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ABSTRACT

The currents and charges induced in a pair of electrically
thin crossed wires by a normally incident plane electromagnetic
wave are derived by analytical methods. The boundary conditions
at the junction are explained and compared with the somewhat
different ones used in the past. The solution of a new integro-
differential equation for the currents is obtained in terms of
trigonometric and integral-trigonometric functions. Depending
on the electrical lengths of the crossed elements and the loca-
tion of their junction a variety of quite different distributions
of current and charge obtain. These determine the scattered
near and far fields.
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1. Introduction

A knowledge of the distributions of current and charge induced on
crossed conduct>yrs illuminated by an incident plane electromagnetic wave is
prerequisite to the determination of the scattered field. At distant points
this is of interest in radar; near the surfaces of the conductors i1t can be
used to estimate the field in the interior of the conductors when these have
holes or slots. An important structure consisting of crossed conductors is
an aircraft with its' wings and fuselage, Since the cross sections of these
members are generally not electrically small, the determination of the dis-
tributions of surface current and charge per unit area is a formidable prob-
lem., Attempts have been made to simulate an}aircraft by erossed circular
cylinders and to determine the distributions of current and charge on these
by thin-wire antenna theory. Since transverse currents are ignored in the
thin-wire approximetion and these are significant on electrically thick con-
ductors, the curreats and charges calculated for crossed thin conductors are
not at all representative of those that obtain on thick cylinders. Neverthe-
less, a complete and accurate determination of their properties could serve
as a valuable first step in learning to understand the behavior of currents
and charges on crossed electrically thick conductors. This is true in parti-
cular of the junction region.

Crossed electrically thin wires excited by an incident plane wave have
received the attention of numerous investigators but so far only through the
application of well-known numerical methods [1]-[4]. These have been applied
to solve coupled integral equations subject to a set of boundary and junction
conditions which do not adequately characterize the junction., Graphs of nu-
merically computed distributions of the induced currents have been displayed

[2]-[4] for a small number of crosses constructed of relatively short wires




that never exceed 0.3 wavelength, measured from the junction to the end of
the longest arm, However, even if the correct conditions at the junction had
been used, these would be quite inadequate to provide a general insight into
the behavior of currents and charges on crossed wires,; especially near the
junction under conditions of resonance and antiresonance with their quite
different standing-wave patterns, It is, for example, possible to locate the
junction at points of minimum current and maximum charge per unit length,
maximum current and minimum charge per unit length, or minimum current and

minimum charge per unit length with corresponding very significant differ-

- ences in the coupling among the arms of the cross;

In order to obtain a generally useful understanding of the distributions
of current and charge per unit length on parasitic crossed wires, an analyti-

cal solution is desirable. This should provide physically meaningful formu-

»las which reveal the dependence of the distributions on the lengths of the

arms and the location of the junction.

2. Formulation of the Problem: Boundary and Junction Conditions

In order not to complicate the problem unnecessarily it will be assumed
that the plane of the crossed wires coincides with a wave front of a normally
incident plane electromagnetic wave with its electric vector parallel to one
of the wires, For mutually perpendicular wires, the solution with the elec-
tric vector parallel to the second wire is obtained by a simple change in now
tation. A superposition of the solutions for the twe polarizations proQides
the solution for an arbitrarily polarized normally incident wave, A rela=-
tively simple extension of the theory can be made to deal with other than
mutually perpendicular wires.

The crossed wires in their relations to the incident electromagnetic



wave are shown in Fig. 1. The vertical wire extends from z = —hl to z = hz,

the horizontal wire from x = «£_ to x = 12; the center of the junétion is at

1
x =0, y=0, z =0, The wires all have the same radinus a and this is suffi-

ciently small so that the following inequalities are satisfied:
ka = 2ra/) << 1, h/a>1 , /a>1 - (1)

where 1 = 1 or 2 and k = w/c = 2n/) is the wave number, The incident field

inc(y) = Eince—jky where Einc is the value at y = 9, i,e., along the axis

is E
z z z

of the vertical conductor,

Under the action of the incident field a standing-wave distribution of
current and chauvge is induced in the vertical conductor and these, in turn,
induce a distribution in the horizontal conductor. The currents and charges
in all conductors are so distributed that the total tangential electric field
vanishes on the surfaces of the perfect conductors, In general, the distri-
butions of current and charge per unit length are different in the four arms
of the cross, Since the conductors are assumed to be perfect, thé currents
and charges are confined to thin layers on the surfaces., Subject to the con-
~dition ka << 1 the transverse currents induced on the horizontal conductor
and near and at the ends and junction of the vertical ccnductor are negli-
gible and may be ignored. Since the excitation by the incident field and by
mutual interaction is not rotationally symmetrical, the induced axial cur-
rents and associated charges per unit length also depart from rotational sym~
metry. However, when ka << 1, this departure is very small and can be dis-
regarded. This means that the components Kx(x) and Kz(z) of the surface den-
sity of current and the associated surface densities of charge n(x) and n(z)
are functions of the axial coordinates only as indicated, The total axial

currents and charges per unit length and the equations of continuity Ehey
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satisfy are:

31 (z)

Iz(z) = ZﬂaKz(z) ;3 q(z) = 2wan(z) 3 ——§;~—~+ juq(z) = 0O (2a)
BIx(x)
Ix(x) ] ZﬂaKx(x) ;s q(x) = 2man(x) —5 + juq(x) =0 (2b)

The four sets of current and charge are Ilz(z)’ ql(z) in the range

-hlzfz < 03 Izz(z), qz(z) in the range 0 < z < hz; I3x(x), q3(x) in the range
'21.ix:§ 0; and IAx(x)’ q4(x) in the range 0 < x < 22. In order to determine

these currents appropriate boundary conditions must be formulated to specify
thelr behavior at the respective ends of the arms. At the open ends of tubu~

lar conductors, the total current must vanish so that
Lig(thy) = Iy, (hy) = Ty (=) = 1, (L)) = 0 : (3)

The specification of the behavior of the currents and charges at the
junction is made difficult by the complicated geometry that makes the bound-
aries between chargeable surfaces belonging to the four arms and the surface
belonging to the junction ambiguous. However, since these latter have an
area of the order a2 which is electrically negligible under the condition
ka << 1 of thin-wire theory, each of the conductors can he assumed to end at
x =z ; 0 and the small overlapping areas can be ignored. Alternatively and
equivalently, the currents and charges may be treated as if concentrated at
average locations on the axes of the conductors instead of on thelr surfaces.
For them the junction is 2 single point at x = z = 0 with no chargeable sur-
face.

To coﬁplement the four conditione (3) on the currents at the outer ends
of the conductors, four additional conditions must be established at the

inner ends, i.e., at the junction at x = z = 0, In view of the requirement




ka << 1, all interactions associated with charges and currents near the junc~
tion and characteristic of its properties are in the very near zone, i.e.,
they are quasi-stationary. As a consequence, the conditions familiar from
low-frequency electric circuits obtain, With the continuity properties of

the electric field it follows that
Ilz(o) - 122(0) + I3x(0) - I4x(0) = (%)
q,(0) = q,(0) = q,(0) = q,(0) (5)

With the equations of continuity in (2a,b), an alternative form of (5) is

allziii} ) {3122(2) } ) 813x(x).J ) [314x(x)} ©
az 720 oz z=0 ox x=0 9X

x=(

The first condition is a necessary consequence of the conservation of elec-
tric charge and the absence of significant chargeable surfaces on the junc~
tion as distinct from the ends of the four conductors. The second condition
is usually not expressed in low-frequency circuit theory since there are no
charges on the surfaces of the conductors (except on the inner surfaces of
condensers). In effect, in low-frequency circuits all conductofs and their
junctions are at a maximum of current and a zero of chargé per unit length in
a standing-wave pattern. In circuits like transmissicn lines and antennas
that are not electrically short, a junction may be located at an arbitrary
peint in a étanding~wave pattern, so that significant ccncentrations of
charge per unit length may exist on the conductors at and near the junction,
The condition (5) assures that discontinuities in charge per unit length are
ruled out in moving from one conductor to another across the junction. Such
discontinuities could not exist in the absence of delta-function generators.

The condition (5) in a superficially different form 1s regularly applied



at the junction of four mutually perpendicular transmission lines. Note that

with the equations of continuity in (2a,b) and one of the familiar first-
order transmission-line equations, the following relations obtain:

8Il(z) ]

jua; (0) --[—3;- = yV,(0) Q)

z=(

where Vl(O) is the voltage across the end of transmission line no. 1 at the
junction, Il(z) is the current, ql(z) the charge per unit length on the ref-
erence conductor (the inner conductor of a coaxial line), y is the admittance

per unit length. Evidently, the equivalent of (5) for transmission lines is
V,(0) = V,(0) = V,(0) = V,(0) (8)

This equivalence exists because in balanced two-wire and coaxial transmission

lines

q(2) = =(Jy/w)V(z) (9}

Note that in a balanced two-wire line V(z) = 2¢l(z), in a coaxial line V(z) =
¢1(z) where ¢l(z) is the scalar potential on the surface of the reference
conductor at the point z.

On an electrically thin antenna the charge per uuit length at a point z
1s approximately proportional to the scalar potential on the surface of the
conductor at z when this point 1is (a) not near a minimum of charge in the
standing-wave pattern, and (b) not near an open end or a junction. For the

crossed artennas under study, the condition
$,(0) = ¢,(0) = ¢,(0) = 4,(0) (10)

is not equivalent to (5). That the difference is significant is made evident .



by a study of the distributions of current in Figs. 1 and 3 of Reference 4
which were computed using (10) and not (5). At the junction the slopes of
the large imaginary parts of the several currents differ significantly. This

means that the charges per unit length on these conductors are discontinuous

across the junction which is obviously incorrect.

One author [3] has used not only the conditions (10) in place of (5) but
has supplemented these with additional conditions of continuity on the com-
ponents of the vector potential along each wire at the junction, i.e., Ax(x)
and Az(z) are required to be.continuous at x =z = 0, Since Ax(x) and Az(z)
[like ¢(z)] are in any case continuous at all points &long both conductors
for all distribu;ions of current including those that are discontinuous,
these conditions do not characterize the particular properties of the junc-
tion. If (10) is used as an approximation of (5), the Lorentz conditions,
BAz(z)laz + j(kz/w)¢(z) = 0, an(x)/Bx + j(kz/w)¢(x) = 0, show that it is

equivalent to:

[aAlz(z) ] ) [aAzz(z) ] } [ 3A3x(x)] ) [aAéx(x) ] an
°z 2=0 3z z=0 9x x=0 X 4 g

No other condition on Ax(x) and Az(z) at the junction is required. This is
also evident in [3] where ten conditions are imposed to determine eight con-
stants of integration. The redundant two are those requiring continuity of
Ax(x) and Az(z) at the junction. They are no more necessary at the junction
than at the ends of the conductors or any point along them,

In concluding this introductory discussion of conditions at the junction
of electrically thin wires, it is important to emphasize that the eight re-
quirements in (3), (4) and (5) are the necessary and sufficient conditions

for determining the currents in the four arms of the ~rossed antennas. The



substitution of (10) for (5) or (11) for (6) is an approximation that in-
volves significant errors in the calculated charges on the conductors near
and at the junction and, therefore, in the near electric field. The magni-

tude of these errors depends somewhat on the location of the junction in the

standing-wave patterns that obtain on the two crossed wires.

3. Analytical Formulation
Since the correct boundary conditions at both the ends of the crossed
antennas and their junctions involve not only the currents but the deriva-
tives of these, an integral-equation formulation in which the constants of
integration appear in the expressions for the potentials is not convenient.
New and somewhat different integral equations for the currents are, there-
fore, sought. Their derivation necessarily begins with the following bound-

ary conditions on the surfaces of the two perfect conductors:

- gine _ 3¢(z) - . -

Ez(z) =E, -5, = ijz(z) 0 h1 <z< h2 (12a)
=L 30 _ n ¢ -

Ex(x) ~ 5 ijx(x) 0 3o=8g %< 2, (12b)

where the vector and scalar potentials on the surfaces of the conductors are:

h

by 2
Az(z) = Z;-_{ Iz(z')K(z,z') dz' | (13a)
L
9 AL ' e
A (x) = o= -£ I (x")K(x,x') dx (13b)
1
b, o) ]
8(z) = ——| [ q(z")K(z,2") dz' + [ q(x")K(z,x') dx’' (14a)
breg Lop 2 -
1 et |
2, h,
80 = =1 [ ax"K(x,x") dx' + | aqlz")K(x,z") dz') (14b) .
4W€0 -1 h
1 1 -
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‘ The average kernels are:

.ijz
K(z,z") = £ = . Rz = v/(z - z')2 + 32 (15a)
z
-IkR,,
K(z,x') = = R , R = v/iz + x'2 + a2 (15b)
cz
cz
Note that
K(z,z') = KR(z,z') + jKI(z,z') (16a)
where
cos kRz sin kRz
Kpe(z,2") = —— , K (z,2") = =« —— (16b)
z z
and
k = w/ESEO (7

The following notation is used: Az(z) = Al(z), $(z) = ¢l(z), Iz(z) = Il(z),

q(z) = ql(z) when -hl

I A

z 205 A(2) = A,(2), ¢(2) = ¢,(2), I,(2) = I,(2),

N

q(2) = q,(2) when 0 < z € hy; A (%) = As(x), ¢(x) = ¢,(x), I_(x) = I,(x),

q(x) = q3(x) when -21

tA

x <05 A () = A ), ¢(x) = ¢,(x), L(x)=1(x),
q(x) = qa(x) when U < x < 12.

In the analysis of single and parallel conductors it is customary to in-
troduce the Lorentz condition, V - A+ j(kzlw)¢‘- 0, explicitly in (12a) to
elimirate the scalar potential, This procedure was also followed by Butler
{3] in his formulation of the integral equations for crossed wires. When
this is done, the scalar potential ¢(z) on the surface of the vertic;l wire
is, in effect, separated into the two parts expressed by the two integrals in
(14a). These are treated separately and differently, The first is combined

. directly with Az(z) to form a simple differential equation, the lattef remains
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as the inhomogeneous term. In the solution, the first integral in (l4a) is
then included in the complementary function, the second in a particular inte-~ .
gral. This procedure is not followed here. Instead the integrals in (1l3a,b)

and (l4a,b) are inserted directly into (12a,b) to obtain the following basic

equations:
by R *y
[ 1(z")K(z,z') dz' -—2—5—5[ [ a(zDR(z,z") dz' + [ q(x"K(z,x") dx'J
—hl k -h1 -21
. dar glnc (18a)
wi oz
3 jo 3 [ 2 By
[ I(x")K(x,x') dx' - —5-3—-[ [ a(x")K(x,x") dx' + [ q(z")k(x,z") dz']
-1 K FLoa -h
‘ 1
= 0 (18b)

These are to be solved for the currents and charges per unit length in the
two conductors subject to the boundary conditions (3) at the ends of the .
wires and the 5unction éoddiéions 4) and (5) where they intersect. The con-

tinuity equations in (2a,b) relate the currents and charges per unit length.

4, Formal Solution of the Integral Equations
Before obtaining a solution of (18a,b) it is convenient to make use of
the equations of continuity (2a,b) in the middle integrals in (18a) and (18b).

Note also that 3K(z,z')/3z = -3K(z,z')/3z'. The desired relations are:

h h
2 2 .
J(z) = ju g% [ a(z")K(z,2z") dz' = --;; / E%é$~l K(z,z') dz'
-'h -h ' ’
1 1
h,
1
= f 3;; ) Eg—rx(z,z') dz* (19a).
-h

1



Integration by parts now yields:

h

2
J(Z) ”'jNIQ(hZ)K(Z,hZ) - Q(°hl)K(Z;'hl)] - f é"zii—l K(z Z') dz
: -hl dz’
Similarly,
L
2, I(x ")
3(x) ==3ulq(2,)K(x,2,) = q(=2)K(x,=2)] = [ K(x,x") dx'
. -21 ax'
With these expressions (18a,b) become:
h 2. inc
2 ¢ .2 ; -jb4nk E
) I(Z ) 2 [ -3
-{ {——gzji—-+ k I(z')] K(z,z') dz' - Fz(z) - Fs(z) "
1
"2 221(x') . .2
f [-—————i—-+ k I(x')} K(x,x") dx' = Fz(x) - F3(x) = (
-2 3x'
1
where
7
Fz(z) Jw 57 f q(x")K(z,x") dx'
e

F3(z) s-jm[q(hz)x(zsh ) - Q(-hl)K(Z,‘hl)}

(19b)

(19¢)

(20a)

(20b)

(21a)

(21b)

The functions Fz(x) and F3(x) are obtained from (2la,b) with the substitution

of x for z and 2 for h,

The equations (20a,b) can be simplified greatly if use is made of the

peaking property of the real parts of the kernels in the integrals, These

occur at z' = z and x' = x where KR(z,z) and KR(x,x) become very large when

ka << 1. As a consequence, the relation

h h
2 2 2 _
{ f(z')KR(z,z') dz' f £(z') 282 k‘/(z - z') 2 gpr ok Y£(z)

1 - Sz - 22 + a2

13
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where Y 1s a constant is an excellent approximation for any function f(z)
2

such as (azfaz + kz)I(z). [Note'that (22a) 1is not valid when ka is not .

small.] The constant parameter ¥ is defined by

by

Y= £ [ fYK (2 ,2') dz' (22b)
m R*"m
-~h
1
where zm is a point near the maximum of f£(z). This integral is evaluated in
Appendix A for the case at hand. It is there shown that ¥ depends only on ka
and not on hl or h2. Accordingly, the same parameter ¥ applies to the trans-

verse conductor if it has the same radius as the vertical one,

With (19a,b,c) the coupled integral equations (20a,b) become:

2
3 2 2 -1
(;;2_ + k )I(z) = AK° + YTUF (2) + Fy(2) + F(2)] (23a)
2
3 2 ~1
(;;3 +k )I(x) = Y[R, (x) + Fy(x) + Fy(x)] (23b)
where ine
Ama JATE, e 3 eincy, (24a)
wp¥ 60Ty ‘Tz
and
b2 221(z") | |2
Fl(z) = ..j f [-————-——2-—-“' k I(Z')] KI(Z’Z') dz' (24b)
-hl 3z! '

The function Fl(x) is obtained from (24b) with.the substitution of x for z
and 2 for h,

The solution of the inhomogeneous one-dimensional wave equations (23a,b)
consist of the simple solutions of ther homogeneous equations plus sums of
particular integrals due to the inhomogeneous terms. The formal solutions

for the currents on the four parts of the crossed wires are: .
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Il(z) = A[Ci cos kz + C; gin kz + 1] + Hh(z)/W : -h1 <z <0 (25a)
Iz(z) = A[Cé cos kz + CE sin kz + 1] + gh(z)/W ; 0<z< h2 (25b)
I3(x) = A[Cé cos kx + Cg sin kx] + Hl(x)/w s -ll <x < 0 (25¢)
14(x) = A[Cz cos kx + Cz sin kx] + Hz(x)/W 3 0<x< 22 (254)

where the C's are arbitrary constants of integration and
Ho(2) = Tp(2) + T,(2) + Ty(2)  , B0 = Ty(x) + T, + T4(x)  (26a)
with
1 2
T,(2) = Ef F(s) sin k(z =) ds , 1=1,2,3 (26b)
0

The functions Fi are defined in (21la,b) and (24b). The particular integral
due to the first term on the right in (23a) 1is obtained from (26b) with sz
substituted for Fi(s). It contributes the term 1 in (25a,b) and to the arbi-
trary constants Ci and Cé. The other particular integrals are the functions
Ti(z) and Ti(x) with 1 = 1, 2, and 3.

The distributions of charge per unit length areKobtained from the cur-

rents in (25a-d) with the equations of continuity in (2a,b). With 3H(z)/3z

denoted by H'(z), the formulas are:

ay(2) = 3E Af-c) sin kz + ¢} cos k2] + 41! (2) (27a)
q,(z) = lE-A[-C' sin kz + C! cos kz] + $L-I'( )] (27b)
2 - 2 2 ¥ Tz

3k ' " 3., .
q3(x) = A[-C3 sin kx + C3 cos kx] + ¥ Hz(x) (27¢)

15



q4(x) =>%§-A[—Ci sin kx + Cz cos kx] + g? Hé(x) (274)
@
Since thercurrents and charges appear in the integrands of the particu~ 7
lar integrals, (25a-d) and (27a-d) are no£ solutions hut rearranged coupled
integral equations. Approximate solutions can be obtained by iteration.
Suitable zero-order solutions are given by the square brackets in (25a-d) and
(27a~-d). First-order solutions are then obtained by the substitﬁtion of the
zero-order solutions in the integrands in the terms Hh(z) and Hz(x) and their
derivatives. Second-order solutions can be generated by the substitution of
first-order values in Hh(z) and Hi(x). For present purposes first-order solu-

tions are adequate.

5, First-Order Solutions
First-order currents and charges are obtained from (25a-d) and (27a-d)
when the explicit zero-order values are substituted in (23a-c) and the ex- .

plicit values of the F's so obtained are used to evaluate Hh(z) and Hz(x) as

defined by (26a,b). Thus,

h
2
Fl(z) = —ijA / KI(z,z') dz! : Fl(x) = 0 (28)
-h
1
N 0
Fz(z) = ~kA 3;-[_{ (-Cé sin kx' + Cg cos kx")K(z,x') dx'
1 (29a)
2
+ / (—Cz sin kx' + CZ cos kx')K(z,x') dx']
0
. )
Fz(x) = ~kA é% [~£ (-Ci sin kz'!' + Cg cos kz")K(x,z") dz'
1 . (29%)
2
+ é (—Ci sin kz' + C; cos kz")K(x,z') dz'] .

16



F3(z) = kA[(—Cé sin kh, + CY cos khz)K(z,hz)

2
- (Ci sin khl + CE cos khl)K(z,-hl)] (30a)
F3(x) = kA[(—CA sin kZZ + CS cos kiz)K(x,Rz)
- (Cé sin ki, + Cg cos kll)K(x,-ll)] (30b)

When these quantities are used in (26a,b), the functions Hh(z) and Hz(x) can
be evaluated in terms of sines, cosines and integral sineé and cosines., The
computations are carried out in Appendices B, C and D where explicit formulas
are obtained for Ti(z) and Ti(x), i=1, 2, 3. They are given in the

forms

Tl(z) = -Atl(z) ; Tl(x) =0 (31)
TZ(Z) = —A[Cécs(z,zl) - C&GS(z,lz) + C;Gc(z,ﬁl) + CZGc(z,lz)] (32a)
T, (x) = -A[CiG (x,h)) = CoG (x,h,) + CJG_(x,hy) + C4G_(x,h,)] (32b)
T3(z) = A{&(z,hz)(~C£ sin kh2 + Cg cos khz)
- 0(z,-hl)(Ci sin khl + CI cos khl)] (33a)
T3(x) = A[ﬁ(x,lz)(-ci sin k22 + Czrcos k22)
- o(§,-21)(cé sin kzl + Cg cos kll)] (33b)

Formulas for the functions Gs(z,z ), Gc(z,zl), a(z,hz). 0(2,-hl), etc. are
given in Appendices B, C and D.

When (31)-(33) are substituted in (26a), (25a;d) and (27a-d), explicit
first-order solutions for the currents and charges per unit length are ob-

tained., It remains to evaluate the constants Ci and Cz from the boundary and

17



junction conditions (3)-(5).

6. Evaluation of Constants of Integration
Since the charges appear only in the first-order terms of the expres-
sions (25a-d) for the currents, zero-order values of the charges per unit
length arc adequate to obtain first-order currents. This suggests that the
application of (5) 1s advantageously carried out first, With z = 0 and x = 0

in the zero-~order parts of (27a-d}, it follows directly that (5) gives:

Cy =Cy=Cy=Cy=c" . (34)

Since Hh(O) = Hz(O) = 0, the condition (4) acts 6n1y on the zero-order terms

for the currents. The resulting equation is

Ci - Cé + Cé - Cé = 0 (35)

The conditions (3) which require the currents to vanish at the four ends of
the antenna are more complicated since they involve all of the first-order
terms. The following four simultaneous equations are obtained for the C!,

J=1, 2,3, 4

4 .
' = 3 - ’
351 Ciayy = By s i=1,2, 3,4 (36a)
where
P - n " - . - it -
Rl 1+ 6¢( hl) + C"(sin khl bl) s R3 C*(sin kil b3) (36b)
B e - 1t . = '
R, 1 + 6(h,) - C"(sin kh, +b,) ;3 R, C"(sin k2, + b,)  (36c)
The following quantities are involved:
a,, = cog kh, - thﬂ(-h =h.Ygin kh, 3 a --¥-1§(-h h,)sin kh,;
11 ; 1 1’ 71 1’712 1’72 2’
a,. = -¥1c («h,,2.) ;a,, = ¥G (<h,,2.) (37a)
13 g 1’71 " T4 s 1'72° ¢
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-1
= oS kh2 -y J(hz,hz)sin kh, 3

-1
a, =¥ J(hz,-hl)sin khy 5 a,, 5
a.. = -G (hyot,) 5 a,, = vl (h,,%.) (37b)
23 st 271 0 C24 gt 2072 0
a.. = -v"1g (-2,,h,) ; a,, = v~1g (-2.,h.); a,. = cos ki, - w‘%&(-z -2.)
31 s 1717 732 8 17272 733 1 1’71
-1
x sin kll 3 oag, =¥ §(—21,22)sin kiz s (37¢)
a,, = -W_lG (¢,,h,) s a,, = W-lG (¢,,h,) ¢ a --W—%}(l -%.)sin k&,
41 s 72071 0 %42 s'720727 2 943 2+ 1
-1 ' .
a,, = cos ki, = ¥ .ﬂ(zz,lz)sin ke, (37d)
-1 ] -1
bl =-Y [0(—hl,-h1)cos khl - 0(-hl,h2)cos kh2] - Y [GC(-hl,zl) + GC(-hl,ﬁz)}

(38a)
b --W-l[—ﬁ(hz,hz)cos kh2 + 0(h2,-hl)cos khll - W-l[GC(hZ,Rl) + Gc(hz,zz)]
(38b)

-1 -1
b, ==Y [ﬁ(-ll,nll)cos kll - a(-ll,lz)cos k22] - Y [Cc(—Zl,hl) +'Gc(-21’h2)]

(38c)
b, =—w'1[-o(22,22)cos ke, + 9(2,,=2;)cos ki ] - w‘ltccczz,hl) + G (2,,h,)]
. (384d)
6(z) = tl(z)/v (39)

Note that the quantities aij’ bi and 6 are of order 1/¥, the quantities agy
are of order 1.

The solutions of the simultaneous equations in (362) can be carried out
numerically for any special case. General analytical formulas can be ob-
tained quite simply when the basic condition underlying the present solution
is satisfied, viz., ¥ >> 1, which is a necessary consequence of ka << 1, If
the solutions are expressed in the form C! = Aj/D, j=1, 2, 3, 4, and terms

3

of order ?-2 are neglected, the determinant of the coefficients reduces to

19



the dlagonal terms. Thus,

D = 2y,8,5333%, (40)

This contains terms of the order W-l. These are important since the leading
texrms in a,, can vanish when the cosine is zero.

ii
Without further approximation

Ay = Rja,03348,, = Ro8y92048,, = Ry8143953,, = Ru31,4855333 (41a)
Ay = Ryayq183448,, — Ryy98448,, = Ry3548113,, = Ryag 314333 (41b)
Aq = Rqa118,08,, ~ Ry33183998,, ~ RoB493718,, = Ry34,291395 (41c)
Ay = Rua19899833 ~ Ry3,q8953404 = Rpd, 0811845 = Ry3y43152,, (41d)
It follows that:
A a a a ‘l'
T [Rl SRy s - Ry TR Zii] (422)
11 22 33 44
A a a a
€y = 7%" = {Rz - R EZE“ Ry Egé" Ry EEE} (42b)
22 11 33 44
A a a a
T
33 L 11 22 44
A a a a
¢ =5 El”'[RA - R gE - Ry oo Ry Eig} (42d)
44 11 22 33

These expressions involve the comstant C" which occurs in the R's. It can be

determined with (35) and the simplifying notation:

-2l 2Ly (43)
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n, = - + y o, = - + ) (44)

With (43) and (44), (35) becomes:

R R R
545-(1 +np) - ;EL-(l +n,) 33- (1 +n,y) + 34 (L+n,) =0 (45
11 22 33 44

The substitution for the R's from (36b,c) yields an explicit formula for C",-

viz.,
-1 -1'
= (T + M)~ ( ajy - ag, +N) . . .(46)m
where
N=alin -6(-h)] -a i - 8(h)] 47)
111 1 222 2 .
-1 -1
M= all[n1 sin khl - bl(l + nl)] + a22[n2 sin khz + bz(l + nz)}
agé[n sin k#; - by(l + np)] + a44[n sin k&, + b, (1 +n,)]  (48)
T = a-l sfn kh, + a-l sin kh. + F(L,,2.) (49)
1l 1 22 2 172 2.
and
F(L,,2.) = a"l sin k2, + a-l sin k&
172 33 1 44 2

If (46) and (36a-c) are used in (422), these yield explicit formulas for
the four C's. It is convenient to separate the leading and higher-order

terms as follows:

Ci = aii[«l + c1 C"(sin kh + c )] (51a)
cj = a;;{—l + ¢) = C"(sin khy + c})] (51b)
Cj = ajzfc] + C'(stn ki, + )] ~ (51c)
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|-"1 t " "
C4 a44[c4 C"(sin k£2 + cé)] (51d)

where

ci = 6(-h,) +a12a;§[1 - 0(hy)] 3 c = 8(h,) + anaﬁ[l - e(-—hl)] (52a)

' -1 _ g -1 _ .
c3 aSlall[l 8¢( hl)] + a32a22{1 e(hz)] 3

ci = aAla;i[ - e(hz)} 3 (52b)

-1
1 - e(—hl)] + 342a22[1

Y= -b, +a (sin kh, + b ) (sin kQI - b3) + a;,3 44(Sin kiz +b )

€1 1+ 31285 2 213333

(52c)
-1

" = -

cy b2 + a,q2 33(sin kll 3) a24a44(sin k£2 + b4) + 8,18 1l(sin kh bl)
(524d)

"o -1

ey b3 + a34a44(sin k22 + b4) a5y ll(sin khl 1) + 3,453 22(sin khz + bz)
(52e)

[T

< b4 + a2 ll(Sin khl bl) 3., 22(5111 kh2 + b ) + a, 43 33(sin kﬁ,l b3) .
(52f)

Since C" is given =xplicitly in (46), the four constants C., Cé, Cé and Cz

have been determined.

7. The Distributions of Current
The substitution of the expressions (5la-d) and (46) for the C's into

(25a-d) gives the first-order currents., They are:

lJ’sin kz + sin kh gin kz -~ sin khz sin khl + s8in khz

(z) = A[T + M]
g l 21 272 211222
. gin kh
x cos kz + [F(ﬁl,zz) + M] (1 - cos kz ) + N [sin kz + = cos kz]
11 11
(2)
+[ci(T+M)+c{(a—l—--£-—+N)]-‘5-°—:——k—z- +th (53a).
11 222 11
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sin kz 4+ sin kh sin kz - sin kh sin kh, 4+ sin kh
-1 1 2 1 2
12(2) = A[T + M] [N 2 - 2 - P

11 22 11722

cos kz sin kh
x cos kz + [F(El,LZ) + M] (1 - ——-———-) + N [sin kz - —5——— cos kz]

222 22
H, (z)
+ Lcé(r + M -y (-—1—— - -51—— + N):\ °°: kz \ hw (53b)
411 22 22
"sin k2
13(x) = A[T + M]_l (-—l— - —L+ N) (sin kx +——-é-————l-cos kx)
411 222 33
B (%)
+[c§('r+n) +c;(—-1—-—l——+N>] eor kx\ 4 Z\y (53¢c)
811 222 33
( sin k¢
1,0 = atr (- ) (ot i - 2 cos k)
11 22 L4
H (%)
+[c£(T+M) —c'a'(—}—--}—ua-N)] cos kx4, Q‘y (53d)
S ) 844
With (26a), (31), (32a,b) and (33a,b), it follows that
Hh(z) = —A{tl(z) + Cia(z,-hl)sin khl + Céﬂ(z,hz)sin kh2 + CéGS(z,ll)
- CéGS(z,l Y + ¢ 0(2,-h1)cos khl - 0(z,h2)cos kh2 + Gc(z,l )
+ 6 (2,21} ~ (54a)

where the C' are given by (5la-d) and C" by (46). The functions t, G and
are defined in the Appendices B, C and D, The corresponding formula for

Hz(x) is:
= - v - + o 1 - !
Hz(x) A{ 030(x, zl)sin ki, Caa(x,zz)sin ke, + Cle(x,hl) Cst(f,hz)

+ C"f 6Kx,-zl)cos ke, = J(x,%,)cos k&, + Gc(x,hl) + Gc(x,hz)]} (54b)

1 2
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Note that Hh(O) = H,(0) = 0.

When the electrical lengths of the four arms of the cross differ from .
integral multiples of a quarter wavelength, simple zero-order forms may be
adequate. These are obtained by neglecting all terms with ¥-1 as a factor.

They are:
[Il(z)]0 = -Alsin k(h1 + 2) + sin k(h2 - 2) = 8in k(hl + hz) + F(zl,iz)

x cos kh,(cos kz - cos kh,)]{sin k(h, + h,) + F(2,,%,)
2 1 1 2 1’72

(55a)

1A
N

1A
<

-1
x cos khl cos khzl 5 -hl

[IZ(z)]0 = ~Af{sin k(hl + z) + sin k(h2 -z) - sin'k(h1 + hz) + F(zl,lz)

X cos khl(cos kz - cos khz)][sin k(hl + h2) + F(zl,az)

x cos kh; cos khz]"l ;  0<z<h
cos kh, = cos kh gin k(2, + x)
[1.(x)]. = -A 2 L L ;
3 0 sin k(hl + h2) + F(ll,zz)cos khl cos kh2 cos k21
-4, $x 20 (55¢)
cos kh, - cos kh sin k(&, - x)
[IA(X)IO = A sin k(h, + h,) + g(z [ ol kh, cos kh cos iz ;
17 M 1*72/€08 Xy ¢ 2 2
0<x< Lz (55d)

where A 1s defined in (24a) and F(zl,zz) = tan kzl 4+ tan kzz =

sin k(zl + zz)/cos kzl cos kiz. -
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8. The Distributions of Charge Per Unit Length
The first-order distributions of charge per unit length are obtained
directly from the currents with the help of the equation of continuity,

q(z) = (j/w){3I{z)/3z]. Thus,

sin kh, + sin kh

q.(2) ==‘}-E—A;{'I‘+1‘{]'"l (-a—}-—-ai-)cos kz - 1 2sinkz
1 11 222 211222
sin kh
+ [F(Zl,zz) + M] E-i-:——-l-(-i-{- N [cos kz -—-—;——l gin kz]
11 L 11
JH! (2)
- [ci(T + M) + cf (al - al )] Si: kz sz'" (56a)
11 22 11
sin kh, 4+ sin kh
qz(z) =j—z—é[T+M]'1 (E}-—-g—l——)cos kz - ala 2sin kz
11 22 11722
sin kz sin kh
+ [F(zl,iz) + M] . + N [cos kz + sin kz]
22 432
Ju' (2)
- [cé(T ) - c;_'(al -2 )] stnkz {4 H‘w‘w (56b)
11 22 22 ‘

KA _ sin k&
q3(x) =2-J—(T+M) 1 (—-L--—];-+N)(cos kx-—-;————];sin kx)

211 %22 33
' JH (%)
- fel(T + M +c"( 1 1 sinkx | 27 (56¢)
3 3 311 322 a33 wYy
kA _ sin k¢
q4(x)'§—(;—(T+M)l (;—l-—-a—l—+n)(coskx+ zsinkx)
11 222 344
JH! (%)
- [cl: (T+M) - c) ( al - al )] Si: kx { (ﬁ\y (56d)
: 11 22 44
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Hﬁ(z) and Hi(x) are the derivatives with respect to the indicated arguments
of the functions Hh(z) in (54a) and Hg_(x) in (54b). The differentiation is ‘
discusséd in Appendix E. The corresponding zero-order charges per unit

length are:

(0 ()], = ~1kA cos k(hl.+ z) - cos k(h2 -»z) - F(Rl,zz)cos kh2 sin kz (572)
1 0 w sin k(hl + h2) + F(zl,zz)cos khl cos kh2
o IS 9 gm e
A 12727¢0% ¥y 2
(o] = ~1KA cos kh2 - cos khl 1 cos k(ll + x)
3 0 w sin k(h1 + hz) + F(zl,iz)cos khl cos kh2 { cos kll
(57¢)
()] = -fkA cos kh2 -~ cos khl cos k(iz - x) .
4 0 w sin k(hl + hz) + F(ll,ﬁz)cos kh1 cos khz cos k22
(57d4)

9. Special Cases

In order to gain insight into the numerous possible distributions of
current and cha»ge on the crossed dipoles, it is advantageous to treat cer-
tain special cases associated with conditions of resonance and antiresonance
in the six possible circuilts each consisting of two arms, These will be out-
lined only briefly here and discussed in greater detail in conjunction with
measurements in a companion paper [5]. Before these are examined, the gym-
metrical case ard the vertical section alone without side arms are of in-

terest.

26




1) Junction at the center of the vertical element, hz = hl = h,

When the junction of the crossed antennas is at the center of the verti-
cal element, all currents and charges on the horizontal element are zero
since it is in the neutral plane, The vertical section behaves as if iso-

lated. Specifically, in this case

I(z) = A(1 + C] cos kz - 8(z) - CJ¥"T[3(z,-h) + 9(z,h)Isin kh} ; =-h <z <0

1 - <2
(58)
- 1
q(z) = —%%5 {c] sin kz + E_ézl + [C]/k¥][9" (z,-h) + 9'(z,h)]sin kh}

-h <z <0 (59)
where the prime on 6 and J denotes differentiation with respect to z and
where

T N (O RN OV (60)
11 12

In this simple case the complete determinant, viz., D = alla22 - a12a21, is

used instead of the approximate form given in (40). Note that
I(-2) = 1(z) ; a(~2z) = -q(=2) (61)

Ix) =0

73

q(x) = 0 (62)

Since the horizontal member at z = 0 has no effect, the above formulas also
apply to the vertical section when the horizontal member is absent.

When kh = /2, the antenna is near resonance, In this case, a; -
<F(h,h) /Y, a;, ==9(-h,h)/¥, ¢ --w{e(-h) - 1}/[9(h,h) + 3(=h,h)]. The zero-

order terms are:

AY cos kz | '
[E&1o = F@mm + S w | (63)
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~ =(JKAY sin kz)w i
[ g ~ Fwny + ot ) (64

When kh = m, a,,==-1,C!=1- tl(—h)/?, so that

411 7 #22 1
I,(2) = A{L + cos kz = ¥"'[e,(2) + t;(-h)cos kzl} 5 -h < z £ O (65)
where
e, (2) = ~3{S1(n + kz) + S1(x - kz) + (1/2)[Cin 2(r + k2) = Cin 2(7 = k2)]
x sin kz + (1/2)[S1 2(r + kz) + S1 2(n = kz) ~ 4 SL 7 = 2 §1 27]

x cos kz}

and

tl(-h) = (3/2)[4 Si 7 - S1 4n] = j2.95

Also, .

-jkA
w

q,(2) = (sn kz = ¥ [t](2)/k = t)(-h)sin kzl} 5 <h S 2 S0 (66)

. inc
Note that Iz(z, = Il(—z), qz(z) —ql(-z) for 0 <z < h; A -j4nEz

[wp¥.
2) All elements resonant; junction at minima of charges per unit length and
maxima of currents along horizontal and vertical elements: khl = 57/2, khz -
kll = kzz = n/2,

Por the specified lengths, the currents and charges involve the follow-

ing parameters:

a, =3 (5)3/4,50/6)/Y 3 a,, = a

2 = a,, =IO/4M8)/Y (67)

33

With (46) and (5la-d), it is readily verified that C" is of order 1, whereas ‘
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the C' are of order ¥ >> 1. It follows that the leading terms in all of the

currents and charges are simply:

Il(z) = ACi cos kz 3 ql(z) 2 - Ci sin kz ~h1 <z<0 (68)
Iz(z) & ACé cos kz qz(z) = _iFA Cé gin kz ;3 0 <z < h2 (69)
13(x) & Acé ccs kx q3(x) = -1FA Cé sin kx -Zl <x<0 (70)
I4(x) & AC; cos kx q4(x) = :%?é CA sin kx ; 0 <x < 22 (71

where the C' are given by (5la-d) with each of the four sines equal to unity.

The parameters ci, c; and C" are all of order unity, Note that all of the

boundary conditions (3), (4) and (5) are satisfied by these simple expres-

sions. In particular, ql(O) = q2(0) = q3(0) = qa(O) = 0,

3) Junction at minimum of charge per unit length and maximum of current along
vertical element, maximum of charge and minimum of current along horizontal

element: khl = 37, kh2 = kzl = kzz =7,

The following parameters are involved: 317 T 8y, ® 833 % 3,

and F(Zl,ﬁz) = 0, The leading terms in the currents are simply

=<1, T=0

Il(z) 2 All + cos kz + (N/M)sin kz] Izgz) = A[{1l + cos kz + (N/M)sin kz] (72)

13(x) = A(N/M)sin kx : Ia(x) * A(N/M)sin kx (73)

The associated charges per unit length are .

-1§A [sin kz - (N/M)cos kz] ; qz(z) = _1?A

q,(2) = [sin kz - (N/M)cos kz] (74)
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q3(x) = —%%é (N/M)cos kx 3 qa(x) = —%%ﬁ (N/M)cos kx (75)

Note that at the junction Il<0) and 12(0) have maxima| ql(O) and qz(O) minima,

On the other hand, 13(0) and 14(0) have minima, q3(0) and qa(O) maxima,

4) Junction at minima of charge and current along vertical element, maximum
of charge and minimum of current along horizontal elements: khl = 47, khz =

27, k21 = k£2 = T,

For the specified lengths, the following parameters are involved:

=a.,=1l, a,,=a

a 33

11 22 = -1; T =03 F(ll,lz) = 0, The leading terms in the

currents are:

44

Il(z) = A[l - cos kz + (N/M)sin kz] ; Iz(z) & A[l - cos kz + (¥/M)sin kz] (76)

= A S = L
I,(x) ' A(N/M)sin kx : I,(x) A(N/M)sin kx a7 .
The.associated charges per unit length are:

ql(z) = igé [sin kz + (N/M)cos kz] ; qz(z) + léé [sin ke + (N/M)cos kz] (78)

lgé-(N/M)cos kx $ q4(x) o= iéé-(N/M)cos kx (79)

fle

q3 (x)

B - - E-—4 - - '
where M bl + b2 + b3 b&’ N Bq) = 34 + 849 = 39 The b's are given
by (38a-d), the a's by (37). Note that at the junction Il(O), IZ(O)’ ql(O)
and qz(O) all have minima, whereas 13(0) and 14(0) have minima, q3(0) and

q4(0) maxima. Nevertheless, ql(O) = qz(O) = q3(0) = qA(O) = jkAN/uwM,
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5) Currents axially discontinuous at the junction: kh1 = 47, khz = kzl -
k2.2 = T,
The following parameters occur when the above lengths are usaed: a, * 1,

= -1; T = 03 F(P.l,l =O;M--bl—b +b -bA;N.nl+“2-

359 = 333 ™ 3, 2’ 2 ¥ by

6(-hl) - G(hz). The b's are given by:

by =-¢"NIH2A,20) + H-22,0/2) = 26,(23,1/2)] (80a)
b, =¥"8(/2,0/2) + S(A/2,-21) + 26, (\/2,)/2)] (80b)
b, =-¢ T30 /2,1/2) + H(-2/2,0/2) - c (A/2,21) = G (\/2,0/2)] (80c)
b, =3 L3 (0/2,0/2) - SOV /2,-2/2) + 6_(1/2,2%) ; 6, (A/2,1/2)] (804)

The leading terms in the currents are:

I,(2) 2 A{1 ~ cos kz - [(2 + N)/M] (b, cos kz - sin kz)} + Hh(z)/w (8la)
Iz(z) = A{l + cos kz + [(2 + N)/b;] (b2 cos kz + sin kz)} + Hh(z)/‘i’ (81b)
I,(x) & [AQ2 + N)/M] (b, cos kx +';i;lkx) + H, (x) /¥ (82a)
I,(x) * [AQ2 + N)/M] (b, cos kx + sin kx) + Hz(#)/w (82b)

The associated charges per unit length are:

ql(z) = ‘—j-(-‘}ké {1 + Zbl/M) sin kz + [(2 + N)/M]cos kz + Hl’x(z)/k\“ (83a)
Jjka 1
qz(z) = {=(1 + 2b2/M)sin kz + [(2 + N)/M]cos kz + Hh(z)/k‘i’} (§3b)
(x) = 32 '
a3(x) = "= {-2b3 sin kx + (2 + N)cos kx + Hz(x)/k\i’} - (84a)
kA . . '
q4(x) levs {--Zb4 sin kx + (2 + N)cos kx + Hl(x)/k‘i’} (84b)
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At the junction (x = 0, z =

I1,(0) #2Aby/M; I,(0) & 24b,/M. Also, q,(0) = q,(0) = q4(0) = q,(0) *

0), I,(0) = -24b /M3 1,(0) % A(2 + 2b,/M);

(jkA/wM) (2 + N). Note that 11(0) -712(0) + 13(0) -;14(0) = A{(Z/M)(-bl - b,

+b

3

- b4) - 2} = 0. At the junction the largest current is in the upper arm

2 .of the vertical member.

h2 and x = -21, iz israccomplished only with the inclusion of the higher-

The vanishing of the currents at the ends z = -hl,

order terms Hh(z) and Hz(x).

6) Horizontal element asymmetrical: kh, = Sn/2, kh, = #, k2, = 5/2, ki, = %.

Owing to the large currents and charges per unit length in two of the

arms and the small ones in the other two, a simple approximate representation

is not satisfactory in this case. Actually, all terms must be retained with

the currents given by (53a-d) and the charges per unit length by (56a-d).

The special formulas for the several parameters are:

211

--w'%}(-hl,

“hy) 8y, =

-1

s 833

2 2 '
where ‘alll << 1, [a33i << 1, Also,

and

-1

T= a11

+ a.

1
33

3 Fliy,25) = a3

31 221

+ a

41

-1

211

32 _

a

31

+ a a
4
ﬂ.) +

4s%1

—-—

411

433

!

3

21233

Za
233

42

- t =
8320 ¢4, T 3

32
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-1
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w13 w23 P L m ot %3 6
1 a ’ c2 a + a ’ C3 == a ’ c4 = a + a (86b)
33 33 11 11 11 33

1 = sin kll =1,

The terms Hh(z) and Hl(x) also contribute significantly, especially near

The aij's are given by (37a-d) with sin kh

the ends of the arms, Note that Hh(O) = HE(O) = 0, The terms Hh(z)/W and

Hz(x)/W can be expressed in the following forms for the case at hand:

H (z) = -Alt (2) + ciﬁ(z,-hl) + €46 (2,2) = C}G_(z,2,)

N

+ c"[ ﬁ(z,hz) + Gc(z,zl) + cc(z,zz)]} (87a)

H, (x) = -A{ Cé&(x,-il) + CiGS(x,hl) - CéGS(x,hz)

+C"[ 0k, 2)) + G (x,hy) + G, (x,h,)]} (87b)
where
t = -1 - 1 1 "
Cl all[ 1+ cy + C"(1 + cl)] (88a)
L - "
C, =1 cé + C"c2 (88b)
C! = allie! +c"@ + eM] (88c)
3 3373 3
¢} = -] + ) \ (884)
where
M = (azi + N)/(T + M) (89)

The above solutions satisfy the eight conditions (3), (4) and (5)., For the
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currents: 11(—h1) = Iz(hz) = 13(-21) = 14(22)

11(0) - 12(0) + 13(0) - 14(0) = 0

For the charges:

kA 1

An examination of the currents in the four arms shows that very large
resonant currents with leading terms (cos kz)/alla33 and (cos kx)/alla33 are
induced in arms 1 and 3 which have the lengths khl = 57/2 and kzl = 1/2 so

that k(h1 + %1) = 31 or h, + &, = 3)/2, These two arms form a single reson-

1 1
ant circuit with a standing wave that has a maximum current and a minimum of
charge at the junction. As a consequence, this mode of oseillation is large-

ly independent and only loosely coupled to other possible circuits. Theée

are arms 1 and 2 with k(h1 + hz) = 71/2, arms 1 and 4 with k(h1 + £2) = 7n/2,

arms 2 and 3 with k(hz + 21) = 37/2 and arms 3 and 4 with k(£1 + 22) = 31/2,
They all have lengths that are an odd instead of even number of quarter wave-
lengths long so that they are antiresonant and induced currents are small.
The circuit consisting of the arms 2 and 4 has the length k(h2 + 22) = 27, S0
that it is potentially resonant. However, its standing-wave pattern locates
a maximum of charge per unit length at and near the junction. This must dis-
tribute itself equally among the four conductors at the junction and so act
to excite the cther two arms that are parts of antiresonant circuits for this
mode. The four currents have the form (1+N+a;i)sin kz, (1+N+azi)sin kx. The
fact that the resonant circuit consisting of arms 2 and 4 is closely coupled
at the junction to the other two arms with which it forms antiresonant cir-
cuits, means that the resonant amplitude in circuit Z and 4 is severely

damped, Other components of current with suitable distributions are required '
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to satisfy the boundary conditions Ez(z) = 0 on the surfaces of the conduc=-

tors and the conditions on the current and its derivative.

10, Discussion and Conclusion

A complete analytical solution has been obtained for the currents and
charges per unit length on the perfectly conducting, mutually perpendicular
and electrically thin arms of a crossed dipole antenna vhen excited by a
normally incident plane electromagnetic wave., The solution is obtained spe-
cifically when the incident electric vector is parallel to one of the mu-
tually perpendicular conductors., However, since there are no restrictions
on the lengths of the conductors or the location of the point of intersection,
the corresponding solution for the currents induced when the electric field
is parallel to the second conductor can be written down directly, The super-
position of the solutions for the two mutually perpendicular polarizations
yields the currents and charges in the conductors in an arbitrarily polarized
normally incident plane wave. In tﬁe analysis the correct boundary condi-
tions on the currents and their derivatives at the junction have been used.
The commonly used condition for the continuity of scalar and vector poten-
tials at the junction are not sufficient conditions. They are satisfied
automatically as a consequence of the definitions of the potential functions.
The substitution of continuity of scalar potential for continuity of cﬁarge
per unit length at the junction 1s a rough approximation the accuracy of
which depends on the degree in which the scalar potential is proportional to
the charge per unit length = this improves near maxima of charge in a stand=-
ing-wave pattern. In general, the condition of continﬁity of scalar poten-
tial at the junction permits large, physically unacceptable discontinuities

in the charge per unit length at the junction and results in an incorrect
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electric field.

The currents and charges obtained in the new solution determine the com- .

plete scattered field from a pair of mutually perpendicular crossed wires in
a normally incident field. The method of soiution can be generalized to
treat wires that cross at other than a 90° angle and to an incident plane
wave with an arbitrary angle of incidence.

The current and charge distributions in their lezding terms can be vis=
valized in terms of two important principal modes: (1) those of resonant cire-
cuits with maxima of current and minima of charges at the junction and (2)
those of resonaat circuits with maxima of charge per unit length at the junc~-
tion. The former may include any combination in which the lgngth from the
end of one conductor in the cross to the end of another is an integral number
of half wavelengths, Oscillations in any two (three or four) arms that to~

gether form a resonant circuit are largely independent of currents in the

others since coupling to them is minimal for any mode for which the chazge
per unit length at the junction is zero. Thus, large amplitudes can obtain
in any two (three or four) arms that form a resonant circuit. The second
principal type of oscillation occurs when the length of any one arm is such
that a maximum of charge per unit length is located at the junction, As a
consequence of the continuity of charge per unit length at the junction, all
four arms are excited and oscillate closely coupled. If all are resonant,
the amplitude in all is large; if one or more are not resonant, the amplitude
in all is correspondingly reduced. In general, superpositions of the two

types of oscillation obtain,
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Appendix A: The Expansion Parameters
The parameter ¥ defined in (22b)vcan_bema»a1uated when the zero-order
form of the function f£(z) is substituted in it.*.The function in the case at
hand is (82/822 + kZ)I(z). Its zero-order val;e is the constant sz =
-j&nsz:nc/qu. Since this is then also the value at.ény‘ﬁoint z s the”fér-

mula (22b) becomes:

h kh kh kh
2 2 cos W 1 2 cos W
Y= f K,(0,2') dz' = i -—w—-dz'-()' + )-——w——-dz' (a-1)
-h ‘ ~kh 0 0
1 1
'2 2,1/2
where z, = 0 has been chosen for simplicity and W = k{z'" + a y 2 = kz,
This is a generalized cosine integral given by,
2Vhlh2
Y = 2 gn " - Cin kh1 - Cin kh2 (A-2)
x
where the condition kzaz << 1 has been invoked and Cin x = f [(1 - cos u)/uldu
0

= C+ 2n x -« Cil x, When khl and kh2 exceed about 7/2, the approximation
Cin x = C + 2n x is acceptable, With it

4h.h
172 2 2
—2C-2nkhh2- Z[Qnra--c_l . (A-3)

Y = on
a2 1

where C = 0.5772, It is clear that ¥ has the same value for the horizontal

as for the vertical elements if their radii are the same.
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Appendix B: Evaluation of Tl(z)

The function Tl(z) is defined by (26) with (24b). Specifically,

z
Tl(z) = %-é Fl(s) gin k(z ~ 8) ds (B-1)
where h
21 42 2
Fl(z) - -] f ( 5 + k ) I(z')KI(z,z') dz' (B~2)
]
-hl 2z

In the evaluation of the first-order functions, zero-order values of currents

and charges may be used, This means that

2 2
(3 2+k2)1(z') w Zi8TE pine 2, (8-3)
3z wpt z

2

Also, KI(z,z') = ~(sin kﬁ/(z - z')2 + aZ/V/(z - z')2 4+ a”, With these values

[ o T, 2 k(hy - 2)
F,(2) -jk?A f sin k/ (2! = 2)" + a k dz' -—jsz f si; Hogu  (Bet)
where W ='¢U2 + kzaz. This is a generalized sine integral.
Fy(z) = jka{S[ka,k(h, - 2)] + S[ka,k(h; + 2)]} (B-5)
2
Since (ka)” << 1,
F, (2) éjsz[Si k(h; + z) + 51 k(h, - 2)] (B-6)

This expression can now be substituted in (B-1) and integrated as follows:

z
T,(z) = jkA é (51 k(h; + 8) + 51 k(h, = 8)]sin k(z - 8) ds (B~7) '
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The result is
Tl(z) = -Atl(z)

£y (z) = ~3{si k(h, + 2) - %—sin k(hy + 2)[Cin 2k(hy +2) + 2 S1 Kh) sin khy

Cin 2k, ] - % cos k(hy + 2)[S1 2k(hy + z) + 2 S kh) cos khy

1 in k(h, - 2)[Cin 2k(h, - 2)

Si Zkhl] + Si k(h2 -2z) - 5

. 1
+ 2 Si kh2 sin kh2 - Cin 2kh2] - 5 cos k(h2 - 2)[Si Zk(h2 - 2z)
2 2 2

+ 2 Si kh, cos kh, = Si 2kh,]} . (B~8)

Note that

tl(O) =0 | (B-9)

Approximate forms useful near the junction when the arms of the cross
are sufficiently long are obtained with S{ x * n/2, Cin x * C + 2n x when
x > m/2 where C = 0,577 is Euler's constant. For k(h1 +z) > w/2,

k(h2 -z) > /2,
tl(z) & ~j{n(l ~ cos kz) - (1/2)[sin k(h1 + z)en(l + z/hl)
+ sin k(h2 - z)4n(l - z/hz)]} (B~10)

To supplement this formula, values at z = -hl and z = hz when khl > w/2 and

khz > n/2 are useful, They are
£,(~h,) ='-3[¢(3/4 - cos khy) = (1/2)an(l + h /hy)sin k(hy + h))]  (B-11)

tl(hz) - ~jtr(3/4 ~ cos khz) - (1/2)n(1 + hz/hl)sin k(hl + hz)] (B-12)
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Appendix C: Evaluation of Tz(z)

The function Tz(z) is defined by (26) with (2la). It is:

2z
Tz(z) -<% é Fz(s) sin k(z - 8) ds

with

%

B« gu gy [ G IRGx" o'

0 .
= kA — f [-Cé sin kx' + Cg cos kx']K(z,x") dx'
£

“
+ [ [-C! sin kx' + CV
0

y €oS kx'IR(z,x') dx'

4

The first two integrals can be éxpressed as follows:

. Y
0 ) 1
[ sin kx' K(z,x') dx' = - [ sin kx' K(z,x') dx'
-2 0 '
1
0 Y
[ cos kx' K(z,x') dx' = [ cos kx' K(z,x') dx'
-f, 0
1

It follows that with Z = kz, X = kx, L = k&, A.= ka,

- - _ ' B - - ' - - ' —
Fz(z) kA[CéFS(Z,Ll) CAFS(Z’LZ) + Cch(z'Ll) + CZFC(Z’LZ)}

where
. L e-j/x'z + 2% 4 A2
Fg(Z,1) = 5 | sin X' dx*
0 V2 4 22 4 42
) L e-—j/x'2+22+A2
I e ] wt
F (z,1) v é cos X dx

/x4 22 4 a2
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(c-4)

(C-5)

(c=6) .



With (C=4), (C-1l) becomes

= - 4 - ! " 1" A
Tz(z) A[C3G8(Z,Ll) CAGS(Z,LZ) + CBGC(Z,Ll) + CAGC(Y,LZ)]
where
L 7 \ e-j/82+X2+A2
6.(z,L) = [ sin X dX [ sin(Z - S) == ds
s 0 0 S B R
S+X_f}-A
L Z 5 e-j¢/52 + X2 + A2
G (Z2,L) = [ cos X dX f sin(Z - 8) — ds
c o o 3s

/5% + x2 + Al

(c-7)

(C-8)

(c-9)

The second integrals in (C-8) and (C-9) can be integrated by parts to give:

L e—j/x2+A2

6,(Z,1) = = sin Z [ sin X dX + I_(z,L)
0 | /<2 + A2
L -3 /%% + A%
e

GC(Z,L) = - sin Z [ cos X

dx + I_(z,L}
0 /2 2 ¢

¥+ A
where
L z ' o~ s + ¥°
I (z,1) = [ sin X dX [ cos(z - §) ds
0 0 /52+X2

L A TS
I.(2,L) = [ cos X dX [ cos(z - ) as
0 0

v S2 + Xz

In these last two integrals Az has been neglected in the radical

contributes negligibly,

since it

(c-10)

(C-11)

(C-12)

l(C-13)

The integrals in (C-10) and (C-11) are generalized sine and cosine inte-
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grals. Since k2a2 = A2 is small, they reduce to the foliowing:

G (z,L) = -(1/2)sin Z [S1 2L - j Cin 2L] + I1.(z,L) (C-14)
6, (z,L) = —(1/2)sin 2 [2 sinh™1(L/A) - Cin 2L - § Si 2L] + 1.(2,1) (C-15)

The integrals IS(Z,L) and IC(Z,L) can be expressed as follows:

I.(z,1) = -(j/fb){ejz(J1 - Jy) + e-jZ(Jz - 3] (C-16a)

1,(z,0) = /8% + 3y + e, + 3] (C-16b)
where

L Z -3 x + y2 L yA ej x + Y2
I = [ ax [ ay ed%em3y 2 3 J, = [ dx fdy ed%edY (C=17a)

0 0 /xZ + y2 0 0 XZ + y2

L 3V %% Lz ) i/ + ¥ .
Iy = [ ax f dy e ~ix~iy & 3, = fax faye ix iy &

0 ‘/xz + y2 0 0 x2 + y2

(C-17b)
With the substitution j = =i, these four integrals are special cases of the

© general integral,

a

b
Ia,b) = [ dx [ dy e %1V 2 (C-18)
0 ¢ /xz + yZ
in the forms:
Jy = =3(-L,2) Ty = J(-Ly-2) , J, = J(L,2) , T, = =3(L,-2) (C=19)

The general double integral can be reduced to a single integral with the sub-

stitution x = y sinh 6 and the appropriate change in the limits of infegra— '
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‘ tion. The single integral in 6 can be evaluated explicitly., It is
Jka,b) = {{{1l - eia)sinh-l(b/a) + (1 - eib)sinh-l(a/b) - 2[Cin(a + b + u)
-1 Si(a +b+u)] + Cin 2b = 4 S1 2b + Cin 23 ~ S1 2a
+e®(Cin(a + w) - 1 8i(a + W) - Cin b+ 1 51 b] + e 2[Cin(b + )
- 1 8i(b + u) - Cinla + 1 81 al} ‘ (c-20)

where u = (a2 + b2}1/2. With this formula and (C-19), IS(Z,L) and IC(Z,L) as

defined in (C-16a,b) are readily evaluated and substituted in (C-14) and

(C-15) to obtaiﬁ the following formulas in which i has been replaced by -j:
6 (z,L) = (i/2)sin Z [Cin 2L + j Si 2L] + j cos Z [sin L sinh"lcz/L) + si 2z}

+ j sin 2 [Cin 2Z + Cin 2L - cos L Cin L - sin L S1 L] - j Si 2

- (1/2)e3%{Cin(-L + Z + U) + § SL(~-L + Z + U} + Cin(L + Z + U)

+ 3 Si(L+ 2+ U) - [Cin(Z + U) + § Si(Z + U)]cos L}

+ (1/2)e 3% cin(-L -2 + U) + § Si(-L = Z + U) + Cin(L - Z + U)

+ 3 Si(_L -2+ U) - [Cin(-Z + U) + ] Si(;-z + U)]lcos L} (c-21)
GC(Z,L) = ~gin Z sinh-l(L/A) + (1/2)sin Z [Cin 2L + j 81 2L] - j cos 2

x (1 - cos L)sinh-l(Z/L) + 3(1 - cos Z)sinh-l(L/Z) + J sin 2

x [sin L Cin L - cos L Si L + Si 2L] - (j/Z)ejz{Cin(-L + 2+ U

+3SI(-L+Z+U) -Cin(L+Z+U) -3 Si(L+2Z+U)

. ~ jlCin(z + U) + j Si(Z + U)]sin L} + (1/2)e"5z{c1n(-L -Z+ U
(cont.)
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4+ § Si(~L - Z+U) -Cin(L =Z+U) = j Si(L = 2Z + V)

- jlCin(~Z + U) + j Si(~Z + U)}sin L} (C~22)

_In these formulas U = (22'+WL2)1/2

cand Z = kz, L-= kf, A = ka; S1 v =

v .

J [(sin v)/vldv, Cin v = f; [(1 - cos v)/v]ldv. Note that Si(-v) = = Si v,
0

Cin(-v) = Cin v, Also,

G (-2,L) = -GS(Z,L). »  6.(-Z,1) = -G_(Z,1) (€-23)

6 (0,L) =0 » G, (0,L) =0 (C=24)

~Simplified approximate formulas for the functions GS(Z,L) and GC(Z,L)

:can be obtained for the region of particular interest near the junction when

=the arms are sufficiently long so,that»L2 >> Zz;and H2 >> Xz. Subject to

these conditions Cin(-L ¥ Z + U) # Cin 2, Cin(L # Z + U) # Cin 2L * (Z/2L)

x (1~ cos 2L); Si(-L £ Z + U) = £ Si zZ, Si(L # 2+ U)-2 S1 2L * (2/2L)sin 2L;
“Cin(+Z + U) = Cin L + (Z/L)(1 - cos L), Si(¥Z + U) # Si L + (Z/L)sin L;

s:l.nh"l(Z/L)ré z/L, sinh-l(L/Z) & in(2L/2). With these approximations

L + n.2]

G (z,1) * § sin Z [(1/2)(Cin 2L - § S1 2L) +j S1 L e
G (Z,1) * =sin Z [in(2L/A) + (1/2)(Cin 2L - § i 21) + 3 S1 L Il

+ j(1 - cos Z)2n(2L/Z)

:Note that (1 - cos Z)&n Z vanishes at Z = 0, These can be further simplified
‘with the approximations valid for L > n/2, Cin L. # C + n L where C = 0,5772,

St L% n/2,
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Appendix D: Evaluation of T3(z)
The function T3(z) is defined by (26) with (21b). It is
17 '
T3(z) "% é F3(s) sip k(z - 8) ds (D~-1)

with

Fy(2) =-Jula(hy)K(z,hy) = a(=h))K(z,-h)], (0-2)

where the zero-order values of the charges per unit length are to be used.

It follows that

where
-ij/(s - h2)2 + a2
#(Z,hz) - sin k(z - s) ds (D-4)
0 ‘/Ts - h2)2 + az

-jkv/(s + hl)z + a2

19(2,—hl) = [ = sin k(z = g) ds (D-5)
0 V/(s + hl)2 + a2

These integrals can be reduced to generalized sine and cosine integrals,
Thus,

kh,

#(z,h,) = ~gin k(hz -z) {( W-l(cos W= 3 sin W)cus U 4U
h,~ z)
2

(D-6)
khZ
+ cos k(h2 -z) f W-l(cos W~ 3 sin W)sin U dU
k(hz- z)

1/2

where W = (Uz + Az) . With Az << 1 the following result is obtaineé:
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Hz,hy) = {sinh " [(h, = 2)/a] - sink™ (h,/a)}sin k(h, - 2)
- (1/2)(51 2k(hy = 2) - Si 2kh, = § Cin 2k(h, = 2) + § Cin 2kh,] ®
x .exp[jk(h, —,z)] | | , (-7
Similarly,

Hz,-h) = {sint "[(h) + 2)/a] - sinb™(h,/a)} sin k(b + 2)

- (1/2)[$1 2k(h; + z) - S1 2kh; - § Cin 2k(h, + 2) + ] Cin 2kh]

x exp[ik(h; + 2)] (D~8)
Note that | |
Hez,h) =d(z,-h) ;  $(-z,-h) = SH(z,h) (D-9)
J(0,th) = 0 ;3 JF(~h,-h) =#(h,h) ; J(-h,h) = J(h,~h) (D—lo.

H(hyhy) = (1/2)[S1 2khy = § Cin 2kh,] ;
#(-hy,-h,) = (1/2)[S1 2kh; - j Cin 2Kkh,] (D-11)
S=hy,hy) = 2a(l + hy/hy)sin k(hy + b)) = (1/2)[SL 2k(h, + hz)' - S1 2kh;
- j Cin 2k(h, + hy) + § Cin 2kh lexp[ik(n; + h,)] (D~12)
#(hy,-hy) = 2n(L + hy/hy)sin k(hy + hy) = (1/2)[S1 Zk(hy + hy) = ST 2kh
- J Cin 2k(hy + hy) + § Cin 2kh,]exp[ik(h; + hy)] (D-13)

When z is not too near the ends and the lengths hl and h?. of the two sections
of the vertical element are sufficient so that k(h‘.Z - z) > /2, ].c(hl +z) >

n/2, the approximations Si & #/2, Cin x % C + 2n x where C 1s Euler's constaut‘
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are acceptable with x standing for 2k(h, - z), 2k(h, + 2z}, 2kh, and 2Kkh,.
. 2 1 2 1

With these simplifications (D-7) and (D-8) reduce to:
J(z,hy) * (3/2)an(l = z/hy)exp[=jk(h, = 2)] "3

$(z,-h;) # (3/2)2n(1 + 2/h))exp[-3k(h; + 2)] (D-14)
Also, |
#(=h,h,) £ (3/2)n(1 + hy/hy)exp[-fk(hy + h)]

$y,=h)) & (3/2)in( + hy/hdexpl-k(h, + hy)]  (D-15)
From (D-11),
-3(h2,h2) = (1/2)[n/2 - j(C + 2n 2khy)]

@ $(+hy,=h;) & (1/2)[7/2 - J(C + in 2kh )] (D-16)
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Appendix E: Derivatives of Integral Trigonometric Functions

“The functions Ht'l(z) = 8Hh(z)/az and H}l(x) = allz(x}/ax involve the deri-
vatives of the integral sine and cosine functions Si y and Cin y. These are

‘readily obtained directly from the integral ‘definitions. Thus,

y
3 98 7tsinu . _siny
3y Siy 5y é " du y (E~1)
7_2_ - jL_[ l] -cos u du = 1 ~-cos y . (E~2)
ay ay 0 y

“With these formulas the expressions for Hﬁ(z) and Hi(x) involve only trigono-

metric and integral trigonometric functions.
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