =Y . E=Y -.T.E , (4.2.1)
S S s

[ g ~

Calculating the surface current in terms of ﬁ+ and ﬁ_ yields

~

BN [H+ - 11_] - T

(4.2.2)
Equating (4.2.1) and (4.2.2),
E’x[ﬁ-ﬁ]=§-¥-ﬁ (4.2.3)
+ - s
This can also be rewritten as
-T . [E}:’ '-I'-I’] “aXY T B=reF T .FE  (4.2.4)
+ - s s

It is clear from (4.2.4) that the transverse components of the electric and

magnetic fields are coupled through the impedance sheet. Noting that

-20-




l
HF&
!

- *9,1 [b - i ] (4.2.5)
E :«1—[? + F ] (4.2.6)
+ 21 = +
\ q -q
(4.2.4) can be written as
-g—j;% . : _ : . : ’:; _ —>. — . — . -— — )
= T F, F+ F +F T YS T {F+ +F (4.2.7)
q -q q -q q -4
or alternately,
-qi > '_"5 _'3; _Z = T = = > 5
s—aX |F - F, F +F_ Y o T [F+ +F_ (4.2.8)
q -q q -q q -9
In (4.2,7) and (4.2.8)

, because of the definition of ¥

=
< T need not neces-
sarily be introduced.

4.3 BSymmetry Decomposition of the Surface Currents and the Resulting
Boundary Conditions on the z = 0 Plane

Considering a plane scattering surface S, representing the incident

and the scattered fields by the subscripts inc and sc, respectively, we

can decompose these fields into a symmetric part and an antisymmetric
part denoted by the subscripts sy and as as

E = R + E (4.3.1)
inc SY. as,
inc inc
B = B + E (4.3.2)
sc sy as
sc sc

~

Similarly the surface current density j)s on the scatterer onthe z =0

plane can also be written as

-21-



J =7 +73 (4.3.3)
S sy as
where L
\
> 1> > ' . ,
7= —[J + 3 ] (4. 3.4a)
s 21 s S
5y
and
> 1> >
T = —[J -7 } (4. 3.4b)
s 21 s S
as

Noting that for an infinitesimally thin plane scatterer n. 35 =0, we have

7 =0 (4. 3. 4c)
S ~

as

This implies that for a plane scatterer the antisymmetric parts of the

scattered electric and magnetic fields are zero., Hence

T =0 (4.3.5)
F = F (4.3.6)

where we have used the combined fields. This conclusion implies that in

the case of plane scatterers the scattered field has only a symmetric

part.

-~
—

As in the case of sheet impedance, I—I+ and ﬁ_ can be defined and

can be split into symmetric and antisymmeiric parts as

~29 -




sy
0
i 2
+
ast e

, (+.3.7)
+ + +
sy as

= ¢

-
el
u
sl )
1
it
——

_ ’ _ (‘i- 3- 8)
sy as

~

~
- -
Since the surface current JS does not have an antisymmetric part,

H
~ *as
is not affected by z = 0 scattering, H%s is continuous through z = 0.

Hence at z =0

H -H =H -H (4.3.9)
+ - Sy, Sy _ 7
However
H =-R+:H ; H =-R-.H (4.3.10)
Sy, SY_ ShA Sy, ,

H -H =2T - - H = 2T - O (4.3.11)
+ - Sy - sy _ ‘
+ -
this can also be written as
2T « H =-aXJ =-1.17 (4.3.12)
sy, S S |

ey
Ry L

. Z - O (4:0 3.13)
iS] S mnc sc

where Esc has a symmetric part only. From (4.3.12) and (4. 3.13) we
infer that

-23-



oT « H = -1+ Y - [E + B z =0 (4.3, 14)
Sy s inc sc
+ sy
If i’bs = 6: i.e., a perfect insulator,
T-H =0 z =0 (4. 3.15)
sy,
and if ?s =% we can also write
ne |H +H | =0 z=0 (4.3, 16)
inc sc

We can write the boundary conditions (4. 3.14), (4.3.15) and

(4.3.16) in terms of the combined field as

g_j__:. : _:
ZOT [F+ F, ]
Iy Iy
eI T
2 S + -
qinc qinc
sy sy
+|F, 4T z =0 (4.3.17)
q'SC qSC
=0
%-[i - F }=8 z =0 (4.3.18)
qsy qsy
Y =w

~94 -




-25«



CHAPTER 5

SYMMETRY RELATIONS AND BOUNDARY CONDITIONS
FOR AN APERTURE IN A PERIFECTLY CONDUCTING PLANE
AND T'OR THE COMPLEMENTARY SCREEN

Consider a perfeétly conducting infinite plane S with an aperture A
in the plane. The aperture region A may be impedance loaded. In Fig.
4, P represents the perfectly conducting region while A represents an
aperture. The plane S = PUA is assumed to be in the z = 0 plane. We
now develop certain symmetry relations and boundary conditions for the

perfectly conducting plane with an aperture and for the complementary

screen.

S = PUA

Figure 4. Impedance Loaded Aperture

5.1 Perfectly Conducting Plane

We now consider the case when A is covered with a perfectly con-
ducting surface as P, i.e., PUA is perfectly éonducting. The incident
wave is assumed to be incident on S from 2z <0 direction. Representing
the scattered field for this case by the subscript ¢ instead of sc (indi-

cating aperture ''closed') we have

-26~




.+ E =0 forall z ~ 0 (5. 1. 1)
inc C

1y ¢

On the z = 0 plane we have
FlE-7. B, 43 |0 5.1.2)

~
—_

As shown in section 4.3, the surface current induced on the plane S

J
S -
is symmetric. This implies that the scattered field EC is also symmet-

ric. Hence from (5.1.2)

T.-E =T.E = -T . & (5.1.3)

ine inc , c
sy
Similarly

—> o~ ~ ~ — o~

— — -~ — — —

n « H, =n « H, = -n - H (5.1.4)
inc ].I'].Csy C

Equations (5.1.3) and (5< 1.4) are simply the boundary conditions on a
perfectly conducting surface. In terms of the combined fiefd we can write

(5.1.3) and (5.1.4) as

T . [F. + F ] = -T . [f + F ] (5.1.5)
inc inc C C
q ~-q q -q
n . [ﬁ. - F ] = ;e [f - B ] (5.1.6)
inc mec C C
-q -q -q

5.2 Perfectly Conducting Plane with an Aperture

We now consider a perfectly conducting plane with an aperture in
the plane. The plane is assumed to be in the 2z = 0 plane with the incident
wave from z < 0 direction. Deﬁoting the fields due to the aperture by the

subscript a, the fields on the +z side of the aperture by a subscript +

and those on the -z by -, we can write

27




=i
"
=y 2

+ a (5. 2- 1)
H =H 9.9
H+ Ha (5.2.2)
E =E_ +E +E (5.2.3)

- inc c a
H =H +H +H (5.2.4)

- inc c a
> X

where EC and Hc are the quantities defined in section 5.1, and
E +E =E (5.2.5)

c a sC_

H +H =H (5.2.8)

c a sc_

Since the scattered fields are symmetric, we can write
E =&, +E +E (5.2.7)
sy inc c a
- Sy
H = H, + H +H (5.2.8)

sy inc c a
E =g, (5.2.9)

as inc

- as
g =H (5.2.10)
as inc
- as
E = B (5.2,11)
Sh a

-28-



It is clear from the above equations that for the scattered fields, we only
have to be concerned with the symmetric part. It is also clear that %c
can be simply calculated by replacing the aperture and the screen by a
perfectly conducting screen. Hence we need to calculate the aperture

fields only, On P we can write

T . [E + B ] -0 on P , (5.2.14)
imnc c
sy
n - [ﬁ +FI] = 0 on P (5.2.15)
lnCSy C

'1“}0 ]_E‘,> =’T>- E on A (5.2.16)
sy _ a

n - H =n - 0 on A (5.2.17)
sy a

— — — — [ —> — 1
T [F . B ]=T- F o+ 7 on A (5.2.18)
sy sy a a
g -q g ~-q-
n-e |F - =n .« |F - F on A (5.2.19)
sy sy a a
q -d o -q

The aperture fields satisfy the condition

-29-



=1
b ¢
0
)
o]

o]

v

o

i

1S
2

Sy

B =0 on P , (5.2.21)

T . [I’ LT ] -0 on P (5.2.22)
a a
q -q
g [:‘EF - F ] -0 on P (5.2.23)
a a
q -q

These are the boundary conditions which any electromagnetic field must

satisfy at a perfectly conducting surface,

Now considering the aperture region A, the boundary conditions

are quite different from those on the conducting plane S. If the aperture

region is covered by an infinitesimally thin admittance sheet of admittance ‘
?s’ the surface current on A is given by
3’=§.[§. +§} (5.2.24)
s s inc sc
Sy

However, from (4.3.11), (4.3.12), (5.2.8) and (5.2.12) we have

3’=sz[§ -f—i]:zi’xﬁ -onx |H +H (5.2.25)
s + - sy, c, a,
Equating (5.2.24) and (5.2.25)
on X |H +H ]=? [ﬁ + B +}_f] (5.2.26)
C a S inc C aQ
+ + sy
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. Nbting that i:s + is equivalent to

T T, T.[%, + B
XS T and T incg ol is
zero on the aperture A, '
zﬁ’x[ﬁ + H ]=§E . B =7 (5.2.27)
c a s a s
+ +
or alternately
2T - [ﬁ - H ] =7+ Y - E (5.2.28)
inc a s a
sy +

Defining the short circuit current density j)s

as
S.C.
/ > - > - >
J = -2n X I—Il/ = -2n X H, (5.2.29)
S ne inc
SeCo Sy
' we can rewrite (5.2.28) as
J +onxXxH =Y .E =1 (5.2. 30)
S a S
s.c. + +
For the special case of ?S = § we obtain
J =2n X H_ =0 (5.2.31)
SeCoe +
If ?S =, i.e., a perfectly conducting infinite sheet, we have js = 0,
which implies that the perturbation terms Ea and f—fa are identically
Zero.

In terms of the combined field, we can write (5.2.28) as
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Fiy 2
1
Ik
1
by 2
+
iy 2

. - L7
inc inc a a ] qiZ
d -9 q ! o

For the antisymmetric part of the incident field we have on S

IR

cE (5.2.32)
a

T . [ﬁ + O ] =0 (5.2.33)
inc C
as . +
However,
T-H =-T.H (5.2.34)
[#f o]
+ —
hence (5.2. 33) becomes
T . [ﬁ - H ] = 2T . H, (5.2.35)
C_ C+ inc

The antisymmetric part of the field is continuous through the aperture.
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CHAPTER 6

COMPLIMENTARY FIELDS, SOMIS O THEIR
RIELATIONS AND BABINET'S PRINCIPLL

In this chapter we will first define the complementary fields., These
complementary quantities are usually defined from the duality of the Max-
well's equations.’ Uéing these complementary fields, we will derive the
generalized Babinet's principle and the complementary antenna relation-

ship.

6.1 Complementary Fields, Potentials, Charges and Currenis

The transformation of-fields, potentials, charges and currents be-
tween electric and magnetic quantities forms the basis for Babinet's prin-
ciple. The original fields, potentials, charges, combined ficlds, e¢tc.,
are represented by

~
- ~ o~

. H, 3, J .0 e s F,K,Q,C,3

=y e

and the transformed or complementary quantities are represented by

~ -~ ~ ~ o~ ~ ~o
— —n — —_— ~ ~ — ot ~ —>
ET’ Hl’ J', J:;:Il’ p’.’ p;n’ F;}’ K 2 Q‘ s C E

We also define complementary sheet admittance i;‘s corresponding to the
=

sheet admittance Ys' These complementary quantities are simply gen-

eralizations of the terms defined by Booker. We then have

~ ~

‘ _— . —>I - . L= - . = " — .
q q1ZOH quq giE ZOH (6.1.1)

=y 2

F

and this yields
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(6.1.1b)

—~
o)
.
R
0
nd

(6.1.2)
(6.1.2b)

(6.1.1a)
(6.1.2a)
(6.1.3a)
(6.1.3b)

or
. or
or
or
or

or

Similarly

(6.1.4)

i<t

(6.1.4a)
(6.1.4b)

~34 -
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PN . (6, 1.0)
O

¢ = 2 @ or s = ! (6. 1.5a)

(6.1.5b)

©-1
]
1
N
S

l ~
——2,—¢> or
o

From these generalized transformations of Booker, we can conclude that,
given a combined quantity ", the transformed or complementary quantity

I is related to it by
It = -qgil’ , I = qil™ (6.1.6)

This gives us a simple transformation by which the complementary quan-

tity can be obtained [rom the original quantity, and conversely.

The boundary conditions for the transformed quantities also trans-
form as described in (6.1.1) through (6.1.5). Simply stated this implies
that if tangential components of % are specified, the tangential compo-
nents of %’ are immediately known. Similarly if the normal components

= o = o
of E are specified, the normal components of H' are also specified,

6.2 Transformation of Admittance

Let us consider an aperture ag shown in fig. 4. The aperture A

—

is covered with a sheet admittance YS. On the aperture, from (5.2.28)

)L

S - 2 I
+E_ =nXY_ - E (6.2.1)

= = pd =
27T - {H - H ] S
a, S a s a

Using (6.1.1a) and (6. 1. 1b) and transforming (6.2. 1) to the complemen-

tary field quantities
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_2-%.[*: E]z*i’ﬁ
Z inc a o s a
o +
or
~J ~ — : ~
2 — — — —> — —
—n ! —E‘]=ZT-Y-H‘
Z 1 inc a 0 S a
o +

Consider the complement of S with sheet admittance
rent 3)‘8,

v

1
S

2n X ﬁ'c = I
+ s
or
2‘;) . ﬁ’ = ?‘ . r‘f . [E! + ET ]
scC S imc sSC
+
Multiplying (6.2.2) by (.ZO/Z)Y‘S
e e R S
-2Y . 7. Y < H =Y - T- [EI - B! }
2 IS S a g inc a+

~ ~~
Bl B
+
= e
H' = =i
a
SC+
= -~ = .
—> - — 4 -
Y's T YS = 5T
Z
O
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(6.2.4)

(6.2.5)

(6.2.8)

(6.2.7a)

(6.2, 7b)

(6.2.7c)




It is a scalar represented by ?S and inverse by %S, then
¥ s ST (6.2.8)
5 Yz
o' s o

This has been derived as a local relationship for every point on comple-
mentary objects (antennas and scatterers). It is interesting to note that

this relationship has been previously found to hold for the input admit-

8
tances of complementary antennas.

It ’1\;8 is a dyadic, by definition it does not have an inverse in the

3 dimensional sense. Taking gz = r_f, i.e., in the z direction, we have
L5 (5 - ()

l I s [ ] [

s 57\ Yy T )y (6.2.9)
o , )

lvhere the two dimensional inverse is used. It is interesting to note that

= =-
Y'S is a constant multiple of the similarity transformation of (Ysl){)

v e - -
Defining 7' as

0 ~qi 0
7' = git = | qi 0 0 (6.2.10)
0 0 0

s 3 (3. e
- 20 <Y 1) -y (6.2.11)
Z'O

This is the complementary antenna principle for an arbitrary sheet ad-

mittance. The two dimensional inverse is defined for 3 X 3 matrices

(dyadics) with no third (z) row or column elements as
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_ 0
- ][] |
B = oV (6.2, 122)
0 0 0|
) 0
-1
Z1 [Bz]
(B‘ )2 = 0 (6.2.12h)
0 0 0|

6.3 Generalized Babinet's Principle

Consider an aperture as shown in fig. 4 with A loaded by an admit-

tance sheet and I being perfectly conducting. On S, i.e., the whole

plane,
'T’['E’ +E}:6=¥-[E, +§] (6.3.1)
inc C 1nc C
sy
ﬁ’-[ﬁ. +§]=6’=§-[ﬁ. +§] (6.3.2)
nc C inc C
sy
On A we have
25’-[3_ - H ]:;.§ - B (6. 3.3)
inc a+ S a
Eﬂ’[ﬁ - H ]=2"f-ﬁ. (6.3.4)
C Cc 1mc
- + as

Now consider the complementary screen where the perfectly con-
ducting surface S is replaced by free space and the admittance sheet ?S

by its complementary sheet ?:3 » the complementary problem is as shown ‘
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Figure 5. The Complementary Screen

in fig. 5. In the case of the well-known Babinet's principle for open
apertures in a perfectiy conducting infinite sheet, the original screen in
conjunction with its complementary screen forms an infinite, perfectly
conducting screen., It is interesting to note that this does not hold in the
case of impedance loaded apertures except when ifts = 0—; The boundary
conditions for the complementary screen A' shown in fig. 5 are obtained
by transforming (8. 3. 3) and (8. 3.4) according to (6. 1.1a) and (6.1, 1b) to
be

—?—%’-[E! —E’!]=-z?-? H (6.3.5)
Z inc a 0 S a
e +
or
—n X | B! - E! =ZY « H! (6.3.86)
Z inc a o s a
0 +
and
T . [E! - B ]=2¥- ol (6.3.7)
c c inc
- + as

Using (6.2.7a) and (6.2.7b), (6.3.6) can be rewritten as
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LB J = -7 < H (6.3.8)
me sc (O sC

Hence (6. 3. 7) and (6. 3. 8) form the boundary conditions for the comple-

mentary problem on A,

An interesting result is: if an incident field E'nc and I_-f ne is in-
cident on a screen from z < 0 direction, if the transverse scattered

fields for z > 0 for the original screen are represented by E and Ha

and for the complementary screen by E'SL and H;L, we have

E, =B + 2z H (6.3.9)
inc a o a :
Sy
and
pd pd 1S
H. =H - =58 (6.3.10)
inec a Z a
sy o

1y 2
13
1y 2
1
2
=4} 2

. ] (6.3.11)
inc a a

It is important to note that Babinet's principle as derived here is
consistent with that derived by Booker and other authors. 8¢9 The only
differences that have to be taken into consideration in treating impedance
loaded apertures are the boundary conditions one will impose on the

fields in the aperture. These are the conditions derived in section 5.2,

The generalized Babinet's principle as presented here states the
following: If an aperture covered by an admittance sheet is present in a
perfectly conducting screen, the complementary problem is given by a

disc whose admittance is given by the complementary formula (6.2. 9).

The present formulation also allows one to treat an annular slot which
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was very difficult to treat until now. Some integral formulations for the

aperture field will be treated in the next chapter,
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CHAPTER

INTEGRAL EQUATIONS

With the increase in the general use of digital computers, there
have evolved several effective techniques for solving integral equations.
As a consequence, integral equations have become more popular in solv-
ing scattering problems. In this chapter we will discuss integral equa-

tions as applicable to apertures in plane conducting screens.

7.1 Integral Representation for the Combined Field

Considering source free space in which scatterers Sl’ ey, Sn are

immersed, if we denote the incident electric and magnetic lields by the

subscript inc, the field at some point p where p e}f Si can be written as

E =B, +f [-su”c‘-i<5’><ﬁ)+(ﬁ’><ﬁ)><v@
P inc S L eeelS. o o o}
1’ ’“n
+ (- E)vv?;o]ds' (7.1.1)
H =H +f [se'("}(nxﬁ)+(n><ﬂ)><v"é
P inc S L eee.S o o o
1’ *“n
+ (@ f—i)vfc“;o]dsr (7.1.2)
where
N e
! D e et
Go(r,r) i l“’ = (7.1.3)
r-r (
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In the above, the unprimed coordinates represent the field coordinates
while the primed coordinates represent the scatterer, and V' operates
on the prime coordinates only. Now using (2.6) to define the combined

~
field Fq, g =x1, we can combine (7.1.1) and (7.1.2) as

[—gi(rTxE)'é +<rT><§>><v"é
«e..S 4/ ©° d ©

+ (r_f- F )\7'?3’ ]ds‘ (7.1.4)
] O

[(r’fxﬁ )<§-in + XV'G )
«ee .S o] (] (o] (e}

¢

N (E- B )v"c”; ]ds' (7.1.5)
q o

Using (7.1.5) and Maue's integral equationlo one can express the com-
bined current distribution on the scatterer in the form of one integral
equation. A more detailed study of the combined field integral equation

and its implications is discussed in a companion report.

7.2 Integral Equations for Plane Scatterers with an Aperture

Over the years there have evolved numerous techniques for solving
coupling through apertures. Although the equivalence principle has re-
mained the basic starting point, integral equations with many variations
have been applied to obtain solutions.B’ 9, 10 Our technique employed

here involves the Babinet's principle.

Using (5.2.1) through (5.2.4), since E, and H, are known,
~ inc inc :

et
o

and HC are known. As a consequence, if the field is assumed to be
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incident on the aperture from z < 0 dirvcection, {he tofal syuumotrice fiold

for z < 0 can be considered as the superposition ot the tield present when ‘
the planc is completely perfectly conducling‘, i.c., the aperture portion

is covercd with perfectly conducting sheet and those fields kuown as the

aperture fields. The total scattered field for z > 0 is simply the aper-

ture field. We note from (5.2, 7) throgvgh (5. 2.~1 3) that the scattered field

is symmetric which also implies that Ea and ﬁa are also symmetric.

These aperture fields satisfy

T Ea=6 on P (7.2.1)
r?- ﬁ = 6> on P (7.2.2)
a

On the aperture A, from (5.2.25), (5.2.27) and (5.2. 30)

¢

7 =7 +2n X H (7.2.3)
S a
S.C. +

S

~~

where :TSS . is given by (56.2.29). We note in (7.1.8) that 2n X ﬁeu_

is simply a perturbation term when the aperture is present.

It is interesting to note that (7.2.3) also includes the contributions
due to the sheet impedance terms. When the aperture is not loaded,
primarily there exist three techniques. The first technique involves the
calculation of the current on the perfectly conducting plane and in turn
calculating the field at a given point. Because of the limits involved in
the integration process, this technique is seldom used. 'The sccond pro-
cedure involves the equivalence principle in replacing the screen S by a
magnetic current sheet on A and solving for the field quantities. The
third technique involves the use of complementary field quantities, where
currents on the complementary screen and the resulting fields are calcu-

lated. The fields due to the original screen are then calculated using the .
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field transformations discussed in section 6, 1. It is clear that tech-
niques 2 and 3 are very similar and in the complementary transform

sensge are identical.

A complete discussion of the integral equations for the aperture
problems is considered outside the scope of this report. It is well known
that if the disk is infinitesimally thin, numerical instabilities occur in
the evaluation of the integral equations. A new integral equation was
formulated recently11 which circumvents the problems of numerical in-
stability. For electrically small apertures the technique of power ser-
ieslz’ 13 (Taylor or Rayleigh series) can still be used. In all of these
techniques, the edge condition should be imposed which in some formu-
lations is incorporated as a line integral around the contour of the scat-
terer or in terms of series expansion. Because of the complexities in-
volved in these equations, we will d,elegate a detailed discussion to a

future report. Once the current on the scatterer is calculated, the scat-

tered fields are given by

f:; — ™~ — : v‘ ' 3>}S(r‘—)x) ~ —_ >
t = — ! H t —— e ——— 1 1
Esc (r) f+ squo(r,r )Js(r Yy + — V'Go(r,r 11 ds (7.2.4)
+ S ©

and
H o) = TV (ot 1 (. =
70 f+[JS(r ) x ViG_(r, ) |ds: | (7.2.5)

+ S
where —f's(l_:) is the current density on the complementary disk while

= - 4 —-
E'SC+(r) and H!SC+(r) are the scattered fields for z > 0. Since these
are the scattered fields for the complementary scatterer, the aperture

fields can be simply obtained by using the field transformations.
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CHAPTER ¢

COMPLEMENTARY AND SELF-COMPLEMENTARY ANTENNAS:
THEIR CURRENT DISTRIBUTIONS AND IMPEDANCE RELATIONS

Booker in his vvork1 has shown that a resonant half wave slot and a
half wave dipole are complementary. We have already derived the com-

plementary antenna impedance relationship in (6.2.9) for a general plane

surface impedance. We now use this relationship to show some proper-

ties of complementary antennas.

8.1 Complementary Antennas

Consider a perfectly conducting infinite plane sheet with a thin slot

>

covered by a sheet admittance YS as shown below.

X
e
s
) ~ é
A = -y
¢ Yy “
’ 20 .

Figure 6. An Impedance Slot in an Infinite Plane

The complementary scatterer forithe slot is given by

1274

la— 51 -»f

Figure 7, Complementary Strip
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If for instance we want to determine the input admittance of the slot
of fig. 6, we consider a dipole of length 2£, width w with the surtface ‘
admittance Y'S defined by (6.2.9). We determine the input impedance of

the dipole and using (6.2.1) determine the input admittance for the slot.

It has been shownby many authors 4 thatan equivalence exists between
thin strips and wires in the static approximation. If the strip is of width
W, it can be replaced by a thin wire of radius w/4. As a consequence of
this equivalence between strips and wires which also establishes an equiv-
alence between slots and wires, we can calculate the diffraction from a
slit by using the diffracted field due to a wire. For instance if we want
to determine the diffracted field due to an annular ring in a conducting
plane, we can calculate the field due to an equivalent wire loop and trans-

form it such that we obtain the diffracted field for the original problem.

8.2 Self-Complementary Antennas

We define a self-complementary antenna as one which when rotated

in its plane by an angle 9 produces the complementary antenna. This of
course would imply that any rotation by an angle 29 would keep the geom-
etry of the antenna the same. If we denote the surface admittance of a
point p of the anterina by _%s( ps 9) and of the complementary antenna at
the same point by Y'S(p, ¢) where (p, ¢,2z) is a usual cylindrical coordi-

nate system, the self-complementarity would require that

—>

—>!-1
S(p’ QS) * (R

~n ~u
— -
— —
Y! Y

s

(P, ¢ +0) = R' - ) (8.1)

2
where R' is a rotation matrix (dyadic) which maps the point p (p, ¢) in
the original antenna into its equivalent point P, (p, ¢ + @) of the comple-
mentary antenna. One of these simple structures is shown in fig. 8.

~

More general cases include rotation matrices with the dyadic ?!s, (or ?S).

Self-complementary structures have long been used to build transmission 0
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lines, antennas, etc. 'The main difference here ig the loading which is

incorporated in the structure.

Figure 8. Example of Self~Complementary Screen
for Scalar Admittance Case

An interesting example of an admittance loaded self-complementary
antenna is one whose surface admittance is §s = Z/Zo in certain places
and/or perfectly uniconducting in some particular direction in other
places. Some of the interesting properties of these antennas will be

studied in a later report.
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CHAPTER 9

EPILOGUE

She was standing before an arched doorway over which were the
words "QUEEN ALICE" in large letters, and on each side of the arch
there was a bell handle; one was marked '"Visitors' Bell, " the other

"Servants' Bell."

"I'11 wait till the song's over,' thought Alice, "and then I'll ring
the~-the--which bell must I ring?' she went on, very much puzzled by

the names. 'I'm not a visitor, and I'm not a servant. There ought to be

one marked 'Queen, ' you know. "

Just then the door opened a little way, and a creature with a long
beak put its head out for a moment and said, ''No admittance till the week

after next!' and shut the door again with a bang.

Lewis Carroll,
Through the Looking (ilass
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