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ABSTRACT

The piecewise-sinusoidal reaction technique is applied
to low frequency radiation and scattering from noncircular
cylinders with perfect or imperfect conductivity. This report
presents the theory, computer programs and numerical results

for these two-dimensional problems with the TE polarization.
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I. INTRODUCTION

Low-frequency solutions for noncircular conducting cylinders
have been presented in several published papers[1,2,3,4,5,6,7,8].
Point-matching procedures were empioyed by Mei and Van Bladel[1],
Andreasen[2] and Wallenberg and Harrington[5]. In the point-matching
technique, the contour of the cylinder is divided into segments and
the integral equation is enforced at the center of each segment.

Mei and Van Bladel used rectangular pulses as basis functions
for expanding the surface-current density. They employed trapezoidal-
rule integration, sampling the integrand only at the center of each
segment. Andreasen used Simpson's-rule integration and a piecewise-
parabolic expansion for the current. Wallenberg and Harrington used
a second-order polynomial for the expansion functions, with dis-
continuities in the current density at the endpoints of each segment.

In this report, Rumsey's reaction concept[9] is employed to
formulate an integral-equation solution for radiation and scattering
from cylinders with perfect or imperfect conductivity. A piecewise-
sinusoidal expansion is employed for the current distribution on the
conducting surface. The complex coefficients in this expansion
represent samples of the current function. The unknown current
distribution is forced to have the correct reactions with sinusoidal
electric test sources located on the conducting surface. (Since the
test functions are the same as the expansion functions, this is an
application of Galerkin's method[10].) This procedure generates a
system of simultaneous linear equations. Numerical solution of this
system yields a stationary result for the samples of the current
distribution. Finally the admittance, gain, far-field pattern and
echo width are determined from the current distribution.

The new solution appears to be advantageous with respect to
computational efficiency, convergence, accuracy and generality. The
current distribution is represented by a continuous function, the
impedance matrix is symmetric, and the solution satisfies the
reciprocity and forward-scattering theorems.

This report considers two-dimensional electromagnetic problems
involving infinitely-long conducting cylinders. We are concerned with
the time-harmonic TE case where the field has no z-dependence, E,
vanishes everywhere, and the time dependence ejwt is understood and
suppressed. (The z axis is parallel with the axis of the cylinder.)
With no significant l1oss of generality, we restrict our attention to
polygon cylinders. The surrounding medium is free space. The source
may be an incident plane wave, a parallel magnetic line-source near
the cylinder, or an axial-slot aperture on the surface of the cylinder.



With perfect conductivity, the computer programs will handle open as
well as closed cylinders, arrays of cylinders, and interior as well as
exterior sources. With finite conduct1v1ty, however, the programs are

restricted to closed cylinders.

The remaining text presents the detailed theory and some numerical
results, and the computer programs are listed in the Appendices.

II.  THE REACTION TECHNIQUE

The reaction concept and its applications have been discussed by
Rumsey[9], Cohen[11], Harrington[12] and Richmond[13].

Consider the exterior scattering problem illustrated in Fig. la.
(Radiation problems and open surfaces are discussed later.} In the
presence of a dielectric or conducting body, the impressed electric
and magnetic currents (J;,M;) generate the electric and magnetic field
intensities (E,H). For s1mp11c1ty, let the exterior medium be free

space.

From the surface-equivalence theorem of Schelkunoff[14], the
interior field will vanish (without disturbing the exterior field)
if we introduce the following surface-current densities
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on the closed surface S of the scatterer. (The unit vector nis
directed outward on S.) In this situation, illustrated in Fig. 1b,
we may replace the scatterer with free space without disturbing the

field anywhere.

By definition, the incident field (E;,H;) is generated by (J;,M;)
in free space, and the scattered field is:

(4) ﬂs =H -~ 54

When the surface current (J M ) radiates in free space, it generates
the field ,He ) in the ex er1or and (- -Ej,-H; ) in the interior region.
This resu]t, i ustrated in Fig. 1c¢, is aéduced from Fig. 1b and the

superposition theorem.
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Fig. la. The source (J;i,Mj) generates the field (E,H) with
scatterer.
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Fig. 1b. The interior field vanishes when the currents (Jq,Ms)
are introduced on the surface of the scatterer.
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Fig. 1c. The exterior scattered field may be generated by
(Js,Ms) in free space.



With the scatterer replaced by free space, we have noted in
Fig. 1b that the interior region has a null field. As shown in Fig.
2, we place an electric test source J; in this region and find from

the reciprocity theorem that
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Fig. 2. An electric test source J; is positioned in
the interior of the scattering region.
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where (E ,ﬁr) is the free-space field of the test source. In words,
Eq. (5) states that the interior test source has zero reaction with
the other sources. This "zero-reaction theorem" was developed by

Rumsey[9].

Equation (5) is the integral equation for the scattering
problem, and our objective is to use this equation to determine the
surface-current distributions Jo and Mg. To accomplish this, we expand
these functions in finite series so there will be a finite number N
of unknown expansion constants. Next we obtain N simultaneous linear
equations to permit a solution for these constants. One such equation
is obtained from Eq. (5) each time we set up a new test source.

The magnetic current Mg vanishes if the scatterer is a perfect
conductor. We assume a finite conductivity and use the impedance

boundary condition:

~

(6) M= Zod xn

where Zg denotes the surface impedance.




For two-dimensional problems involving cylindrical scatterers,
Jg and Mg are functions only of the position & around the contour C
of the cylinder. If Ji vanishes, Eqs. (5) and (6) yield

(7) <}Eg5-[gm-(ﬁxﬂm)zs]dw”m-ﬂmds
c

where (Ep,H,) denotes the free-space field of test-source m.

We represent the electric current distribution as follows:

(8)

where the complex constants I, are samples of the function Jg(2).

The vector functions Jn(2) are known as basis functions, subsectional
bases, expansion functions or dipole modes. We employ expansion
functions J, and test sources Jp with unit current density at their
terminals.

From Eqs. (7) and (8) we obtain the simultaneous linear equations

N
(9) nZ] In m - Vv withm=1,2, 3, -+« N
where
(10) Zm=—Jgﬂ(z) [gm—(an)Zs]dz=-ng(Q)E da
n m
(11) Vm="” Moo ds=J IR
i m

In Eqs. (10) and (11) the integrations extend over the region where

the integrand is non-zero. For example, region n is that portion of
the contour C covered by the expansion function J,. Region m covers
the interior test source Jy. The reciprocity theorem relates the first
and second integrals in Eq. (10). In the second integral, E, is the
free-space field generated by J, and the associated magnetic current

M -



For computational speed and storage, it will be advantageous
to have a symmetric impedance matrix Zpyn. Furthermore, the test
sources should be selected to yield a well-conditioned set of simul-
taneous linear equations. ror these reasons and to obtain closed
forms for some of the integrals in Egs. (10) and (11), we employ
test sources Jp of the same size, shape and functional form as the
expansion functions J,. Finally, we position the interior test
sources a small distance § from surface S and take the limiting form
of the integrals as & tends to zero.

In this section we have considered explicitely the exterior
scattering problem. With a stight change in wording, we could make
the discussion apply equally well to the interior scattering problem.
To accomplish this, replace "interior region" with "source-free region'
and replace "exterior region" with "source region". Thus, the unit
vector n is directed into the source region (which contains M;j), and
we Jet the test sources approach surface S from the source-free region.

The next two sections discuss the electric strip dipoles which
are employed as test sources and expansion modes. Since each dipole
is comprised of two strip monopoles, the monopoles are considered
first.

ITI. TRANSVERSE-ELECTRIC STRIP MONOPOLES

Consider the "strip monopole" illustrated in Fig. 3. This

A
y 7P
(x,y)

0 SOURCE _ h

Fig. 3. An electric strip monopole and
the coordinate system.




source is an electric surface-current density J = x J(x) located on
the xz plane. The source has width h and infinite length and radiates
in free space. By superposition, the scattered field of a perfectly
conducting polygon cylinder may be regarded as the field of an array
of strip monopoles. For the strip monopole shown in Fig. 3, the
potentials and fields are:

h
(12) A=-fu fg H (ko) dx’
0
h
_ 1 ' '
(]3) V = Eu? f J Ho(kp) dx
0
h
(14) e, = - ko J ITH, (ko) + Hy(ko) cos(2¢)] dx’
0
h
(15) Ey = - gﬂ- £ J H2(kp) sin(2¢) dx'
~h
(16) H=- gk lix;H](kp)dx'
where
(17) o=4(x-' X')2+y2
(18) kK = w Ve
(19) n = vufe
(20) Jt = g—)‘%.

and the superscript (2) is understood on the Hankel functions Ho» Hy
and Hp. A useful alternative form for the electric field is

(2]) E=- jw_& - v
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(22) E=-X0 [ 0H (ko) ax' + 2 f; 3" Hy (ko) dx’
0

o

For most current functions J(x), the field integrals must be
evaluated with infinite-series expansions or numerical integration
procedures. For the sinusoidal current distribution, however, Eyx is
obtained rigorously in simple closed form. Thus, if

(23) J(x) = x [1y sin(kh - kx) + I, sin(kx)] / sin(kh)
then
(24) _S—'ll_n_(m [I kp]) COS(kh) - I-l Hc(kpz)

+ 1, Ho(kpz) cos(kh) - I, Ho(ko1)]

where I7 and Io represent J(x) at x = 0 and x = h, respectively. The
current d1str1§ut1on in Eq. (23) implies line charges at the edges of
the strip monopole. Since our model of the polygon cylinder will have
no 1ine charges, the Tine-charge field contributions are not included
in Eq. (24). We obtained Eq. (24) by integrating the field of the
sinusoidal electric line source. Unfortunately, the integral for E,
must be evaluated by numerical methods.

Iv. THE SINUSOIDAL STRIP DIPOLE
A planar strip dipole is illustrated in Fig. 4a. This dipole

lies in the xz plane and has infinite length in the z direction. The
surface-current density is

sin k(x - x])

(25) d= xsﬂ1kQ2- ﬁ) for Xp <X < Xy
. sin k(x3 - X)
(26) J = X for Xy < X < Xg

sin k(x3 - x2)

As indicated in Fig. 4b, the current density vanishes at the edges
x1 and x3, is continuous across the terminals at xp and has a slope
discontinuity at x».

10
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Fig. 4a. A planar strip dipole with edges at
X1 and X4 and terminals at Xo -
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Fig. 4b. The current-density distribution J on
the sinusoidal strip dipole.

The sinusoidal strip dipole is a hypothetical source in free
space. The current distribution on a conducting strip is not sinusoidal.

Figure 5 illustrates a strip V-dipole. Distance along the dipole
arms is measured by the coordinates s and t with origin at the terminals
0. The surface-current density is

. sin k(s1 - s)
(27) Jd=-5 s ks, on arm s
(28) J=t on arm t

sin kt]

11



TABLE I

Self Impedance of Center-Fed Strip-Dipole Shown in Figure 5
sy =ty =h
1 1

¥ h/x = 0.05 h/x = 0.10 h/x = 0.15 h/x = 0.20

45°10.11 -j 14.1|0.47 -3 13.4}|1.20 -j 12.2] 2.53 -j 10.4
90°10.38 -j 20.9(1.59 -j 19.3| 3.94 -j 17.1| 8.10 -j 14.0
135°1 0.64 -j 24.312.68 -j 22.216.49 -3 19.5[12.95 -j 16.4
180°10.75 -j 25.3|3.11 -j 23.0| 7.50 -j 20.3|14.77 -j 17.4

/\P

f,»
|

Fig. 5. Nonplanar strip dipole with edges at
51 and Y and terminals at 0.

where the unit vectors s and t are perpendicular to the z axis. Thus,
the current density vanishes at the edges s7 and t} and has unit value
~at the terminals 0. The edges of the dipole are parallel with the z
axis. If the wedge angle v is adjusted to 180 degrees, the V-dipole
in Fig. 5 reduces to the planar dipole in Fig. 4.

Having defined the sinusoidal strip dipole, we are now in a
position to explain its relevance. We shall use the dipole current
distribution (Egs. (27) and (28)) as the basis function (Jy in Eq.(8))
for expanding the unknown current distribution induced on a conducting
cylinder. Furthermore, strip dipoles will be employed as test sources
with the reaction concept to solve the ‘ntegral equation.

12




By superposition, the field of the strip dipole in Fig. 5 is the
sun of the field contributions from monopoles s and t. The field
from each monopole can be calculated from Eqs. (12) through (24) with
the appropriate coordinate transformations.

Although the sinusoidal strip dipole is a hypothetical source,
it is useful to define its self impedance with the induced-emf formu-
lation:

S] t]
(29) Z=- J J(s)-E ds - J J(t)-E dt
0 0

where J(s) and J(t) are given by Egs. (27) and (28) and E is the
free-space field of the strip dipole. The reciprocal of Z yields

the admittance per unit length of the strip dipole. Table I lists

the self impedance of a center-fed sinusoidal strip dipole as a function
of the angle y and the segment length sy = t] = h.

The mutual impedance between two strip dipoles is defined by

51 Y
(30) Z,, = - i J,(s)°E; ds - J 3, (t)-E; dt
0

where Jo(s) and Jo(t) are given by Egs. (27) and (28) and Ey is the
free-space field of the first dipoie.

Figure 6 illustrates a pair of center-fed planar strip dipoles,
and Table II lists their mutual impedance Z12. Here o and ¢ specify
the relative positions of the dipoles, g specifies the relative
orientation, and each dipole has the same segment length h.

Table III Tists the mutual impedance Zjp of the overlapping
strip dipoles shown in Fig. 7. Each of the tﬁree segments has the
same length h, dipoles 1 and 2 share the center segment, and the
angles y are identical. Finally, Table IV gives the mutual impedance
of the overlapping strip dipoles shown in Fig. 8. These dipoles share
an end segment.

13



TABLE II
Mutual Impedance of Center-Fed Planar Strip-Dipoles Shown in Figure 6

Segment length: h/x = 0.1
” Distance between midpoints: p/A» =0.3 =
¢ =0 B = 45° 8 =90° | 8=135°

0 11.94 +j 0.81 |1.36 +j 0.39|0.00 +j 0.00}-1.36 -j 0.39
30°| 1.42 -5 0.58 {1.62 +j 1.0710.87 +j 1.80{-0.38 +j 1.73
60°1 0.39 -j 2.68 10.90 -j 0.66 | 0.87 +j 1.80f 0.34 +j 3.03
90°| -.13 -j 3.53 |-.08 -j 2.57 {0.00 +j 0.00[ 0.08 +j 2.57

Fig. 6. Coupled strip dipoles.
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TABLE II1
Mutual Impedance of Center-Fed Overlapping Dipoles Shown in Figure 7

v | hr=0.05] na=000 ] h/a=015] h/=o0.20
60°|-0.09 +j 8.89|-0.33 +j 9.85 }-0.59 +j 11.9]-0.66 +j 15.9
90° | 0.01 +j 6.99| 0.14 +3 8.26 | 0.77 +j 10.8| 2.64 +j 15.2
120°| 0.29 +j 6.67| 1.31 + 8.22 [ 3.52 +j 10.6| 7.88 +] 13.9
150°| 0.60 +j 6.65| 2.49 +j 8.16 | 5.88 +j 9.8{11.29 +j 11.0
180°| 0.74 +3 6.67| 2.97 +3 8.10 |6.73 +5 9.2|12.23 +] 9.6
y
e 2
|
X

Fig. 7. Overlapping strip dipoles share
the center segment.
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TABLE IV

Mutual impedance of Center-Fed Overlapping

Dipoles Shown in Figure 8

in a Y configuration.

16

o h/x = 0.05 h/x = 0.10 h/x = 0.15 h/x = 0.20
30°| 0.60 -j 16.4] 2.51 -j 14.7] 6.03 -j 12.8111.83 -j 11.0
60°{ 0.28 -3 11.7| 1.18 -j 10.7] 2.88 -j 9.43] 5.80 -j 7.84
90°] 0.00 -j 8.25| 0.04 -j 7.82] 0.20 -j 6.93} 0.71 -j 5.29
120°1-0.09 -j 5.17}-0.38 -j 5.14}-0.86 -j 4.84 [ -1.56 -j 3.99
150°1-0.04 -j 2.21(-0.18 -j 2.32}-0.46 -j 2.43 ] -0.94 -j 2.50
y
a . Q
|
N
X
Fig. 8. Dipoles 1 and 2 share one segment




V. CYLINDERS WITH PERFECT CONDUCTIVITY

Consider a perfectly conducting polygon cylinder with contour
C which may be open or closed. Let Jq(&) denote the surface-current
density induced on the cylinder. 1If the cylinder is closed, Jg will
flow entirely on the outside or inside of surface S in accordance with
the location of the source. If the cylinder is open, currents will
flow on both sides of the thin conducting surface. In all cases, we
let Jg denote the total current density.

Figure 9a illustrates a perfectly conducting polygon cylinder
illuminated by a parallel magnetic Tine source Mj. Let Iy and Ip
denote the current density Jg at the corners of the polygon. The
current Jg vanishes at the edges 0 and 0'. Let us define two strip-
dipole mode currents on the cylinder. Mode 1 extends from point O to
point 2 and has terminals at point 1. Mode 2 extends from 1 to 3
with terminals at 2. Each mode has a sinusoidal current distribution
and unit terminal current as in Egqs. (27) and (28). Now we represent
Jg(2) as the superposition of the two modal currents with weightings
Iy and Ip. This gives a piecewise-sinusoidal expansion for Jg(2)
with two unknown constants I7 and Ip. (In practice we require a
minimum of around 16 unknowns to obtain accurate results.)

In the exact solution, the tangential electric field vanishes
everywhere on contour C. Thus if we move an electric test probe to
the conducting surface, as in Fig. 9b, the open-circuit voltage at
its terminals will read zero. To determine N current samples, we
make N independent probing tests. The probes may be real (thin-wire
V-dipoles) or hypothetical (electric line sources or strip dipoles).
Now suppose we adjust the currents I, until all the probes
read zero. This procedure yields a stationary solution for the
currents I,, and, under favorable conditions, tends to the rigorous
solution as N increases.

Let Zy,, denote the mutual impedance between test-probe m in
Fig. 9b and mode current n in Fig. %9a. The open-circuit voltage in-
duced in the probe is the sum of the voltage contributions from Jg
and Mj. This voltage must vanish at each probe, leading again to
Egs. }9) and (11). With strip-dipole probes, Zyy is given by Eq. (29)
and Table I for the diagonal elements and by Eq. (30) and Tables II,
IIT and IV for the off-diagonal eiements. For perfectly conducting
cylinders, the impedance matrix is symmetric.

Qur piecewise-sinusoidal expansion for the current density Jg(2)
satisfies Kirchoff's current Taw. This follows from the continuous
nature of each dipole mode in the expansion. In this respect, our
mode currents resemble the loop currents (as opposed to branch currents)
in electric circuits.

17



I

Fig. 9a. Perfectly conducting polygon cylinder with
parallel magnetic line source yh.

PROBE 2\

>~ PROBE |

Fig. 9b. Electric test probes 1 and 2 are moved
to the conducting surface.
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Figure 10 shows a square cylinder with a fin extending outward

Fig. 10. Perfectly conducting cylinder illustrates first,
second and third-order junctions.

from one cormer. This illustrates first, second and third-order
junctions. (The order of a junction is defined by the number of strips
extending outward from the junction.) In Fig. 10 the open edge of the
fin is a first-order junction. Second-order junctions exist at the
terminals of modes Iy, I2, I3 and Ig. The upper-right corner of the
square cylinder is a third-order junction. At a junction of order n,
it is possible to define at least n distinct modes. As a consequence
of Kirchoff's current law, however, only (n - 1) modes are independent.

In Fig. 10 the current density I4 flows into the third-order
junction from below, Ig into it from the left, and (Ig + Ig) flows out
of the junction via the fin.

As illustrated in Fig. 10, a planar conducting surface is
sometimes divided into two or more segments. The absolute upper
1imit on segment length is A»/2. For accurate results, however, we
must use at least four segments per wavelength.

19



VI. CYLINDERS WITH FINITE CONDUCTIVITY

Section II presents the reaction formulation for closed cylinders
with finite conductivity. Aithough the impedance matrix Zpn is symmetric
for perfectly conducting cylinders, the symmetry disappears with finite
conductivity. In the square matrix Zpy,, the first subscript m denotes
the row and the second subscript n denotes the column. In the linear
equations (Eg. (9)), equation m is obtained by enforcing the zero-
reaction condition with test source m. In Eq. (10), Zyn is the mutual
impedance between the test source (or test probe) m and the expansion
mode n. The test sources and the expansion modes are electric str1p
dipoles. With finite conductivity, however, the electric expansion
modes have associated magnetic currents given by Eq. (6).

In Eq. (10), the unit normal vector n is directed into the source
region. By definition, the source region contains the impressed
current Mj. Thus n reverses direction if Mj is moved across the
conducting surface S. For perfectly conducting cylinders, the impedance
matrix Zp, is independent of the source location. With finite con-
ductivity, however, it is apparent in Eq. (10) that the interior matrix
differs numerically from the exterior matrix.

The impedance boundary condition (Eq. (6)) is not rigorous but
is a reasonable approximation when Zg is small.

It may be noted from Eqs. (10) and (16) that the mutual impedance
Zyn between coplanar non-overlapping strip dipoles is independent
of the surface impedance Zs.

VII. THE EXCITATION COLUMN
The complex voltages Vp in Eq. (9) form the "excitation column"
or “excitation vector"” in the matrix equation Zy, Ip = V. These

voltages are independent of the surface impedance Zg. If the impressed
current is a magnetic Tine source M;j, Ec. (11) reduces to

I AL

The two forms in Eq. (31) are related by the reciprocity theorem. Both
forms require numerical integration over test source m.

If the line source M; is located at a great distance from the
cylinder, the incident field (Ej,H;j) may be regarded as a plane wave
with

20




R jk(x cos¢; +y sin¢i)

(32) E.i='¢1'T‘IHoe

where ¢; is the angular coordinate of the source and Hy is the incident
magnetic field intensity at the coordinate origin. Figure 11 illustrates

®i

Fig. 11. A plane wave (E;,Hj) illuminates an
electric strip dipole.

an incident plane wave illuminating a strip dipole with edges at points
1 and 3 and terminals at point 2. Let the sinusoidal electric current
Jn flow in the direction from 1 to 2 and from 2 to 3. The integration
in Eq. (31) is readily performed to yield

3y Jv,
[e - (cos kh] -J cos(a]—¢i) sin kh]) e ]
(33) V =-nH ——— | = g -
m ) k sin kh] s1nTa]-¢17
j¢3 _ j‘l’z
[e - (cos kh2 - cos(a2-¢.) sin khz) e °]
+ n HO e !

'_"E'éih'kTﬂ; sin(ay-6;)

21



where hy and ho are the dipole segment lengths and yj (x; cose; +
yj sin¢i). The angle between the positive x axis ana the vector
directed to the terminals from point 1 is denoted «y. Similarly ap
is the angle of the vector directed to the terminals from point 3.

To investigate the properties of a narrow axial slot in a
cylinder, we move a magnetic line source M; to the conducting surface.
This situation is illustrated in Fig. 12 with the line source located

X

Fig. 12. A narrow axial slot is modeled with a magnetic
Tine source at the conducting surface.

at the terminals of dipole mode Ip. The arrows on segments hy and hj3
indicate the reference directions for J,. The circled dot represents
the magnetic line current Mj flowing in the positive z direction. The
aperture vo]tage is Mj with reference polarity indicated by the positive
and negative signs in Fig. 12.

22




To calculate the excitation column for this situation, we refer
again to Eq. (31) and consider the limiting form of the integrals as
M; approaches the conducting cylinder from the right. Only the inte-
grations over segments hs and h3 require special attention; the others
are amenable to numerica% integration. We position the 11ne source
Mj at the intersection of segments hp and h3. Thus the field Ej is
orthogonal to the conducting surfaces hp and h3 except on the circular-
arc region with angle y. Since the mode current Jy goes sinusoidally
to zero near the line source, Vj requires 1ntegrat1on only over h
with no contribution from hp. Likewise V3 is obtained by integrating
over hg with no contribution from h3. The mode current Jo has unit
value in the vicinity of the line source, and Eq. (31) yields in the
limit (as the radius of arc y tends to zero)

M.

T
(34) V2 T 2n

With aperture voltage M; and aperture current I,, the aperture
admittance 1is

(35) Y = IZ/Mi = G+ j B mhos/meter.

As the aperture width tends to zero, the susceptance B is singular.
The conductance G, however, is well behaved and the time-average
power delivered by the line source is

(36) P = IMi]2 G watts/meter.

In Fig. 12, if the 1line source approaches the conducting
surface from the left we find

27 - v) M,

S A
(37) V2 - 27

but the other excitation voltages are not affected. If the cylinder
is closed, this change in one excitation voltage converts an antenna
radiation problem to an interior cavity problem. For a perfectly
conducting cylinder, the aperture conductance will be positive in the
radiating case and zero in the cavity case. If y = m, moving the line
source across the conducting wall simply reverses the sign of one
voltage.

The slot discussed above is called a "one-sided slot" since it
illuminates only the region on one side of the thin conducting wall.
Figure 13a illustrates a one-sided axial slot and the line-source
mode1l.

23



Fig. 13a. A one-sided slot is modeled with a
magnetic line source.

Fig. 13b. A two-sided slot is modeled with a
magnetic doublet.

It is convenient to define a magnetic doublet as an array of two
closely spaced parallel line sources with equal magnetic currents
flowing in opposite directions. If the currents Mj are finite and the
spacing tends to zero, the field Ej vanishes everywhere except in the
narrow region between the two line sources. As indicated in Fig. 13b,
the magnetic doublet provides a model for a "two-sided slot” in a
conducting cylinder. This narrow axial slot radiates into the regions
on both sides of the thin conducting wall. In this situation all the
excitation voltages vanish except Vg = Mj, where mode g has the
doublet at its terminals. This fo]?ows from superposition and Egs.
(34) and (37).

24




An axial slot with finite width is termed a "wide slot" to
distinguish it from the previously considered "narrow slot" which has
infinitesimal width. For simplicity assume a uniform electric field
Ea = V/a across the aperture, where V is the aperture voltage and "a"
is the aperture width. Let the aperture width be divided into an
integer number of equal segments with length h. The equivalent
magnetic surface-current density over the aperture is Mj = V/a. For
a two-sided wide slot, the excitation voltage vanishes for each mode
outside the aperture region. From Eq. (11), the excitation voltages
are

2(1 - cos kh) V o

_ m
(38) Vm ~ " ka sin kh

where ey is unity for the modes in the aperture and zero for those
outside the aperture. At each edge of the aperture there will exist
a mode having one segment in the aperture and another segment out-
side. For these two modes, ey is one-half.

For a one-sided wide slot the excitation voltages are just one-
half those in Eq. (38), plus the contributions obtained by numerical
integration (Eq. (11)) over the segments outside the aperture.

The complex power supplied by the aperture is

= * = * .
(39) P = VI JQS E; de
a

where V and I are the aperture voltage and current and the integration
extends across the aperture. If the electric field is uniform across
the aperture, Ej = V/a for the two-sided case. It follows that the
$perture current I is just the average value of J; across the aperture.
hus

N V 1
_ mm
(40) I = % T
where V. is given by Eq. (38).
For the one-sided aperture, E; = V/(2a) and the aperture current

I is one-half the aperture-average of Js. In all cases the aperture
admittance is Y = I/V.
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VIII. FAR-FIELD RADIATION AND SCATTERING

The scattered field of a cylinder is the sum of the free-space
fields generated by the electric surface currents Jg and the magnetic
surface currents Mg on the cylindrical surface. To obtain the total
field we add the free-space field (Ej,H;j) of the magnetic sources Mj.

For a magnetic line source M; of infinite length located on the
z axis, the free-space field is

(41) E= ¢ JkM, Hy(ko)/4

(42) H

-z k M, H, (ko)/ (4n).

If the magnetic line source is paraliel with the z axis and passes
through the point (x,y), its free-space field at a distant point

(p :¢) is

- Mz /?S-E-jkp ejk(x cos¢ + y sineg)

(43) H=-
4n v1kp

Consider a magnetic surface-current distribution M,(t) on a
planar strip extending from (x7,y7) to (x2,y2) as in Fig. 14. Distance
from the edge (x],y]) to any point on the strip is measured by the
coordinate t. For an arbitrary point on the strip,

(44) X = X ¥ t cos a
(45) y=y; +tsina.
From Eq. (43), the free-space field of this source at a distant
point ?p,¢) is

~ /2__ -jkp J‘w] h .
(46) ﬂ” __zk/Zje e J Mz(t) echt dt

4n vVrkp b

where
(47) Yy = k(x] cos¢ + y, sing)
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Fig. 14. A planar strip source extends from
(x15¥7) to (%5,y5).

(48) ¥, = k(x, cos¢ +y, sing)

(49) c cos (a-¢).

The free-space field of an electric surface current is given by
Eq. (16). For an electric current J = t J¢(t) on the strip in Fig. 14,
the field at a distant point (p,¢) is

~ ' ke Ju, h _
(50) HP _ _ 2z k V27 sin(o-¢) e e J 3, () pdket g
4 vrkp i)

It may be noted that Eq. (50) is similar to Eq. (46).

27



If the magnetic surface-current density M,(t) in Eq. (46) arises
through the finite conductivity of the cylinder, the impedance boundary
condition in Eq. (6) yields

(51) M (t) =s Z, J.(t)
where
(52) s=(txn)z=z]

and the unit normal n is directed into the source region.

From Eqs. (46), (50) and (51) the distant scattered field from
one segment of the conducting cylinder (the strip in Fig. 14) is

/23 (n sinfa-g) + s Z.) e Jke £

(53) HS = -
z 4n VWRp sin kh
where
. h
v -
(54) F=ksin(kh) e | J 3, (t) edket 4.
0

If the electric current on this segment has a sinusoidal distribution
as follows:

I] sin(kh-kt) + I sin(kt)
(55) I (t) = STA(kA)
Eq. (54) yields
I v, v,
(56) F = — [e - (cos kh + j c sin kh) e ']
sin” (a-¢)
I v . Jvy
t—— [e - (cos kh - j c sin kh) e “].
sin“(a-¢)

In the end-fire directions where («-¢) is zero or pi, Eq. (54) yields
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ij]

Jv,
(57) F= [e sin kh - kh e ©] ch]/Z

Jv Jjv
- [e % sinkh -khe 1] jel,y/2.

The field scattered by the cylinder is obtained by summing the contri-
butions from all the segments of the cylinder. -

In plane-wave scattering problems, one is usually interested in
the echo width W defined as follows:

(58) W= 1im 2m |HS/H|?

pro

where H' is the incident magnetic field intensity.

In antenna and radiation problems we are interested in the
directive gain:

(59) 6 = P(o)/P,,

where P(¢) is the power density in direction ¢ and P,y is the average
power density:

2m

J P(¢) do.
0

|

(60) p. =

ay i

N

The power radiated per unit length of cylinder is

(61) wr = 2mp pav'
For a perfectly conducting cylinder, an alternative expression is
(62) o= V|6

where V is the terminal voltage and G is the conductance per unit
length. From Egqs. (59) and (61),

2mpn IHZI2
(63) G = —p——
r
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IX.  NUMERICAL RESULTS

Figure 15 presents the backscattering echo width of circular

- [ l | |

1.6 EIGENFUNCTION
° ) o REACTION

L.4f—

T

O

ECHO WIDTH
A

0.8}—

Zs*(30.64 + jO)OHMS

0.2} — < —

I N B
o) 0.2 0.4 0.6 0.8 1.0 1.2 1.4
DIAMETER (4/3)

Fig. 15. Backscattering echo width of circular
cylinder for TE polarization.

cylinders with perfect and imperfect conductivity. In the reaction
calculations the cylinder was divided into N segments where N = 12 +
20 d/x and d is the diameter. Figure 16 shows similar results for a
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Fig. 16. Broadside backscatter of square
cylinder for TE polarization.

square cylinder with 16 segments. Figure 17 illustrates the back-
scattering characteristics of a circular-sector cylinder. Our data

in Fig. 17 show excellent agreement with independent calculations by
Billingsley and Sinclair[15]. The echo width of the complete circular
cylinder is 2.224 .

Figure 18 shows the conductance of a narrow axial slot in a
circular cylinder. The number of segments is N = 16 + 20 d/x for
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Fig. 17. Backscatter echo width of perfectly conducting circular-
sector cylinder for TE polarization. (Radius: ka = 5)
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Fig. 18. Conductance of narrow axial slot in perfectly conducting
circular cylinder for TE polarization.

diameters up to one wavelength and N = 56 for the larger cylinders.
Figure 19 shows similar results for a square cylinder with N = 24 +
20 w/Xx where w is the width of the cylinder.

Two methods are available for determining the conductance of a
narrow axial slot. The simpler and faster method is to take the real
part of the electric surface-current density at the siot, and the
alternative is to integrate the far-field power pattern. The two
methods generally show good agreement if the cylinder is divided into
an adequate number of segments. For closed noncircular cylinders,
however, the first method fails when interior modes resonate. With a
square cylinder, this occurs when the width w is a multiple of A/2. No
difficulty is encountered in calculating the echo width or the gain
of a source on or near the cylinder. The conductance data in Fig. 19
were obtained by far-field integration.
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Fig. 19. Conductance of narrow axial slot on perfectly
conducting square cylinder.

Figure 20 shows the forward gain and backward gain of a narrow
axial slot in a circular cylinder.
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Fig. 20. Directive gain of narrow axial slot on perfectly conducting
circular cylinder for TE polarization.

Figure 21 illustrates the conductance of a wide axial slot in
a circular cylinder with 56 segments, and Fig. 22 shows similar data
for a square cylinder. These conductance data apply when the
tangential electric field has a uniform distribution across the aperture.

Figures 23 and 24 show the gain patterns of a magnetic line source
near a circular and square cylinder, respectively.
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Fig. 21. Admittance of wide axial slot in perfectly conducting

circular cylinder for TE polarization.
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Fig. 22. Conductance of wide axial slot in perfectly conducting
square cylinder for TE polarization.
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Gain G(¢) of magnetic line source near a
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For perfectly conducting strips, our calculations show excellent
agreement with the eigenfunction solution for broadside backscatter
and the far-field patterns of one-sided and two-sided narrow axial
sTots. We also have excellent agreement with the eigenfunction solution
for the far-field pattern of a narrow axial slot in an elliptic
cylinder[16]. For a magnetic 1ine source near a square cylinder and
an open circular-arc cylinder, we have excellent agreement with the
geometrical theory of diffraction.

X. SUMMARY

This report presents the piecewise-sinusoidal reaction formulation
for TE radiation and scattering from noncircular conducting cylinders.
Numerical results are included to show the backscattering echo width of
circular and square cylinders with perfect and imperfect conductivity.
Additional data illustrate the admittance and gain of axial-slot antennas
on circular and square cylinders and the gain of a magnetic line source
near a cylinder. The computer program and subroutines are presented
in Appendices.
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APPENDIX I
MAIN COMPUTER PROGRAM

The main computer program is listed in Fig. 25 in the Fortran
language. With finite conductivity, the program handles a closed
cylinder or an array of closed cylinders. With perfect conductivity,
the program handles open cylinders, closed cylinders, more complicated
cylinders as in Fig. 10, and arrays of cylinders. By setting the
integer LOP, the user may select any one of the four excitation options
listed below.

1. If LOP = 1, transfer to statement 110 for two-sided narrow
axial slot.

2. If LOP = 2, transfer to statement 120 for two-sided wide
axial slot.

3. If LOP = 3, transfer to statement 130 for magnetic line
source or one-sided narrow axial slot.

4, If LOP = 4, transfer to statement 140 for plane-wave
scattering.

Statement 10 reads the first input data defined as follows:

IWR Positive or negative integer to write or suppress the
current distribution

LOP Integer to select option 1, 2, 3 or 4

NM  Number of segments (monopoles) on the contour of the
cylinder

NP  Number of points on the contour.

Figures 26 and 27 illustrate typical input data for a square
cylinder and a strip, respectively. The square cylinder has four
segments and four points, and the strip has four segments and 5 points.
(In practice we would divide the contour into a larger number of seg-
ments for more accurate results.) For a closed cylinder with finite
conductivity, the points must be numbered in the counterclockwise
direction (as in Fig. 26) for exterior excitation, and in the clockwise
direction for interior excitation. For perfectly conducting cylinders,
the points and segments may be numbered randomly.
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Next we must give the computer information to indicate which
points are joined with conducting segments. This data is read in the
DO LOOP ending with statement 50. IA(J) and IB(J) are the index numbers
of the endpoints of segment J. The segments must be numbered con-
secutively from 1 through NM. The DO LOOP ending with statement 60
reads the coordinates XC(I) and YC(I) of the points in arbitrary
units. These points, which lie on the contour of the cylinder and
define its shape and size, must be numbered consecutively from 1
throu?h NP. From XC(I) and YC(I), the computer will determine X(I)

and Y(I) which denote 2wx/x» and 2ny/Ax. Statement 80 reads the following
data: : _
CMM Conductivity in megamhos per meter. A negative value
indicates perfect conductivity.
DPH Increment in the far-field angle ¢ in degrees.
FMC Frequency in megahertz.

SCALE  Scale factor for multiplying XC and YC to obtain the
coordinates in meters. A negative value indicates the
unit of measure for XC and YC is the wavelength.

TC Thickness of conductor in same units as XC and YC. TC
is not needed if® the cylinder has perfect conductivity.

For option 1 (two-sided narrow axial slot), statement 110 reads
the index number IGN of the mode which has the generator at its
terminals. The modes are set up in subroutine SORT, and statement 55
writes a list of these modes. Mode I has terminals at the point I2(I)
and endpoints at I1(I) and I3(I). The reference direction for the
modal current is from Il toward I3, and the reference polarity for
the modal voltage is negative at I1 and positive at I3.

Table V shows the list of modes for the square cylinder and the

TABLE V
OUTPUT DATA
Mode definitions for ' Mode definitions for

square cylinder in Fig. 26 strip in Fig. 27

I [II(I) [ I12(T) [ I3(I) I]I1(I) 12(I) | I3(1

1 4 1 2 1 1 2 3

2 1 2 3 2 2 3 4

3 2 3 4 3 3 4 5

4 3 4 1

Y11 = .00459 + j .00341 Scattering cross-section = 0.00163
Gain = 1.166 at ¢ = 0 Backscatter echo width = 0.00328
Gain = 0.835 at ¢ = 180°
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strip. Four modes are defined on the square cylinder, and the terminals
of mode I are located at point I. Thus to indicate a two-sided narrow
axial slot at the lower-right corner of the square, we set IGN = 1.
Three modes are defined on the strip, and the terminals of mode I are
located at point I + 1. To indicate a slot at the center of the strip
we set IGN = 2,

For more complicated cylinders (such as in Fig. 10), it is
necessary to make a preliminary computer run to obtain the mode
definitions. Then we can select IGN from the mode list and proceed
with the final computer run. It is important to note that IGN is a
mode number and is not always the same as the index number of the

oint where the slot is located. With option 1, the computer will
write out the slot admittance Y11 and proceed to calculate the power
gain GAIN with increments DPH in the far-field angle PH.

With option 2 (two-sided wide axial slot), statement 120 reads
the index numbers JSA and JSB of the first and last segments in the
aperture. It is assumed that JSB is greater than or equal to JSA
and that the segments are numbered consecutively across the aperture.
The computer writes out the admittance Y11 and the gain of the wide
slot.

For option 3 (magnetic Tine source o» one-sided narrow axial
slot), statement 130 reads the angle PSI in degrees and the coordinates
XCS and YCS of the line source in the same units employed for XC and
YC. PSI is defined in Fig. 12 and Eq. (34) and is used only when the
line source is located at one of the points (XC,YC) on the contour of
the cylinder. The computer writes out the admittance Y11 and the gain.
For a unit magnetic line source, the admittance is defined as the
magnetic field H, at the line source. The singular term in the
susceptance is suppressed, and the scattered field HS is calculated
by integrating over the currents Jg and M¢ on the cy%inder.

With option 4 (plane-wave scattering), statement 140 reads BSC
and PHI. Set BSC positive or negative for backscattering or bistatic
data, respectively., For bistatic scattering, PHI is the angle of
incidence in degrees. The computer writes the scattering angle PH in
degrees, the echo width EWL in wavelengths, and (in a backscattering
situation) the extinction cross-section ECS in wavelengths.

The radiated or scattered power is calculated by numerical
integration of the far-field power pattern. This result is employed
to calculate the radiation conductance GR or the scattering cross-
section SCS immediately below statement 280. These quantities will
not be accurate, however, unless the angular increment DPH is
sufficiently small. For a perfectly conducting cylinder, ECS should
be equal to SCS and GR should be equal to the real part of Yil.
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In some radiation problems the admittance Y11 will be inaccurate
and, as a result, the power gain GAIN will have incorrect normalization.
This occurs with an axial slot on a closed noncircular cylinder in the
vicinity of an interior resonance. Even in this case, GAIN is useful
as the relative far-field power pattern. (The pattern is correct
even when the normalization is not.) For perfectly conducting
cylinders, this situation is indicated when GR differs appreciably
from the real part of YI11. '

Finally, the computer reads JOB and LOP below statement 280. If
JOB = 10, transfer is made to statement 10 to undertake a new problem.
If JOB = 80, transfer goes to statement 80 for further calculations on
a previously considered cylinder with a new conductivity, frequency,
scale or thickness. If JOB = 300, transfer goes to statement 300 to
terminate the calculations. If JOB does not equal one of these three
numbers, transfer goes to statement 110, 120, 130 or 140 according to
LOP. This is appropriate when we wish to change only the excitation

of the cylinder.

In the DATA statement near the beginning of the program, IDM
denotes the dimensions of the subscripted quantities and INT controls
the accuracy of certain integrations performed in the subroutines.
Although INT = 10 is suitable, one may use a smaller or larger value
to increase the computational speed or the accuracy, respectively.
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[« BENRE, I V]

10

50

55

50

70
80

90

95

COMPLEX COT 97597114712, Y11,,Y 12,1 THHZS,HIT
COMPLEX C(56456)9Cdi0n) HIJ(AA)HMI(56),VII(56)
DIMENSTINM TA(S6) (57 1,T1(54),72(56),1%(5%6),JA15A),7(56)

DIMENSINN MDU5645 }9ii (88 19 X{(56),V(56),0(506}4XC(56),YC(56),DC(56])

DATA IDN,INT/56410/

DATA PI,TPyETA/341415%,16.28313,3764727/
FORMAT(1X,8F15,.,7)

FORMAT(1HO)

FORMAT(7F10,.5)

FORMAT(1X,1415)
COT=1e414214%ETAM ML Al ey~1.)
READ(S,8)INRLOP, MI,ilp
WRITE(6,8)IWR,LOPGNii, NP

" WRITE(6,5)

DO 50 J=1,NM

READI(5,R)IA(J),IR(J)
WRITE(6,8)JsTA(J)IR{J)

WRITE(6,5)

CALL SORT(IAIByI1Y 412412 JA0 0RO qHNDyMNMyNP My TDMyMAX,MIN)
IFIMINGLT &1 «0ORe MAX LT .5)GO V9 300

DO 55 1=14N
WRITE(6,4,0)T,12(1),12(1),13(1)
WRITE(G6,45)

DO 60 I=1,MP

READIS,7IXC(T),YCLT)

FI=1

WRITE(G6,2)FI4XCLT),YC(T)

WRITE(6,5)

DO 70 JAN=1,NM

KIM=TA(JAN)

LIM=1B( JAN)
DCOJAM)=SORTLIXCIL I -¥C(KIM) )= 2+ (YCILTH)~YCIKIM) ) %52)
PEAD{ 577)C“"IyDPH ,Ff‘:(:,f \:i‘lLEyTC
WRITE(AS2)ICMM4DPR 4F 5T «TCALE,LTC
WRITE(G6,5)

VIAVM=30n o /FMC

TPL=TP

IF(SCALF e GT o0 )TPL-TE "SCALE/VIEVH

DO 90 TAM=1,NP

XUTAN) =TPL=XC({TAN)

YUTAMN)Y=TPL=YC({TAM)

DO 95 JAM=1,4NM

DUJAN)I=TPL=DC {JAM)

112=1

ISYM=0

72S5=¢( .Oyno)

TK=TPL =TC

IFICHM T a0 G)CALL COHRF(CMM LML ,TX,42S)
IF(CMM AT L0, ) ISYM=]

CALL COANTI(C 20 s Xy Y9 ZSaT A IBST1,172,13,15v"1
By IDMy INT 3 JASJB oMMy M 3 1M g NP )
IF{ISYM,ENLL1O)GO TO 400

GO 7O (110,120,4130,140),L0P

110 READ(5,8)1IGN

CALL VNAS({IDM,4IGMaISY!" 3y IWR,I112,1'3CyCJyY11)
FGMN=IGN

WRITE(6,2)FGN,Y11

GO TO 200

120 READ(5,8)JSA,+JSB

CALL VMAS(ITIA,IBIDMyTISYI s TMRyI1 4125135112, 0SAyJ SR TN, MDyNM -
24C+CJaNeVd,YI1)
FSA=JSA

Fig. 25. The MAIN computer program.
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FSB=J58B
WRITE(6+2)FSA,FSR,Y11
GO TO 200
130 RFAD(5,7)PSI4XCS,¥YCS
XS=TPL=#XCS
YS=TPL%YCS
CALL VMLS(TA,IBy IDMyINT,,ISYM,IVR 115125135112, MDyMNyNDyNM,
2CoCJ oD yPSTosVIpX Y 9XS,YS,Y11,42S)
WRITE(6+2)PST+XCSseYCS,yY1l
GO TO 200
140 READ(5,7)BSCPHI
WRITE(642)BSCyPHI
200 WRITE(6,5)
IFILOPNE+4)G=REAL(Y11)
INC=-1
IF{LOP.EQ.4)INC=1
IPA=2
IF(LOP.EQe4)IPA=]
IF(LOP.NE.4)BSC=-1,
NPH=3604/0DPH+145

GR= 4,0
DC 280 IPH=IPA,NPH
FPH=I1PH~2

PH=DPH*FPH
IFUIPHLEQ.1)PH=PHI .

CALL VFF(TIA,IB,INC,IDMsISYMyTWRyI1412,13,112,L0P,MD,yNyNDyNM,
2C4CIsD 9 FUL 3Gy GATNyHIJ s HMM gHZS yHZT yPHIELCS ¢ VU9 X9 Y 9 XS54YS4285)
IFILOPJME 4 )IWRITE (642 )PH,GAIN
IF(LOP.FO4IWRITF(642)PHENL yECS
INC=-1

IF(BSC.GT-O.)INC=

280 GR=GR+CABS(HZT)=*=*2

HRITE(6,+5)

SCS=.0174533*DPH*GR

IFILOP.EQ«4 IWRITE(642)SCS
GR=ETA*SCS
IF{LOPNEL4IWRITE(642)GR
WRITE(64+5)

READ(5,8)J0B,L0P

IF(JOB.EMGL10)GO TO 10
IF{JOBLFN,80)G0O TO 80
IFIJU0B.EQ.300)G0 TO 300

GO 70(110,120,130,4140),L0P

300 CONT INUE
CALL EXIT
END

Fig. 25. (Continued)
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3 ‘ — 2

Card Y
Number |

1 -1 3 4 4 X

2 1 2

3 2 3

4 3 4

5 4 1

6 .5 -.5 4@ @ 1
7 .5 .5

8 -.5 .5

9 -.5 -.5

10 -1. 180. 300. N .001
11 90. .5 -.5

12 300 1

Fig. 26. Input data for square cylinder with one-sided narrow
axial slot. The diagram shows the numbering system
for the four points on the cylinder.
Card
Number

1 -1 4 4 5

2 12 Y

3 2 3

4 3 4 s ——= 3 . -@
5 4 5 1 2 3 4 5
6 -.5 .0

7 -.25 .0

8 .0 .0

9 .25 .0

10 .5 .0 -

1 -1. 90. 300. . .001
12 -1. 90.

13 }300 1

Fig. 27. Input data for bistatic scattering by strip. The
diagram shows the numbering system for the five
points on the strip.
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APPENDIX II
Subroutine SORT

Subroutine SORT, 1isted in Fig. 28, defines a set of strip-
dipole mode currents on the cylinder. The input data IA, IB, NM,
NP and IDM have been defined already. The output data are defined
as follows:

N Number of dipole modes on the cylinder
11(1) Endpoint on dipole I

12(1) Terminal point on dipole I

13(1) Endpoint on dipole I

JA(I) Segment of dipole I

JB(I) Segment of dipole I

ND(J) Number of dipoles sharing segment J
MD(J,K) A Tist of the dipoles sharing segment J
MAX, MIN Extreme values of ND(J).

At completion of the DO LOOP ending with statement 20, NJK denotes
the number of segments intersecting at point K, and JSP is a list of
these segments. In the DO LOOP ending with statement 22, the computer
sets up the appropriate number MOD of dipole modes with terminals at
point K. The first mode is set up on segments JSP(1) and JSP(2), the
second mode on JSP(1) and JSP(3), etc. Since the segments are listed
in ascending order in JSP, all the modes with terminals at point K
will share the lTowest-numbered segment JSP{1) having an endpoint at K.

LAX denotes the Targest number of segments intersecting at any
point, and LIN denotes the smallest.

SURROUTINE SORT{TALIB,T1 412,13 ,JAsJRyMDyMDeNM, MNP yN,JDOMyMAXyMIN])
DIMENSINN JSP{10) 4HMD{IDMsH)HD(IDM)
DIMFISTIAN TACINMH )Yy IBUIDM) 2T CIDMY 120 I00 )2 130D, JALTIDM) ,JBLIDN)
1=0 :
LAX=0
LIN=100
DO 24 K=1,4,NP
NJK=0
DO 20 J=1,4NM
IND=(TA(J)-K}={IR (J)=K)
IFUINDMELO)IGHH TN 20
MJK=MJK+1
JSP(NJK)=J
20 CONT INUE
IF{NJK«GT «LAX LA X=NJIK
IF(NJKeLTSLINIL IN=NJIK
MOD=MNJK=-1
IF(MOD.LE.OIGN TO 24

Fig. 28. Subroutine SORT.
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22
24

26

30

32

34

38
40

46

JAI=JSP(1)
IT11=TA(JAT)

IF{TAUJAT)LEN LK) IT1=1IB(JAT)

b0 22 IMD=1,MOD
I=1+1

NJK=TIMD+1
JALT)=JA]
JBI=JSP(NJK)
JB(I)=JBI
I1(I)=111
I2(1)=K
I3(I)=1A(JBI)

IFCIACJUBI)4EQK)I3{I)=IB(JRI)

CONT INUE
CONTINUE

IF({LAXeNE&42 +0R¢ LINGNE.2)GN TO 26

I11=11(1)
I11(1)=13(1)
I3(1)=111
JA1=JA(1)
JA(1)1=JUB(1)
JB(1})=JAl

N=1

DO 30 J=1,NM
NDUJ)=0

DO 30 K=1,5
MD(J,K)=0

DO 40 I=14N
J=JA(T)

DO 38 L=1,2
ND(J)=ND(J)+1

K=1

M=0

MIK=MDI{J,K)
IFIMIKSNELOIGD TN
M=1

MD{J,yK)=1

K=K+1

IFIK.GT5)GN TO 28
IFIM,EN.0)GO TO 32
J=JB( I}

CONT INUE

MIN=100

MAX=0

DN 46 J=1,NM
NNJ=ND(J)

34

IF(NDJ«GT «MAX IMAX=NDJ
IF(NDJ<LT.MINIMIN=NDJ

RETURN
END

Fig. 28.

(Continued)
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APPENDIX III
Subroutine CDANT

Subroutine CDANT, listed in Fig. 29, sets up the impedance
matrix Zjj defined by Egs. (9) and (10} and denoted in the computer
program by C(I,J). Most of the input data have been defined already;
the new items are defined as follows:

D(J) kdj where d; is the length of segment j and k = 2n/)
X(I)},Y(I) kxj and ky; where (x;j,yi) are the coordinates of point i
ZS surface impedance in ohms

ISYM zero or one for perfectly conducting or finitely con-

ducting cylinder, respectively.

The surface impedance ZS is assumed to e uniform over the entire
conducting surface. If the cylinder has perfect conductivity, Zi; is
symmetric and CDANT sets up just the upper-right triangular portion of
C(I,J). With finite conductivity, the entire square matrix is generated.
If any segment has a length exceeding 0.477 ), CDANT returns with

C(I,J) = 0 and ISYM = 10.

C(I,J) denotes the mutual impedance between the electric test
dipole I and expansion mode J. To calculate Z;j; from Eq. (10), we
integrate over dipole J using the current J; odeipo}e J and the
field of dipole I. It is convenient to express Zjj as the sum of an
integral over segment JA(J) and an integral over ségment JB(J). (These
are the two segments of dipeie J.) Furthermore, the field of dipole
I is the sum of the fields from segments JA(I) and JB(I). Thus, Zij
can be expressed as the sum of four double integrals:

-0 : NIRRT
L K 1 K

where J; is the current density of dipole I. Equation (64) follows

from Eqs. (10) and (22) for a perfectly conducting cylinder. The
argument of Hy and Hy is kp where p is the distance between a source-
point on segment K and a point on segment L, and p is the corresponding
unit vector. The dipole current distributions Jj(s) and J;(t) are
sinusoidal as in Section IV and have unit value at the dipole terminals.
From Eq. (64), it is convenient to consider the dipole-dipole im-
pedance Zij to be the sum of four segment-segment impedances Z[ k.

CDANT selects a segment K (at statement 30) and another segment
L. As in Eq. (64), K is a szgment of test-dipole I and L is a segment
of expansion mode J. The segment-segment impedance 7k is obtained by
calling a subroutine. In statement 168, this impedance is then added
to Zij-
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In CDANT, segment K has endpoints KA and KB and segment L has
endpoints LA and LB. It is convenient to think of KA and KB as points
1 and 2 on segment K, and LA and LB as points 1 and 2 on L. Now we
can define four segment-segment impedances P(IS,JS). The first sub-
script IS refers to the terminal point on segment K, and the second
subscript JS refers to the terminal point on L. Thus IS =1 or 2
if dipole I has its terminal point I12(I) at KA (point 1) or KB
(point 2), respectively. Similarly JS =1 or 2 if mode J has its
terminal point I2(J) at LA or LB, respectively. The impedances
P(1S,dS) are defined with the following reference directions for
current flow: from point 1 toward point 2 on each segment. If dipole
I has this same reference direction on segment K we set FI = 1;
otherwise FI = -1. Similarly, FJ = +1 in accordance with the reference
direction for mode J on segment L. In statement 168 P(IS,JS) is
multiplied by FI and FJ before its contribution is added to Zjj.

CDANT calls subroutine ZMM1 if the segment numbers K and L are
identical, ZMM2 if segments K and L intersect, or ZMM3 otherwise.
Subroutine ZMM2 calculates the impedances Q(KK,LL) which are 1ike the
P(1S,JS) but have different conventions on reference directions and
subscript meaning. The transformation from the Q impedances to the
P impedances is accomplished in statement 98.

SUBROUTINE COANT(C yDyXsY9ZSsTA,IByI1912513,ISYM
2y IDMyINT s JA3JB yMDyN¢ND yNM,NP)
CAMPLEX ZS,P11,P12,P21,P22,011,0129Q2140224P{2,2)+Q(2+2)
COMPLEX CULIDM,IDM)
DIMENSION X(IDM)yY(IDM),D(IDM),TA(IDM),IB{IDM),JA(LIDM},IB(IDM)
DIMENSION T1(IDM)y12(IDM),I3(IDM),MD(IDM,5),ND(IDM)
DO 20 I=1,sN
DO 20 J=14N
20 Ct1,J)=(.0,.0)
DMAX=,.,0
DO 25 J=1,NM
DK=D(J)
25 I1F(DK.GT.DOMAX)DMAX=DK
IF(DMAX.LT+3.)GO TO 30
ISYM=10
RETURN
30 DO 200 K=1,4NM
NDK=ND(K)
KA=TA(K)
KB=1B(K)
DK=D(K)
DO 200 L=1,NM
NDL=ND{L}
LA=TA(L)
LB=IB(L)
DL=D(L)
NIL=0

Fig. 29. Subroutine CDANT.
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36

40

42

46

50

80

82

83

98

120

168
200

DO 200 II=1,NDK
I=MD(K,TI)

FI=1.

IF(KB.EQLI2(1I))IGO TO 36
IF{KBLEOLTI(I))IF1=—1a

1S=1

GO T0 40

IF(KAGEDLI3(I)IFI==1.

IS=2

DO 200 JJ=1,NDL

J=MD{L ,JJ)

IF(ISYM.NELO)IGO TO 42
IF(1.GT<JIGO TG 200

FJ=1.

IFILBLENLI2(J)IGN TO 46
IF(LBENGIL(J)IFI==1,

Js=1

GO TG 50

IFLLALENGIZ(J))IFI=—1,

JS=2

IF(MILWNELO)GO TO 168

NIL=1

IF{(K.,EQ.L)GO TO 120

IND={ LA-KA)={LB~KA)*={LA-KB)*(LR~KB)
IF{IND.EQ.O)GO TO 80

SEGMENTS K AMD L SHARE NO POINTS
CALL ZMM3{X(KA) 3 Y(KA) o X(KB)yY(KB) 9 X{LA)YsY(LA)X(LR)yY(LB)yZS,
2K 4DLsIMT gP (191 )P (142)9P(291)4P(242))
GO TD 158

SEGMENTS K AND L SHARE ONE POINT (THEY INTERSECT)
KG=3

JM=KB

JC=KA

KF=-1

IND=(KB-LA)*{KB-1B)
IF(IMNDNELOIGD TO 82

JC=KB

KF=1

JM=KA

KG=0

LG=3

JP=LA

LF=—1

IF{LB«ENLJCIGD TO 83

JP=LB

LF=1

LG=0

SGN=XF=LF

CALL ZMMZ2UX{IM) s YIIMI o XUJC) g YIJIC Y9 XUJIP )y Y{JUP )y ZS4NKy DL,y
2INT001451)90(192)4Q(291)9Q(2,2))
DO 98 KK=1,2

KP=TABS(KK=KG)

DG 98 Li=1,2

LP=TABSI(LL~LG)

PIKP,LP)=SGN%*Q (KKsLL)

GO 70 168

K=L (SELF REACTION OF SEGMENT K)
CALL ZMMI(DK4ZS 4P {141 )sP(142))
P(211)=P(172)

P(2,2)=P(1,1)
ClT,01=ClIyJ)+FT*FJI%P(1S,4JS)

CONT INUE

RETURN

END

Fig. 29. (Continued)
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APPENDIX IV
Subroutine ZMMI1

/MM1, listed in Fig. 30, calculates the self-impedances of a
sinusoidal strip monopole as defined in Appendix 3. (The terms
“monopole" and "segment" are used interchangeably.) These impedances
are obtained in functional form (as opposed to numerical integration)
with the aid of Eq. (24) and the following:

h
(65) K j Ho (kx) sin(kx) dx = 23/x + kh [H_(kh) sin(kh) - H (kh) cos(kh)]
C’
h
(66) k f H, (kx) cos (kx) dx = kh [H_(kh) cos(kh) + H, (kh) sin(kh)]
0]

where k and h are positive. Since Ppy = Pyo and Pyp = Py, ZMMI
calculates only Pyy and Pq5,.

) The impedance contribution AP arising from finite conductivity
is

~ Z
-— . -— - S .
(67) &P = J Mn Hm de = ZS J Qn (n x ﬂm) de 2—-J J J_ds

where the subscripts m and n refer to the test-source and the expansion
mode, respectively. To explain the factor of one-half in the last form
of Eq. (67), consider the free-space field of the test monopole. If
the observer approaches the surface of the monopole, the field is Hy =
+ zZ Jp/e.
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100

SUBROUT INE ZMM1( MK ,4ZS5,P11,P12)

CNMPLEX ZS+HO4H14P1l1l,P12

DATA P1/3,14159/

CDK=COS(DK)

SDK=SIN(DK)

CALL HANK(OK ¢HG oH1 92

SDKS=SDK=*%2

CDKS=CDK *%2

P11 ==2,%H1*CDK+HOFSDK +2 % (o 0gle )=(1+CDKS)/PI/NK
P12 ==HOXCDK*SDK+HL%(14+CDKS)~4,% (40,16 )*CDK/PI/DK
P11=15.#NDK*=P11/STKS

P12=15,%DK*P12/SDKS

RS=REAL (ZS)

IFIRSLF.0.)GO TN 100

CST=16.,*P1*SDKS

TOK=2 « *DK

CTDK=COS(TDK)

STDK=SIN{TOK)

P11=P1ll+ZS*(TDK=STDK)}/CST

P12 =P12 +25%((1le—=CTOK}=SDK+{STOK~TOK}*COK)/CST
CONTINUE

RETURN

END ,

Fig. 30. Subroutine ZMMI1.
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APPENDIX V
Subroutine ZMM2

Subroutine ZMM2, listed in Fig. 31, calculates the segment-
segment impedances of two intersecting strip monopoles. The input
data are:

X1, Y1 Coordinates (kxj,kyj) of the free end of the source segment
X2, Y2 Coordinates of the point of intersection

X3, Y3 Coordinates of the free end of segment 2

DK1 Length kh1 of source segment

DK2 Length khy of segment 2.

Figure 32 illustrates the intersecting segments after a co-
ordinate rotation and translation. Point 1 is at the origin and
point 2 lies on the positive x axis at x = hy. The new coordinates of
point 3 are denoted by XB and YB. Segment 1 lies on the x axis and
o denotes the angle between segment 2 and the x axis. AL, CAL and
SAL denote o, cos a and sin o. If o vanishes, the two segments are
coplanar. In this event, the impedances are calculated in closed form
just above Statement 20. In the coplanar situation the magnetic field
of segment 1 vanishes over segment 2 and there is no coupling via
the surface impedance.

Figure 32 shows the reference directions for the current density
J as used in the definition of the impedances Q11, Q12, Q21 and Q22.
Figure 32 also shows the endpoint numbering system for segments 1 and
2 as used in defining these impedances. As usual, the first and second
subscripts on Q indicate the terminal points on segments 1 and 2,
respectively.

If the cylinder has perfect conductivity, the mutual impedance
between monopoles 1 and 2 is

ha

(68) Z = - i J,(t)E, (t) dt

where g% is the expansion-mode current density on monopole 2 and E
is the free-space field of monopole 1. Coordinate t denotes the dis-
tance from the junction to an arbitrary point on segment 2.

Let Ex and E, denote the components of Ej. It is convenient
to let 7 = [, + Z, where
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(69) 2, = - cosla) [ 3(t) E,(t) at

(70) Z_ = - sin(a) f 3(t) E,(8) dt

y

ZMM2 uses Eq. (24) for Ey. Comparison of Figs. 3 and 32 shows that

pp = t. Thus, one term in Zx can be integrated in closed form via
Egs. (65) and (66). This is accomplished immediately after statement
20, and the result is denoted by S11, S12, etc. The remaining term
in Zy requires the integration of J(t) Hy(key). This is evaluated
with Simpson's rule in the DO LOOP ending at statement 90, and the
result is immediately lumped into S11, S12, etc.

We still have to calculate Zy and the impedance contribution
AZ from the surface impedance ZS. “For Z, we obtain E, from the second
integral in Eg. (22). For AZ we use the first expression in Eq. (10)
and H from Eq. (16). Both Zy, and AZ have the following form:

hy By
(71) R = sin{a) f f F(s) dy(t) (t/o) Hy(ke) ds dt
0 0

where

(72) p2 = 52 + 2st cos(a) + t2

and F1(s) represents Jy(s) or Jj(s). Coordinate s denotes the distance
from the junction to an arbitrary point on segment 1. In Eq. (71)

the integrand is singular at (s,t) = (0,0). To remove the singularity,
we make three successive changes of variable as follows:

(73) p=(t+5s)/V/2 q=(t-s)/vVZ
(74) u = vZ p cos(a/2) v=1v2q sin(a/2)
(75) u = p cos¢ vV =op sing.

In the final transformation (Eq. (75)), the integration variable ¢
should not be confused with the angle ¢ shown in Fig. 3. From Egs.
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(76) s = o sin(a/2 - ¢) t = sin{a/2 + ¢)

sina sina
af2 Pm
(77) R = F](S) Jz(t) t H](kp) dp d¢
-a/2 0
h] sin{a)
(78) em = SFnlarz =57 =%
h2 sin(a)
(79) Pm = sin(a/2 * ¢)° $29,

(h2 - h]) tan(a/2)

(80) tan ¢ = ———7—
0 h2 + h]

IMM2 evaluates Eq. (77) with Simpson's rule. The o integration is
performed in the DO LOOP ending at statement 100, and the ¢ integration
is in the outer DO LOOP ending at statement 200.
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20

30

SUBROUTIME ZMM2(X14Y14X29Y24X34Y3,1S
2sDK14DK?2,INT,0Q11,012,021,022)

COMPLEX HO4H1 4HHN ,J]441 ySHO,SHI1,N11,012,021,022

COMPLEX DHIHO yDHH 1 4,DHO 4 DHY ,DSHO,DSH1

COMPLEX S119S12952)+522+T11eT129T21eT22yY11yY12,Y21,Y22
COMPLEX DT11,DT12,DT21,DT722,DY11,0Y12,0Y21,DY22

COMPLEX 75,RKH1 S X1,SX2,CCPFUNSCQT

DATA CCP/ (.04463662)/

DATA PI/3.14159/

SDK1=SIM(DKL)

SDK2Z2=SIN{DK2)

CDK1=COS{DK1)

CDK2=CNS(DK2)

CBET=(X7-X1)/DK1

SBET=(Y7-Y1}/DK1

XB={X3-X1)*CBET+(Y3~Y1 )*SBET
YB==(X3-X1)%SBCT+(Y3-Y1)*CBET

CAL=( XB-NK1)/DK2

SAL=ABS(YB/DK2)

CALL HANK(DKZ2 sHHO,HHL12)

DHHO=DK?2 =HHO

DHH1=DK 2:HH1

C1S2=CDr1*SDK2

C1C2=CDK1*CDK2

IF(CALLLTL06)G0O TO 20

IF(SAL.GT,.s04)GO TO 20

CNT=-15,=CAL/SDK1 /SDK2

CALL HAMK(DK1 sHO 4H1,2)

DHO=DK1*HO

DH1=DK1*H1

NKS=PDK1+NK2

CALL HANK(DKS ySHO,SH1,2)

DSHO=DKS*SHO

DSH1=DKS%SH1
QlLI=CNT*={CDK1%=DSH1=~C1S2*DHO-C1C2*DH1~-DHH1+CCP*CDK?2)}
Q12=CNT={CDK2*NDHH1=-SDK2*DHHO-CCP+CDK1*#DH1+L1S2%=DSHO-C1C2*DSH1)
Q21=CNT=(SDK2*DHON~DSHI+CDK2*NDH1+CDK1*DHH1-CCP%C1C?2)
Q22=CNT=#{C1S2*DHHO-CLC2%DHH1+CCP*CDK1~DH1~-SDK2:%DSHO+CDK2*DSH1)
RETURN

CONTINUF

S11==-DHH1I+CCP=CDK 2

S12==SDX2=NDHHO+C NK2*DHH1-CCP

S21=(NDHH1-CCP*=CNK2)*CDK1

$22=(5DV.2:DHHO~C PK2*DHH1+CCP)*CDK1

NDKS1=DK) %2

AL=ATAN2{SAL,CAL)

RMIN=DK1

IF{CAL.RF.0.)}GO TO 30

RMIN=DK1=SAL

DCR==-DK1=CAL

IFINK2 . T DCRIRMIMN=SORT (DKS1+2 + *DK1%DK2%CAL+DK2%DK2)
FNT=1+(4xINT)/10
INP=FNT+NK2/RMIN
INP=2%( INP/2)
JF{INPLTe2)INP=2
FIT=INP
IP=INP+1
DT=DK2/FIT
TK=40
SX1={.0,.0)
SX2=(00y.0)
SGI=-1.

Fig. 31. Subroutine ZMM2,
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DO 90 I=1,1P
D=SGI+3,
IF(T.EN.11)D=1,
IF{1.EQ.IP)D=1,
TKS=TK*=TK
RK=SORT(DKS1+42 ¢ *NK1=TK*CAL+TKS)
CALL HANK{(RK,yHO:sH1,0)
S1=SIN{DK2-TK)
S2=SIN(TK)
SX1=5SX1+S1*HO*D
SX2=SX2+S2%H0*D
SGI=-SG1
TK=TK+DT

90 CONTINUE
SX1=SX1%DT/3,
SX2=5X2%DT/3,
§$21=521-SX1
$22=522-5%X2
S12=S12+CDK1#%5X2
S11=S11+CDK1*SX1
INP=2%(INT/2)
IP=INP+1
FIT=INP
JP=1IP
T11=(u0’00)
T12=( 00'.0)
T21=(4,0y.0)
T22=( cO,oo)
COT=(.0,40)
RS=REAL (25)
Yll={( 001.0)
Y12=(40,4.0)
Y21=(40540)
Y22=( no'no)
B=.0
IF{AL.LT.s05)G0 TO 210
ALT=AL/2.
CALT=COS(ALT)
SALT=SIN(ALT)
RCP=(DK1+DK2)*CALT
RSP={DK2-DK1 )*SALT
PHC=ATAN2 (RSP 4RCP)
SGI=-1,.
PH==ALT
DPH=AL/FIT
DO 200 1I=1,1P
D=SG1+3,
IF(1.EQ0W1)D=1,
IF(I.EQ.IP)D=1.
SAP=SIN(ALT+PH)
SAM=SIN{(ALT-PH)
IF(PH.LE4PHC )RMA X=DK1*SAL/SAM
IF{PHLGT « PHC JRMAX =DK2*SAL/SAP
DRK=RMAX/FIT
RK=,4,0
SGJ=~1.
DT11l=(e04+40)
DT12={eNye0)
DT21=({ oOygo)
DT22={e0ye0)
DY11l={e+01y40)
DY12=(404y40)

Fig. 31. (Continued)

61



94

100

200

210

DY21=(404,0)
DY22={e0y40)
RKH1=CCP

DO 100 J=1,4P
C=SGJ+3,.
IF(JeEQL1)C=1,
IF(JeER.JP)C=1a,

IF(JeEQ.1)GD TO 94
CALL HANK(RK ¢HDygH1 1)

RKH1=RK*H1
CONT INUE
SK=RK#*SAM/SAL
TK=RK=SAP/SAL
C1=COS(SK)
C2=C0OS(NK1-SK)
SI=SIN(DK2-TK)
S2=SIN(TK)
FUN=C *RKH1

DY11=DY11-FUN*C1%S1
DY12=DY12-FUN%*C1%52
DY21=DY21+FUN*C2%S1
DY22=DY22+FUN*C2 %52

SGJ==SGJ
RK=RK+DRK
IF(RS.LEO.)GD
SS1=SIN(SK)
SS2=SIN(DK1-SK)}

0 100

DT11=DT11+FUN#*551%*51

DT12=DT12+FUN*S

51 %52

DT21=DT21+FUN%*S52%S1

DT22=DT22+FUN%S
CONTINUE
B=SAP=*DRK=*D
Y1l1=Y11+B8=DY1l1
Y12=Y12+B=*DY12
Y21=Y21+8xDY21
Y22=Y22+B*DY22
PH=PH+DPH
SGI==-SGI
IF(RS 4L EL0.)GO
T11=T11+B*DT11
T12=T12+B*DT12
T21=T721+B%D721
T22=T22+B*DT22
CONT INUE
B=DPH/9.
IF{RS«GT.0.)CAT
CONTINUF
CNT==15,/SDK1/5S
011=CNT*(CAL*S1
Q12=CNT#*{CAL=*S1
P21=CNT*(CAL=*S2
Q22=CNT=(CAL=*S2
RETURN

END

S2 %82

TO 200

=(o09le)*ZS*DPH/ (72, %PI%*SDK1*SDK2*SAL)

DK 2

1+8*Y11)+CQT*T11 i
2+B=Y12)+CQT*T12
1+8=Y21)+CQT*T21
2+BxY22)+COT*T22

Fig. 31. (Continued)
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Fig. 32. Intersecting segments in ZMM2.
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APPENDIX VI
Subroutine ZMM3

IMM3, listed in Fig. 33, calculates the mutual impedances
P11, P12, P21 and P22 of two spatially-separated monopoles. In
the input data (X1,Y1) and (X2,Y2) are the coordinates of the end-
points of segment 1. For example, X1 = kxj. Similarly, (X3,Y3) and
(X4,Y4) are the endpoints of segment 2. DK1 and DK2 denote the segment
fengths khy and khs.

A coordinate rotation and translation is applied to move segment
1 onto the x axis with (X1,Y1) at the origin and (X2,Y2) at (x,y) =
(DK1,0). The new coordinates of (X3,Y3) and (X4,Y4) are denoted by
(XA,YA) and (XB,YB), respectively. Now segment 2 forms an angle o
with the x axis, and CAL and SAL denote cos(a) and sin(a). RMIN denotes
the shortest distance between segment 1 and segment 2 and is employed
to determine the number of terms in the numerical integrations.

In the DO LOOP ending at statement 50, a trigonometric table is
calculated and stored. These sine and cosine functions represent the
modal current (and its derivative) on segment 1. These are multiplied
by the Simpson-rule integration coefficients before storing.

If the cylinder has perfect conductivity, the impedance is
given by Egs. (68), (69) and (70). We use Eq. (24) for E, in Eq. (69).
To obtain E, for Eq. (70), we use a component from the second integral
in Eq. (22). To obtain H, for the surface-impedance term aAZ, we

use Eq. (16).

The DO LOOP ending with statement 100 uses Simpson's rule to
integrate over segment 1 in the calculation of E, and Hz. The outer
DO LOOP ending with statement 200 uses Simpson's” rule to integrate
J2-Ey and Jp Hy over segment 2. The impedance Z of the perfectly
conducting cylinder is denoted by S11, S12, etc. The term aZ is
denoted by T11, T12, etc.
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40

SUBROUT INE ZMM3 (X1 9Y19gX24Y29X33Y39X4yYL4y2S,
2DK1,DK2,INT,P11,P12,P21,P22) .
COMPLEX HHA,HHB, 7S yHZ1 yHZ22 yCOT 4ET14yET2yHO,H1
COMPLEX P11,P124P214P2295114512,5214522,T115T12,7T21,T22
DIMENSTIOAN CC1{21)45S51{(21),CC2(21),552(21)
DATA ETA+PI/37647279314159/
Sil=( 009.0)

S12=( .o, «0)

S21={( .09.0,

S522=( 0y e0)

Tll=(,045.0)

T12=(+0y40)

T21=(.04.0)

T22=( .O,CO)

CBET=(X2-X1)/DK1
SBET={(Y2-Y1)/DK1
XA=(X3=X1)*CBET+(Y3~Y1)*SBET
XB=( X4—X1)*CBET+(Y4—Y1)*SBET
YA=—( X3—-X1)%*#SBET +{Y¥3~Y1)*=CBET
YB=—{(X4—X1)*SBET+(Y4-Y]1 )*CBET
CAL=(XB—XA)/DK2
SAL={(YB-YA)/DK2

RMIN=10000,

X=XA

Y=YA

DX=NK2=*CAL/4.

DY=DK2x*=SAL/4.

DO 40 J=1,5

YS=.0

R=ABS(Y)
IF(ReGT el eE~15)YS=Y*Y

XS=,0

XAB=ABS (X-DK1)
IF{XAB.GT el eE-15) XS=XAB*XAB
IF(X el T aOe JR=SORT(XZXX+YS)
IF(XeGToeDKL)IR=SORT(XS+YS)
IF({RGLT 4RMIN)IRMIN=R

X=X+DX

Y=Y+0DY

CONT INUE

FNT=1+(4%INT)/10
ISS=FNT*DK1/RMIN
155=2%(1S5S5/2)
IF(ISSeLTe2)I155=2
IF{1SS5.GT.20)15S =20

FSS=1S8S :

1SO=1SS+1

DS=DK1/FSS

ITT=FNT*DK2/RMIN
ITT=2=(ITT/2)
IF(ITT LT &2)ITT=2
IF{ITTaGT20)1ITT=20

FTT=ITT

ITO=ITT+1

DT=DK2/FTT

XP=4,0

SGN=-1,

RS=REAL({ZS)

JuMP=0

ASAL=ABS (SAL)

IF{RS cLEeOeaANN L ASAL L Toe04)JUMP=1
IF{JUMPLEDNL1)GO TO 60

Fig. 33. Subroutine ZMM3.
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50
60

100
110

DN 50 I=1,150

C=SGN+3,

IFII1.EQ.1)C=1,
IF{1.EQ.150)C=1a
CCL(I)=C=COS(DK1=-XP)
SS1(1)=C*=SIN(DK1-XP) '
CC2(1}=C*COS(XP)

SS2( 1)=CxSIN(XP)
SGN==SGN

XP=XP+DS

CONTINUF

CONT INUE

DX=DT*CAL

DY=DT=*SAL

X=XA

Y=YA

TK=,0

SGJ=—-1.

CDK1=COSI(DK1)

DO 200 J=1,1ITQ

D=SGJ+3.

IF{J.EN.1)D=1.
IF{J.EQ.ITOID=1,
CT1=D*SIN(DK2-TK)
CT2=D=*SIN(TK)

XP=40

YS=.0

YAB=ABS!{Y)
IF{YAB.GTaleE-15)YS=YAB*YAB
ET1=(,0,40)

ET2=(,0,.0)

HZ21=(,0,.,0)

HZZ:-( aO,.O)

RKA=SQRT {X:*X+YS)
RKB=SQRT{{X-DK1)}=**2+YS)
SPH=YAB/RKA+YAB/RKB
IF{SPHLT.,04)G0O TO 110
IF(JUMPL.EQ.1)GD TO 110
DC 100 I=1,1SQ

DELX=ABS {X-XP)

DXS=4,0
IF(DELXeGT el aE—15)1DXS=DELX*DELX
RK=SORT (DXS+YS)
SPH=Y/RK

C1=CC1( 1)

S1=SS51(1)

C2=CC2(1)

S2=S82(1)

CALL HAMK (RK4HO,Hl,1)
ET1=ET1-C1#SPH*H]
ET2=ET2+C2%#SPH*H1
XP=XP+DS

IF(RSLLFL0L.IGO TO 100
HZY=HZ1+S1=H1#%SPH
H72=HZ2+S2%H]1*SPH

CONT INUE

CONT INUF

CALL HAMK{RKAZHHA 4H1,0)
CALL BAML(RKB 4HO yH1,0)
ETI=ET1:*SAL=DS/ 3, +CAL*(CDK1*HHA=HO)
ET2=ET2:=SAL*DS/3 ++CAL* (CDK1:#HO~HHA)
S11=S11+CT1*ET1

Fig. 33. (Continued)
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S12=S12+CT2*ET1
S21=S21+CTL1#*ET2
S22=S22+CT2*ET2

SGJ=-5GJ

TK=TK+DT

X=X+DX

Y=Y+DY

IF{RS.LF.0.)GO TN 200
T11=T114+CT1*HZ1
T12=T12+CT2%HZ1
T21=T21+CT1*HZ2
T22=T22+CT2*HZ2

CONTINUF

SPK1=SIM{DKL)

SNDK2=STM(NDK2)
CST==FETA=DT/ (24 =P T1%SPK1:SNK?)
COT={eN 1 )=DSHDTHZS5/(T2*#PI*SDK1*SDK2)
P11=CST=S11+COT=T11 .
P12=CST*S5S12+4CAT=*T12
P21=CST=521+CQT*T21
P22=CST#522+CQT*T22

RETURN

END

Fig. 33. (Continued)
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APPENDIX VII
Subroutine HANK

HANK, listed in Fig. 34, generates the Hankel functions of the
second kind Hy(x) and H](x) denoted by H and H1. The input data are
the argument X and the integer ID. Although ID is ignored in HANK, it
is defined as follows: Let ID =0, 1 or 2 if Hy, Hy or both are
required.

HANK always generates Hg and Hy on each call. An improvement
in computational speed could be achieved by generating just the
required function as indicated by ID.

In this subroutine B and Bl denote the Bessel functions and Y
and Y1 the Neumann functions. HANK uses the polynomial approximations
given in reference [17].
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55

60

100

200

SUBROUTINE HANK (X 4yHyH1,4ID)
COMPLEX HyH1

DATA TSP/ 63661977/
IF(XeGTe3.)GO TO 100
XLN=TSP*ALOG(X/2,)

IF(X1eLToel)GO TO 60

X4=X2%X2

X6=X2%X4

IFIX1eLTaa31)G0 TO 55

XB8=X2 =X 6

X10=X2%*X8

X12=X2%X10

= ¢21E~3%X12-¢39444E-2%X10+,4444TIE~1%X8

Y= o24B846E-3%X124,42T7916E-2%X10-.4261214E~1%X8
Bl=e1109FE~4%*X12-431761E~-3%X10+,443319E~2%X8
Y1= o2 T7BT73E-2%X12-4400976E~1%X10+.3123951%X8
B=B-.3163866%X6+]l (2656208%X4
Y=Y+.25300117%X6~,T74350384%X4
B1=B1-.3954289F-1%X6+.,21093573%X4
Y1=Y1-1.3164827%X6+2,1682709%X4
B=B=2.2499997%X2+1,

Y=Y+ ,60559366%X2+436746691+XLN*B
Bl=X*(Bl=-e562499R5%X2+45)
Y1=(Y1+.2212091%X2—-.6366198) /X+XLN*B1

GO TO 200

SW=SORT (X )

x1=3./x

X2=X1%X1

X3=X1%X?

X4a=X1%X3

X5=X1%X4

X6=X1%X5

F=e7978RL56— e TTE~6%X1~0a552T4F—2%X2-,9512E-4%X3+,137237E=-2%X4
2=+ 728B05F=3%X5+,1 44 T6E—-3%X6

T=X— e 7853981l 6~ ¢4] 6639TE=1%X1-e3954E-4%X24.2625T3F~2%X3
2= e54125FE=-3%X4—-,29333FE-3%X5+,13558E~3%X6 ,
B=F*COS(T)/SW '
Y=F*SIN(T)/SW
F=eT79T78RB456+4156F=5%X14+,165956TE—-1%X2+,417105E~3%X3~,249511E-2%X4
2+.113653F-2%X5-, 20033FE~3*X6 ‘
T=X=243561945+412499612%X1+eS65E-4%X2-o63T8TIE-2%X 3+, T4348E~3%X4
2+ . 79R24F~3%X5~-,2 91 66E—3%X6

B1=F=*COS(T)/SW

Y1=F%SIN(T)/SW

H=CMPLX (B 4-Y)

H1=CMPLX(Bl,~Y1)

RETURN

END

Fig. 34. Subroutine HANK.
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APPENDIX VIII
Subroutine CROUT

CROUT, listed in Fig. 35, solves a system of simultaneous linear
equations with complex coefficients. This subroutine uses the method
of P. D. Crout described in Reference [18]. Although this subroutine
does not use pivoting, it is efficient and accurate in the application
discussed herein. The input data are defined as follows:

C(I,J) Complex coefficients in the simultaneous equations

S(I) Excitation column

N Size of the square matrix C

IDM Dimensions of C and S

ISYM Zero or one for symmetric or nonsymmetric matrix
IWR One or zero to write or suppress the solution
112 One or two if C is original or auxiliary matrix.

If 112 = 1, CROUT will convert the original matrix C into the

auxiliary matrix. The auxiliary matrix is overlaid in the same
location C, wiping out the original matrix. Similarly, the solution is
stored in S(I) which contained the excitation column. Of course, N
must not exceed IDM. If IWR = 1, the solution will be printed out

with the following definitions:

1 Index number of the solution S(I)
SNOR  Normalized magnitude of S(I)

SA Absolute magnitude of S(I)

PH Phase of S(I) in degrees.

SUBROUTINE CROUT(C,SsN,IDMy ISYM,TWR,112)

COMPLEX C(IDM,IDM)},S(IDM)
COMPLEX F 4P 4SS,T
2 FORMAT(1X,11541F103,1F15.741F10,0)
5 FORMAT(1HO)
IF(T12.M2,1)G0 TO 22
IF(NLEQ.1)S5(1)=S(1)1/C(1,1)
IF{N.EO.1)GD TO 100
IF{ISYM.NE.O)GO TO 8
DO 6 I=1,4N
DO 6 J=14N
ClJU,1)=ClI,J)
CONT INUE
CONTINUE
F=Cl(1,1)
DO 10 L=2,N

@ o

Fig. 35. Subroutine CROUT.
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10 C(l,L)=C(1l,L)/F
DO 20 L=2yN
LLL=L-1
DO 20 I=LsN
F=C{1I,L) '
DO 11 K=1,LLL
11 F=F=C(1,K)=C(K,yL)
C(I,L)=F
IF(L.ED.I)GD TO 20
P=C(L,L)
IF(ISYM.EN.0)GO TO 15
F=C(L,1I)
DO 12 K=1,LLL
12 F=F-C{L,K)*C(K,I)
C(L,1)=F/P
GO T0 20
15 F=ClI,L)
ClL,I)=F/P
20 CONTINUE
22 CONTINUE
DO 30 L=1,N
P=C(L,4L)
T=S(L)
IF(L.EQ.1)GO TO 30
LLL=L~-1
DO 25 K=1,LLL
25 T=T-C(L,K)*S({K)
30 S{L)=T/P
DO 38 L=2,4N
I=N-L+1
II=1+1
T=S(1)
DO 35 K=114N
35 T=T-C({I,K)*S(K)
38 S(I)=T
IFLIWR.LE.O) GO TO 100
CNOR=,40
DO 40 I=1,N
SA=CABS(S(1}))
IF{SALGT.CNOR)ICNOR=SA
40 CONT INUF
IFICNOR JLE 4O+ JCNNR=1,
DO 44 J=1,4N
SS=S(1)
SA=CABS{SS)
SNOR=SA/CNOR
PH=,0
IF(SAGT o0 )PH=57,295T8%ATAN2 (AIMAG(SS)4yREAL(SS))
WRITE(642)1,SNORy SA,PH
44 CNONTINUE
WRITE(6,45)
100 CONTINUF
RETURN
END

Fig. 35. (Continued)
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narrow axial slot.

APPENDIX IX
Subroutine VNAS

VNAS, listed in Fig. 36, arranges the solution for a fwo—sided

a unit voltage generator at the terminals of mode IGN. The current
distribution induced on the cylinder is obtained by calling CROUT.
The slot admittance Y11 is then equal to the current CJ(IGN) at the
terminals.

20

SURRNUT IME VNAS( IDMy IGNyISYM, IR ,yI12,NyCyCJsY11)
COMPLEX C(IDM,IDM),CJ(IDM),Y11

DO 20 1=1,N

CI(I1=0.0,4.0)

CJOICNY=(14s0,) _

CALL CROUT(C,CJ oMy IDM,ISYM, IMR,112)

112=2

Y11=CJ(TGN)

RET URN

END

Fig. 36. Subroutine VNAS.
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APPENDIX X
Subroutine VWAS

VWAS, listed in Fig. 37, arranges the solution for a two-sided
wide axial slot. AK denotes ka, where "a" is the aperture width. Most
of the subroutine is concerned with generating the excitation column
VJ(I) corresponding to a unit aperture voltage. A minor generalization
of Eq. (38) is employed so that the aperture segments need not have _
equal lengths. The current distribution CJ(I) induced on the cylinder
is obtained by calling CROUT. Finally the slot admittance Y11 is cal-
culated as in Eq. (40).

SURROUTINE VWAS(TA,IByIDMyISYM,IWRyI11,12,13,112,JSA4JSByMDyN,y,ND

29MM4C4CJyDyVI,YL1)

COMPILEX C{IDMyIDM),CJUIDM),VI(IDM),Y1l1l

DIMEMSINN TA(IDM),IB(IDM),yIL1(IDM),T12(IDM),13(IDM),MD(IDM,5)

2yMNDCIDM) ,D(IDM)

AK= ,0

DN 20 K=JSA,JSB
20  AK=AK+D(K)

DD 30 I=1,N
30 VJ(T)={,0,s0)

IF(JUSB.GTLJSA)GO TO 200

K=JSA

DK=D(K)
V={1.-COS(DK))/ L AK*=SIN(DK})
KA=TA(K)

KB=IB{K)}

NDK=ND (K

DO 140 11=1,NDK

I=MD(K,I1)

FI=1,.

IFIKBJENLI2(T))IGN TO 136
IFIKBEOLJIL{T))IFI==1,
GO 7O 140
136 IF(KALENGI3(I))IFI==1,
140 VJ(T)I=VI(T)I+FI*V
GO TO 280
200 CONT INUE
KA=TA(JSA)
KB=IB(JSA)
LA=TA(JSA+1)
LB=IB({JSA+1)
IND=(LA-KB )= (LB~XB)
IF{IMD.FR.0)GO TO 210
KA=IB(JSA}
KB=TA(JSA)

Fig. 37. Subroutine VWAS.
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210 CONTINUE
DO 250 K=JSA,JSB
DK=D(K)
V=(1.-COS(DK))/ (AK*=SIN(DK)
NDK=ND(K)

DO 240 II=1,NDK
I=MD{K,II)

FI=1;

IFIKB.EN,I2(1))GN TD 236
IFIKBLEOLIL(I))FI==1,

GO TO 240

236 IF(KALEN,I3{1))FI=-1,

240 VJII)=VJI(I)+F 1%V
IF(K.EN.JSBIGO TN 250
LA=TA(K+1)

LR=IB(K+1)

KA=KB

KB=LA
IF{LALENKAIKB=LR

250 CONT INUF

280 CONTINUE
DO 300 I=1,N

300 CJ(I)=vJ(I) )
CALL CROUT(CyCJIsM yIDMyISYM,INR,I12)
112=2
Y11=(.0,,0)

DN 400 I1=1,N

400 Y11=Y11+VJ(I)*CI(T)

RFTURN
END

Fig. 37. (Continued)
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APPENDIX XI
Subroutine VMLS

VMLS, Tisted in Fig. 38, arranges the solution for a parallel
magnetic Tine source near a cylinder. Most of the subroutine is con-
cerned with generating the excitation column for a one-volt magnetic
Tine source. The integrations in Eq. (31) are performed in CMLS. The
current distribution CJ(I) induced on the cylinder is obtained by

calling CROUT. Finally the admittance Y11 of the line source is cal-
culated.

SURPDUTINMNE VMLS(TA,IB,IDMyINT ¢ISYMyIWRyI19124,13,112,MDyNyNDyNM,
2CeCJsDsPSTyVUI3XsY 9 XSeYS,yY11,47S)
COMPLEX C{IDMIDY)oCIUIDM) 4V IITDM) 4 Y11,4PLl4P2,01,02,185
DIMEMNSINAM TA(IDM) L, IBCIDM),T1CINM),I2(INM),I3(IDM)
DIMENSION MDUIDM (S),NDCIDM) o X(IDM),,Y(IDM),D(IDM)
DATA ETALTP/376.7274+6.28318/
DO 100 1=1,N
VJII)={a0,.,0)
100 CUUTI)={404.0)
DN 240 K=1,NM
KA=TA(K)
KB=T1RB(K)
CALL CMLSIPSTX(KA)Y(KA)yX{KB)9Y{(KB)yXSsYSyD(K)},INT,P1,P2,0Q1,02)
01=7S5%01
Q2=75%02
NDK=ND(K)
DO 240 II1=1,NDK
I=MD(K,IT)
FI=1.
IF(KBLENL,I2(1)) GO TO 236
IF(KRLEOLILITI)) FI=—1,
CJULTI)=CI(I)+FI%P1
VJET)=VI(I)+F I={ P1+Q1)
GN TO 240
236 IFIKALENGI3(T)) FI=-=-1,
CI(II=CI(I)+FI=P?
VI D) =VJ(T)I+F I+ P24Q2)
240 CONT INUE
CALL CROUT(CyCJ 4Ny IDM, ISYM,IVR,TI12)
112=2
Y11=CMPLX{TP/ (44ETA)40.)
0 300 I=1,N
300 Y11l=Y11+CJ(I)=VIIL(T)
RETURN
END

Fig. 38. Subroutine VMLS.
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APPENDIX XII
Subroutine CMLS

CMLS, listed in Fig. 39, evaluates the coupling between a
one-volt magnetic line source and an electric strip monopole. The
line source has coordinates XS and YS. The monopole (or segment) has
Tength DK and endpoint coordinates (X1,Y1) and (X2,Y2). P1 is the
coupling to the mode with terminals at point 1, and P2 applies to
terminals at point 2. The excitation voltage Vp, in Eq. (31) is
obtained by integrating over both segments of test-dipole m. CMLS
integrates over one segment to obtain P1 and P2, and VMLS adds the
appropriate quantities (P1 or P2) from two segments to obtain V.

D1 and D2 are the distances between the line source and (X1,Y1)
and (X2,Y2) respectively. RMIN is the shortest distance between the

line source and the segment.

A coordinate rotation and translation moves the segment onto
the x axis with (X1,Y1) at the origin and (X2,Y2) at x = DK. The
new coordinates of the line source are (XA,YA). The integration in
Eq. (31) is evaluated with the trapezoidal rule in the DO LOOP ending
at statement 100. Eg. (41) is employed for the electric field of the

magnetic line source.

The admittance of a one-volt magnetic line source near a
cylinder is defined as the magnetic field intensity H, at the line
source. The field H; is the sum of the free-space field of the line
source, the field Hg of the electric current on the cylinder, and the
field HQ of the magnetic current on the cyliner.

By reciprocity, P1 and P2 are useful not only in generating the
excitation column but also in calculating Hg. To permit VMLS to
calculate the line-source admittance, CMLS also generates Q1 and Q2
which denote the field HY from the magnetic current on one segment
of the cylinder. Equations (6) and (42) are employed here, and the
integrations for Q1 and Q2 are performed in the DO LOOP ending with

statement 100.
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SUBROUTINE CMLSI(PST ¢X19Y19X2,Y2¢XSyYSyDKyINT,P1,P?2,Q1402)
COMPLEX CSTsHOH14P1,P2,401,Q2
DATA ETA/376.727/
DKH=DK/ 25,
DI=SORT({(XS=X1)*x2+(YS-Y1 )%*2)
D2=SORT ( (XS=X2)%==24+({YS-Y2)*%2)
p2={ .O’.O)
P1=CMPLX{+5%PS1/360¢y0.)
Q1=(.0,4.0)
02=(+0,y.0)
IFIDL.LT.OKH)GO TO 200
P1=(.0,.0)
P2=CMPLX(.5%PS1/360.,+0.)
IFID2.LT.DKH)GD TQ 200
SOK=SIN(NK)
P1={(+0,y40)
P2=( .Ovoo)
CBET=(X2-X1)/DK
SBET=(Y2-Y1)/DK
XA=(XS=X1)}*CBET+(YS-Y1 )*SBET
YA=—=(XS—X1)*SBET+ (YS-Y1)*CBET
X=XA
Y=YA
YSO=Y=%2
RMIM=ARS(Y)
TF{ X oL T oC o )RMIN=SRRT (X=X+YSN)
IF{XGT«NMK)IRMIN=SORT ( (X-DK)**2+YSQ)
FHT=1+{4*INT)/10
ISS=FHT=LOK/RMIN
IF{1SS.LT42)1I55=2
FIT=1SS
DS=DK/FIT
XP=DS5S/2.
DN 100 1=1,1ISS
DELX=X-XP
RK=SORT (DELX*%2+YSQ)
SPH=Y/RK
S1=SIN{DK=XP)
S2=SIN(XP)
CALL HANMK(RKHO,H1 42)
P1=pP1+S1=H1*SPH
P2=P2+S52=#H]1*SPH
01=01+S1:=HO
N2=02+52=HO
XP=XP+DS

100 CONTINUFE
CST=1.0,14)3DS/ (4 «*SDK)
P1=CSTHP1
P2=CST=P2
CMT==DS/ (4 «*ETA=SDK )
01=CNT*N1]
N2=CNT=02

200 CONT INUE
RETURN
END

Fig. 39. Subroutine CMLS.
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APPENDIX XIII
Subroutine VFF

VFF is listed in Fig. 40. In antenna problems (options 1, 2
and 3) and bistatic scattering (option 4 with INC = 0), VFF calculates
the magnetic field HZT in the far-zone and the GAIN or the echo width
EWL. In these cases, the current distribution CJ(I) on the cylinder
is already known. VFF calls CFF to obtain the far-field from each
strip on the cylinder. HJJ(I) and HMM(I) denote the fields from the
electric and magnetic mode currents, respectively, of mode I. HZS is
the field generated by the currents on the cylinder, HIM is the field
of the magnetic line source in option 3, and HZT is the sum of these.

In backscattering problems (option 4 with INC = 1), VFF
generates the excitation column which is related to HJJ(I) by the
reciprocity theorem. Then VFF calls CROUT to obtain the current
distribution CJ(I) and calculates the extinction cross-section ECS,

the backscattered field and the echo width.
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232

236

240
250

260

265

270

360

400

SUBROUTINE VFF(TAZIBsINCyINMyISYMyIWRyT11912413,112,LO0P,MD,y,Ny,NDyNM,

2CyCU+D o FWL 9 GsGATIM gHIJ 2 HMM 4y HZS yHZT 9PHIECSeVIsX9Y 9 XSeYSe2S)
COMPLEX COT+DNT 3 HIL yHIZ2 gHIM1 gHM? gHZHMZHZSyHZT,LZS
COMPLEX CJU(IDM)yHIJIIDM) yHMMITINM)Y3C(IDMIDM), VJIIDM)
DIMENSTION JA(IDM)IB(IDM)I11(INM)4I2(I0OM)oI3(IDM),MD(IDM,5)
DIMEMNSION ND(IDM) oX(IDM)aY(IDM),D{IDM)
DATA ETA,TP/376.72T796.28318/
COT=1,414214%FTAS*CMPLX(1ley—1,)
IFLISYM,MNEO)DOT=CQT*CONJGI(ZS)/ZS
ECS'—'.O

PHR=,0174533*PH

CPH=COS(PHR)

SPH=SIN(PHR)

NO 232 I=1,N

HJJ(I)-—-(.OyoO)

HMM( I)=(.0, .O)

DD 250 K=1,NM

KA=TA(K)

KB=1IB(K)

CALL CFFRIX(KA),Y{KA} X{KB)yY(KB),D(K)
2+CPHySPHyZS yHI1,HI24HM]Y 4HM2)

NDK=ND (K}

DO 240 1I=1,NDK

I=MD(K,1IT1)

FiI=1le

IF(KBLEQL,I2(I))IGN TO 236
IF(KBEQaIl(I)IFI==1,
HIJJUI)=HJJ{I)+FI*HJ1

HMIA LT ) =HMM (1) +F I #HM1

GO TO 240

TFIKALEQLI3(I))IFI==1,
HIJUIY=HJJ(I ) +F I%xHJ2

HMMUT ) =HMM (1) +F I *HM2

CONT ITNUF

COMTINUE

TFUINCLLELO)GD TO 270

DO 260 T=1,4N

CIJUI)=COTRHJII(T)

VIt I}=CcJlI)
IF(ISYMeNELOIVI(TI=VI(I)-DOT*HMM(T)
CALL CROUT(C+CJIyNyIDMyISYM,TWR,112)
I12=2

DfI 765 I=1,4N

ECS=ECS+REAL{VJ(T )*CONJGICJI(TII))
ECS=ECS/ETA

H7S5={e0440)

DO 360 I1=1,N
HZ2S=HZS+CJ{T )= (HIJ (T )+HMM(I))
HAB=CABS(HZS)
IF{LOP.EQ«4 )EWL =T P=HAB*HAB

H7T=HZS

IF{LOP.NE«3)GO TO 400
PSI=XS%CPH+YS=SPH

HZM=CMPLX(COS(PST )4SIN(PSI))
HZM=={1a9le }¥HIM/(2e%) a414214=ETA)
HZT=HZ2S+HZM

HAB=CABS(HZT)
IF(LOPLT«4)GAIN=TP*ETA*HAB*HAR/G
RETURN

END

Fig. 40. Subroutine VFF.
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APPENDIX XIV
Subroutine CFF

CFF, listed in Fig. 41, calculates the far-zone field of a strip
monopole. The endpoints of the monopole are at (XA,YA) and (XB,YB), and
DK is the length. CPH and SPH denote cos¢ and sin¢. HJ1 and HJI2 are
the far-field contributions from the electric mode currents with
terminals at (XA,YA) and (XB,YB) respectively. Similarly HM] and HM2
are the fields of the magnetic mode currents. This subroutine uses

Egqs. (44) through (57).

SUBRNDUT TME CFFIXAsYAGXBsYB DK PHySPH2ZSyHJI L HJI24HI1,4HM2)
COMPLEX EJAZEJL yCST4ZSyHILyHIZ2,HMLyHM2
DATA ETALPI/376,727,3.14159/
CA={ XB=XA)/DK
CR=(YB-YA)/DK
G=CA=CPH+CB*SPH
P=CR*CPH-~CA=SPH
GK=pP=x2
A=XA%CPH+YA%SPH
B=XB*=CPH+YB*=SPH
EJA=CMPLX{COS(A)SIN(A)) '
EJB=CMPL X{COS(B}s SIN(B))
SPK=SINI(DK)
CDK=COS(DK)
IF(GK L Tes001)GO TO 250
CST=CHFPFLX(leyla)/ {4o*PISSDK*V,414214%GK)
HM1=CST={EJAXCMPILX({CDK 4G*=SNK )~ JB)
HM2=CST= (EJBFCMPL X {CDKy=G=SDK)=EJA)
GO TO 300

250 CST=CHPLX(~1a9l o)/ (B8a*P[*14414214%SDK}
IF(G,LT.0.)G0 TO 280
HM1=CST={DK*EJR-SDK=EJA)
HM2=CST=(SDK*EJB-DK*EJA)
GO TO 300

280 HM1=CST*(SDK*EJA-DK*EJB}
HM2=CST=(DK*EJA-SDK*EJB)

300 HJ1=P=HM]
HJ2=P:HM2
HM1=-=7S*HM1/ETA
HM2=~=2S*HM2/ETA
RETURN
END

Fig. 41. Subroutine CFF.
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APPENDIX XV
Subroutine CSURF

CSURF, listed in Fig. 42, calculates the surface impedance ZS

of a plane conducting slab for normal incidence. FMC denotes the
frequency in MHz. The conductivity of the slab material in megamhos
per meter is CMM. The slab thickness is t and TK denotes kt.

100

SURROUTIME CSURF (CHMM,FMC 4yTK,47S)
COMPLEX FTAWR,7ZS,+ETBT

NDATA ELZFTAQ TP J/Be85433E~12,4376.72796e2B318,12.5664E-7/
ALPH=SORPT{TP=FMCTU=CMMN/ 24 )%1.E6
SOT=SORT(TPHFMC 41/ (24%CHMM) )
ETA=CHPLX(SNT,SOT)

TAT=2 o sTK=SQRT (C M/ (24 #E=TPFMC))
ZS=ETA

IFITAT .GTL60,.,)GO0 TO 100
ETAT=EXP{-TAT)
ETBT=CMPLX(COS(TAT)y=SIN(TAT))
R=ETAT=ETBT*=(ETAN-ETA)/ (ETAQ+ETA)
IS=ETA*({1e+R})/ (1 .~R)

CONT INUE

RETURN

END

Fig. 42. Subroutine CSURF.
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