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Abstract

Selected numerical data are presented for penetration of electromag-
netic waves through apertures in planar screens, Major attention is
focused upon electrically small, rectangular apertures, and, for a speci-
fied length-to-width ratio, five numbers are given which enable one to
compute equivalent electric and magnetic dipole moments due to an incident
plane wave of any polarization, angle of incidence, and magnitude. Con-
vergence of solutions is discussed as is the accuracy of equivalent dipole
representations of fields which penetrate an aperture.
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SECTION I
INTRODUCTION

The classic problem of penetration of time-harmonic electromagnetic
energy through an aperture in an infinite conducting screen is of
immense practical importance and has been studied for many years, yet
there is not available a comprehensive set of data describing the
electromagnetic fields in and near apertures of various shapes and sizes.

The purpose of the research reported here is to present

data characterizing aperture diffraction for large and small rectangular
and circular apertures with primary emphasis upon small rectangular
shapes. Results have been obtained for elliptic and diamond-shaped
apertures, and the numerical solution procedure can be used for apertures
of general shape if desired. The general problem of interest is de-
picted in Figure 1, where one sees an arbitrarily shaped aperture A in
a perfectly conducting planar screen of infinite extent, located in the
x-y plane and residing in a homogeneéus medium characterized by (u,e,0=0).
The aperture/screen is illuminated by a uniform plane electromagnetic

wave having an electric field

gl . i o Jk(x cosa + y cosg + z cosy) @

where k is 2n/wavelength, where
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e =e_u + u _+ u :
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is the constant complex vector representing the magnitude and phase of

E' at (0,0,0), and where the direction cosines in (1) are defined

relative to the direction of propagation u:
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Aperture in Conducting Screen Illuminated by Incident Field




cosa =u - u , (3a)
CosB =u - u, , (3b) .
Cosy = G . ;z . (3¢c)

The data presented here.are based upon recently developed aperture
integral equations [1,2F and results obtained from their numerical
solutions [2,3]. In an earlier report [2], integral equations valid
for the full dynamic (time-harmonic) aperture/screen problem are derived
and a numerical solution procedure is outlined. In Interaction Note 149
[1], integral equations are developed which are based upon expansions
of quantities of interest in power series in reciprocal wavelength.

Such an analysis involving a so-called Rayleigh series provides a system
of integral equations which completely characterizes the aperture problem
at frequencies below the first resonance (in the circle of convergence
of the power series) but,'due to primary interest in electrically

small apertures, only the two sets which yield solutions valid to

zeroth and first order in reciprocal wavelength are solved numerically
in [3].

In particular, this report include; a discuséion of the Rayleigh
series solutions and the equivalent dipdle moments for apertures, a
discussion of solution convergence and its improvement, and a comparison
of the fields which penetrate an aperture calculated from equivalent
dipole moments and from the exact aperture field distribution. Dipole
moments for small rectangular apertures are given and are tabulated in
a manner which provides a complete characterization of the associated

aperture fields for a plane wave incident field having any polarization

*Numbers in [ ] refer to entries under REFERENCES.
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and angle of incidence.

| Also, results obtained from solutions of the full dynamic aperture
equations {2 ] are included showing dipole moments for the circular
aperture as well as magnetic current distributions for a large square
aperture. In addition, Rayleigh series and dyﬂamic results are compared

for several rectangular apertures.




SECTION II
THE RAYLEIGH SERIES ANALYSIS AND EQUIVALENT
PROBLEM PARTITIONING

The Rayleigh series formulation discussed in a previous note [1]
has the advantage that when the frequencies are low enough to allow
a two-term approximation the aperture problem may be partitioned into
a series of partial problems, the solutions to which permit one to
synthesize by superposition the total solution for an arbitrarily
illuminated aperture. This partitioning is sumarized below.

The frequency of the plane wave illumination is assumed to be low
enough that the first two temrms in the Rayleigh series for the mag-

netic current¥®

M= B, + K ()

where k is the wavenumber, are sufficient to approximate the magnetic
current in the aperture. From the above free space magnetic current
distribution M,one may then determine the aperture electric field
according to E® =-%5Txﬁz where E® here is in the plane of the aperture.
The series coefficients of zeroth and first order magnetic current
distributions, Eb and Mi, are the solutions of two pairs of integral

equations [1]. These equations are, for MO,

2 [ mErtETes e, Fea o
A ‘

*To be consistent with [1], M is the illuminated-side, free space
equivalent magnetic current (surface) in the aperture.
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and, for Mi,
2 = =gl —— . A~ i
e J[[ Ml(r JR “(r,r'}ds' = -J4WCOSY(HZX e ) (6a)
A ,TeA
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A
- where
R(r,r") = [x-x + ry)%1?
and

~

| (u - _jO = X cosa + Yy COS8.

Several observations may be made concerning the solutions of (5) and

(6) whid'l simplify the characterization of an aperture of a given shape.
For example, as can be shown from a study of Equations (5) and (6), the
current distributions Mb(?} and Mi(?) simply become the current dis-
tributions Mb(?VQ) and nﬁi(?YQ) when some reference linear dimension

d of the aperture is expanded or contracted by the factor @ with the
aperture shape fixed. Furthermore, it is noted from Equations (5a) and
(5b) that ﬁb is proportional to ei only, independent of the angle of
incidence, whereas Hl depends in a more complicated fashion on the
various components of g1 and the angle of incidence. Nevertheless,

a partitioning of Mi into a set of four linearly independent partial

1

currents can be effected in such a way that the components of €~ and
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the angle of incidence affect only the magnitude of each partial
current. In Table 1 is found the single problem associated with‘ﬁb
and the four partial problems relating to Mi are listed in Table 2.
The second and third colums of Table 2 give the four linearly
independent driving functions for each partial problem and the column
sums yield the total driving functions on the right-hand sides of
Equations (6a) and (6b). Hence, the total first order current must be

given by

ol o ol 111 TV
My Mg e M MR 0
. where each superscripted current is a solution to the corresponding case
in Table 2. From Tables 1 and 2 and the discussion above, one may de-
fine a complete set of linearly independent normalized basis currents
which are dimensionless and which characterize a small aperture of a given

shape and reference linear dimension d:

my = -3 (8a)
®;
o1
| (8b)
1 d cosYel
X
11
ml = " - (8c)
d cosye
y
TII
=III Mi
= (8d)
" d COSae;
TV
v M (8¢)
1 i
- d cosSeZ
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Table 1

Properties of Zeroth Order Magnetic Current for Symmetric Aperture
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Table 2

Partitioned Excitation and Corresponding Partial First Order Magnetic

Current for Symmetric Apertures

Case Vf‘: j] MlR-lds' divt f f (M GZ]R-lds' Symmetry Properties Normalized Dipole
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For small apertures, the radiated fields due to the presence of the
aperture can be found in terms of equivalent dipole moments of the
aperture which radiate into free space. In terms of the magnetic

currents, the dipole moments are given by
P = %[fﬁ(?')x?‘ds' (9)
A
for the electric dipole moment and for the magnetic dipole moment
1 ([ ws
P - Eﬁff M(F')ds® | (10)
A

where n is the characteristic impedance of the homogeneous medium.

' The dipole moments (9) and (10) may be used in conjunbtion with the
short circuit fields (E°¢, T°°) (1] to compute total fields on the
illuminated side of the aperture (z<0Q). For fields on the shadow
side of the aperture, a negative sign is needed with each equation,
(9) and (10), and total fields for z>0 may be approximated by the
moments above. For aperture shapes which have two perpendicular
mirror symmetry planes such as those considered here, e.g., squares,
rectangles, circles, and ellipses, ﬂb does not contribute to the mag-
netic moment and Hi does not contribute to the electric moment. This
decoupling may easily be seen as a consequence of the various symmetry

properties of MO

symmetries are tabulated in Tables 1 and 2.

and the basis currents in Equation (7). These

The set of dipole moments of the individual basis magnetic

currents of the partial problems suggested in Tables 1 and 2 also

14




forms a set of basis elements for the dipole moments of an aperture.
The dependence of the dipole moments on the material medium, aperture
size, and incident field may be factored out to yield the normalized
dipole moments of the aperture which are given in Tabies 1 and 2. To
compute the actual dipole moments of an aperture whose character-
istic dimension is d, one forms the following linear combinations of

the normalized dipole moments:

- _ .3 i-
Pe = ed e,P, v (11)
e
and
3 . .

= _d i1 111

Pm == [cosYex plm + cosYey plm

1111 i
+ co;aez plm + c:ossez pg] . (12)

Hence, to the approximation that the dipole moments represent the
fields radiated by an aperture, the first two terms of the Rayleigh

series for the radiated fields can be expressed in terms of five

constant vectors which characterize an aperture of any given shape.
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SECTION III

SCALED DIPOLE MOMENTS @

‘Because, for the purposes of numerical computation, the aperture
is divided into a set of subdomains and the integral equation is en-
forced at the center of each subdomain, the boundary conditions of a
given problem are not generally satisfactorily met in a numerical
solution. Such is seen immediately when the fields resulting from the
calculated currents are examined near the edges of the aperture. While
other choices of basis functions for the magnetic current representation
tend to alleviate this difficulty, they become awkward and/or expensive
to handle in the two-dimensional integral equations considered here.
The boundary condition is numerically enforced at all the match points,
however, and the interpolating fields between the match points usually
approximate the boundary condition in some average sense. As a result, .
the aperture currents calculated usually correspond-to those of an
" aperture slightly smaller by approxﬁnately a full subdomain (one-
half subdomain at each edge) along each linear dimension. This
phenomenon only slightly affects the convergence of the magnetic

current since MO

d. However, in the calculation of dipole moments, additional compli-

is independent of d and Mi depends only linearly on

cations arise. These are associated with the edge behavior of the
current, viz., the current normal to an edge must vanish and the
current parallel to an edge becomes singular. Usually the condition
on the normal current is enforced numerically by requiring the current

in the edge subdomain to be zero. Interpolating the current through

16




the center of the subdomains results in an aperture which, for the
normal component of current, is short by one-half of a subdomain at
each edge. Consequently, integration over the component of magnetic
current normal to an aperture edge in calculation of dipoie moments,
Equations (9) and (10), covers an aperture haVing a reduced width
which is one subdomain smaller than the actual width. In the case of
current parallel to an edge, the calculated current in the moment
method tends to have a slightly lower average than the actual average
current in the subdomain which a pulse basis set attempts to represent.
Hence, when dipole moments are numérically calculated, the edge
(parallel) current contribution is too small. This effect may be
thought of as modeling an aperture which is slightly smaller than the
correct aperture. If one assumes for simplicity that the effective
aperture size is reduced by one subdomain, then all the effects above
result in an effective aperture whose area is smaller by approximately
half the total area of the edge subdomains. Since dipole moments vary
as d3 for an aperture of a given shape and reference dimension d
(Tables (1) and (2)), the dipole moments are extremely sensitive to
changes in effective aperture size. As a result, convergence of the
computed dipole moments is very slow as seen in Figures 2 and 3 where
the magnetic dipole moments for a normally illuminated square and
circular aperture are given, respectively, as a function of the
reciprocal of the number of subdomains along a given dimension.

Since, from the discussion azbove, the length dependence of the
moments and the effective length of solutions from the numerical

calculations are known a priori, a scaling factor can be introduced,

17
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|<=[A z (13) ‘

Aetf
which can be used to scale the data to a proper size aperture. In
(13), A is the actual area of the aperture and Aeff is the effective
area obtained by deleting half the area of the edge subdomains. Note
that in the case of a circle, for instance, there is a significant
portion of the area uncovered by the rectangular subdomains, since they
have been chosen interior to the bounding contour [2]. Equation (13)
also takes this effect into account. Further note that, if the
effective aperture has the same shape as the given aperture, the scaling
factor reduces to the correct dependence on the aperture length. How-
ever, if subdomains have different heights than widths, the scaling
factor effectively employs a geometric average length to achieve the
scaling, thus preserving the dependence of linear dimension in any ‘
direction but ignoring the change indipole moment due to the change
in effective shape. The improved convergence of the scaled dipole
moment for the square aperture is noted in Figure 2, where the scaling

factor becomes approximately

rof A

< = [W%Nm“ﬁ] @4

with M=N.
In (14) above, M and N are themumbers of subdomains along the x and y
directions, respectively, of the aperture.

The improvement in the dipele moment convergence is even more

dramatic when the scaling factor is used with the dipole moments of

20




a circular aperture, Figure 3, where the subdomains do not completely

fill the aperture. Here, the scaling factor is

2 .3
N Ta 2 (15)
M-J72) axay
where M and J are the number of interior and boundary subdomains,

respectively, and AxAy is the area of a subdomain.

In Table 3 the scaled and unscaled dipole moments of rectangular
apertures of height to width ratios of a/b = 1,2,3,10, and 20 are tab-
ulated. It is particularly noted that the scaled dipole moments of a
square aperture are approximately one and one-half times those of a

—JII
Ip;""| and

circular aperture of radius a. Also note that Ipi | =
[pII} % lpl |. Using the reciprocity theorem, one can show theoretically
that these approx1mat10ns observed from the numerical results should

be exact, Finally, one calls attention to the utility of Table 3, the
data of which enables one to determine readily the dipole moments for

small rectangles subject to a uniform plane wave incident field of any

polarization, angle of incidence, and magnitude.
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Table 3

Normalized Dipole Moments (Illuminated Side, Free Space) of a Rectangular Aperture of Height 2a and Width 2b

(d=a)

NORMALIZED COMPUTED SCALED COMPUTED SCALED COMPUTED SCALED COMPUTED SCALED COMPUTED SCALED

DIPOLE MOMENTS MOMENTS MOMENTS MOMENTS  MOMENTS MOMENTS MOMENTS MOMENTS MOMENTS MOMENTS

MOMENTS a/b=1 a/b=2 a/b=3 a/b=10 a/b=20

ﬁs . uZ -3.235 -4.438 -1,024 ~1,455 -0.4590 ~0.7025 -0.0347 -0,0675 -0.0103 -0.0200
e .

5% -uy 6.270 8.600 1.338 1.901 0.4826 0.7386 0.0249 0.0484 0.0074 0.0144
m

ﬁ%l'ux -6.270 ~-8.600 -4.131 -5.869 -3.245 -4.966 -1.710 ~3.323 -1.369 -2.467
m

Eill“uy ~6,.388 -8.763 -1.390 -1.975 -0.5054 ~-0.7736 -0.0287 -0.0558 -0.0105 ~0.0204
-

Biv'ux 6.338 8.763 4.022 5.714 3.141 4.807 1.600 3.111 1.122 2.181
m




SECTION IV
CALCULATION OF FIELDS NEAR APERTURE

Often in numerous practical situations, one wishes to calculate
the fields which penetrate an aperture as well as those which are
scattered back. In the shadow half-space, the total fields can be
calculated from knowledge of M alone; whereas, in the illuminated
half-space, one must add the short-circuit fields to those produced
by M [1]. For an electricaily small aperture one may approximate the
aperture-produced fields by making use of the dipcle moments calculated
for the given aperture. How good the dipole moment approximation to
the actual fields is depends upon the electrical size of the aperture,
the distance from the aperture to the point at which the field is
evaluated, and the choice of the coordinate origin with respect to
which the dipole moments ére calculated. Therefore, since one wishes
fo take advantagé of the éimplicity afforded by use of dipole moﬁents to
characterize the electromagnetic behavior of an aperture, it is of
interest to determine fields directly from the numerically calculated
magnetic current M as well as from the moments and then to compare
values so obtained. Such comparisons enable one to assess the accuracy

of fields calculated from moments.

Electric Field from Magnetic Current

The aperture-produced electric field E® may be calculated at a

general point T from the magnetic current M by means of [1]

B[ =+ > arl F@) (16)
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where

-jk
F@) = -%f ME) & lr il ds! (17) '

and where T' locates the source point in the aperture A. The + sign
holds for z>0 and the - sign for z<0, and M is the illuminated-side

‘equivalent magnetic current in the absence of the screen. Knowing M

from the numerical solution [1, 2, 3] for a given aperture, one may
readily perform the operations indicated in (16) and (17) to obtain
%, On the shadow side, E® is the total electric field but on the

illuminated side the total electric field is E°C + E¢ [1].

Electric Field from Dipole Moments

From knowledge of an equivalent aperture magnetic current distri-

bution M in free space, one can determine P—e and -"15m from (9) and .
(10}. "Pe is always normal to the aperture so one may readily show
that the component contributions to E? from the equivalent electric

dipole moment are, in the spherical coordinate system of Figure 4,

ae _ e e K 1
EI’ Tre T (Jr + ;'2-) cos6 (18)
and
P -jkr
ae _ "€ e .k 1 2. .
Ee = T = (3-1:+;2-- k™) singe . (19

P_m is always in the plane of the aperture/screen and, in a
coordinate system with polar axis along Fm’ the total electric field

contributed from this equivalent magnetic dipole is

24
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Figure 4. Coordinate System for Dipole Moments
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jkr
=-Lp £ (5F

47 m T T (20)

2. . -
-k 6 u
)} sin n ¢m

where u implies that B is ¢-directed (right hand system) in the

*n

coordinate system about the pole along §ﬁ and where o is the polar
angle.

The nature of this electric field is better understood from
reference to Figure 4. In the plane identified there, E%™ can be

readily written

=7 @ 2

e i
m T T

(j%-- kZJ coss . (21)

Making use of (18), (19), and (21) one may readily calculate the elec-
tric field in the plane specified in Figure 4 and assess the accuracy
of the dipole moment approximations.

Figure 5 depicts a rectangular aperture in an infinite screen;
reference is made to the symbols defined there in subsequent discussion.
Figure 6 shows the electric field penetrating a square aperture

(2a=2b=0.152) subject to normally incident illumination with

e; = 1 volt/meter and e; = 0. In this case Pé = 0 so the total field
is approximately that of a magnetic dipole of moment ?ﬁ. These approxi-
mate values of fields together with exact values from (16) and (17)

are both displayed for comparison in Figure 6. One sees good agreement
at a radial distance r = 10a but sees significant differences at 3a

and 2a. In Figure 7 is displayed the fields penetrating the same aper-
ture subject to edge-on incident illumination with ei = 1 volt/meter.

The data in this figure is valid for either (a=00, B=900) or («=90°,8=07),

26




and one notes from the symmetry properties of Mi in Table 2, Casé III
and Case IV, and the definition of the magnetic dipole moment (10),

thaﬁ ?ﬁ is zero for the square aperture with edge-on incidence.and,
hence, that the field of the equivalent electric dipole approximates the
total field. In Figure 7 it is observed that the dipole approximation

is somewhat poor near the aperture for edge-on incidence.
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Figure 7. Electric Field on Shadow Side of Square Aperture
(2a = 2b = 0.15A, e+ =1 u, Volt/Meter, Edge-On Incidence)




SECTION V
OTHER DATA

Additional data of ancillary interest are presented in Figures 8-
14 which depict illuminated-side magnetic current in the presence
of the screen subject to various incident fields. The illuminated-
side magnetic current in the presence of the screen is related to
the total tangential electric field in the aperture by E=M x ﬁz
(Figure 1).

Figure 8 provides data for an aperture larger than %— across.
Figures 9-11 display partial magnetic currents in small rectangular
apertures of different sizes so that one may assess the sensitivity
of the magnetic current to increases in a rectangle side length;
also for comparison of theories, these figures include results
calculated from the Rayleigh series theory (first order) [1] and
from the dynamic theory [Z2].

Figures 12 and 13 give magnetic currents for narrow, rectangular
slots of two lengths. The Rayleigh series results (first order)
are compared with results obtained from narrow-slot theory [4].

Figure 14 depicts zeroth order magnetic current in a square

aperture and values along various cuts parallel to x to y -are given.
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" Figure 8. Dynamic Magnetic Current (in Presence of Screen) in a

0.6x x 0.6\ Square Aperture (e =1 u Volt/Meter, Normal
Incidence)
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Figure 11. Illuminated-Side, Parfial Magnetic Current (in Presence
of Screen) For Small Rectangular Aperture (d = a = 3b)
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Figure 12. Illuminated-Side, Axial Magnetic Current (in Presence of
Screen) in Narrow Rectangular Aperture (2a = 0.1r, 2b = 0.012,
Normal Incidence)
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Normal Incidence)
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Screen) in Narrow Rectangular Aperture (2a = 0.2x, 2b = 0.01a,



L Moy (X,Y)=" Mo (x,y) -

Mo, /e!

Case| y/b
A |-0.l
B [-0.3
C |-05
D |-0.7
E [-09

Mo,,/e,'z

Figure 14. Zeroth Order, Illuminated-Side Magnetic Current in Square
Aperture (in Presence of Screen): X Variation along Cuts
Parallel to X-Z Plane
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