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SECTION I ' )

INTRODUCTION

The problem of analyzing the electromagnetic diffraction of
a finite two-dimensional plamar surface of negligible thickness,
eithet a perfectly conducting disk or the complementary problem
of an aperture in an infinite, perfectly conducting plane, has
been studied by many investigators. For the most part, however,
the work has been restricted to the consideration of the diffraction
of scalar fields or of predicting the far-fields of the system
under consideration. Furthermore, a common approach is to assume
a distribution of current or fields on the conductor surface or
aperture, respectively, and to calculate the diffracted fields
using the Huygen-Kirchoff integrals.

Another approach has geen to use variational methods to
obtain low order solutidéns of the aperture fields or conductor
currents. Only in the case of circular apertures or discs is
an exact solution available and it takes the form of an expansion
in terms of oblate spheriodal wavefunctions. For low frequencies,
a solution has been obtained by Bouwkamp [1] for the first two
terms in the power series expansion in the wavenumber for the
circular aperture field or circular disk current.

The reader is referred to an extensive review and biblio-
graphy of early work in this area found in the classic paper by
.Bouwkamp.

Not until the advent of the modern high speed digital

computers, along with advances in numerical techniques for




solving systems of simultaneous integral equations, has significant
progress been made in calculating the distribution of fields
induced on such planar surfaces. First attempts in this area
modeled the diffrac;ing surface by a grid of electrically thin
wires (or its electrical dual for apertures), and made use of
coupled integral equations and the method of moments to solve for
the induced currents (or aperture fields) [2].

Mittra, et al. [3] begin with a set of uncoupled partial
integro-differential equations derived by Bouwkamp [1, pp. 75-761],
which they subsequently integrate to eliminate the derivatives
and obtain a set of uncoupled Hallen-like integral equations.

They then numerically solvé them for the induced currents on a
rectangular perfectly conducting plate.

We consider here the problem of an aperture in an infinite
perfectly conducting plahe using a technique similar to Mittra's,
but which differs in several important‘respects. The present
method is similar to that used in [é] for the quasi-static
solution for apertures. We also consider the case of non-

rectangular apertures.

In Section II, the development of the uncoupled integral
equations is given. Section III is concerned with numerical con-~
siderations in solving the simultaneous integral equations on a
digital computer where storage limitations make a direct solution
prohibitive. In the Appendix, a solution is derived for the

solution of the inhomogeneous two-dimensional Helmholtz equation.



SECTION II
FORMULATION OF INTEGRAL.EQUATIONS

Physical system description

The cdonfiguration under consideration consists of a vanishingly
thin sheet Ef ferfect electric conductor, or ground screen, extending
over an entire infinite plane in free space, with the exception of -
an arbitrarily shaped aperture. The aperture is bounded by a
contour C, which encloses an area S. For convenience we choose
a coordingte system such that the ground screen lies in the x-y
plane, and the origin is enclosed by C. This system is depicted

in Figure 2.1.

Electromagnetic fields

All independént sourceé of electromagnetic fields are assumed
to exist in the half-space z>0, the region z<0 being source free. .
The time-harmonic electric and magnetic field intensities are
E(r,w) and H(r,w), respectively, with the time variation exp (jwt)
suppressed. We may relate E(r,w) to the corresponding time domain

quantity E(r,t) by the Fourier transform pair

E(r,w) E(r,t)e I%ar

iy

-

[o=]

E(r,t) = 5% E(F,w)ed¥taw

=co

with a similar relationship for H(r,w) and H(r,t) and for other
field quantities. We shall solve Maxwell's equations for this

problem using the transformed quantities E(r,w) and H(T,w) only.
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Figure 2,1. 1Infinite ground screen with aperture.



Boundary conditions

The configuration of Figure 2.1 imposes several boundary

conditlions on the electromagnetic fields. These conditions are [1]

~ &
u, E = 0 on the surface of the ground screen (2.1)
u X E is continuous through the aperture (2.2)
u, x H is continuous through the aperture . (2.3)

Development of an equivalent model of the system

Considering, for the moment, only the fields in the region
z2>0, we invoke the surface equivalence principle [5, pp. 106-110]
to replace the entire ground screen, aperture and half-space z<0,
as far as their effect in the half-space z>0 is concerned, by an
imaginary surface in the x-y plane on which flow equivalent sur-
face current densities 3: = ;z x H and ﬁ: = E x ;z' The "+4"
superscript denotes the 250 region. ©Note that boundary condition
(2.1) impliés that ﬁ: is non-zero only over that portion of the
x-y plane originally occupied by the aperture, that is, over the
surface S.

The application of the surface equivalence principle in the
z>0 region causes zero fields, due to the equivalent sources and
the incident fields, to exist in the reglon 2<0. Therefore, as
far as the fields in the z>0 region are.poncerned, it does not
matter what material exists in the 2z<0 region. Consequently,
we may place an infinite, vanishingly thin sheet of perfect

electric conductor immediately behind the surface currents in the

x-y plane. This eliminates the contribution of the electric




surface current deusity 3: to the fields in the 20 region, as
may be easily seen from considering the image.of 35 due to the
infinite ground screen.

The development of this equivalent system from the z>0 region
is represented pictoriallylin Figure 2.2. The use of entirely
analogous arguments leads to an equivalent system for the z<0
region,as depicted in Figure 2.3, Noge that the unit normal to
S for the 2<0 region is -;z.

Application of boundary condition (2.2), along with the fact
that the unit surface normal vectors are oppositely directed for
the two half-spaces, leads to the conclusion that ﬁs = —ﬁ:.

This gives a final composite equivalent system for the ground

screen with aperture, as depicted in Figure 2.4.

(o4 C

The quantities F*7C and H'PC in Figures 2.2, 2.3, and 2.4
represent the independent sources of the electromagnetic fields.

The total fields E and H in the 2>0 region are composed of

. . . =inc =inc .
incident fields E and H , due to the independent sources,

which would exist in free space, i.e. without the presence of the
ground screen and aperture, plus fielas E' and B reflected from
the infinite non-perforated ground screen of the equivalent model,
and scattered fields ES+ and ﬁs+ radiated by the equivalent surface
current ﬁ: in the presence of the ground screen. Note that in
some of the literature the sum of the incident £field and the
reflected field is called the short-circuit field, written as

gSc _ Einc + §F (2. 4)

and

c-s¢e ginc | g7 ) (2.5)

jani
]
ja]
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In the 2z<0 region the total {ields are simply the scattered
fields £°57 and H°7 radiated by the equivalent magnetic surface
current density M; in the presence of the ground screen,.

The fact that ﬁ; = -ﬁ: implies that we need only solve for
ﬁ:. We note at this point that with this restriction the equivalent
system of Figure 2.4 satisfies boundary conditions (2.1) and (2.2).
We have onlf to satisfy the condition on continuity of the tangential
H field in the aperture, condition (2.3). This condition will
finally determine the actual distribution of the equivalent current
ﬁi in the aperture. 1In order to enforce this condition in terms

s
-t . . —=st
of the currents M_, we must find the fields H that they radiate.

Calculation of H fields

-+

In order to facilitate expressing the fields a® in terms of

ﬁ: in the region z>0, we employ image theory, removing the infinite
ground screen of the equivalent system and replacing its effect

in the 2z>0 region by an image magnetic surface current density
identical to the original and located an infinitesimally small
distance away. This leaves, in effect, a magnetic surface currentY
distribution 2&:, which is non-zero only over the surface S,

which resides in free space, and which, together with the incident
fields, yields the correct fields for z>0 and zero fields for

z<0. This free space equivalent system for z>0 is depicted in
Figure 2.5. A similar equivalent system for the z<0 region is

easily derived, and differs from that of Figure 2.5 only by the

fact that the current distribution is the negative of that for

13



Figure 2.5. EQuivalent system in free space for scattered fields in the
region z>0.
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z>0, and the sources of the incdident field are not included.
—gt
An expression for H°" is easily obtained in each region by
using the free-space equivalent systems derived, along with the

free-space electric vector potential integral and Maxwell's

curl equation for E, which results in [5, pp. 125-1317:

1
Fuil

(=2—) (VV-FF + K2FT) - §SE 220 (2.6)

where the electtic vector potential in this case is:

-+ 1 (2M e jk|r—r 1
F~ = i — ds' (2.7)
S |r-r'|
and : r = xu_ + yu_ + zu
X y z
r'= x'u_ + vy'u_ + z'u .

Substitution of Equation (2.5) and (2.6) into the boundary condition

(2.3) gives ~,
w X | BHET 4 () (T FTHCE) = u X (2—) (Ve FT47E)
4 quo z jw 0
Z=0+ z:O-
(2.8)
On the surface of the perfect electric conductor uzx(ﬁl—ﬁr)=0. In
addition let M, = -#] = M_, vhich implies that F | - -F7l = §| .
0 z=0 z=0

. z= =
Substitution of these expressions into Equation (2.8) gives:

~

u_ X 2ﬁ1+(
z

A

1 1 = 2=
--uz>< (J—UJU—O—) (VVF+k"F)

jwi,

) (VV+F+k 2 F)

z=0 z=0

15



which we can write since all derivatives on the surviving components

are in the plame of the aperture, where F° = -F . Rearranging,

combining terms, and rewriting the above equation as two scalar

equations, we have:

2 ] 2

d 2 ? U

2 + kT F_ o+ axayFy = -jopgH  (on §) (2.9)
- - )

) 2 d C i,

_3;7 + k Fy + WFX = —JOJ]JOHy (on 8) (2.10)
L J

We note that Equations (2.9) and (2.10) with the substitution of
(2.7) for §, are the duals of the integral equations obtained for
calculating scattering by a vanishingly thin sheet of perfect
electric conductor of the same size and shape as the aperture.

Babinet's principle is a comsequence of this duality [5, pp. 365-367].

In fact, the two scalar eéuations may also be expressed as ‘
o =s =i
uzX(H + B7) = 0 (on S) (2.11)

which is the boundary condition for scattering from a perfect
magnetic conductor. While Equations (2.9) and (2.10) are a valid
set of integral equations for the determination of the magnetic
surface current density ﬁs it is possible to reduce them to an

H

uncoupled form as was orginally done by Bouwkamp [1].

Uncoupling the dIntegral equations

Applicatidn of Maxwell's curl equation on H (and an appropriate

vector identity) in Equation (2.11) leads to

A

u, . (ES + Ei) = 0 (on 8)

16



which is dual to the requirement that the normal component of H

- s -
must vanish on a perfect conductor. Writing u, c E- in terms of

the electric vector potential yields
F =0 (on S). (2.12)

Using Equation (2.12) we may eliminate Fy in(2.9) and FX in (2.10)

to obtain

2 2 3 i . i

{vt + k }Fx + §§Ez = -JuwuyH (on 8) (2.13)
2 2 o i _ . i

{Vt + k }Fy - 33, ¢ quoﬂy (on S) (2.14)

where the transverse Laplacian is defined as

2 3% 3t
Ve=T3t 2
9x oy
[} . "'__, i=_a__.i_§___i
But by Maxwell's curl equation on E, JwUOHx 3y 2 BzEy’ and

: i3 i 3 i : . . ,
—JwUOHy = BzEx Bsz’ which we substitute into (2.13) and (2.14)

to obtain the vector equation

~

'{Vi + k2}F = uzxgzﬁi (on 8) . (2.15)

Note, however, that Equation (2.15) no longer satisfies the
boundary condition of Equation (2.12), which must now be imposed
as an augiliary condition in order to uniquely determine ﬁs [31.
Equation (2.15) is the form obtained by Bouwkamp [1l], and its du-t
is the form discussed subsequently by Mittra, et al. [3] in theirx

treatment of scattering by a perfectly conducting plate. In

their treatment, Mittra, et al. integrate Equation (2.15) and

17



solve the resulting integral équations. We follow geéenerally the
same approach in the following development, but our procedure
differs from theirs in a number of details.

Comparing Equation (2.15) and Equations (1)- and (7) in the
Appendix, we'f%nd that a solution to Equation (2.15) may be

written as the vector equation

F() = —sz<%5>J[fc%;Ei>Héz><k!5—6'|ds' (2.16)
S

+u (P8 (BOESE (k[5-p et (Bes)

C
p = xu_ + yuy and p' = x'ux + y'uy, and the unknown function S is
defined by

S =8Sn+ ST
: n T

~
where n is a unit normal to C in the plane of S8 and pointing out
~ A

of S, and T is the unit tangent to C and is related to n by

(Figure 2.5)

~ A

A
n X 1T = u
z

These unit vectors may be written in terms of rectangular
- coordindte components as

Fal A

A ~
n=nu_ + nu and T = =-nu + nu .
X X v ¥y X Xy

it
/5]
[}

t
w
o]
[}
3
[=H

Furthermore ' S

m
i

Sn + S n .
ny T %

18




The substitution of Equation (2.7) with z = z' = 0 into

Equation (2.16) gives:

k|p-p"] N - - -
1 ds' —u X (=) S(o'>H(2>(k[D-D'1)dQ’
2n BB'I 24 ’

5 C

= —GZX(-}H) ff(-g—zﬁi)}léz)(klﬁ—ﬁ"[)ds' (peS) (2.17)
S

The various integrands appearing in Equation (2.17) all have integrable
singularities providing the field quantities appearing therein are
sufficiently well behaved. Equation (2.17) represents two uncoupled
in;egral equations for the scalar components Msx and Msy of the
equivalent magnetic surface current density ﬁs. The coupling of

the equations is now found in the relation between the components

Sn and ST of the unknown function S.

Relating the components of the function S

The substitution of Equation (2.16) into the auxiliary
condition, Equation (2.12), yields a relationship between the

components of the function S5 and the incident field:

lH

E
z

3 az_UE (p')-v, H( ) (k] 5-5"])as" (2.18)

o~

IH

fsw )V H(z)(klp o'|ydr' = 0, (pes).
C

S~

Equation (2.18) can be manipulated into a form involving only

19



contour integrals over C. First, note that VtHéz)(kfﬁ-E']) =

(2)(kfp 0'|). Using the scalar form of Green's first identity .

in two dimensions, the surface integral from Equation (2.18) is

- %_ %-l]ﬁ (1) -vi{®) (k|p-p" st = - %T %ifﬁ (1) nraS? (xlp-pr]yar’
5 c
+%‘E%;ﬂVé'Et(E')Héz)(kia-E'[)dS'. ‘ (2.19)
5

We define the del operators

Vis uger F Uy dy t U
SR B - A
Vosugsr T Yy MY

the first of which operates on coordinates (p',z) and the second

on coordinates (p,z).

Because of the divergence conditionm on E(p',z), we have
i_3 i 3 i + 9 i

- Y

' - - - . . 1, [l =

VeE % B T By‘Ey ~,E, = 0, which gives v Et(p )

] i 3 i 3 i ,

" + §§TEY = FEEZ and which may be used to replace the
transverse divergence of EY in Equation (2.19). We further note

that since {V2+k2}E; = 0, then

v

52 4
ZEz
oz

{vi + kz}Ei = - (on §) (2.20)

from which we can write, using Equation (6) of the Appendix,

20



2 \
1 3 1 (2) - T 1 (2)
= Z?JUQ—_sz)HO (x|p-p'|)ds' + -f{H (kip-p ])V E
- BlvH (2)(klp 5'y}earan (2.21)

Substitution of Equation (2.21) into Equation (2.18) yields

2 s N
3 i,~ 2 - - ' 1 2 - -, ¢ o+ . \
Zj_]:[(aZZEZ(p'))Hé )(k}p“p I)dS + TJiHé )(klp_p })Vth.n a9
S

: N TS AP (2 o '
) %Efé Ve H(Z)(klp‘p |)*n'd2' - ) ngét(p )°n Hé )(klp—p |)ag

z t 0
C C
-Li_ Ei(—')H(z)(k!-—-'!)dS' - _l__'s-( "y e (2)(kl l)d,@,l
43 5,2 2 P 0 e 43 o-e
3 (¥
=0 (pes) (2.22)

The two surface integrals.cancel, and we have finally

fs'@'wv 8320 (k] 5-5"])as" =—f ervre$?) (k]5-5"])
c , C

- i — - A~ _
* EEEt'VéEz]HéZ)(kID'P'[) 'n'dl! (pes) (2.23)

This equation may be simplified slightly by noting that Maxwell's
, - ) 9 =i S,.1 _ ) =i
curl equation on E allows us to write 8zEt—Vth = ~(qu)uZXHt

which, upon substitution into Equation (2.23), gives us

21



f(ﬁ‘)-vtué”(klﬁ-é'i)ac' . —i’ STINRECI A

+ [jwuouzxﬁi]Héz)(klﬁ—B'l) ntd2'  (es) (2.24)

Equation (2.24) must be true for all 588. However, this results

in an overspecification of the problem. One may easily verify

that (2.24) is a solution to the source~free wave equation for

points pES. As such, the analyticity of solutions to the wave
equation implies that if the equation is satisfied for all 5

on some closed contour contained completely within S, then by an
analytic continuation procedure [6], one caﬁ argue that it is
satisfied throughout the interior of S. This argument is similar

to that used by Waterman in his derivation of integral equations

using the so-called extended boundary conditions [7]. In numerical .
procedures, it is more convenient, as well as more numerically

stable, to choose the contour of integration to be the contour C
approached from the interior. The singular behavior of certain

terms in the integrands of Equation (2.24) requires that we

exercise care in letting o approach C in the treatment of the

.

~integrals.

Handling singularities in the contour integrals

1f we assume the contour C is smooth, the following method
[8] can be applied.

The contour C is broken into two regioms, one, C', involving

22



that portion of € not in a neighborhood of the observation point

5, for EEC, and the other, CO’ being the remainder of C, which is
chosen to be centered about the point 50, the limit of 5 as p

approaches C.

The left side of Equation (2.24) becomes

j§<5v>-vtagz><k[5-5';>dzv - j’[sn;+sT¥q-vg<2><k15-5v1>dzv
¢’ '

Av A‘ . (2> O t
+-£ [Snn +STT] V.HGT (k] p-p'[)as , (2.25)
0

As p>C and C,+0, the limiting case cf the integrali over C'

0

is an improper, convergent integral given by

rim Jrsnn+sfr’]-VLHSZ)(kI5~5‘I)d2’ =.f5(5)°VtHéz)(kl5—5'})d2‘

p*C
where the symbol - denotes a deleted integral, that is, the integzzal
C
is performed over all points on C except that point p' = p.

The remaining integral is evaluated as C0 tends to zero length
by considering CO to be a straight line segment, and by employ:.n
the small argument approximation for the gradient of a Hankel

function

(2) = =v1y - _ 42 (B=B") .
Vg (kle-et D) oz L
Thus -/E(E')‘thSZ)(kIE—5'I)dﬁ' . %3 [snn¥stt'} '(f_?:) d?‘_‘T
¢, ¢y lo-p7] lo-p

23



Refer to Figure 2.6 to observe that

= ot .Av P ,\"
LB:“:——E— = -cos O and ﬁ%—%};LQL— = cos ¢
|5-0"] |p-5"|
In addition, we have
1
do = gin do = Egijﬁ_é&_
|o-5"]
since'd2' and do are very small. Hence, the integral over C0 becomes

S(p .2 - ) - 1
JrS(p ) (2)(klp priyde' = 325 _(o4) da_JFSt(p01f Eﬁé%éﬁ—
S_Rv! 5
¢ ¢, - L 18-p'  (2.26)
0 0
The value of S(p') is assumed to vary slowly along C, and is

approximated by its value at 50, where 50 denotes the point on C0

which p approaches as 0+C (see Figure 2.6). Since Cq is chosen

so that EO is in the center of segment CO’ then the second integral
on the right side of the approximate Equatiomn (2.26) 1is zerxo
because the iqtegrand is odd. The first integral approaches T

in the limit as 0 approaches 50. The left sidé of Equation (2.24)

is thus

;i“gfﬂ 5ryv mS? (|55 hakt = 238(R) s (P)+ ]fs<p ) v 5820 (k] 55 yas
c c (2.27)

Similarly, we also have that

i

lim_ 1g4,(2) t t - ns i = (2) ot A! 1
oG i%zvtﬁ (k|p-p ]) n'df 23E (p) j& ViHg (k] p-p' ) n(gzzg)
L .

24
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Figure 2.6.
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Geometry relevant to the evaluation of the principal part of the
contour integral.



The integral involving ﬁi in (2.24), due to the integrable nature

of the singularity of its integrand, is well-behaved as we take 0

the limit p>C, and may be written as a deleted integral or not,
as is convenient. This allows us finally to write Equation (2.24)
as

253(5) *n (3) +f§<5'>-vtaé2)<k|5—5'l)dx'

C
- ZjEi(E)iiﬁiVLHéz)(klﬁ—E‘[)°;'d2‘
i} jwuof(uzxﬁi)Héz){kIB-B']{)'n'dSL' ., (pes) (2.29)

With the addition of the condition that the normal component
of magnetic surface current density ﬁs vanish at the boundary

contour
H_(8)*n(p) = 0, (peC) (2.30) @

Equations (2.17) and (2.29) form a complete system for the unique

determination of the unknown ﬁs current distribution.

Specialization to plane wave incidence

While Equations (2.17), (2.29), and (2.30) are valid for any
general incident field, for practical purposes we shall restrict
our attention to the case of uniform plane wave incidence.

Figure 2.7 gives the geometry of the field quantities. Zero
phase reference is chosen at the origin of the coordinate system,

and the vector E has a magnitude k (free space wavenumber) and

26



Figure 2.7,

P 2

o7

Incident field quantities,
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points iu the direction from whieh the wave propagates, f.e. in

the direction of the source. ‘

The incident electric field intensity may be expressed as

=i i i, ~ i . 1 ~
E- = FEG cos 6 cos ¢ E¢ sin (b)ux +'<E8 cos 6 sin ¢ + E¢ cos $)uy
- Eé <in 6 ;;]ejksinecos¢x ejksin@sin¢y ejkcosez (2.31)

The incident magnetic field intemnsity may be expressed in

terms of the incident electric field intensity as

i
E
. e :
Hy = - — and HE =

(2.32)
¢ s

_®
Mo

where T is the intrinsic impedance of free space.
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SECTION III

SOLUTION OF THE INTEGRAL EQUATIONS BY NUMERICAL METHODS

In order to numerically solve the system of integral
equations déveloped in Section Il we employ the well known method
of moments [9]. We consider first a scheme for approximating
an arbitrarily shaped aperture by a set of subdomains.

This problem requires two sets of subdomains, one associated
with the surface integrals and one with the contour integrals.

We choose the first set, which approximates the surface S of

the aperture (refer to Figure 2.1), to be composed of rectangular
subdomains, or patches, of equal size and shape, which are
contained entirely within the bounding contour C of the aperture.

We choose the other set, which approximates the smooth contour

C, to be composed of straight-line segments, of as nearly equal

length as possible, connecting points on the actual contour C.
The normal and tangential unit vectors to C, ; and ; respectively,
are approximated over the length of any arc of C by the normal
and tangential unit vectors of the straight-line segments which

approximate that arc. These subdomain regions and normal unit

vectors are represented in Figure 3.1.

Derivation of the matrix equation

The two components of the vector integral equation (2.17)

are

1 e-gklp—p i 1 1 ) = P = (2) P 1
5 [t ST 3 s Grny, (Bvs (e, (311" (k[5-57)ar
_— ik x' jk_y' (2(): - -
B
- S
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Figure 3.1,

A:Y AX

Approximation of an arbitrary-shaped aperture,
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1 e"'jkla—a'l ' 1 -y ~ 1 =1 (2) R R | 1
-Z—ﬂ‘[sty l ds' = 33905, (p')n (-5 (B (R TH;™ (k]p-p'[)ds
S C

([ ik _x' ik _y!
B 1 Héz)(RIE-B'))ds' (3.2)

where the incident field of Equation (2.31) has been used with
the derivative operations performed.

We expand the unknown functions‘MSX ané Msy in finite series
of weighted two-dimensional unit pulse functions. If there are

J total interior subdomains on S, then let

J
M (p) = M P, , -
X z : xy. j(p) (3.3)
=(y) =i s(y)d

where M « is the constant coefficient of the series associated
s ()] '
y
with the x- or y-component of equivalent magnetic surface current
in the jth interior subdomain, and P,(B) is the two-dimensional
3
pulse function
- . .th | . .
1 , for p € in the j interior subdomain
P.(p) =
jP _
0 , for p elsewhere
We also expand the unknown functions Sn and ST in finite

series of weighted one-dimensional unit pulse functions. If

there are P total straight-line subdomains approximating C,



then let

P

5 , () = Z S on, 9, (3.4)
(T) p=1 (T)pr
where S 0 is the constant coefficient of the series associated
()p
T

with the normal or tangential component of the unknown vector
function S(p) on the pth boundary subdomain, and QP(E) is the

unit pulse function

1 , for p on the pth boundary subdomain

Qp(p) =

0 , for 5 elsewhere

Substitution of (3.3) and (3.4) into (3.1) and (3.2) gives us

J P

_l___ (2) PO | '
ZMSXJ 2“,[,[ ’ Z [SHP(‘*J')HYPIHO (k!pm otyar
=1 c

=1
P p

2 - -
+ 5o Gy, [ 27 (15, Dar]
c

J i
k E-rr ik x' jk vy

i=1 S, (3.5)

Io-p
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~ik|5_-p'] 3
ZMs‘yj 2l BET +Z [ Snp(%)(-nxp)f 182 (k|5 -5 han:
j=1 s, !fn° l Pyl c,
+ STp(%—j_)n;;p!HC()Z)(klﬁm—gll)d’q’{'
%
J L
= -kZEi[];JkXX eJkyy Héz)(kIEm'E'[)ds'
ImLE (3.6)

where Sj denotes the surface of the jth interior subdomain, C
denotes the pth straight-line segment in the approximation of

the contour C, and nxp and nyp represent the x- and y-components,
respectively, of the unit vector normal to segment C

The subscripts m on the independent variable p in (3.5)
and (3.6) refer to the fact that we evaluate both equations for
observation points Bm, m=l, ... , J, located at the center of
each interior subdomain. This procedure is commonly called
point-matching or collocation [9].

The four surface integrals appearing in (3.5) and (3.6) alil
have singular integrands which present numerical difficulties
when j=m, that is, when integration is to be performed over the
interior subdomain containing the match point of the equation.

The singularity in the integrand of the vector potential

surface integral can be treated in the following fashion. First,
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we expand exp(—jk!ﬁm-a'])/lﬁm-g'l in a Taylor series about Em

and note that the first term alome contains the singular behavior:

-kl -p'|

e ° 1 (=12 = = (=i:00> = _=)”
p— = ———— + (-jk}) + [pm—p'l Tt
[pyp] |5 -p"l 21 31 m

(3.7)

1f we subtract and add the sinéﬁlar térﬁ tg fﬁe,integrand, we ;btain
a well-behaved (non-singular) function (exp(—jklﬁm-ﬁ'l)~l)/l5m—5'
and a singuia; function l/|5m—5‘|. The first function may be
integrated numééically with no difficulty (proﬁided the function

is defined to be equal to ~jk when p' = Bm), while the second

function may be integrated amalytically to obtain

Ax Ay
xJ+ 5 yj+ 5
— 1 dytax' = 2 [Ax 2n[-§§ + /1 + (%1)2]
A Apm—p'] "
vz - 22X L A
X xJ 5 v yj 5

where Ax and Ay ate ‘the dimensions of an interior subdomain (Figure 3.1).

Thus we have

-iklp_-p"|
< — ds’ , for j ¥ m
o
J [5,-0"]
ixlp B -3klp_-p']
n © -1 A Ay. 2
e is' = ds' + 2 | Ax &n [_X + /1 + () ]
551 55"l - =
5, 5 - ‘ ‘
- - Ax Bx,27] -
+ Ay ,Qn[ by + ¥v1 + (Ay) }:] , for j=m ‘
(3.9)
\
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The singularity in the integrand of the surface integral
involving the incident field and the Hankel function may be
treated in a similar fashion. First, we approximate the phase
variation of the incident field across one interior subdomain by

its value at the center of the subdomain to obtain

ik x' jk_y! - - ik g 3K
.[Te X .7 Héz)(klpm'p’[)ds' ® e % Jeo o ¥ {é( (2)(klp I)dS'
S ‘

3 (3.10)

We now note the small argument approximation for the zeroth order

Hankel function of the second kind

)
(2)(k x“+y ) s 1 - j%zn51—§—il— , Yy = 1.7810.

and again subtract and add the singular term to obtain

-[]ﬁéz)(kIBm-B'bds' = ’Bqﬁéz>(k[5m—5'[) + j%zn5%}5m—5'[]ds'

sj Sj
- j%AxAyﬁn(‘%) - j(%)ffﬁnl;?m—B'IdS' (3.11)

S,
J

for the case j=m. The first integral on the right side of (3.11)
is non-singular and may be integrated numerically. The last

integral may be integrated analytically to obtain

I - - | Ax2+A 2
zn]pm-p'[ds' = AxAy2n ———Z—i— - 3AxAy
S,
’ 2 1 A 2 1A
4 BY L eeX
+ Ax"tan (Ax) + vy tan (Ay) . (3.12)
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Hence we write

ﬂkiéz)(klﬁm—B'l)ds' , for § # m

5,
J

ffug”cklam.-s'hds' ~¢ ﬂng”ck[ﬁm—a'l) + s2an (L5 _-51]) as!
S. S,
J J

: . 2 2
—j%AxAySLn(kJZ,-) - %[AXAan(éE—%A*L) - 3Axdy

\ + sztan—l(%ﬁ) + Ayztan—l(%g) , for j=m.

(3.13)

The surface integrals are performed numerically using a
y

Gaussian quadrature scheme in two dimensions. All the contour
integrals are performed numerically using a Gaussian quadrature
scheme which integrates along the straight-line segments CP in
the x-y plane. The Hankel functions in the-integrands are
generated from the power series expansions of the Bessel and
Neumann functions found in Abramowitz and Stegun [10].

The auxiliary condition, Equatiom (2.29), with the substitutdion

of (3.4) for §, becomes
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2
' n,_(x =-x")'+n_(y_ =-y") - -
E s 1236 -k(1-8 )jf LS JP " c9 Hiz)(k[pc —Q‘[)di}

np P4 P4 “3 __5!! q
p=1 c cq :

n _(y -~-y') - n_ _(x_ -x" - -
- - xp "’ cq vp cq 1 (2D _Th )div]
+ STP[ k(1 YPqQ[ ;¢ }pcq o'l

(2) = ~t '
2 (k(pcq—p l)ds ]

. . jk_x  jk. vy 2 _ _
+ jup. (1-8 H'n =~ H'n xTpT TR [(2) -p']yae!
J HO( pq)( vPxp «"yp| © e 0 ( lpcq o'
C 3.14
. ( )
‘ 1, p=q
where § is the Kronecker delta § = and the
Pd Pd 0 , p#q

subscript q refers to the fact that we evaluate (3.14) for

ocbservation points ch’ q=l, ...,

or match point, of each boundary subdomain C

P, located at the center,

Note that the deleted inteérals of Equation (2.29) are
nuﬁerically handled by not performing the integration over the
subdomain in which the independent wvariable Eq and the integration
variable p' coincide. The numerical contour integration 1is
performed with the same Gaussian quadrature routine mentioned

previously.
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The magnetic current boundary condition, Equatien (2.30),

with the substitution of (3.3) for ﬁs, becomes
P
M . + M . P, = 0 .
»EZ[ sx3(q)"xq syi(a)yq J<q)] ’ (3.15)
q=1

where j(q) is the index of the interior subdomain adjacent to
the qth boundary subdomain. Note that for apertures with right
angle corners whose sides are parallel to the x and y axes, each
corner subdomain hés two boundary conditions imposed. That is,
the current components normal to each face of such a corner
subdomain are forced to zero.

Examining Equatioms (3.5), (3.6), (3.14), and (3.15), we

find that we have a system of (2J 4+ 2P) equations to solve for

(2J + 2P) unknown constants. In matrix form this system is
pt. N = == 1 = -y
A bo !l s s M
i ! v | X SX Q
| | |
0 A -B B M R
' R S I sy
————————— - - = - (3.16)
0 ! 0 l E ! F S T
| | | n
| I !
LG j H | 0 | O 11 ST ) -O |

where Q=CD_, R=CD , B_=BN_, B =BN , and T=EE +LH .
x y X X vy z tan

Typical elements of the submatrices and vectors identified

above are listed in the following:
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[P2c)

[Fa]

mj

B
mp

mJ

xJ

vi

qp

E
zp

qp

__l_‘ (2) PO 1 R
= 4ijHO (klpm o'|)as ;
C

S,
Jv »

P
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wse

Lt 1
nXE(ch )+ nyR(yc_q v
|6 -]
C
p cd
S B v .
Hy (k]pcq o' ])ds ;
ik_y
o yep .
| - 1
-y") nxp(xcqx )
= _=1
|6qP"
p
‘Hiz)(k[_ -p'|)as ;



tan

sX

sy

G . =n P,
qi xq j(q)

H . = P.
aj  "ya i)
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. . jk.x_ jk_y
B = (E'n_ -H9n ® y
tan p y ¥Xp X ¥P
(2) (1 .3
L = jw 1-6 H k -p'{)de"
o ™ J0Hg Pq>f0 (k|5 -B' er
C
P
sxj = Msxj 3
M , =M . 3
8yl syJ
S = 8 H
np np
STp = STp .




The matrices Nx and Ny are defined as

x2 yv2
: and

nxP yP

L. — - . o

Algorithm for the solution of the matrix equation

Due to limitations in the amount of storage available on
the digital computer used in solving this problem, a direct solution
by inversion of the large 1eft-hand side matrix of Equation (3.16)
is not considered feasible. Furthermore, the sparse nature of
the matrix resulting from the decoupling of the unknowns MSX
and MSy in the formulation makes such a procedure inefficient,
as well. Consequently, Qe derive an algorithm which efficiently
solves the partitioned systém and which allows the use of the
same storage areas for different submatrices at different points
in the computations.

First, we express Equation (3.16) as four separate simultaneous

matrix equations as follows:

(3.17)

AM _+ B S + B.S_=CD_ = Q
$X vy n x T X
AM - B_S_ 4+ B .S_ = CD R (3.18)
sy X n y T
ES_ + FS_ = EE LH, (3.19)
GM ' + HM = 0 (3.20)
SX sy
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Solving (3.19) for § s we have

S =E T -E "FS_=E_+ E "LH - E "FS (3.21) ‘

We note that E-l exists since it is obtained from the same integral

operation as that éppéaring in the H-field equation for the TE
1

scattering of conducting cylinders [9]. F *, on the other hand,

does not exist in general. Solving (3.17) and (3.18) for Msx

and M yields
sy

13 s - alps (3.22)
yn

M = A’lq - A <5t

SX

1 1 1

Bxsn - A ByST (3.23)

M  =A "R+ A

sy

where we substitute, along with (3.21) into (3.20) to obtain

1 1 1 -1 1

T 4+ GA ByE FS_ - GA "B S (3.24)

-1 - L -
GA "Q - GA ByE <51

v sy gl - ma s e les. - maTls s = 0
X X T vy T

+ HA™
Solving (3.24) for $. sives

s = [GA'lB e lr - ca”ls - ma"is ETlF - ATl ]“1
T y X X y

[

1 1 1

-[—GA'1Q'+ GA~ ByE— T - HAT'R - HA'lBXE'lﬂ

which may be substituted into (3.21) to obtain S » at which point
everything necessary to solve for Msx and Msy by (3.22) and (3.23)
is available. A flow chart of the algorithm used to solve this

system of equations is given in Figure 3.2.,
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Figure‘3.2

Flow Chart of the Algorithm for Solution of the Matrix Equation
|

caleculate C ' : ! calculate vector of

‘ unit normals N ., N
xi

yi

Y Y

calculate D form A_lB and
X "l y
A 7B
{ 3
. _ -1
multiply CDX—Q delete B and A
calculate Dy calculate E

in place of Dx

Y | Y

multiply CDy=R calculate E_l
in place

calculate A calculate F
in place of C

-1 , -1
calculate A multiply E F
in place

. -1 -1

multiply A "Q and A "R calculate L

in place of F

r— Y

delete Dy, Q,vand R ‘ multiply E-lL

¢ .. #

calculate B T delete E—l and L “"”(:::)
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Figure 3.2 continued

<::>" calculate H
tan

. -1
multiply E "LH

Y

delete E_lL and B
. ta

]

calculate E_ by

tan

n

adding to L

Y

calculate G

+ 1

multiply GA~ By

tan

multiply GA‘IByE—lF=Xl

and GA'lByE‘1T=w1

Y

multiply GA—lBX by subtracting from X1;

result = X2

Y

multiply GA—lQ By subtracting from Wl;

result = W2

delete G and GA-'J';By —>-@
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Figure 3.2 continued

@'_> calculate H

multiply HA-lBx

'

multiply HA-lBXE_lT by subtracting from W2;

result W3

Y

multiply HA—leE—lF by subtracting from X2;

i

result X3

multiply HA“lB by subtracting from X3;

y
X

result

Y

multiply HA_lR by subtracting from W3;

result = W

+ 1

delete H and HA BX

calculate X

1

in place
1

multiply X "W = 5.

delete X_1 and W——ﬁif:::>
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Figure 3.2 continued
H

(::>4>- multiply £ 1Fs by subtracting from E—lT;

T
result = §
n

delete E—lF

multiply A—lBySn by subtracting from A_lQ

¢

multiply A_leST by subtracting from result of

previous step; result = M

sX
. -1 . -1
multiply A ByST by subtracting from A "R

;

multiply A_leSn by adding to result

of previous step; result = Msy

The flow chart refers to matrix multiplication by adding
to (subtracting from) a given éuantity. This simply means that
elements of a product of two matrices are added to (subtracted
from) elements of a third matrix as they are computed. This
eliminates the need for a separate storage area for a matrix
product which is to be added to (subtracted from) another matrix.
Calculations done "in place" refer to operations on a matrix

which store the resultant matrix in the same storage area as

+the original matrix or overwrites the storage area of g previously .

used matrix.
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All matrix inversion is performed numerically using a Gauss-
Jordan elimination algorithm which uses the largest element of
the remaining unreduced array as the pivot element,

Numerical

data are given in a separate report.
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APPENDIX

SOLUTION OF THE TWO-DIMENSIONAL INHOMOGENEOUS WAVE EQUATION

We wish to consider a representation for a general solution

to the two-dimensional inhomogeneous wave equation

[vi + kz] U.= £, (pes) (1)

where S is a region in space bounded by a contour C whose outward

normal is n. Each of the vector components of Equation (2.15),

for example, satisfy such an equation. We construct the desired
representation by beginning with a fundamental solution to the

problem
[vi + kz] ¢ = -8(p-p') (2)
for which one solution is’

o = fm{P a5y (3)

Making use of Green's second ldentity in two dimensions,

2 - 2 | B ] - T .AY t
.[ﬂ}VtB thA] as -jg[AvtB BVtA} n'dg
S c

setting A=G and B=U, together with (1) and (2), we immediately
obtain

1 2 - - - -
Z}:éeré )(klp—p'l)ds' _ %E jg[Héz>(kIp"p'[)VéU (4)
c

-U(p) , (pes)

- UVéHéz)(klﬁ—B'[)] ,;ldzt =
' ' 0 > pEs)
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At this point we define the surface SC, the complement of the
surface S. That is, s¢ is the entire plane except for the

surface S. We further define a genefal function V which satisfies
[V§+k2]V = 0, (pes®), and specify that V satisfy the radiation
condition

Lin /5 [ 5kV + QX} - 0

p+w ap
We again apply the scalar form of Green's second identity
: ; . c . .
in two dimensions, this time over S, taking into account the

A

direction of n into SS, to obtain
= - _oC
V(p) , ©peS

- l_ (2) ot 1 _ ' (2) PO .A' T
i3 jg[Ho (k| p-p"[)VIV ~ vVIE;"’ (k] B-p })] n'ds

c (5)

We add Equations (4) and (5) to obtain

2 - Ty 1 1 2 Ll A 1 ' Av t
%Elykﬁé Y(k]p-p"])es" - 23ﬂ§%é ) (k] 5-5 [)[th+vtv]-n dg (6)
S C
-U(p) , (pes)

+ 35 o T ud?) (] -5 )nran = ] )
c V(p) , (pes®)

Since V is arbitrary, we may simplify (6) by specifying -U=V
for 5 on C, which gives finally
~U(p) , (pes)
[0l wlspbast - &5 [ransiP alspha -
s c | V(p) , (pes®)
(7
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o,

where

T(p') = [V;u + v;v]-ﬁ(a')

This is the desired representation for U(E) when p is on S.
We note that Equation (7) is an equivalence theérem which states
that the contribution to the field in a two-dimensional region
S is given by an integral over the sources inside S (a particular
solution to (1) plus an integration over a set of like sources
distributed on the boundary of S, which set accounts for the

sources outside S (& homogeneous solution of (l)),
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