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Abstract

A procedure is presented for mmerically obtaining solutions of the
small aperture integral equations developed in Interaction Note 149, The
results of the solution technique provide knowledge of the distribution of
electric field (or equivalent magnetic current) in the aperture due to
arbitrary plane wave illumination and valid to zeroth and first order in
reciprocal wavelength.
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- SECTION I
INTRODUCTION

In this note is presented a procedure for numerically solving a

new set of integral equations [1l] which characterize the electric field
distributions (or equivalent magnetic current) in a small aperture in a
planar, perfectly conducting screen of infinite extent. The problem under
consideration here is illustrated in Fig. 1 where one sees an incident

field Cﬁi, ﬁi) impinging upon the screen with aperture A. In Note 149
individual integral equations are developed for M; and Mi which are,
respectively, the zeroth and first order coefficients of a Rayleigh series
expansion in k (2r/wavelength) of the equivalent magnetic current in the
aperture. In other words, solutions of the above—mentiéned integral equations

yield Mg and Mi.whiCh one employs in the approximation

fl»

M Mb + k My (1)

where M is the equivalent magnetic current in the aperture. For apertures
sufficiently small relative to wavelength A of the time-harmonic fields,
the approximation above provides highly accurate results.

In addition to a procedure for solving Equations (47)-(49) of [1],

a brief discussion is included of modifications of the equations of [1] to-
gether with an outline of how the modified equations may be solved. The
two separate procedures yield results which numerically are almost indis-
tinguishable.

The numerical solution schemé outlined in this note has been used by
the authors to calculate dipole moments of small apertures and, when spec-
ialized to square apertures, the data compare quite favorably with moments
of circular apertures (circle inscribed in the square) available in the

literature. The technique is essentially the method of moments [2] and
3



A {aperture)

Ei S (screen)

Figure 1. Aperture in Conducting Screen Illuminated by Incident Field



utilizes pulses for representing the unknowns together with point;nlatching
for reducing the integral equations to corresponding matrix equations. The
various steps given below are illustrated by a rectangular aperture for ease
of presentation but, in general, they apply to any reasonable aperture

shape.
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ZEROTH ORDER SOLUTION 0

The integral equatien ((47) of [1]) governing in part the zeroth order

- - - 3T = ~ + A' 3 ) -
magnetic current coefficient Mo Mox uy, Moy uy in the two term approx

imatien (1) can be written as below in component form

ffMOX(?)R-l(.ff?’)dS' - fq,ox(;c) g(}-c’ ?)d,%c
A N

C

= 25y ei , TeA |, (22)

f f M, FOR L@ F s - }-\yoyc?c) g7, s,
A ' C

= 21X e; s TeA , (2b)

where ejz‘ is the magnitude of the z-component of the incident électric field,

~ ~

T=xu tyu, , | (3a)
T' = X! Clx:*' )";J-y_ , (3b)
RG, T) = [77] = [oexn? + y)? ] (30)



and

g(?;, T) = é%-zn I?E-?W = 5%—2n [(xc-x)z + (yc-y)z:r5 (3d)

with ?E on the bounding contour C of the aperture A.
In (2), be and Mby are the unknowns which are to be determined but,

also, ¥ox and v are unknown auxiliary functions on the contour which must

oy

be consistent with the boundary conditions on My and Mby:

Mo'un‘-‘o on C. (4)

where ﬁh is the outward normal unit on C.
Expanding M__ and M__ in terms of pulse expansion functions, one has*

4
N |
1y =
be(F ) :;;: ben fn (5a)
N
LI
M, Y(F ) ;[1_” Movn £ (5b)
where 1 on AA!
£ = n (5¢)

n 0 otherwise

and where AAA is the nEQ- "'patch' or subarea of the aperture (rectangular)
jllustrated in Fig. 2. Similar representation of the auxiliary functions

y _and Wov in terms of pulse expansion functions on C lead to

oX
¥ox *i} XooP (6a)
q—.
£S$Y P
Yoy qé oa’q (6b)

1 on AC
q

P = 6c
a 0 otherwise )

with

*The use of '"n'' either to denote normal to C or as an index (5) should be
clear from context.
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Figure 2.
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Rectangular Aperture--Patches, Match Points and Contour



where ACq is the qgl subinterval on C of Fig. 2. Substitution of the .expansions

(5) and (6) into the integral equations (2) enables one to achieve

S I o, I
_l —_— —
Mo fnR t, T")ds' - > qu qg(rc?)dzc
C

n%1 A
= -2ny ei (7a)

and

st | L
S — . —
Moyn £R(r, T')ds 2. Yoq qg(rc, ?)dzc

n= A C

= 21X e; . (7b)

Enforcing (7) to hold at the center point (xm, ym), m=l, 2,000 y0.. 5y MM=N),

of each patchillustrated in Fig. 2 generates the following sets of algebraic

equations:
> M _B +S X C
=7 o mn :‘i—; oq mq
e-2my &1 (8a)
W, 2
m—l,2,3,.o LK) M*N,
and

_ i
= Zﬂ}ﬁ_nez R (8b)

m=1,2,3, ....., M=N,



where |
B = ‘[f dx' dy l
m

AAtn [(xm—x')z'*(ym'y')zfi

and
.1 o 12 Y
Cmq i jzn [(xc xm) +(yc ym) ]dzc

AC
q

The integral of (8c) can be evaluated analytically., For m = n,

AX Ay
S &
2
dxd
nn . 3
2 -2
AX Ay
__n_+R ...2.11+R
=Aynm HC__ +Axan~ﬁ
....__n_-;-R - n-t-R
2 Xy ) Xy
where
=gz g2 s
Ry "7 +_”2"]

with the value

Bm=8wzn(1+/‘z')

for the special case bx = Ay = 2w. Similarly, for m # n, (8c) becomes

10
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YT T
B _ f d-xidy’
- -
m SR A N C RO LD &
7 nm 7
d + (3b+g4y?
c + (c7+L7)
AX
xi=x* '_ZE
sden-[b o+ @297 1- con [2 + (2B (9¢)
Axn
Ty = il
X Xn )
where
L = -x',
. n &y,
C=Vn~ Op-—2) >
ay.

= - I
d=y - 0, *—=)
The integral (8d) can be evaluated analytically too. In the case of a

rectangular aperture, such as that in Fig. 2, ‘Cmq is evaluated individually

for ACq on each side; for example when ACq falls on (- —321— s Y- g- <y 52— ,

or on (+§- s YY), - %—gyig-, one obtains

.. 1 e 32 RY:
Cq = " 7 f (%)™ + (v -y, "1y,
4C,

= 711? [(}’C-ym) [ (x. %) i +‘ (yc'ym)z]

- b}’ -y, ]

= Z(YC-ym) + ZCXC-)SH) tan 1 (Ei_'?cl]:_)“l
AC, (o)

11 ‘



Similarly, C g can be evaluated readily with ACq on (x, - g—) y - %i X 5%— s
or on (X, -12)-), - %ixi% , by interchanging the x and y variables in above. m
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SECTION III
AUXILIARY EQUATION

Solutions to (8a) and (8b) are not umnique unless the auxiliary equation

((49) of [1]) is imposed:

§

] 2 ery X A —— -
gin { div, jg ¥ 60,80, DAE) { =0, 10)
r+;b o

\ ]

for r ¢ K and all '1;3 C, where divy is the transverse (to z) divergence operator

and where ?5 is the auxiliary vector

¥ = wox u ¥ woy u.y . (11)

In view of (10), Yox can inprinciple be expressed as a function of woy
and thereby a reduction in the number of unknowns from four tb three is
achieved in (2).

To circumvent numerical difficulties associated with (10), one
converts ?6 from a vector represented in Cartesian components to one having

components normal and tangentialto the contour C:

¥ = U+ U = u + u
Lyo LFox X Woy y Won n wos S ’ (12)

where ;n is outward normal to C and ;s is positive tangential to C as
depicted in Fig. 3. The integrand of (10) can be written as

div, [‘v‘é}‘c)"uzg o ?)1 ~

=T

)

Yo 55

— e 3 — -
g(re rp)-hl*oS on 800 T (13)

- T
pcC
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Figure 3. Tangential and Normal Coordinate System
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and, furthermore, one can show from

5 = B e
5o & T 5y g cos ¢ iy 8sin¢
(o c
‘and
) 9 .
-8 =s—gsin ¢' - =— g cos ¢'
3s 8X_ 3y,
that
_ cos e(r ,r.)
bat, 7 - s
.ZvR(rp, r.)
and
L sino(r_, T.)
2@, Ty = - p’_c (14b)
85 *hp’ ¢ 20R(T_, T.)
p’c
where © and ¢’ are defined in Fig. 3. Using (13) and (14) in (10), one
can obtain the form below for the auxiliary condition
sin o(r_, T.) cos o(r., r.)
] %f{\yc’n GC) b ¥os (7 — p; . dz(?c)
R(rp, ) R(rpy 1)
C
= 0 15
which is recognized to be an improper integral and which can be converted
to the expression below involving a deleted integral:
cos O(ry, T.)
-%?osg)'%‘;{y (r.) P ¢
9] T 0os*™ C R — -
C (p» 1)
. _sin e(?p, ?C) .
+ lyon(rc) e ds?.(rc) =0 . (16)
R(rp, rC)
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¥os and Yon MEY be expressed in tewms of the piecewise constant

finctions (6¢) on the contour as ‘ o
v G E% S0q %a (172)
q=1
and
. Q |
‘i’cm(?c) 2 ;-Noq Pq . (17b)
q:

Now one uses (17) in (16) and evaluates the resulting expression at
match points (Xpt’ ypt), t=1, 2, «-+, T(T=Q), on the contour C to

obtain the matrix equation below relating {Soq} to Noq}

(Dyd [Seq] * [Eg) N1 = (0] (18) °
where -
1 f S o (r.) #
e & t¥rag
3 - ’
J " R(Tper Te) ©
D, = q
tq .
1
- '2" ’ t=q
and
( sin o(r__, 'x_"c)
1 P —_
Y — - dﬂ,(rc) ’ t7£q ’
AC R(TPE’ )
th = é
0 ’ t=q
. | ’ \ '
* with . @
rpt = Xptux + thuy '



locating the center of the tEh interval AC,. Matrix Equation (18)

I:

be used to determine [S_] in t f [N
can be us o determine [ oq} in terms of | oq

Sod = - (Dud ™ [Eegd Nogl (19)

From (19) and (6) plus the relationships,

¥ (T)= ¥ (7)) sin o' () + ¥ (7 )cos ¢' ()

or T = - ¥ (T )cos ¢'(r.) + ¥ (r)sin o' (r))
one may eliminate the unknowns

. . . £ [ :
(Soq} and write the matrices [qu] and [Yoq] in terms o {:Noq}

_ -1 o
[qu] = -[th] [th] [Noq sin 4>7 (fcq)]
+ [Nyq cos o C?Cq)] (20a)
and
- -1 1 —
Vool = Mgl 7 [Brgl WNog cos o' (r )]

Dy sin et Gl (200)

where ?&q is the location of the midpoint of the th-interval ACq on C.
The significance of (20) is that the auxiliary condition provides a means
of expressing Yox in terms. of woy’ thus effectively reducing the number of

unknown quantities in (2).
17



SECTION IV
NUMERICAL SOLUTION A
Now attention is turned to the determination of the coefficients {bem} ‘I'
and {Moyn} from knowle@ge of which one can readily calculate the desired
zeroth order magnetic current components MOx and Mby' In matrix form, the

set (8a) and (8b) becomes

By (Gl [0T 0] M) [E ]
(01 101 fod Bl | | Bogd| - | Bwd|  an
Vg |
My
where
F o= -2y el @) g
and i
B =+ 2mx_ e, . (22b)

Since both {qu] and [qu] depend upon {qu] via Equations (20a) and (20b),

Equation (21) can be simplified to

Byl [Cg] [0] [ Mo Fiend
[0 IG] [By] Ny = | Byl (23)
Moyl

18



where C' and C;]'lq are defined so that

mq
[Cog] Thogd = (6] Moy
and
[Cog) Moql = [Cg) Doy
which requires
il = Gl 4 117 [Bp) [sin ¢G )]

+ [cos §' ()]

and

-1

i
-
(g9}
L

[C;I;q] =[Gy [l%q] [th] [cos cb'(_?cq)]

+ [sin ¢'(r‘cq)] .

In the matrix equation (23), there are three columm vectors [Moxn]’
[Noq]’ and [MO jm] and the matrix is of the size (N+N)x(N+Q+N) which can be

solved subject to the boundary condition (4) which reduces to

Moxqcos o' (r cql + Mqusin qb'(?cq) =0 |, (24)
q=1,2, ***, Q

where the subscript q on Mqu and Mqu implies that (24) is to be enforced
only at the center points of those patches which are adjacent to the contour
C. The additional Q equations needed to ensure that (23) is solvable are

+ supplied by‘ (24) and, by sfandard matrix operations, one may determine
{Moxn} and {Moyn} and, subsequently, Mox and Moy'

19



SECTION V
FIRST CRDER SOLUTION

For obtaining the first order solution f«fl = ;chx + ):Ml}’ one solves 6
the integral equation (40c) and (41) with the corresponding. auxiliary
condition and boundary condition defined in equations (42) and (43) of [1].
Due to the similarity of the first order integral equations, the method and
the solution procedure are identical to that.discussed above for the
zeroth order solution with the single exception that the forcing functions

(right-hand sides) in (2a) and (2b) are replaced, respectively, by

., 27 2 i
j = [cos y(x cos u + y cos g)" e
1-cosy Y
+ 2xy ei cos a] (25a)
and
-j—-—zw—z—[cos\((xcos;a+ycos 8)2 e}lC 0
1-cos™y
i,
+2xy e, cos Bl. (25b)

Similarly, for the special case of normal incidence, integral equations
(44) and (45) are used instead of (41) and (42) of [1] for the first order

solution, and the above procedure is applied. The reader is referred to

[1] for definition of symbols in (25).

20



SECTION VI
ALTERNATE INTEGRAL EQUATIONS

In an effort to improve the convergence rate of solutions for the
small aperture problem, modifications have been made in the final integral
equations of Note 149. The modifications are minor and are reflected only
in the forms of the homogeneous solutions of (26) and (27) of [11 and,
also, of the particular solution of (27). Determination of these solutions
is discussed in detail in [1] and, therefore, the alternate integral equations
are given directly on the following page. Notice that (26b) and @27b),
the auxiliary equations, are different from the former expressions. Also,
the forcing function of (27a) involves integration of the Green's function
g which fortunately can be performed analytically for several shapes of
interest. Even though (25) and (27) differ from the integral equations of

[1], they yield to the general solution technique presented in this note.

21
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J[r@riaE mas - §7,E0eE FonG = 7
A C

1{ F, &) 5, - grad, 8F., D ©E = dre]

and

. ff MG RE, TS - 5{ 7, £)8@ T) dLE,) = jér cosy, T ) ffg(?', Dds' , TeK;
A C A

56 [, @)™ u,] « grad, g, DRE) = -j41rejz”(u-‘? )g >
C

TeC

(26a)

(26b)

(27a)

(27b)



SECTION VII

SUMMARY

The method outlined here has been implemented on a computer and
solutions have been obtained for theoriginal aperture integral equations
as well as for the alternate equations. Results are presented in

Interaction Note 213.
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